| /* |
| * NVDIMM ACPI Implementation |
| * |
| * Copyright(C) 2015 Intel Corporation. |
| * |
| * Author: |
| * Xiao Guangrong <guangrong.xiao@linux.intel.com> |
| * |
| * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT) |
| * and the DSM specification can be found at: |
| * http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf |
| * |
| * Currently, it only supports PMEM Virtualization. |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/> |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/uuid.h" |
| #include "qapi/error.h" |
| #include "hw/acpi/acpi.h" |
| #include "hw/acpi/aml-build.h" |
| #include "hw/acpi/bios-linker-loader.h" |
| #include "hw/nvram/fw_cfg.h" |
| #include "hw/mem/nvdimm.h" |
| #include "qemu/nvdimm-utils.h" |
| |
| /* |
| * define Byte Addressable Persistent Memory (PM) Region according to |
| * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure. |
| */ |
| static const uint8_t nvdimm_nfit_spa_uuid[] = |
| UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33, |
| 0x18, 0xb7, 0x8c, 0xdb); |
| |
| /* |
| * NVDIMM Firmware Interface Table |
| * @signature: "NFIT" |
| * |
| * It provides information that allows OSPM to enumerate NVDIMM present in |
| * the platform and associate system physical address ranges created by the |
| * NVDIMMs. |
| * |
| * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT) |
| */ |
| struct NvdimmNfitHeader { |
| ACPI_TABLE_HEADER_DEF |
| uint32_t reserved; |
| } QEMU_PACKED; |
| typedef struct NvdimmNfitHeader NvdimmNfitHeader; |
| |
| /* |
| * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware |
| * Interface Table (NFIT). |
| */ |
| |
| /* |
| * System Physical Address Range Structure |
| * |
| * It describes the system physical address ranges occupied by NVDIMMs and |
| * the types of the regions. |
| */ |
| struct NvdimmNfitSpa { |
| uint16_t type; |
| uint16_t length; |
| uint16_t spa_index; |
| uint16_t flags; |
| uint32_t reserved; |
| uint32_t proximity_domain; |
| uint8_t type_guid[16]; |
| uint64_t spa_base; |
| uint64_t spa_length; |
| uint64_t mem_attr; |
| } QEMU_PACKED; |
| typedef struct NvdimmNfitSpa NvdimmNfitSpa; |
| |
| /* |
| * Memory Device to System Physical Address Range Mapping Structure |
| * |
| * It enables identifying each NVDIMM region and the corresponding SPA |
| * describing the memory interleave |
| */ |
| struct NvdimmNfitMemDev { |
| uint16_t type; |
| uint16_t length; |
| uint32_t nfit_handle; |
| uint16_t phys_id; |
| uint16_t region_id; |
| uint16_t spa_index; |
| uint16_t dcr_index; |
| uint64_t region_len; |
| uint64_t region_offset; |
| uint64_t region_dpa; |
| uint16_t interleave_index; |
| uint16_t interleave_ways; |
| uint16_t flags; |
| uint16_t reserved; |
| } QEMU_PACKED; |
| typedef struct NvdimmNfitMemDev NvdimmNfitMemDev; |
| |
| #define ACPI_NFIT_MEM_NOT_ARMED (1 << 3) |
| |
| /* |
| * NVDIMM Control Region Structure |
| * |
| * It describes the NVDIMM and if applicable, Block Control Window. |
| */ |
| struct NvdimmNfitControlRegion { |
| uint16_t type; |
| uint16_t length; |
| uint16_t dcr_index; |
| uint16_t vendor_id; |
| uint16_t device_id; |
| uint16_t revision_id; |
| uint16_t sub_vendor_id; |
| uint16_t sub_device_id; |
| uint16_t sub_revision_id; |
| uint8_t reserved[6]; |
| uint32_t serial_number; |
| uint16_t fic; |
| uint16_t num_bcw; |
| uint64_t bcw_size; |
| uint64_t cmd_offset; |
| uint64_t cmd_size; |
| uint64_t status_offset; |
| uint64_t status_size; |
| uint16_t flags; |
| uint8_t reserved2[6]; |
| } QEMU_PACKED; |
| typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion; |
| |
| /* |
| * NVDIMM Platform Capabilities Structure |
| * |
| * Defined in section 5.2.25.9 of ACPI 6.2 Errata A, September 2017 |
| */ |
| struct NvdimmNfitPlatformCaps { |
| uint16_t type; |
| uint16_t length; |
| uint8_t highest_cap; |
| uint8_t reserved[3]; |
| uint32_t capabilities; |
| uint8_t reserved2[4]; |
| } QEMU_PACKED; |
| typedef struct NvdimmNfitPlatformCaps NvdimmNfitPlatformCaps; |
| |
| /* |
| * Module serial number is a unique number for each device. We use the |
| * slot id of NVDIMM device to generate this number so that each device |
| * associates with a different number. |
| * |
| * 0x123456 is a magic number we arbitrarily chose. |
| */ |
| static uint32_t nvdimm_slot_to_sn(int slot) |
| { |
| return 0x123456 + slot; |
| } |
| |
| /* |
| * handle is used to uniquely associate nfit_memdev structure with NVDIMM |
| * ACPI device - nfit_memdev.nfit_handle matches with the value returned |
| * by ACPI device _ADR method. |
| * |
| * We generate the handle with the slot id of NVDIMM device and reserve |
| * 0 for NVDIMM root device. |
| */ |
| static uint32_t nvdimm_slot_to_handle(int slot) |
| { |
| return slot + 1; |
| } |
| |
| /* |
| * index uniquely identifies the structure, 0 is reserved which indicates |
| * that the structure is not valid or the associated structure is not |
| * present. |
| * |
| * Each NVDIMM device needs two indexes, one for nfit_spa and another for |
| * nfit_dc which are generated by the slot id of NVDIMM device. |
| */ |
| static uint16_t nvdimm_slot_to_spa_index(int slot) |
| { |
| return (slot + 1) << 1; |
| } |
| |
| /* See the comments of nvdimm_slot_to_spa_index(). */ |
| static uint32_t nvdimm_slot_to_dcr_index(int slot) |
| { |
| return nvdimm_slot_to_spa_index(slot) + 1; |
| } |
| |
| static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle) |
| { |
| NVDIMMDevice *nvdimm = NULL; |
| GSList *list, *device_list = nvdimm_get_device_list(); |
| |
| for (list = device_list; list; list = list->next) { |
| NVDIMMDevice *nvd = list->data; |
| int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP, |
