|  | /* SPDX-License-Identifier: GPL-2.0-or-later */ | 
|  |  | 
|  | #include "qemu/osdep.h" | 
|  | #include "qemu/interval-tree.h" | 
|  | #include "qemu/atomic.h" | 
|  |  | 
|  | /* | 
|  | * Red Black Trees. | 
|  | * | 
|  | * For now, don't expose Linux Red-Black Trees separately, but retain the | 
|  | * separate type definitions to keep the implementation sane, and allow | 
|  | * the possibility of separating them later. | 
|  | * | 
|  | * Derived from include/linux/rbtree_augmented.h and its dependencies. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * red-black trees properties:  https://en.wikipedia.org/wiki/Rbtree | 
|  | * | 
|  | *  1) A node is either red or black | 
|  | *  2) The root is black | 
|  | *  3) All leaves (NULL) are black | 
|  | *  4) Both children of every red node are black | 
|  | *  5) Every simple path from root to leaves contains the same number | 
|  | *     of black nodes. | 
|  | * | 
|  | *  4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two | 
|  | *  consecutive red nodes in a path and every red node is therefore followed by | 
|  | *  a black. So if B is the number of black nodes on every simple path (as per | 
|  | *  5), then the longest possible path due to 4 is 2B. | 
|  | * | 
|  | *  We shall indicate color with case, where black nodes are uppercase and red | 
|  | *  nodes will be lowercase. Unknown color nodes shall be drawn as red within | 
|  | *  parentheses and have some accompanying text comment. | 
|  | * | 
|  | * Notes on lockless lookups: | 
|  | * | 
|  | * All stores to the tree structure (rb_left and rb_right) must be done using | 
|  | * WRITE_ONCE [qatomic_set for QEMU]. And we must not inadvertently cause | 
|  | * (temporary) loops in the tree structure as seen in program order. | 
|  | * | 
|  | * These two requirements will allow lockless iteration of the tree -- not | 
|  | * correct iteration mind you, tree rotations are not atomic so a lookup might | 
|  | * miss entire subtrees. | 
|  | * | 
|  | * But they do guarantee that any such traversal will only see valid elements | 
|  | * and that it will indeed complete -- does not get stuck in a loop. | 
|  | * | 
|  | * It also guarantees that if the lookup returns an element it is the 'correct' | 
|  | * one. But not returning an element does _NOT_ mean it's not present. | 
|  | */ | 
|  |  | 
|  | typedef enum RBColor | 
|  | { | 
|  | RB_RED, | 
|  | RB_BLACK, | 
|  | } RBColor; | 
|  |  | 
|  | typedef struct RBAugmentCallbacks { | 
|  | void (*propagate)(RBNode *node, RBNode *stop); | 
|  | void (*copy)(RBNode *old, RBNode *new); | 
|  | void (*rotate)(RBNode *old, RBNode *new); | 
|  | } RBAugmentCallbacks; | 
|  |  | 
|  | static inline uintptr_t rb_pc(const RBNode *n) | 
|  | { | 
|  | return qatomic_read(&n->rb_parent_color); | 
|  | } | 
|  |  | 
|  | static inline void rb_set_pc(RBNode *n, uintptr_t pc) | 
|  | { | 
|  | qatomic_set(&n->rb_parent_color, pc); | 
|  | } | 
|  |  | 
|  | static inline RBNode *pc_parent(uintptr_t pc) | 
|  | { | 
|  | return (RBNode *)(pc & ~1); | 
|  | } | 
|  |  | 
|  | static inline RBNode *rb_parent(const RBNode *n) | 
|  | { | 
|  | return pc_parent(rb_pc(n)); | 
|  | } | 
|  |  | 
|  | static inline RBNode *rb_red_parent(const RBNode *n) | 
|  | { | 
|  | return (RBNode *)rb_pc(n); | 
|  | } | 
|  |  | 
|  | static inline RBColor pc_color(uintptr_t pc) | 
|  | { | 
|  | return (RBColor)(pc & 1); | 
|  | } | 
|  |  | 
|  | static inline bool pc_is_red(uintptr_t pc) | 
|  | { | 
|  | return pc_color(pc) == RB_RED; | 
