| /* |
| * i386 emulator main execution loop |
| * |
| * Copyright (c) 2003-2005 Fabrice Bellard |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| #include "config.h" |
| #define CPU_NO_GLOBAL_REGS |
| #include "exec.h" |
| #include "disas.h" |
| #include "tcg.h" |
| #include "kvm.h" |
| |
| #if !defined(CONFIG_SOFTMMU) |
| #undef EAX |
| #undef ECX |
| #undef EDX |
| #undef EBX |
| #undef ESP |
| #undef EBP |
| #undef ESI |
| #undef EDI |
| #undef EIP |
| #include <signal.h> |
| #ifdef __linux__ |
| #include <sys/ucontext.h> |
| #endif |
| #endif |
| |
| #if defined(__sparc__) && !defined(HOST_SOLARIS) |
| // Work around ugly bugs in glibc that mangle global register contents |
| #undef env |
| #define env cpu_single_env |
| #endif |
| |
| int tb_invalidated_flag; |
| |
| //#define DEBUG_EXEC |
| //#define DEBUG_SIGNAL |
| |
| void cpu_loop_exit(void) |
| { |
| /* NOTE: the register at this point must be saved by hand because |
| longjmp restore them */ |
| regs_to_env(); |
| longjmp(env->jmp_env, 1); |
| } |
| |
| /* exit the current TB from a signal handler. The host registers are |
| restored in a state compatible with the CPU emulator |
| */ |
| void cpu_resume_from_signal(CPUState *env1, void *puc) |
| { |
| #if !defined(CONFIG_SOFTMMU) |
| #ifdef __linux__ |
| struct ucontext *uc = puc; |
| #elif defined(__OpenBSD__) |
| struct sigcontext *uc = puc; |
| #endif |
| #endif |
| |
| env = env1; |
| |
| /* XXX: restore cpu registers saved in host registers */ |
| |
| #if !defined(CONFIG_SOFTMMU) |
| if (puc) { |
| /* XXX: use siglongjmp ? */ |
| #ifdef __linux__ |
| sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); |
| #elif defined(__OpenBSD__) |
| sigprocmask(SIG_SETMASK, &uc->sc_mask, NULL); |
| #endif |
| } |
| #endif |
| longjmp(env->jmp_env, 1); |
| } |
| |
| /* Execute the code without caching the generated code. An interpreter |
| could be used if available. */ |
| static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb) |
| { |
| unsigned long next_tb; |
| TranslationBlock *tb; |
| |
| /* Should never happen. |
| We only end up here when an existing TB is too long. */ |
| if (max_cycles > CF_COUNT_MASK) |
| max_cycles = CF_COUNT_MASK; |
| |
| tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags, |
| max_cycles); |
| env->current_tb = tb; |
| /* execute the generated code */ |
| next_tb = tcg_qemu_tb_exec(tb->tc_ptr); |
| |
| if ((next_tb & 3) == 2) { |
| /* Restore PC. This may happen if async event occurs before |
| the TB starts executing. */ |
| CPU_PC_FROM_TB(env, tb); |
| } |
| tb_phys_invalidate(tb, -1); |
| tb_free(tb); |
| } |
| |
| static TranslationBlock *tb_find_slow(target_ulong pc, |
| target_ulong cs_base, |
| uint64_t flags) |
| { |
| TranslationBlock *tb, **ptb1; |
| unsigned int h; |
| target_ulong phys_pc, phys_page1, phys_page2, virt_page2; |
| |
| tb_invalidated_flag = 0; |
| |
| regs_to_env(); /* XXX: do it just before cpu_gen_code() */ |
| |
| /* find translated block using physical mappings */ |
| phys_pc = get_phys_addr_code(env, pc); |
| phys_page1 = phys_pc & TARGET_PAGE_MASK; |
| phys_page2 = -1; |
| h = tb_phys_hash_func(phys_pc); |
| ptb1 = &tb_phys_hash[h]; |
| for(;;) { |
| tb = *ptb1; |
| if (!tb) |
| goto not_found; |