| NULL); |
| |
| if (nvdimm_slot_to_handle(slot) == handle) { |
| nvdimm = nvd; |
| break; |
| } |
| } |
| |
| g_slist_free(device_list); |
| return nvdimm; |
| } |
| |
| /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */ |
| static void |
| nvdimm_build_structure_spa(GArray *structures, DeviceState *dev) |
| { |
| NvdimmNfitSpa *nfit_spa; |
| uint64_t addr = object_property_get_uint(OBJECT(dev), PC_DIMM_ADDR_PROP, |
| NULL); |
| uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP, |
| NULL); |
| uint32_t node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, |
| NULL); |
| int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, |
| NULL); |
| |
| nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa)); |
| |
| nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range |
| Structure */); |
| nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa)); |
| nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot)); |
| |
| /* |
| * Control region is strict as all the device info, such as SN, index, |
| * is associated with slot id. |
| */ |
| nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for |
| management during hot add/online |
| operation */ | |
| 2 /* Data in Proximity Domain field is |
| valid*/); |
| |
| /* NUMA node. */ |
| nfit_spa->proximity_domain = cpu_to_le32(node); |
| /* the region reported as PMEM. */ |
| memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid, |
| sizeof(nvdimm_nfit_spa_uuid)); |
| |
| nfit_spa->spa_base = cpu_to_le64(addr); |
| nfit_spa->spa_length = cpu_to_le64(size); |
| |
| /* It is the PMEM and can be cached as writeback. */ |
| nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ | |
| 0x8000ULL /* EFI_MEMORY_NV */); |
| } |
| |
| /* |
| * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping |
| * Structure |
| */ |
| static void |
| nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev) |
| { |
| NvdimmNfitMemDev *nfit_memdev; |
| NVDIMMDevice *nvdimm = NVDIMM(OBJECT(dev)); |
| uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP, |
| NULL); |
| int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, |
| NULL); |
| uint32_t handle = nvdimm_slot_to_handle(slot); |
| |
| nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev)); |
| |
| nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address |
| Range Map Structure*/); |
| nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev)); |
| nfit_memdev->nfit_handle = cpu_to_le32(handle); |
| |
| /* |
| * associate memory device with System Physical Address Range |
| * Structure. |
| */ |
| nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot)); |
| /* associate memory device with Control Region Structure. */ |
| nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot)); |
| |
| /* The memory region on the device. */ |
| nfit_memdev->region_len = cpu_to_le64(size); |
| /* The device address starts from 0. */ |
| nfit_memdev->region_dpa = cpu_to_le64(0); |
| |
| /* Only one interleave for PMEM. */ |
| nfit_memdev->interleave_ways = cpu_to_le16(1); |
| |
| if (nvdimm->unarmed) { |
| nfit_memdev->flags |= cpu_to_le16(ACPI_NFIT_MEM_NOT_ARMED); |
| } |
| } |
| |
| /* |
| * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure. |
| */ |
| static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev) |
| { |
| NvdimmNfitControlRegion *nfit_dcr; |
| int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, |
| NULL); |
| uint32_t sn = nvdimm_slot_to_sn(slot); |
| |
| nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr)); |
| |
| nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */); |
| nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr)); |
| nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot)); |
| |
| /* vendor: Intel. */ |
| nfit_dcr->vendor_id = cpu_to_le16(0x8086); |
| nfit_dcr->device_id = cpu_to_le16(1); |
| |
| /* The _DSM method is following Intel's DSM specification. */ |
| nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported |
| in ACPI 6.0 is 1. */); |
| nfit_dcr->serial_number = cpu_to_le32(sn); |
| nfit_dcr->fic = cpu_to_le16(0x301 /* Format Interface Code: |
| Byte addressable, no energy backed. |
| See ACPI 6.2, sect 5.2.25.6 and |
| JEDEC Annex L Release 3. */); |
| } |
| |
| /* |
| * ACPI 6.2 Errata A: 5.2.25.9 NVDIMM Platform Capabilities Structure |
| */ |
| static void |
| nvdimm_build_structure_caps(GArray *structures, uint32_t capabilities) |
| { |
| NvdimmNfitPlatformCaps *nfit_caps; |
| |
| nfit_caps = acpi_data_push(structures, sizeof(*nfit_caps)); |
| |
| nfit_caps->type = cpu_to_le16(7 /* NVDIMM Platform Capabilities */); |
| nfit_caps->length = cpu_to_le16(sizeof(*nfit_caps)); |
| nfit_caps->highest_cap = 31 - clz32(capabilities); |
| nfit_caps->capabilities = cpu_to_le32(capabilities); |
| } |
| |
| static GArray *nvdimm_build_device_structure(NVDIMMState *state) |
| { |
| GSList *device_list = nvdimm_get_device_list(); |
| GArray *structures = g_array_new(false, true /* clear */, 1); |
| |
| for (; device_list; device_list = device_list->next) { |
| DeviceState *dev = device_list->data; |
| |
| /* build System Physical Address Range Structure. */ |
| nvdimm_build_structure_spa(structures, dev); |
| |
| /* |
| * build Memory Device to System Physical Address Range Mapping |
| * Structure. |
| */ |
| nvdimm_build_structure_memdev(structures, dev); |
| |
| /* build NVDIMM Control Region Structure. */ |
| nvdimm_build_structure_dcr(structures, dev); |
| } |
| g_slist_free(device_list); |
| |
| if (state->persistence) { |
| nvdimm_build_structure_caps(structures, state->persistence); |
| } |
| |
| return structures; |
| } |
| |
| static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf) |