|  | } | 
|  |  | 
|  | static inline bool pc_is_black(uintptr_t pc) | 
|  | { | 
|  | return !pc_is_red(pc); | 
|  | } | 
|  |  | 
|  | static inline RBColor rb_color(const RBNode *n) | 
|  | { | 
|  | return pc_color(rb_pc(n)); | 
|  | } | 
|  |  | 
|  | static inline bool rb_is_red(const RBNode *n) | 
|  | { | 
|  | return pc_is_red(rb_pc(n)); | 
|  | } | 
|  |  | 
|  | static inline bool rb_is_black(const RBNode *n) | 
|  | { | 
|  | return pc_is_black(rb_pc(n)); | 
|  | } | 
|  |  | 
|  | static inline void rb_set_black(RBNode *n) | 
|  | { | 
|  | rb_set_pc(n, rb_pc(n) | RB_BLACK); | 
|  | } | 
|  |  | 
|  | static inline void rb_set_parent_color(RBNode *n, RBNode *p, RBColor color) | 
|  | { | 
|  | rb_set_pc(n, (uintptr_t)p | color); | 
|  | } | 
|  |  | 
|  | static inline void rb_set_parent(RBNode *n, RBNode *p) | 
|  | { | 
|  | rb_set_parent_color(n, p, rb_color(n)); | 
|  | } | 
|  |  | 
|  | static inline void rb_link_node(RBNode *node, RBNode *parent, RBNode **rb_link) | 
|  | { | 
|  | node->rb_parent_color = (uintptr_t)parent; | 
|  | node->rb_left = node->rb_right = NULL; | 
|  |  | 
|  | /* | 
|  | * Ensure that node is initialized before insertion, | 
|  | * as viewed by a concurrent search. | 
|  | */ | 
|  | qatomic_set_mb(rb_link, node); | 
|  | } | 
|  |  | 
|  | static RBNode *rb_next(RBNode *node) | 
|  | { | 
|  | RBNode *parent; | 
|  |  | 
|  | /* OMIT: if empty node, return null. */ | 
|  |  | 
|  | /* | 
|  | * If we have a right-hand child, go down and then left as far as we can. | 
|  | */ | 
|  | if (node->rb_right) { | 
|  | node = node->rb_right; | 
|  | while (node->rb_left) { | 
|  | node = node->rb_left; | 
|  | } | 
|  | return node; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * No right-hand children. Everything down and left is smaller than us, | 
|  | * so any 'next' node must be in the general direction of our parent. | 
|  | * Go up the tree; any time the ancestor is a right-hand child of its | 
|  | * parent, keep going up. First time it's a left-hand child of its | 
|  | * parent, said parent is our 'next' node. | 
|  | */ | 
|  | while ((parent = rb_parent(node)) && node == parent->rb_right) { | 
|  | node = parent; | 
|  | } | 
|  |  | 
|  | return parent; | 
|  | } | 
|  |  | 
|  | static inline void rb_change_child(RBNode *old, RBNode *new, | 
|  | RBNode *parent, RBRoot *root) | 
|  | { | 
|  | if (!parent) { | 
|  | qatomic_set(&root->rb_node, new); | 
|  | } else if (parent->rb_left == old) { | 
|  | qatomic_set(&parent->rb_left, new); | 
|  | } else { | 
|  | qatomic_set(&parent->rb_right, new); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void rb_rotate_set_parents(RBNode *old, RBNode *new, | 
|  | RBRoot *root, RBColor color) | 
|  | { | 
|  | uintptr_t pc = rb_pc(old); | 
|  | RBNode *parent = pc_parent(pc); | 
|  |  | 
|  | rb_set_pc(new, pc); | 
|  | rb_set_parent_color(old, new, color); | 
|  | rb_change_child(old, new, parent, root); | 
|  | } | 
|  |  | 
|  | static void rb_insert_augmented(RBNode *node, RBRoot *root, | 
|  | const RBAugmentCallbacks *augment) | 
|  | { | 
|  | RBNode *parent = rb_red_parent(node), *gparent, *tmp; | 
|  |  | 
|  | while (true) { | 
|  | /* | 
|  | * Loop invariant: node is red. | 
|  | */ | 
|  | if (unlikely(!parent)) { | 
|  | /* | 
|  | * The inserted node is root. Either this is the first node, or | 
|  | * we recursed at Case 1 below and are no longer violating 4). | 
|  | */ | 
|  | rb_set_parent_color(node, NULL, RB_BLACK); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there is a black parent, we are done.  Otherwise, take some | 