| if (tb->pc == pc && |
| tb->page_addr[0] == phys_page1 && |
| tb->cs_base == cs_base && |
| tb->flags == flags) { |
| /* check next page if needed */ |
| if (tb->page_addr[1] != -1) { |
| virt_page2 = (pc & TARGET_PAGE_MASK) + |
| TARGET_PAGE_SIZE; |
| phys_page2 = get_phys_addr_code(env, virt_page2); |
| if (tb->page_addr[1] == phys_page2) |
| goto found; |
| } else { |
| goto found; |
| } |
| } |
| ptb1 = &tb->phys_hash_next; |
| } |
| not_found: |
| /* if no translated code available, then translate it now */ |
| tb = tb_gen_code(env, pc, cs_base, flags, 0); |
| |
| found: |
| /* we add the TB in the virtual pc hash table */ |
| env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb; |
| return tb; |
| } |
| |
| static inline TranslationBlock *tb_find_fast(void) |
| { |
| TranslationBlock *tb; |
| target_ulong cs_base, pc; |
| uint64_t flags; |
| |
| /* we record a subset of the CPU state. It will |
| always be the same before a given translated block |
| is executed. */ |
| #if defined(TARGET_I386) |
| flags = env->hflags; |
| flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK)); |
| cs_base = env->segs[R_CS].base; |
| pc = cs_base + env->eip; |
| #elif defined(TARGET_ARM) |
| flags = env->thumb | (env->vfp.vec_len << 1) |
| | (env->vfp.vec_stride << 4); |
| if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) |
| flags |= (1 << 6); |
| if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) |
| flags |= (1 << 7); |
| flags |= (env->condexec_bits << 8); |
| cs_base = 0; |
| pc = env->regs[15]; |
| #elif defined(TARGET_SPARC) |
| #ifdef TARGET_SPARC64 |
| // AM . Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled |
| flags = ((env->pstate & PS_AM) << 2) |
| | (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2)) |
| | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2); |
| #else |
| // FPU enable . Supervisor |
| flags = (env->psref << 4) | env->psrs; |
| #endif |
| cs_base = env->npc; |
| pc = env->pc; |
| #elif defined(TARGET_PPC) |
| flags = env->hflags; |
| cs_base = 0; |
| pc = env->nip; |
| #elif defined(TARGET_MIPS) |
| flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK); |
| cs_base = 0; |
| pc = env->active_tc.PC; |
| #elif defined(TARGET_M68K) |
| flags = (env->fpcr & M68K_FPCR_PREC) /* Bit 6 */ |
| | (env->sr & SR_S) /* Bit 13 */ |
| | ((env->macsr >> 4) & 0xf); /* Bits 0-3 */ |
| cs_base = 0; |
| pc = env->pc; |
| #elif defined(TARGET_SH4) |
| flags = (env->flags & (DELAY_SLOT | DELAY_SLOT_CONDITIONAL |
| | DELAY_SLOT_TRUE | DELAY_SLOT_CLEARME)) /* Bits 0- 3 */ |
| | (env->fpscr & (FPSCR_FR | FPSCR_SZ | FPSCR_PR)) /* Bits 19-21 */ |
| | (env->sr & (SR_MD | SR_RB)); /* Bits 29-30 */ |
| cs_base = 0; |
| pc = env->pc; |
| #elif defined(TARGET_ALPHA) |
| flags = env->ps; |
| cs_base = 0; |
| pc = env->pc; |
| #elif defined(TARGET_CRIS) |
| flags = env->pregs[PR_CCS] & (S_FLAG | P_FLAG | U_FLAG | X_FLAG); |
| flags |= env->dslot; |
| cs_base = 0; |
| pc = env->pc; |
| #else |
| #error unsupported CPU |
| #endif |
| tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)]; |
| if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base || |
| tb->flags != flags)) { |
| tb = tb_find_slow(pc, cs_base, flags); |
| } |
| return tb; |
| } |
| |