| { |
| fit_buf->fit = g_array_new(false, true /* clear */, 1); |
| } |
| |
| static void nvdimm_build_fit_buffer(NVDIMMState *state) |
| { |
| NvdimmFitBuffer *fit_buf = &state->fit_buf; |
| |
| g_array_free(fit_buf->fit, true); |
| fit_buf->fit = nvdimm_build_device_structure(state); |
| fit_buf->dirty = true; |
| } |
| |
| void nvdimm_plug(NVDIMMState *state) |
| { |
| nvdimm_build_fit_buffer(state); |
| } |
| |
| static void nvdimm_build_nfit(NVDIMMState *state, GArray *table_offsets, |
| GArray *table_data, BIOSLinker *linker, |
| const char *oem_id, const char *oem_table_id) |
| { |
| NvdimmFitBuffer *fit_buf = &state->fit_buf; |
| unsigned int header; |
| |
| acpi_add_table(table_offsets, table_data); |
| |
| /* NFIT header. */ |
| header = table_data->len; |
| acpi_data_push(table_data, sizeof(NvdimmNfitHeader)); |
| /* NVDIMM device structures. */ |
| g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len); |
| |
| build_header(linker, table_data, |
| (void *)(table_data->data + header), "NFIT", |
| sizeof(NvdimmNfitHeader) + fit_buf->fit->len, 1, oem_id, |
| oem_table_id); |
| } |
| |
| #define NVDIMM_DSM_MEMORY_SIZE 4096 |
| |
| struct NvdimmDsmIn { |
| uint32_t handle; |
| uint32_t revision; |
| uint32_t function; |
| /* the remaining size in the page is used by arg3. */ |
| union { |
| uint8_t arg3[4084]; |
| }; |
| } QEMU_PACKED; |
| typedef struct NvdimmDsmIn NvdimmDsmIn; |
| QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != NVDIMM_DSM_MEMORY_SIZE); |
| |
| struct NvdimmDsmOut { |
| /* the size of buffer filled by QEMU. */ |
| uint32_t len; |
| uint8_t data[4092]; |
| } QEMU_PACKED; |
| typedef struct NvdimmDsmOut NvdimmDsmOut; |
| QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != NVDIMM_DSM_MEMORY_SIZE); |
| |
| struct NvdimmDsmFunc0Out { |
| /* the size of buffer filled by QEMU. */ |
| uint32_t len; |
| uint32_t supported_func; |
| } QEMU_PACKED; |
| typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out; |
| |
| struct NvdimmDsmFuncNoPayloadOut { |
| /* the size of buffer filled by QEMU. */ |
| uint32_t len; |
| uint32_t func_ret_status; |
| } QEMU_PACKED; |
| typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut; |
| |
| struct NvdimmFuncGetLabelSizeOut { |
| /* the size of buffer filled by QEMU. */ |
| uint32_t len; |
| uint32_t func_ret_status; /* return status code. */ |
| uint32_t label_size; /* the size of label data area. */ |
| /* |
| * Maximum size of the namespace label data length supported by |
| * the platform in Get/Set Namespace Label Data functions. |
| */ |
| uint32_t max_xfer; |
| } QEMU_PACKED; |
| typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut; |
| QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > NVDIMM_DSM_MEMORY_SIZE); |
| |
| struct NvdimmFuncGetLabelDataIn { |
| uint32_t offset; /* the offset in the namespace label data area. */ |
| uint32_t length; /* the size of data is to be read via the function. */ |
| } QEMU_PACKED; |
| typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn; |
| QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) + |
| offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE); |
| |
| struct NvdimmFuncGetLabelDataOut { |
| /* the size of buffer filled by QEMU. */ |
| uint32_t len; |
| uint32_t func_ret_status; /* return status code. */ |
| uint8_t out_buf[]; /* the data got via Get Namesapce Label function. */ |
| } QEMU_PACKED; |
| typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut; |
| QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > NVDIMM_DSM_MEMORY_SIZE); |
| |
| struct NvdimmFuncSetLabelDataIn { |
| uint32_t offset; /* the offset in the namespace label data area. */ |
| uint32_t length; /* the size of data is to be written via the function. */ |
| uint8_t in_buf[]; /* the data written to label data area. */ |
| } QEMU_PACKED; |
| typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn; |
| QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) + |
| offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE); |
| |
| struct NvdimmFuncReadFITIn { |
| uint32_t offset; /* the offset into FIT buffer. */ |
| } QEMU_PACKED; |
| typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn; |
| QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn) + |
| offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE); |
| |
| struct NvdimmFuncReadFITOut { |
| /* the size of buffer filled by QEMU. */ |
| uint32_t len; |
| uint32_t func_ret_status; /* return status code. */ |
| uint8_t fit[]; /* the FIT data. */ |
| } QEMU_PACKED; |
| typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut; |
| QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut) > NVDIMM_DSM_MEMORY_SIZE); |
| |
| static void |
| nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr) |
| { |
| NvdimmDsmFunc0Out func0 = { |
| .len = cpu_to_le32(sizeof(func0)), |
| .supported_func = cpu_to_le32(supported_func), |
| }; |
| cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0)); |
| } |
| |
| static void |
| nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr) |
| { |
| NvdimmDsmFuncNoPayloadOut out = { |
| .len = cpu_to_le32(sizeof(out)), |
| .func_ret_status = cpu_to_le32(func_ret_status), |
| }; |
| cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out)); |
| } |
| |
| #define NVDIMM_DSM_RET_STATUS_SUCCESS 0 /* Success */ |
| #define NVDIMM_DSM_RET_STATUS_UNSUPPORT 1 /* Not Supported */ |
| #define NVDIMM_DSM_RET_STATUS_NOMEMDEV 2 /* Non-Existing Memory Device */ |
| #define NVDIMM_DSM_RET_STATUS_INVALID 3 /* Invalid Input Parameters */ |
| #define NVDIMM_DSM_RET_STATUS_FIT_CHANGED 0x100 /* FIT Changed */ |
| |
| #define NVDIMM_QEMU_RSVD_HANDLE_ROOT 0x10000 |