|  | * corrective action as, per 4), we don't want a red root or two | 
|  | * consecutive red nodes. | 
|  | */ | 
|  | if (rb_is_black(parent)) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | gparent = rb_red_parent(parent); | 
|  |  | 
|  | tmp = gparent->rb_right; | 
|  | if (parent != tmp) {    /* parent == gparent->rb_left */ | 
|  | if (tmp && rb_is_red(tmp)) { | 
|  | /* | 
|  | * Case 1 - node's uncle is red (color flips). | 
|  | * | 
|  | *       G            g | 
|  | *      / \          / \ | 
|  | *     p   u  -->   P   U | 
|  | *    /            / | 
|  | *   n            n | 
|  | * | 
|  | * However, since g's parent might be red, and 4) does not | 
|  | * allow this, we need to recurse at g. | 
|  | */ | 
|  | rb_set_parent_color(tmp, gparent, RB_BLACK); | 
|  | rb_set_parent_color(parent, gparent, RB_BLACK); | 
|  | node = gparent; | 
|  | parent = rb_parent(node); | 
|  | rb_set_parent_color(node, parent, RB_RED); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | tmp = parent->rb_right; | 
|  | if (node == tmp) { | 
|  | /* | 
|  | * Case 2 - node's uncle is black and node is | 
|  | * the parent's right child (left rotate at parent). | 
|  | * | 
|  | *      G             G | 
|  | *     / \           / \ | 
|  | *    p   U  -->    n   U | 
|  | *     \           / | 
|  | *      n         p | 
|  | * | 
|  | * This still leaves us in violation of 4), the | 
|  | * continuation into Case 3 will fix that. | 
|  | */ | 
|  | tmp = node->rb_left; | 
|  | qatomic_set(&parent->rb_right, tmp); | 
|  | qatomic_set(&node->rb_left, parent); | 
|  | if (tmp) { | 
|  | rb_set_parent_color(tmp, parent, RB_BLACK); | 
|  | } | 
|  | rb_set_parent_color(parent, node, RB_RED); | 
|  | augment->rotate(parent, node); | 
|  | parent = node; | 
|  | tmp = node->rb_right; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Case 3 - node's uncle is black and node is | 
|  | * the parent's left child (right rotate at gparent). | 
|  | * | 
|  | *        G           P | 
|  | *       / \         / \ | 
|  | *      p   U  -->  n   g | 
|  | *     /                 \ | 
|  | *    n                   U | 
|  | */ | 
|  | qatomic_set(&gparent->rb_left, tmp); /* == parent->rb_right */ | 
|  | qatomic_set(&parent->rb_right, gparent); | 
|  | if (tmp) { | 
|  | rb_set_parent_color(tmp, gparent, RB_BLACK); | 
|  | } | 
|  | rb_rotate_set_parents(gparent, parent, root, RB_RED); | 
|  | augment->rotate(gparent, parent); | 
|  | break; | 
|  | } else { | 
|  | tmp = gparent->rb_left; | 
|  | if (tmp && rb_is_red(tmp)) { | 
|  | /* Case 1 - color flips */ | 
|  | rb_set_parent_color(tmp, gparent, RB_BLACK); | 
|  | rb_set_parent_color(parent, gparent, RB_BLACK); | 
|  | node = gparent; | 
|  | parent = rb_parent(node); | 
|  | rb_set_parent_color(node, parent, RB_RED); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | tmp = parent->rb_left; | 
|  | if (node == tmp) { | 
|  | /* Case 2 - right rotate at parent */ | 
|  | tmp = node->rb_right; | 
|  | qatomic_set(&parent->rb_left, tmp); | 
|  | qatomic_set(&node->rb_right, parent); | 
|  | if (tmp) { | 
|  | rb_set_parent_color(tmp, parent, RB_BLACK); | 
|  | } | 
|  | rb_set_parent_color(parent, node, RB_RED); | 
|  | augment->rotate(parent, node); | 
|  | parent = node; | 
|  | tmp = node->rb_left; | 
|  | } | 
|  |  | 
|  | /* Case 3 - left rotate at gparent */ | 
|  | qatomic_set(&gparent->rb_right, tmp); /* == parent->rb_left */ | 
|  | qatomic_set(&parent->rb_left, gparent); | 