| /* main execution loop */ |
| |
| int cpu_exec(CPUState *env1) |
| { |
| #define DECLARE_HOST_REGS 1 |
| #include "hostregs_helper.h" |
| int ret, interrupt_request; |
| TranslationBlock *tb; |
| uint8_t *tc_ptr; |
| unsigned long next_tb; |
| |
| if (cpu_halted(env1) == EXCP_HALTED) |
| return EXCP_HALTED; |
| |
| cpu_single_env = env1; |
| |
| /* first we save global registers */ |
| #define SAVE_HOST_REGS 1 |
| #include "hostregs_helper.h" |
| env = env1; |
| |
| env_to_regs(); |
| #if defined(TARGET_I386) |
| /* put eflags in CPU temporary format */ |
| CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); |
| DF = 1 - (2 * ((env->eflags >> 10) & 1)); |
| CC_OP = CC_OP_EFLAGS; |
| env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); |
| #elif defined(TARGET_SPARC) |
| #elif defined(TARGET_M68K) |
| env->cc_op = CC_OP_FLAGS; |
| env->cc_dest = env->sr & 0xf; |
| env->cc_x = (env->sr >> 4) & 1; |
| #elif defined(TARGET_ALPHA) |
| #elif defined(TARGET_ARM) |
| #elif defined(TARGET_PPC) |
| #elif defined(TARGET_MIPS) |
| #elif defined(TARGET_SH4) |
| #elif defined(TARGET_CRIS) |
| /* XXXXX */ |
| #else |
| #error unsupported target CPU |
| #endif |
| env->exception_index = -1; |
| |
| /* prepare setjmp context for exception handling */ |
| for(;;) { |
| if (setjmp(env->jmp_env) == 0) { |
| env->current_tb = NULL; |
| /* if an exception is pending, we execute it here */ |
| if (env->exception_index >= 0) { |
| if (env->exception_index >= EXCP_INTERRUPT) { |
| /* exit request from the cpu execution loop */ |
| ret = env->exception_index; |
| break; |
| } else if (env->user_mode_only) { |
| /* if user mode only, we simulate a fake exception |
| which will be handled outside the cpu execution |
| loop */ |
| #if defined(TARGET_I386) |
| do_interrupt_user(env->exception_index, |
| env->exception_is_int, |
| env->error_code, |
| env->exception_next_eip); |
| /* successfully delivered */ |
| env->old_exception = -1; |
| #endif |
| ret = env->exception_index; |
| break; |
| } else { |
| #if defined(TARGET_I386) |
| /* simulate a real cpu exception. On i386, it can |
| trigger new exceptions, but we do not handle |
| double or triple faults yet. */ |
| do_interrupt(env->exception_index, |
| env->exception_is_int, |
| env->error_code, |
| env->exception_next_eip, 0); |
| /* successfully delivered */ |
| env->old_exception = -1; |
| #elif defined(TARGET_PPC) |
| do_interrupt(env); |
| #elif defined(TARGET_MIPS) |
| do_interrupt(env); |
| #elif defined(TARGET_SPARC) |
| do_interrupt(env); |
| #elif defined(TARGET_ARM) |
| do_interrupt(env); |
| #elif defined(TARGET_SH4) |
| do_interrupt(env); |
| #elif defined(TARGET_ALPHA) |
| do_interrupt(env); |
| #elif defined(TARGET_CRIS) |
| do_interrupt(env); |
| #elif defined(TARGET_M68K) |
| do_interrupt(0); |
| #endif |
| } |
| env->exception_index = -1; |
| } |
| #ifdef USE_KQEMU |
| if (kqemu_is_ok(env) && env->interrupt_request == 0) { |
| int ret; |
| env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK); |
| ret = kqemu_cpu_exec(env); |
| /* put eflags in CPU temporary format */ |
| CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); |
| DF = 1 - (2 * ((env->eflags >> 10) & 1)); |
| CC_OP = CC_OP_EFLAGS; |
| env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); |