| |
| /* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */ |
| static void nvdimm_dsm_func_read_fit(NVDIMMState *state, NvdimmDsmIn *in, |
| hwaddr dsm_mem_addr) |
| { |
| NvdimmFitBuffer *fit_buf = &state->fit_buf; |
| NvdimmFuncReadFITIn *read_fit; |
| NvdimmFuncReadFITOut *read_fit_out; |
| GArray *fit; |
| uint32_t read_len = 0, func_ret_status; |
| int size; |
| |
| read_fit = (NvdimmFuncReadFITIn *)in->arg3; |
| read_fit->offset = le32_to_cpu(read_fit->offset); |
| |
| fit = fit_buf->fit; |
| |
| nvdimm_debug("Read FIT: offset 0x%x FIT size 0x%x Dirty %s.\n", |
| read_fit->offset, fit->len, fit_buf->dirty ? "Yes" : "No"); |
| |
| if (read_fit->offset > fit->len) { |
| func_ret_status = NVDIMM_DSM_RET_STATUS_INVALID; |
| goto exit; |
| } |
| |
| /* It is the first time to read FIT. */ |
| if (!read_fit->offset) { |
| fit_buf->dirty = false; |
| } else if (fit_buf->dirty) { /* FIT has been changed during RFIT. */ |
| func_ret_status = NVDIMM_DSM_RET_STATUS_FIT_CHANGED; |
| goto exit; |
| } |
| |
| func_ret_status = NVDIMM_DSM_RET_STATUS_SUCCESS; |
| read_len = MIN(fit->len - read_fit->offset, |
| NVDIMM_DSM_MEMORY_SIZE - sizeof(NvdimmFuncReadFITOut)); |
| |
| exit: |
| size = sizeof(NvdimmFuncReadFITOut) + read_len; |
| read_fit_out = g_malloc(size); |
| |
| read_fit_out->len = cpu_to_le32(size); |
| read_fit_out->func_ret_status = cpu_to_le32(func_ret_status); |
| memcpy(read_fit_out->fit, fit->data + read_fit->offset, read_len); |
| |
| cpu_physical_memory_write(dsm_mem_addr, read_fit_out, size); |
| |
| g_free(read_fit_out); |
| } |
| |
| static void |
| nvdimm_dsm_handle_reserved_root_method(NVDIMMState *state, |
| NvdimmDsmIn *in, hwaddr dsm_mem_addr) |
| { |
| switch (in->function) { |
| case 0x0: |
| nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr); |
| return; |
| case 0x1 /* Read FIT */: |
| nvdimm_dsm_func_read_fit(state, in, dsm_mem_addr); |
| return; |
| } |
| |
| nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); |
| } |
| |
| static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr) |
| { |
| /* |
| * function 0 is called to inquire which functions are supported by |
| * OSPM |
| */ |
| if (!in->function) { |
| nvdimm_dsm_function0(0 /* No function supported other than |
| function 0 */, dsm_mem_addr); |
| return; |
| } |
| |
| /* No function except function 0 is supported yet. */ |
| nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); |
| } |
| |
| /* |
| * the max transfer size is the max size transferred by both a |
| * 'Get Namespace Label Data' function and a 'Set Namespace Label Data' |
| * function. |
| */ |
| static uint32_t nvdimm_get_max_xfer_label_size(void) |
| { |
| uint32_t max_get_size, max_set_size, dsm_memory_size; |
| |
| dsm_memory_size = NVDIMM_DSM_MEMORY_SIZE; |
| |
| /* |
| * the max data ACPI can read one time which is transferred by |
| * the response of 'Get Namespace Label Data' function. |
| */ |
| max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut); |
| |
| /* |
| * the max data ACPI can write one time which is transferred by |
| * 'Set Namespace Label Data' function. |
| */ |
| max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) - |
| sizeof(NvdimmFuncSetLabelDataIn); |
| |
| return MIN(max_get_size, max_set_size); |
| } |
| |
| /* |
| * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4). |
| * |
| * It gets the size of Namespace Label data area and the max data size |
| * that Get/Set Namespace Label Data functions can transfer. |
| */ |
| static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr) |
| { |
| NvdimmFuncGetLabelSizeOut label_size_out = { |
| .len = cpu_to_le32(sizeof(label_size_out)), |
| }; |
| uint32_t label_size, mxfer; |
| |
| label_size = nvdimm->label_size; |
| mxfer = nvdimm_get_max_xfer_label_size(); |
| |
| nvdimm_debug("label_size 0x%x, max_xfer 0x%x.\n", label_size, mxfer); |
| |
| label_size_out.func_ret_status = cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS); |
| label_size_out.label_size = cpu_to_le32(label_size); |
| label_size_out.max_xfer = cpu_to_le32(mxfer); |
| |
| cpu_physical_memory_write(dsm_mem_addr, &label_size_out, |
| sizeof(label_size_out)); |
| } |
| |
| static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm, |
| uint32_t offset, uint32_t length) |
| { |
| uint32_t ret = NVDIMM_DSM_RET_STATUS_INVALID; |
| |
| if (offset + length < offset) { |
| nvdimm_debug("offset 0x%x + length 0x%x is overflow.\n", offset, |
| length); |
| return ret; |
| } |
| |
| if (nvdimm->label_size < offset + length) { |
| nvdimm_debug("position 0x%x is beyond label data (len = %" PRIx64 ").\n", |
| offset + length, nvdimm->label_size); |
| return ret; |
| } |
| |
| if (length > nvdimm_get_max_xfer_label_size()) { |
| nvdimm_debug("length (0x%x) is larger than max_xfer (0x%x).\n", |
| length, nvdimm_get_max_xfer_label_size()); |
| return ret; |
| } |
| |
| return NVDIMM_DSM_RET_STATUS_SUCCESS; |
| } |
| |
| /* |
| * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5). |
| */ |
| static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in, |
| hwaddr dsm_mem_addr) |
| { |
| NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm); |
| NvdimmFuncGetLabelDataIn *get_label_data; |
| NvdimmFuncGetLabelDataOut *get_label_data_out; |
| uint32_t status; |
| int size; |
| |
| get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3; |
| get_label_data->offset = le32_to_cpu(get_label_data->offset); |
| get_label_data->length = le32_to_cpu(get_label_data->length); |
| |
| nvdimm_debug("Read Label Data: offset 0x%x length 0x%x.\n", |
| get_label_data->offset, get_label_data->length); |
| |
| status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset, |