|  | if (tmp) { | 
|  | rb_set_parent_color(tmp, gparent, RB_BLACK); | 
|  | } | 
|  | rb_rotate_set_parents(gparent, parent, root, RB_RED); | 
|  | augment->rotate(gparent, parent); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void rb_insert_augmented_cached(RBNode *node, | 
|  | RBRootLeftCached *root, bool newleft, | 
|  | const RBAugmentCallbacks *augment) | 
|  | { | 
|  | if (newleft) { | 
|  | root->rb_leftmost = node; | 
|  | } | 
|  | rb_insert_augmented(node, &root->rb_root, augment); | 
|  | } | 
|  |  | 
|  | static void rb_erase_color(RBNode *parent, RBRoot *root, | 
|  | const RBAugmentCallbacks *augment) | 
|  | { | 
|  | RBNode *node = NULL, *sibling, *tmp1, *tmp2; | 
|  |  | 
|  | while (true) { | 
|  | /* | 
|  | * Loop invariants: | 
|  | * - node is black (or NULL on first iteration) | 
|  | * - node is not the root (parent is not NULL) | 
|  | * - All leaf paths going through parent and node have a | 
|  | *   black node count that is 1 lower than other leaf paths. | 
|  | */ | 
|  | sibling = parent->rb_right; | 
|  | if (node != sibling) {  /* node == parent->rb_left */ | 
|  | if (rb_is_red(sibling)) { | 
|  | /* | 
|  | * Case 1 - left rotate at parent | 
|  | * | 
|  | *     P               S | 
|  | *    / \             / \ | 
|  | *   N   s    -->    p   Sr | 
|  | *      / \         / \ | 
|  | *     Sl  Sr      N   Sl | 
|  | */ | 
|  | tmp1 = sibling->rb_left; | 
|  | qatomic_set(&parent->rb_right, tmp1); | 
|  | qatomic_set(&sibling->rb_left, parent); | 
|  | rb_set_parent_color(tmp1, parent, RB_BLACK); | 
|  | rb_rotate_set_parents(parent, sibling, root, RB_RED); | 
|  | augment->rotate(parent, sibling); | 
|  | sibling = tmp1; | 
|  | } | 
|  | tmp1 = sibling->rb_right; | 
|  | if (!tmp1 || rb_is_black(tmp1)) { | 
|  | tmp2 = sibling->rb_left; | 
|  | if (!tmp2 || rb_is_black(tmp2)) { | 
|  | /* | 
|  | * Case 2 - sibling color flip | 
|  | * (p could be either color here) | 
|  | * | 
|  | *    (p)           (p) | 
|  | *    / \           / \ | 
|  | *   N   S    -->  N   s | 
|  | *      / \           / \ | 
|  | *     Sl  Sr        Sl  Sr | 
|  | * | 
|  | * This leaves us violating 5) which | 
|  | * can be fixed by flipping p to black | 
|  | * if it was red, or by recursing at p. | 
|  | * p is red when coming from Case 1. | 
|  | */ | 
|  | rb_set_parent_color(sibling, parent, RB_RED); | 
|  | if (rb_is_red(parent)) { | 
|  | rb_set_black(parent); | 
|  | } else { | 
|  | node = parent; | 
|  | parent = rb_parent(node); | 
|  | if (parent) { | 
|  | continue; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * Case 3 - right rotate at sibling | 
|  | * (p could be either color here) | 
|  | * | 
|  | *   (p)           (p) | 
|  | *   / \           / \ | 
|  | *  N   S    -->  N   sl | 
|  | *     / \             \ | 
|  | *    sl  Sr            S | 
|  | *                       \ | 
|  | *                        Sr | 
|  | * | 
|  | * Note: p might be red, and then bot | 
|  | * p and sl are red after rotation (which | 
|  | * breaks property 4). This is fixed in | 
|  | * Case 4 (in rb_rotate_set_parents() | 
|  | *         which set sl the color of p | 
|  | *         and set p RB_BLACK) | 
|  | * | 
|  | *   (p)            (sl) | 
|  | *   / \            /  \ | 
|  | *  N   sl   -->   P    S | 
|  | *       \        /      \ | 
|  | *        S      N        Sr | 
|  | *         \ | 
|  | *          Sr | 
|  | */ | 
|  | tmp1 = tmp2->rb_right; | 
|  | qatomic_set(&sibling->rb_left, tmp1); | 
|  | qatomic_set(&tmp2->rb_right, sibling); | 