| if (ret == 1) { |
| /* exception */ |
| longjmp(env->jmp_env, 1); |
| } else if (ret == 2) { |
| /* softmmu execution needed */ |
| } else { |
| if (env->interrupt_request != 0) { |
| /* hardware interrupt will be executed just after */ |
| } else { |
| /* otherwise, we restart */ |
| longjmp(env->jmp_env, 1); |
| } |
| } |
| } |
| #endif |
| |
| if (kvm_enabled()) { |
| int ret; |
| ret = kvm_cpu_exec(env); |
| if ((env->interrupt_request & CPU_INTERRUPT_EXIT)) { |
| env->interrupt_request &= ~CPU_INTERRUPT_EXIT; |
| env->exception_index = EXCP_INTERRUPT; |
| cpu_loop_exit(); |
| } else if (env->halted) { |
| cpu_loop_exit(); |
| } else |
| longjmp(env->jmp_env, 1); |
| } |
| |
| next_tb = 0; /* force lookup of first TB */ |
| for(;;) { |
| interrupt_request = env->interrupt_request; |
| if (unlikely(interrupt_request)) { |
| if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) { |
| /* Mask out external interrupts for this step. */ |
| interrupt_request &= ~(CPU_INTERRUPT_HARD | |
| CPU_INTERRUPT_FIQ | |
| CPU_INTERRUPT_SMI | |
| CPU_INTERRUPT_NMI); |
| } |
| if (interrupt_request & CPU_INTERRUPT_DEBUG) { |
| env->interrupt_request &= ~CPU_INTERRUPT_DEBUG; |
| env->exception_index = EXCP_DEBUG; |
| cpu_loop_exit(); |
| } |
| #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \ |
| defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) |
| if (interrupt_request & CPU_INTERRUPT_HALT) { |
| env->interrupt_request &= ~CPU_INTERRUPT_HALT; |
| env->halted = 1; |
| env->exception_index = EXCP_HLT; |
| cpu_loop_exit(); |
| } |
| #endif |
| #if defined(TARGET_I386) |
| if (env->hflags2 & HF2_GIF_MASK) { |
| if ((interrupt_request & CPU_INTERRUPT_SMI) && |
| !(env->hflags & HF_SMM_MASK)) { |
| svm_check_intercept(SVM_EXIT_SMI); |
| env->interrupt_request &= ~CPU_INTERRUPT_SMI; |
| do_smm_enter(); |
| next_tb = 0; |
| } else if ((interrupt_request & CPU_INTERRUPT_NMI) && |
| !(env->hflags2 & HF2_NMI_MASK)) { |
| env->interrupt_request &= ~CPU_INTERRUPT_NMI; |
| env->hflags2 |= HF2_NMI_MASK; |
| do_interrupt(EXCP02_NMI, 0, 0, 0, 1); |
| next_tb = 0; |
| } else if ((interrupt_request & CPU_INTERRUPT_HARD) && |
| (((env->hflags2 & HF2_VINTR_MASK) && |
| (env->hflags2 & HF2_HIF_MASK)) || |
| (!(env->hflags2 & HF2_VINTR_MASK) && |
| (env->eflags & IF_MASK && |
| !(env->hflags & HF_INHIBIT_IRQ_MASK))))) { |
| int intno; |
| svm_check_intercept(SVM_EXIT_INTR); |
| env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ); |
| intno = cpu_get_pic_interrupt(env); |
| if (loglevel & CPU_LOG_TB_IN_ASM) { |
| fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno); |
| } |
| do_interrupt(intno, 0, 0, 0, 1); |
| /* ensure that no TB jump will be modified as |
| the program flow was changed */ |
| next_tb = 0; |
| #if !defined(CONFIG_USER_ONLY) |
| } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) && |
| (env->eflags & IF_MASK) && |
| !(env->hflags & HF_INHIBIT_IRQ_MASK)) { |
| int intno; |
| /* FIXME: this should respect TPR */ |
| svm_check_intercept(SVM_EXIT_VINTR); |
| env->interrupt_request &= ~CPU_INTERRUPT_VIRQ; |
| intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector)); |
| if (loglevel & CPU_LOG_TB_IN_ASM) |
| fprintf(logfile, "Servicing virtual hardware INT=0x%02x\n", intno); |