| get_label_data->length); |
| if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) { |
| nvdimm_dsm_no_payload(status, dsm_mem_addr); |
| return; |
| } |
| |
| size = sizeof(*get_label_data_out) + get_label_data->length; |
| assert(size <= NVDIMM_DSM_MEMORY_SIZE); |
| get_label_data_out = g_malloc(size); |
| |
| get_label_data_out->len = cpu_to_le32(size); |
| get_label_data_out->func_ret_status = |
| cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS); |
| nvc->read_label_data(nvdimm, get_label_data_out->out_buf, |
| get_label_data->length, get_label_data->offset); |
| |
| cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size); |
| g_free(get_label_data_out); |
| } |
| |
| /* |
| * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6). |
| */ |
| static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in, |
| hwaddr dsm_mem_addr) |
| { |
| NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm); |
| NvdimmFuncSetLabelDataIn *set_label_data; |
| uint32_t status; |
| |
| set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3; |
| |
| set_label_data->offset = le32_to_cpu(set_label_data->offset); |
| set_label_data->length = le32_to_cpu(set_label_data->length); |
| |
| nvdimm_debug("Write Label Data: offset 0x%x length 0x%x.\n", |
| set_label_data->offset, set_label_data->length); |
| |
| status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset, |
| set_label_data->length); |
| if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) { |
| nvdimm_dsm_no_payload(status, dsm_mem_addr); |
| return; |
| } |
| |
| assert(offsetof(NvdimmDsmIn, arg3) + sizeof(*set_label_data) + |
| set_label_data->length <= NVDIMM_DSM_MEMORY_SIZE); |
| |
| nvc->write_label_data(nvdimm, set_label_data->in_buf, |
| set_label_data->length, set_label_data->offset); |
| nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_SUCCESS, dsm_mem_addr); |
| } |
| |
| static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr) |
| { |
| NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle); |
| |
| /* See the comments in nvdimm_dsm_root(). */ |
| if (!in->function) { |
| uint32_t supported_func = 0; |
| |
| if (nvdimm && nvdimm->label_size) { |
| supported_func |= 0x1 /* Bit 0 indicates whether there is |
| support for any functions other |
| than function 0. */ | |
| 1 << 4 /* Get Namespace Label Size */ | |
| 1 << 5 /* Get Namespace Label Data */ | |
| 1 << 6 /* Set Namespace Label Data */; |
| } |
| nvdimm_dsm_function0(supported_func, dsm_mem_addr); |
| return; |
| } |
| |
| if (!nvdimm) { |
| nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_NOMEMDEV, |
| dsm_mem_addr); |
| return; |
| } |
| |
| /* Encode DSM function according to DSM Spec Rev1. */ |
| switch (in->function) { |
| case 4 /* Get Namespace Label Size */: |
| if (nvdimm->label_size) { |
| nvdimm_dsm_label_size(nvdimm, dsm_mem_addr); |
| return; |
| } |
| break; |
| case 5 /* Get Namespace Label Data */: |
| if (nvdimm->label_size) { |
| nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr); |
| return; |
| } |
| break; |
| case 0x6 /* Set Namespace Label Data */: |
| if (nvdimm->label_size) { |
| nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr); |
| return; |
| } |
| break; |
| } |
| |
| nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); |
| } |
| |
| static uint64_t |
| nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size) |
| { |
| nvdimm_debug("BUG: we never read _DSM IO Port.\n"); |
| return 0; |
| } |
| |
| static void |
| nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) |
| { |
| NVDIMMState *state = opaque; |
| NvdimmDsmIn *in; |
| hwaddr dsm_mem_addr = val; |
| |
| nvdimm_debug("dsm memory address 0x%" HWADDR_PRIx ".\n", dsm_mem_addr); |
| |
| /* |
| * The DSM memory is mapped to guest address space so an evil guest |
| * can change its content while we are doing DSM emulation. Avoid |
| * this by copying DSM memory to QEMU local memory. |
| */ |
| in = g_new(NvdimmDsmIn, 1); |
| cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in)); |
| |
| in->revision = le32_to_cpu(in->revision); |
| in->function = le32_to_cpu(in->function); |
| in->handle = le32_to_cpu(in->handle); |
| |
| nvdimm_debug("Revision 0x%x Handler 0x%x Function 0x%x.\n", in->revision, |
| in->handle, in->function); |
| |
| if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) { |
| nvdimm_debug("Revision 0x%x is not supported, expect 0x%x.\n", |
| in->revision, 0x1); |
| nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); |
| goto exit; |
| } |
| |
| if (in->handle == NVDIMM_QEMU_RSVD_HANDLE_ROOT) { |
| nvdimm_dsm_handle_reserved_root_method(state, in, dsm_mem_addr); |
| goto exit; |
| } |
| |
| /* Handle 0 is reserved for NVDIMM Root Device. */ |
| if (!in->handle) { |
| nvdimm_dsm_root(in, dsm_mem_addr); |
| goto exit; |
| } |
| |
| nvdimm_dsm_device(in, dsm_mem_addr); |
| |
| exit: |
| g_free(in); |
| } |
| |
| static const MemoryRegionOps nvdimm_dsm_ops = { |
| .read = nvdimm_dsm_read, |
| .write = nvdimm_dsm_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| .valid = { |
| .min_access_size = 4, |
| .max_access_size = 4, |
| }, |
| }; |
| |
| void nvdimm_acpi_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev) |
| { |
| if (dev->hotplugged) { |
| acpi_send_event(DEVICE(hotplug_dev), ACPI_NVDIMM_HOTPLUG_STATUS); |
| } |
| } |
| |
| void nvdimm_init_acpi_state(NVDIMMState *state, MemoryRegion *io, |
| struct AcpiGenericAddress dsm_io, |
| FWCfgState *fw_cfg, Object *owner) |
| { |
| state->dsm_io = dsm_io; |
| memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state, |
| "nvdimm-acpi-io", dsm_io.bit_width >> 3); |
| memory_region_add_subregion(io, dsm_io.address, &state->io_mr); |