|  | qatomic_set(&parent->rb_right, tmp2); | 
|  | if (tmp1) { | 
|  | rb_set_parent_color(tmp1, sibling, RB_BLACK); | 
|  | } | 
|  | augment->rotate(sibling, tmp2); | 
|  | tmp1 = sibling; | 
|  | sibling = tmp2; | 
|  | } | 
|  | /* | 
|  | * Case 4 - left rotate at parent + color flips | 
|  | * (p and sl could be either color here. | 
|  | *  After rotation, p becomes black, s acquires | 
|  | *  p's color, and sl keeps its color) | 
|  | * | 
|  | *      (p)             (s) | 
|  | *      / \             / \ | 
|  | *     N   S     -->   P   Sr | 
|  | *        / \         / \ | 
|  | *      (sl) sr      N  (sl) | 
|  | */ | 
|  | tmp2 = sibling->rb_left; | 
|  | qatomic_set(&parent->rb_right, tmp2); | 
|  | qatomic_set(&sibling->rb_left, parent); | 
|  | rb_set_parent_color(tmp1, sibling, RB_BLACK); | 
|  | if (tmp2) { | 
|  | rb_set_parent(tmp2, parent); | 
|  | } | 
|  | rb_rotate_set_parents(parent, sibling, root, RB_BLACK); | 
|  | augment->rotate(parent, sibling); | 
|  | break; | 
|  | } else { | 
|  | sibling = parent->rb_left; | 
|  | if (rb_is_red(sibling)) { | 
|  | /* Case 1 - right rotate at parent */ | 
|  | tmp1 = sibling->rb_right; | 
|  | qatomic_set(&parent->rb_left, tmp1); | 
|  | qatomic_set(&sibling->rb_right, parent); | 
|  | rb_set_parent_color(tmp1, parent, RB_BLACK); | 
|  | rb_rotate_set_parents(parent, sibling, root, RB_RED); | 
|  | augment->rotate(parent, sibling); | 
|  | sibling = tmp1; | 
|  | } | 
|  | tmp1 = sibling->rb_left; | 
|  | if (!tmp1 || rb_is_black(tmp1)) { | 
|  | tmp2 = sibling->rb_right; | 
|  | if (!tmp2 || rb_is_black(tmp2)) { | 
|  | /* Case 2 - sibling color flip */ | 
|  | rb_set_parent_color(sibling, parent, RB_RED); | 
|  | if (rb_is_red(parent)) { | 
|  | rb_set_black(parent); | 
|  | } else { | 
|  | node = parent; | 
|  | parent = rb_parent(node); | 
|  | if (parent) { | 
|  | continue; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | /* Case 3 - left rotate at sibling */ | 
|  | tmp1 = tmp2->rb_left; | 
|  | qatomic_set(&sibling->rb_right, tmp1); | 
|  | qatomic_set(&tmp2->rb_left, sibling); | 
|  | qatomic_set(&parent->rb_left, tmp2); | 
|  | if (tmp1) { | 
|  | rb_set_parent_color(tmp1, sibling, RB_BLACK); | 
|  | } | 
|  | augment->rotate(sibling, tmp2); | 
|  | tmp1 = sibling; | 
|  | sibling = tmp2; | 
|  | } | 
|  | /* Case 4 - right rotate at parent + color flips */ | 
|  | tmp2 = sibling->rb_right; | 
|  | qatomic_set(&parent->rb_left, tmp2); | 
|  | qatomic_set(&sibling->rb_right, parent); | 
|  | rb_set_parent_color(tmp1, sibling, RB_BLACK); | 
|  | if (tmp2) { | 
|  | rb_set_parent(tmp2, parent); | 
|  | } | 
|  | rb_rotate_set_parents(parent, sibling, root, RB_BLACK); | 
|  | augment->rotate(parent, sibling); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void rb_erase_augmented(RBNode *node, RBRoot *root, | 
|  | const RBAugmentCallbacks *augment) | 
|  | { | 
|  | RBNode *child = node->rb_right; | 
|  | RBNode *tmp = node->rb_left; | 
|  | RBNode *parent, *rebalance; | 
|  | uintptr_t pc; | 
|  |  | 
|  | if (!tmp) { | 
|  | /* | 
|  | * Case 1: node to erase has no more than 1 child (easy!) | 
|  | * | 
|  | * Note that if there is one child it must be red due to 5) | 
|  | * and node must be black due to 4). We adjust colors locally | 
|  | * so as to bypass rb_erase_color() later on. | 
|  | */ | 
|  | pc = rb_pc(node); | 
|  | parent = pc_parent(pc); | 
|  | rb_change_child(node, child, parent, root); | 
|  | if (child) { | 
|  | rb_set_pc(child, pc); | 
|  | rebalance = NULL; | 