| do_interrupt(intno, 0, 0, 0, 1); |
| next_tb = 0; |
| #endif |
| } |
| } |
| #elif defined(TARGET_PPC) |
| #if 0 |
| if ((interrupt_request & CPU_INTERRUPT_RESET)) { |
| cpu_ppc_reset(env); |
| } |
| #endif |
| if (interrupt_request & CPU_INTERRUPT_HARD) { |
| ppc_hw_interrupt(env); |
| if (env->pending_interrupts == 0) |
| env->interrupt_request &= ~CPU_INTERRUPT_HARD; |
| next_tb = 0; |
| } |
| #elif defined(TARGET_MIPS) |
| if ((interrupt_request & CPU_INTERRUPT_HARD) && |
| (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) && |
| (env->CP0_Status & (1 << CP0St_IE)) && |
| !(env->CP0_Status & (1 << CP0St_EXL)) && |
| !(env->CP0_Status & (1 << CP0St_ERL)) && |
| !(env->hflags & MIPS_HFLAG_DM)) { |
| /* Raise it */ |
| env->exception_index = EXCP_EXT_INTERRUPT; |
| env->error_code = 0; |
| do_interrupt(env); |
| next_tb = 0; |
| } |
| #elif defined(TARGET_SPARC) |
| if ((interrupt_request & CPU_INTERRUPT_HARD) && |
| (env->psret != 0)) { |
| int pil = env->interrupt_index & 15; |
| int type = env->interrupt_index & 0xf0; |
| |
| if (((type == TT_EXTINT) && |
| (pil == 15 || pil > env->psrpil)) || |
| type != TT_EXTINT) { |
| env->interrupt_request &= ~CPU_INTERRUPT_HARD; |
| env->exception_index = env->interrupt_index; |
| do_interrupt(env); |
| env->interrupt_index = 0; |
| #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) |
| cpu_check_irqs(env); |
| #endif |
| next_tb = 0; |
| } |
| } else if (interrupt_request & CPU_INTERRUPT_TIMER) { |
| //do_interrupt(0, 0, 0, 0, 0); |
| env->interrupt_request &= ~CPU_INTERRUPT_TIMER; |
| } |
| #elif defined(TARGET_ARM) |
| if (interrupt_request & CPU_INTERRUPT_FIQ |
| && !(env->uncached_cpsr & CPSR_F)) { |
| env->exception_index = EXCP_FIQ; |
| do_interrupt(env); |
| next_tb = 0; |
| } |
| /* ARMv7-M interrupt return works by loading a magic value |
| into the PC. On real hardware the load causes the |
| return to occur. The qemu implementation performs the |
| jump normally, then does the exception return when the |
| CPU tries to execute code at the magic address. |
| This will cause the magic PC value to be pushed to |
| the stack if an interrupt occured at the wrong time. |
| We avoid this by disabling interrupts when |
| pc contains a magic address. */ |
| if (interrupt_request & CPU_INTERRUPT_HARD |
| && ((IS_M(env) && env->regs[15] < 0xfffffff0) |
| || !(env->uncached_cpsr & CPSR_I))) { |
| env->exception_index = EXCP_IRQ; |
| do_interrupt(env); |
| next_tb = 0; |
| } |
| #elif defined(TARGET_SH4) |
| if (interrupt_request & CPU_INTERRUPT_HARD) { |
| do_interrupt(env); |
| next_tb = 0; |
| } |
| #elif defined(TARGET_ALPHA) |
| if (interrupt_request & CPU_INTERRUPT_HARD) { |
| do_interrupt(env); |
| next_tb = 0; |
| } |
| #elif defined(TARGET_CRIS) |
| if (interrupt_request & CPU_INTERRUPT_HARD |
| && (env->pregs[PR_CCS] & I_FLAG)) { |
| env->exception_index = EXCP_IRQ; |
| do_interrupt(env); |
| next_tb = 0; |
| } |
| if (interrupt_request & CPU_INTERRUPT_NMI |
| && (env->pregs[PR_CCS] & M_FLAG)) { |
| env->exception_index = EXCP_NMI; |
| do_interrupt(env); |
| next_tb = 0; |
| } |
| #elif defined(TARGET_M68K) |
| if (interrupt_request & CPU_INTERRUPT_HARD |
| && ((env->sr & SR_I) >> SR_I_SHIFT) |