| |
| state->dsm_mem = g_array_new(false, true /* clear */, 1); |
| acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn)); |
| fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data, |
| state->dsm_mem->len); |
| |
| nvdimm_init_fit_buffer(&state->fit_buf); |
| } |
| |
| #define NVDIMM_COMMON_DSM "NCAL" |
| #define NVDIMM_ACPI_MEM_ADDR "MEMA" |
| |
| #define NVDIMM_DSM_MEMORY "NRAM" |
| #define NVDIMM_DSM_IOPORT "NPIO" |
| |
| #define NVDIMM_DSM_NOTIFY "NTFI" |
| #define NVDIMM_DSM_HANDLE "HDLE" |
| #define NVDIMM_DSM_REVISION "REVS" |
| #define NVDIMM_DSM_FUNCTION "FUNC" |
| #define NVDIMM_DSM_ARG3 "FARG" |
| |
| #define NVDIMM_DSM_OUT_BUF_SIZE "RLEN" |
| #define NVDIMM_DSM_OUT_BUF "ODAT" |
| |
| #define NVDIMM_DSM_RFIT_STATUS "RSTA" |
| |
| #define NVDIMM_QEMU_RSVD_UUID "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62" |
| |
| static void nvdimm_build_common_dsm(Aml *dev, |
| NVDIMMState *nvdimm_state) |
| { |
| Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *elsectx2; |
| Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid; |
| Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size; |
| Aml *whilectx, *offset; |
| uint8_t byte_list[1]; |
| AmlRegionSpace rs; |
| |
| method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED); |
| uuid = aml_arg(0); |
| function = aml_arg(2); |
| handle = aml_arg(4); |
| dsm_mem = aml_local(6); |
| dsm_out_buf = aml_local(7); |
| |
| aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem)); |
| |
| if (nvdimm_state->dsm_io.space_id == AML_AS_SYSTEM_IO) { |
| rs = AML_SYSTEM_IO; |
| } else { |
| rs = AML_SYSTEM_MEMORY; |
| } |
| |
| /* map DSM memory and IO into ACPI namespace. */ |
| aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, rs, |
| aml_int(nvdimm_state->dsm_io.address), |
| nvdimm_state->dsm_io.bit_width >> 3)); |
| aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY, |
| AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn))); |
| |
| /* |
| * DSM notifier: |
| * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to |
| * emulate the access. |
| * |
| * It is the IO port so that accessing them will cause VM-exit, the |
| * control will be transferred to QEMU. |
| */ |
| field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK, |
| AML_PRESERVE); |
| aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY, |
| nvdimm_state->dsm_io.bit_width)); |
| aml_append(method, field); |
| |
| /* |
| * DSM input: |
| * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call |
| * happens on NVDIMM Root Device. |
| * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call. |
| * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call. |
| * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package |
| * containing function-specific arguments. |
| * |
| * They are RAM mapping on host so that these accesses never cause |
| * VM-EXIT. |
| */ |
| field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK, |
| AML_PRESERVE); |
| aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE, |
| sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE)); |
| aml_append(field, aml_named_field(NVDIMM_DSM_REVISION, |
| sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE)); |
| aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION, |
| sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE)); |
| aml_append(field, aml_named_field(NVDIMM_DSM_ARG3, |
| (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE)); |
| aml_append(method, field); |
| |
| /* |
| * DSM output: |
| * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU. |
| * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result. |
| * |
| * Since the page is reused by both input and out, the input data |
| * will be lost after storing new result into ODAT so we should fetch |
| * all the input data before writing the result. |
| */ |
| field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK, |
| AML_PRESERVE); |
| aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE, |
| sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE)); |
| aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF, |
| (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE)); |
| aml_append(method, field); |
| |
| /* |
| * do not support any method if DSM memory address has not been |
| * patched. |
| */ |
| unpatched = aml_equal(dsm_mem, aml_int(0x0)); |
| |
| expected_uuid = aml_local(0); |
| |
| ifctx = aml_if(aml_equal(handle, aml_int(0x0))); |
| aml_append(ifctx, aml_store( |
| aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA") |
| /* UUID for NVDIMM Root Device */, expected_uuid)); |
| aml_append(method, ifctx); |
| elsectx = aml_else(); |
| ifctx = aml_if(aml_equal(handle, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT))); |
| aml_append(ifctx, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID |
| /* UUID for QEMU internal use */), expected_uuid)); |
| aml_append(elsectx, ifctx); |
| elsectx2 = aml_else(); |
| aml_append(elsectx2, aml_store( |
| aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66") |
| /* UUID for NVDIMM Devices */, expected_uuid)); |
| aml_append(elsectx, elsectx2); |
| aml_append(method, elsectx); |
| |
| uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid)); |
| |
| unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL)); |
| |
| /* |
| * function 0 is called to inquire what functions are supported by |
| * OSPM |
| */ |
| ifctx = aml_if(aml_equal(function, aml_int(0))); |
| byte_list[0] = 0 /* No function Supported */; |
| aml_append(ifctx, aml_return(aml_buffer(1, byte_list))); |
| aml_append(unsupport, ifctx); |
| |
| /* No function is supported yet. */ |