|  | } else { | 
|  | rebalance = pc_is_black(pc) ? parent : NULL; | 
|  | } | 
|  | tmp = parent; | 
|  | } else if (!child) { | 
|  | /* Still case 1, but this time the child is node->rb_left */ | 
|  | pc = rb_pc(node); | 
|  | parent = pc_parent(pc); | 
|  | rb_set_pc(tmp, pc); | 
|  | rb_change_child(node, tmp, parent, root); | 
|  | rebalance = NULL; | 
|  | tmp = parent; | 
|  | } else { | 
|  | RBNode *successor = child, *child2; | 
|  | tmp = child->rb_left; | 
|  | if (!tmp) { | 
|  | /* | 
|  | * Case 2: node's successor is its right child | 
|  | * | 
|  | *    (n)          (s) | 
|  | *    / \          / \ | 
|  | *  (x) (s)  ->  (x) (c) | 
|  | *        \ | 
|  | *        (c) | 
|  | */ | 
|  | parent = successor; | 
|  | child2 = successor->rb_right; | 
|  |  | 
|  | augment->copy(node, successor); | 
|  | } else { | 
|  | /* | 
|  | * Case 3: node's successor is leftmost under | 
|  | * node's right child subtree | 
|  | * | 
|  | *    (n)          (s) | 
|  | *    / \          / \ | 
|  | *  (x) (y)  ->  (x) (y) | 
|  | *      /            / | 
|  | *    (p)          (p) | 
|  | *    /            / | 
|  | *  (s)          (c) | 
|  | *    \ | 
|  | *    (c) | 
|  | */ | 
|  | do { | 
|  | parent = successor; | 
|  | successor = tmp; | 
|  | tmp = tmp->rb_left; | 
|  | } while (tmp); | 
|  | child2 = successor->rb_right; | 
|  | qatomic_set(&parent->rb_left, child2); | 
|  | qatomic_set(&successor->rb_right, child); | 
|  | rb_set_parent(child, successor); | 
|  |  | 
|  | augment->copy(node, successor); | 
|  | augment->propagate(parent, successor); | 
|  | } | 
|  |  | 
|  | tmp = node->rb_left; | 
|  | qatomic_set(&successor->rb_left, tmp); | 
|  | rb_set_parent(tmp, successor); | 
|  |  | 
|  | pc = rb_pc(node); | 
|  | tmp = pc_parent(pc); | 
|  | rb_change_child(node, successor, tmp, root); | 
|  |  | 
|  | if (child2) { | 
|  | rb_set_parent_color(child2, parent, RB_BLACK); | 
|  | rebalance = NULL; | 
|  | } else { | 
|  | rebalance = rb_is_black(successor) ? parent : NULL; | 
|  | } | 
|  | rb_set_pc(successor, pc); | 
|  | tmp = successor; | 
|  | } | 
|  |  | 
|  | augment->propagate(tmp, NULL); | 
|  |  | 
|  | if (rebalance) { | 
|  | rb_erase_color(rebalance, root, augment); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void rb_erase_augmented_cached(RBNode *node, RBRootLeftCached *root, | 
|  | const RBAugmentCallbacks *augment) | 
|  | { | 
|  | if (root->rb_leftmost == node) { | 
|  | root->rb_leftmost = rb_next(node); | 
|  | } | 
|  | rb_erase_augmented(node, &root->rb_root, augment); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Interval trees. | 
|  | * | 
|  | * Derived from lib/interval_tree.c and its dependencies, | 
|  | * especially include/linux/interval_tree_generic.h. | 
|  | */ | 
|  |  | 
|  | #define rb_to_itree(N)  container_of(N, IntervalTreeNode, rb) | 
|  |  | 
|  | static bool interval_tree_compute_max(IntervalTreeNode *node, bool exit) | 
|  | { | 
|  | IntervalTreeNode *child; | 
|  | uint64_t max = node->last; | 
|  |  | 
|  | if (node->rb.rb_left) { | 
|  | child = rb_to_itree(node->rb.rb_left); | 
|  | if (child->subtree_last > max) { | 
|  | max = child->subtree_last; | 
|  | } | 
|  | } | 
|  | if (node->rb.rb_right) { | 
|  | child = rb_to_itree(node->rb.rb_right); | 
|  | if (child->subtree_last > max) { | 
|  | max = child->subtree_last; | 
|  | } | 
|  | } | 
|  | if (exit && node->subtree_last == max) { | 
|  | return true; | 
|  | } | 
|  | node->subtree_last = max; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void interval_tree_propagate(RBNode *rb, RBNode *stop) | 