| < env->pending_level) { |
| /* Real hardware gets the interrupt vector via an |
| IACK cycle at this point. Current emulated |
| hardware doesn't rely on this, so we |
| provide/save the vector when the interrupt is |
| first signalled. */ |
| env->exception_index = env->pending_vector; |
| do_interrupt(1); |
| next_tb = 0; |
| } |
| #endif |
| /* Don't use the cached interupt_request value, |
| do_interrupt may have updated the EXITTB flag. */ |
| if (env->interrupt_request & CPU_INTERRUPT_EXITTB) { |
| env->interrupt_request &= ~CPU_INTERRUPT_EXITTB; |
| /* ensure that no TB jump will be modified as |
| the program flow was changed */ |
| next_tb = 0; |
| } |
| if (interrupt_request & CPU_INTERRUPT_EXIT) { |
| env->interrupt_request &= ~CPU_INTERRUPT_EXIT; |
| env->exception_index = EXCP_INTERRUPT; |
| cpu_loop_exit(); |
| } |
| } |
| #ifdef DEBUG_EXEC |
| if ((loglevel & CPU_LOG_TB_CPU)) { |
| /* restore flags in standard format */ |
| regs_to_env(); |
| #if defined(TARGET_I386) |
| env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK); |
| cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP); |
| env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); |
| #elif defined(TARGET_ARM) |
| cpu_dump_state(env, logfile, fprintf, 0); |
| #elif defined(TARGET_SPARC) |
| cpu_dump_state(env, logfile, fprintf, 0); |
| #elif defined(TARGET_PPC) |
| cpu_dump_state(env, logfile, fprintf, 0); |
| #elif defined(TARGET_M68K) |
| cpu_m68k_flush_flags(env, env->cc_op); |
| env->cc_op = CC_OP_FLAGS; |
| env->sr = (env->sr & 0xffe0) |
| | env->cc_dest | (env->cc_x << 4); |
| cpu_dump_state(env, logfile, fprintf, 0); |
| #elif defined(TARGET_MIPS) |
| cpu_dump_state(env, logfile, fprintf, 0); |
| #elif defined(TARGET_SH4) |
| cpu_dump_state(env, logfile, fprintf, 0); |
| #elif defined(TARGET_ALPHA) |
| cpu_dump_state(env, logfile, fprintf, 0); |
| #elif defined(TARGET_CRIS) |
| cpu_dump_state(env, logfile, fprintf, 0); |
| #else |
| #error unsupported target CPU |
| #endif |
| } |
| #endif |
| spin_lock(&tb_lock); |
| tb = tb_find_fast(); |
| /* Note: we do it here to avoid a gcc bug on Mac OS X when |
| doing it in tb_find_slow */ |
| if (tb_invalidated_flag) { |
| /* as some TB could have been invalidated because |
| of memory exceptions while generating the code, we |
| must recompute the hash index here */ |
| next_tb = 0; |
| tb_invalidated_flag = 0; |
| } |
| #ifdef DEBUG_EXEC |
| if ((loglevel & CPU_LOG_EXEC)) { |
| fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n", |
| (long)tb->tc_ptr, tb->pc, |
| lookup_symbol(tb->pc)); |
| } |
| #endif |
| /* see if we can patch the calling TB. When the TB |
| spans two pages, we cannot safely do a direct |
| jump. */ |
| { |
| if (next_tb != 0 && |
| #ifdef USE_KQEMU |
| (env->kqemu_enabled != 2) && |
| #endif |
| tb->page_addr[1] == -1) { |
| tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb); |
| } |
| } |
| spin_unlock(&tb_lock); |
| env->current_tb = tb; |
| |
| /* cpu_interrupt might be called while translating the |
| TB, but before it is linked into a potentially |
| infinite loop and becomes env->current_tb. Avoid |
| starting execution if there is a pending interrupt. */ |
| if (unlikely (env->interrupt_request & CPU_INTERRUPT_EXIT)) |