| byte_list[0] = NVDIMM_DSM_RET_STATUS_UNSUPPORT; |
| aml_append(unsupport, aml_return(aml_buffer(1, byte_list))); |
| aml_append(method, unsupport); |
| |
| /* |
| * The HDLE indicates the DSM function is issued from which device, |
| * it reserves 0 for root device and is the handle for NVDIMM devices. |
| * See the comments in nvdimm_slot_to_handle(). |
| */ |
| aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE))); |
| aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION))); |
| aml_append(method, aml_store(function, aml_name(NVDIMM_DSM_FUNCTION))); |
| |
| /* |
| * The fourth parameter (Arg3) of _DSM is a package which contains |
| * a buffer, the layout of the buffer is specified by UUID (Arg0), |
| * Revision ID (Arg1) and Function Index (Arg2) which are documented |
| * in the DSM Spec. |
| */ |
| pckg = aml_arg(3); |
| ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg), |
| aml_int(4 /* Package */)) /* It is a Package? */, |
| aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */, |
| NULL)); |
| |
| pckg_index = aml_local(2); |
| pckg_buf = aml_local(3); |
| aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index)); |
| aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf)); |
| aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3))); |
| aml_append(method, ifctx); |
| |
| /* |
| * tell QEMU about the real address of DSM memory, then QEMU |
| * gets the control and fills the result in DSM memory. |
| */ |
| aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY))); |
| |
| dsm_out_buf_size = aml_local(1); |
| /* RLEN is not included in the payload returned to guest. */ |
| aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE), |
| aml_int(4), dsm_out_buf_size)); |
| |
| /* |
| * As per ACPI spec 6.3, Table 19-419 Object Conversion Rules, if |
| * the Buffer Field <= to the size of an Integer (in bits), it will |
| * be treated as an integer. Moreover, the integer size depends on |
| * DSDT tables revision number. If revision number is < 2, integer |
| * size is 32 bits, otherwise it is 64 bits. |
| * Because of this CreateField() canot be used if RLEN < Integer Size. |
| * |
| * Also please note that APCI ASL operator SizeOf() doesn't support |
| * Integer and there isn't any other way to figure out the Integer |
| * size. Hence we assume 8 byte as Integer size and if RLEN < 8 bytes, |
| * build dsm_out_buf byte by byte. |
| */ |
| ifctx = aml_if(aml_lless(dsm_out_buf_size, aml_int(8))); |
| offset = aml_local(2); |
| aml_append(ifctx, aml_store(aml_int(0), offset)); |
| aml_append(ifctx, aml_name_decl("TBUF", aml_buffer(1, NULL))); |
| aml_append(ifctx, aml_store(aml_buffer(0, NULL), dsm_out_buf)); |
| |
| whilectx = aml_while(aml_lless(offset, dsm_out_buf_size)); |
| /* Copy 1 byte at offset from ODAT to temporary buffer(TBUF). */ |
| aml_append(whilectx, aml_store(aml_derefof(aml_index( |
| aml_name(NVDIMM_DSM_OUT_BUF), offset)), |
| aml_index(aml_name("TBUF"), aml_int(0)))); |
| aml_append(whilectx, aml_concatenate(dsm_out_buf, aml_name("TBUF"), |
| dsm_out_buf)); |
| aml_append(whilectx, aml_increment(offset)); |
| aml_append(ifctx, whilectx); |
| |
| aml_append(ifctx, aml_return(dsm_out_buf)); |
| aml_append(method, ifctx); |
| |
| /* If RLEN >= Integer size, just use CreateField() operator */ |
| aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)), |
| dsm_out_buf_size)); |
| aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF), |
| aml_int(0), dsm_out_buf_size, "OBUF")); |
| aml_append(method, aml_return(aml_name("OBUF"))); |
| |
| aml_append(dev, method); |
| } |
| |
| static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle) |
| { |
| Aml *method; |
| |
| method = aml_method("_DSM", 4, AML_NOTSERIALIZED); |
| aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0), |
| aml_arg(1), aml_arg(2), aml_arg(3), |
| aml_int(handle)))); |
| aml_append(dev, method); |
| } |
| |
| static void nvdimm_build_fit(Aml *dev) |
| { |
| Aml *method, *pkg, *buf, *buf_size, *offset, *call_result; |
| Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit; |
| |
| buf = aml_local(0); |
| buf_size = aml_local(1); |
| fit = aml_local(2); |
| |
| aml_append(dev, aml_name_decl(NVDIMM_DSM_RFIT_STATUS, aml_int(0))); |
| |
| /* build helper function, RFIT. */ |
| method = aml_method("RFIT", 1, AML_SERIALIZED); |
| aml_append(method, aml_name_decl("OFST", aml_int(0))); |
| |
| /* prepare input package. */ |
| pkg = aml_package(1); |
| aml_append(method, aml_store(aml_arg(0), aml_name("OFST"))); |
| aml_append(pkg, aml_name("OFST")); |
| |
| /* call Read_FIT function. */ |
| call_result = aml_call5(NVDIMM_COMMON_DSM, |
| aml_touuid(NVDIMM_QEMU_RSVD_UUID), |
| aml_int(1) /* Revision 1 */, |
| aml_int(0x1) /* Read FIT */, |
| pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT)); |
| aml_append(method, aml_store(call_result, buf)); |
| |
| /* handle _DSM result. */ |
| aml_append(method, aml_create_dword_field(buf, |
| aml_int(0) /* offset at byte 0 */, "STAU")); |
| |
| aml_append(method, aml_store(aml_name("STAU"), |
| aml_name(NVDIMM_DSM_RFIT_STATUS))); |
| |
| /* if something is wrong during _DSM. */ |
| ifcond = aml_equal(aml_int(NVDIMM_DSM_RET_STATUS_SUCCESS), |
| aml_name("STAU")); |
| ifctx = aml_if(aml_lnot(ifcond)); |
| aml_append(ifctx, aml_return(aml_buffer(0, NULL))); |
| aml_append(method, ifctx); |
| |
| aml_append(method, aml_store(aml_sizeof(buf), buf_size)); |
| aml_append(method, aml_subtract(buf_size, |
| aml_int(4) /* the size of "STAU" */, |
| buf_size)); |
| |
| /* if we read the end of fit. */ |
| ifctx = aml_if(aml_equal(buf_size, aml_int(0))); |
| aml_append(ifctx, aml_return(aml_buffer(0, NULL))); |
| aml_append(method, ifctx); |