|  | { | 
|  | while (rb != stop) { | 
|  | IntervalTreeNode *node = rb_to_itree(rb); | 
|  | if (interval_tree_compute_max(node, true)) { | 
|  | break; | 
|  | } | 
|  | rb = rb_parent(&node->rb); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void interval_tree_copy(RBNode *rb_old, RBNode *rb_new) | 
|  | { | 
|  | IntervalTreeNode *old = rb_to_itree(rb_old); | 
|  | IntervalTreeNode *new = rb_to_itree(rb_new); | 
|  |  | 
|  | new->subtree_last = old->subtree_last; | 
|  | } | 
|  |  | 
|  | static void interval_tree_rotate(RBNode *rb_old, RBNode *rb_new) | 
|  | { | 
|  | IntervalTreeNode *old = rb_to_itree(rb_old); | 
|  | IntervalTreeNode *new = rb_to_itree(rb_new); | 
|  |  | 
|  | new->subtree_last = old->subtree_last; | 
|  | interval_tree_compute_max(old, false); | 
|  | } | 
|  |  | 
|  | static const RBAugmentCallbacks interval_tree_augment = { | 
|  | .propagate = interval_tree_propagate, | 
|  | .copy = interval_tree_copy, | 
|  | .rotate = interval_tree_rotate, | 
|  | }; | 
|  |  | 
|  | /* Insert / remove interval nodes from the tree */ | 
|  | void interval_tree_insert(IntervalTreeNode *node, IntervalTreeRoot *root) | 
|  | { | 
|  | RBNode **link = &root->rb_root.rb_node, *rb_parent = NULL; | 
|  | uint64_t start = node->start, last = node->last; | 
|  | IntervalTreeNode *parent; | 
|  | bool leftmost = true; | 
|  |  | 
|  | while (*link) { | 
|  | rb_parent = *link; | 
|  | parent = rb_to_itree(rb_parent); | 
|  |  | 
|  | if (parent->subtree_last < last) { | 
|  | parent->subtree_last = last; | 
|  | } | 
|  | if (start < parent->start) { | 
|  | link = &parent->rb.rb_left; | 
|  | } else { | 
|  | link = &parent->rb.rb_right; | 
|  | leftmost = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | node->subtree_last = last; | 
|  | rb_link_node(&node->rb, rb_parent, link); | 
|  | rb_insert_augmented_cached(&node->rb, root, leftmost, | 
|  | &interval_tree_augment); | 
|  | } | 
|  |  | 
|  | void interval_tree_remove(IntervalTreeNode *node, IntervalTreeRoot *root) | 
|  | { | 
|  | rb_erase_augmented_cached(&node->rb, root, &interval_tree_augment); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Iterate over intervals intersecting [start;last] | 
|  | * | 
|  | * Note that a node's interval intersects [start;last] iff: | 
|  | *   Cond1: node->start <= last | 
|  | * and | 
|  | *   Cond2: start <= node->last | 
|  | */ | 
|  |  | 
|  | static IntervalTreeNode *interval_tree_subtree_search(IntervalTreeNode *node, | 
|  | uint64_t start, | 
|  | uint64_t last) | 
|  | { | 
|  | while (true) { | 
|  | /* | 
|  | * Loop invariant: start <= node->subtree_last | 
|  | * (Cond2 is satisfied by one of the subtree nodes) | 
|  | */ | 
|  | RBNode *tmp = qatomic_read(&node->rb.rb_left); | 
|  | if (tmp) { | 
|  | IntervalTreeNode *left = rb_to_itree(tmp); | 
|  |  | 
|  | if (start <= left->subtree_last) { | 
|  | /* | 
|  | * Some nodes in left subtree satisfy Cond2. | 
|  | * Iterate to find the leftmost such node N. | 
|  | * If it also satisfies Cond1, that's the | 
|  | * match we are looking for. Otherwise, there | 
|  | * is no matching interval as nodes to the | 
|  | * right of N can't satisfy Cond1 either. | 
|  | */ | 
|  | node = left; | 
|  | continue; | 
|  | } | 
|  | } | 
|  | if (node->start <= last) {         /* Cond1 */ | 
|  | if (start <= node->last) {     /* Cond2 */ | 
|  | return node; /* node is leftmost match */ | 
|  | } | 
|  | tmp = qatomic_read(&node->rb.rb_right); | 
|  | if (tmp) { | 
|  | node = rb_to_itree(tmp); | 
|  | if (start <= node->subtree_last) { | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  | return NULL; /* no match */ | 
|  | } | 
|  | } | 
|  |  | 
|  | IntervalTreeNode *interval_tree_iter_first(IntervalTreeRoot *root, | 
|  | uint64_t start, uint64_t last) | 
|  | { | 
|  | IntervalTreeNode *node, *leftmost; | 
|  |  | 
|  | if (!root || !root->rb_root.rb_node) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fastpath range intersection/overlap between A: [a0, a1] and | 
|  | * B: [b0, b1] is given by: | 
|  | * | 
|  | *         a0 <= b1 && b0 <= a1 | 
|  | * | 
|  | *  ... where A holds the lock range and B holds the smallest | 
|  | * 'start' and largest 'last' in the tree. For the later, we | 
|  | * rely on the root node, which by augmented interval tree | 
|  | * property, holds the largest value in its last-in-subtree. | 
|  | * This allows mitigating some of the tree walk overhead for | 
|  | * for non-intersecting ranges, maintained and consulted in O(1). | 
|  | */ | 
|  | node = rb_to_itree(root->rb_root.rb_node); | 
|  | if (node->subtree_last < start) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | leftmost = rb_to_itree(root->rb_leftmost); | 
|  | if (leftmost->start > last) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return interval_tree_subtree_search(node, start, last); | 
|  | } | 
|  |  | 
|  | IntervalTreeNode *interval_tree_iter_next(IntervalTreeNode *node, | 
|  | uint64_t start, uint64_t last) | 
|  | { | 
|  | RBNode *rb, *prev; | 
|  |  | 
|  | rb = qatomic_read(&node->rb.rb_right); | 
|  | while (true) { | 
|  | /* | 
|  | * Loop invariants: | 
|  | *   Cond1: node->start <= last | 
|  | *   rb == node->rb.rb_right | 
|  | * | 
|  | * First, search right subtree if suitable | 
|  | */ | 
|  | if (rb) { | 
|  | IntervalTreeNode *right = rb_to_itree(rb); | 
|  |  | 
|  | if (start <= right->subtree_last) { | 
|  | return interval_tree_subtree_search(right, start, last); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Move up the tree until we come from a node's left child */ | 
|  | do { | 
|  | rb = rb_parent(&node->rb); | 
|  | if (!rb) { | 
|  | return NULL; | 
|  | } | 
|  | prev = &node->rb; | 
|  | node = rb_to_itree(rb); | 
|  | rb = qatomic_read(&node->rb.rb_right); | 
|  | } while (prev == rb); | 
|  |  | 
|  | /* Check if the node intersects [start;last] */ | 
|  | if (last < node->start) {  /* !Cond1 */ | 
|  | return NULL; | 
|  | } | 
|  | if (start <= node->last) { /* Cond2 */ | 
|  | return node; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Occasionally useful for calling from within the debugger. */ | 
|  | #if 0 | 
|  | static void debug_interval_tree_int(IntervalTreeNode *node, | 
|  | const char *dir, int level) | 
|  | { | 
|  | printf("%4d %*s %s [%" PRIu64 ",%" PRIu64 "] subtree_last:%" PRIu64 "\n", | 
|  | level, level + 1, dir, rb_is_red(&node->rb) ? "r" : "b", | 
|  | node->start, node->last, node->subtree_last); | 
|  |  | 
|  | if (node->rb.rb_left) { | 
|  | debug_interval_tree_int(rb_to_itree(node->rb.rb_left), "<", level + 1); | 
|  | } | 
|  | if (node->rb.rb_right) { | 
|  | debug_interval_tree_int(rb_to_itree(node->rb.rb_right), ">", level + 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | void debug_interval_tree(IntervalTreeNode *node); | 
|  | void debug_interval_tree(IntervalTreeNode *node) | 
|  | { | 
|  | if (node) { | 
|  | debug_interval_tree_int(node, "*", 0); | 
|  | } else { | 
|  | printf("null\n"); | 
|  | } | 
|  | } | 
|  | #endif |