| |
| aml_append(method, aml_create_field(buf, |
| aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/ |
| aml_shiftleft(buf_size, aml_int(3)), "BUFF")); |
| aml_append(method, aml_return(aml_name("BUFF"))); |
| aml_append(dev, method); |
| |
| /* build _FIT. */ |
| method = aml_method("_FIT", 0, AML_SERIALIZED); |
| offset = aml_local(3); |
| |
| aml_append(method, aml_store(aml_buffer(0, NULL), fit)); |
| aml_append(method, aml_store(aml_int(0), offset)); |
| |
| whilectx = aml_while(aml_int(1)); |
| aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf)); |
| aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size)); |
| |
| /* |
| * if fit buffer was changed during RFIT, read from the beginning |
| * again. |
| */ |
| ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS), |
| aml_int(NVDIMM_DSM_RET_STATUS_FIT_CHANGED))); |
| aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit)); |
| aml_append(ifctx, aml_store(aml_int(0), offset)); |
| aml_append(whilectx, ifctx); |
| |
| elsectx = aml_else(); |
| |
| /* finish fit read if no data is read out. */ |
| ifctx = aml_if(aml_equal(buf_size, aml_int(0))); |
| aml_append(ifctx, aml_return(fit)); |
| aml_append(elsectx, ifctx); |
| |
| /* update the offset. */ |
| aml_append(elsectx, aml_add(offset, buf_size, offset)); |
| /* append the data we read out to the fit buffer. */ |
| aml_append(elsectx, aml_concatenate(fit, buf, fit)); |
| aml_append(whilectx, elsectx); |
| aml_append(method, whilectx); |
| |
| aml_append(dev, method); |
| } |
| |
| static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots) |
| { |
| uint32_t slot; |
| |
| for (slot = 0; slot < ram_slots; slot++) { |
| uint32_t handle = nvdimm_slot_to_handle(slot); |
| Aml *nvdimm_dev; |
| |
| nvdimm_dev = aml_device("NV%02X", slot); |
| |
| /* |
| * ACPI 6.0: 9.20 NVDIMM Devices: |
| * |
| * _ADR object that is used to supply OSPM with unique address |
| * of the NVDIMM device. This is done by returning the NFIT Device |
| * handle that is used to identify the associated entries in ACPI |
| * table NFIT or _FIT. |
| */ |
| aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle))); |
| |
| nvdimm_build_device_dsm(nvdimm_dev, handle); |
| aml_append(root_dev, nvdimm_dev); |
| } |
| } |
| |
| static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data, |
| BIOSLinker *linker, |
| NVDIMMState *nvdimm_state, |
| uint32_t ram_slots, const char *oem_id) |
| { |
| Aml *ssdt, *sb_scope, *dev; |
| int mem_addr_offset, nvdimm_ssdt; |
| |
| acpi_add_table(table_offsets, table_data); |
| |
| ssdt = init_aml_allocator(); |
| acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader)); |
| |
| sb_scope = aml_scope("\\_SB"); |
| |
| dev = aml_device("NVDR"); |
| |
| /* |
| * ACPI 6.0: 9.20 NVDIMM Devices: |
| * |
| * The ACPI Name Space device uses _HID of ACPI0012 to identify the root |
| * NVDIMM interface device. Platform firmware is required to contain one |
| * such device in _SB scope if NVDIMMs support is exposed by platform to |
| * OSPM. |
| * For each NVDIMM present or intended to be supported by platform, |
| * platform firmware also exposes an ACPI Namespace Device under the |
| * root device. |
| */ |
| aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012"))); |
| |
| nvdimm_build_common_dsm(dev, nvdimm_state); |
| |
| /* 0 is reserved for root device. */ |
| nvdimm_build_device_dsm(dev, 0); |
| nvdimm_build_fit(dev); |
| |
| nvdimm_build_nvdimm_devices(dev, ram_slots); |
| |
| aml_append(sb_scope, dev); |
| aml_append(ssdt, sb_scope); |
| |
| nvdimm_ssdt = table_data->len; |
| |
| /* copy AML table into ACPI tables blob and patch header there */ |
| g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len); |
| mem_addr_offset = build_append_named_dword(table_data, |
| NVDIMM_ACPI_MEM_ADDR); |
| |
| bios_linker_loader_alloc(linker, |
| NVDIMM_DSM_MEM_FILE, nvdimm_state->dsm_mem, |
| sizeof(NvdimmDsmIn), false /* high memory */); |
| bios_linker_loader_add_pointer(linker, |
| ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t), |
| NVDIMM_DSM_MEM_FILE, 0); |
| build_header(linker, table_data, |
| (void *)(table_data->data + nvdimm_ssdt), |
| "SSDT", table_data->len - nvdimm_ssdt, 1, oem_id, "NVDIMM"); |
| free_aml_allocator(); |
| } |
| |
| void nvdimm_build_srat(GArray *table_data) |
| { |
| GSList *device_list = nvdimm_get_device_list(); |
| |
| for (; device_list; device_list = device_list->next) { |
| AcpiSratMemoryAffinity *numamem = NULL; |
| DeviceState *dev = device_list->data; |
| Object *obj = OBJECT(dev); |
| uint64_t addr, size; |
| int node; |
| |
| node = object_property_get_int(obj, PC_DIMM_NODE_PROP, &error_abort); |
| addr = object_property_get_uint(obj, PC_DIMM_ADDR_PROP, &error_abort); |
| size = object_property_get_uint(obj, PC_DIMM_SIZE_PROP, &error_abort); |
| |
| numamem = acpi_data_push(table_data, sizeof *numamem); |
| build_srat_memory(numamem, addr, size, node, |
| MEM_AFFINITY_ENABLED | MEM_AFFINITY_NON_VOLATILE); |
| } |
| g_slist_free(device_list); |
| } |
| |
| void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data, |
| BIOSLinker *linker, NVDIMMState *state, |
| uint32_t ram_slots, const char *oem_id, |
| const char *oem_table_id) |
| { |
| GSList *device_list; |
| |
| /* no nvdimm device can be plugged. */ |
| if (!ram_slots) { |
| return; |
| } |
| |
| nvdimm_build_ssdt(table_offsets, table_data, linker, state, |
| ram_slots, oem_id); |
| |
| device_list = nvdimm_get_device_list(); |
| /* no NVDIMM device is plugged. */ |
| if (!device_list) { |
| return; |
| } |
| |
| nvdimm_build_nfit(state, table_offsets, table_data, linker, |
| oem_id, oem_table_id); |
| g_slist_free(device_list); |
| } |