| env->current_tb = NULL; |
| |
| while (env->current_tb) { |
| tc_ptr = tb->tc_ptr; |
| /* execute the generated code */ |
| #if defined(__sparc__) && !defined(HOST_SOLARIS) |
| #undef env |
| env = cpu_single_env; |
| #define env cpu_single_env |
| #endif |
| next_tb = tcg_qemu_tb_exec(tc_ptr); |
| env->current_tb = NULL; |
| if ((next_tb & 3) == 2) { |
| /* Instruction counter expired. */ |
| int insns_left; |
| tb = (TranslationBlock *)(long)(next_tb & ~3); |
| /* Restore PC. */ |
| CPU_PC_FROM_TB(env, tb); |
| insns_left = env->icount_decr.u32; |
| if (env->icount_extra && insns_left >= 0) { |
| /* Refill decrementer and continue execution. */ |
| env->icount_extra += insns_left; |
| if (env->icount_extra > 0xffff) { |
| insns_left = 0xffff; |
| } else { |
| insns_left = env->icount_extra; |
| } |
| env->icount_extra -= insns_left; |
| env->icount_decr.u16.low = insns_left; |
| } else { |
| if (insns_left > 0) { |
| /* Execute remaining instructions. */ |
| cpu_exec_nocache(insns_left, tb); |
| } |
| env->exception_index = EXCP_INTERRUPT; |
| next_tb = 0; |
| cpu_loop_exit(); |
| } |
| } |
| } |
| /* reset soft MMU for next block (it can currently |
| only be set by a memory fault) */ |
| #if defined(USE_KQEMU) |
| #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000) |
| if (kqemu_is_ok(env) && |
| (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) { |
| cpu_loop_exit(); |
| } |
| #endif |
| } /* for(;;) */ |
| } else { |
| env_to_regs(); |
| } |
| } /* for(;;) */ |
| |
| |
| #if defined(TARGET_I386) |
| /* restore flags in standard format */ |
| env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK); |
| #elif defined(TARGET_ARM) |
| /* XXX: Save/restore host fpu exception state?. */ |
| #elif defined(TARGET_SPARC) |
| #elif defined(TARGET_PPC) |
| #elif defined(TARGET_M68K) |
| cpu_m68k_flush_flags(env, env->cc_op); |
| env->cc_op = CC_OP_FLAGS; |
| env->sr = (env->sr & 0xffe0) |
| | env->cc_dest | (env->cc_x << 4); |
| #elif defined(TARGET_MIPS) |
| #elif defined(TARGET_SH4) |
| #elif defined(TARGET_ALPHA) |
| #elif defined(TARGET_CRIS) |
| /* XXXXX */ |
| #else |
| #error unsupported target CPU |
| #endif |
| |
| /* restore global registers */ |
| #include "hostregs_helper.h" |
| |
| /* fail safe : never use cpu_single_env outside cpu_exec() */ |
| cpu_single_env = NULL; |
| return ret; |
| } |
| |
| /* must only be called from the generated code as an exception can be |
| generated */ |
| void tb_invalidate_page_range(target_ulong start, target_ulong end) |
| { |
| /* XXX: cannot enable it yet because it yields to MMU exception |
| where NIP != read address on PowerPC */ |
| #if 0 |
| target_ulong phys_addr; |
| phys_addr = get_phys_addr_code(env, start); |
| tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0); |
| #endif |
| } |
| |
| #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY) |
| |
| void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector) |
| { |
| CPUX86State *saved_env; |
| |
| saved_env = env; |
| env = s; |
| if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) { |
| selector &= 0xffff; |
| cpu_x86_load_seg_cache(env, seg_reg, selector, |
| (selector << 4), 0xffff, 0); |
| } else { |
| helper_load_seg(seg_reg, selector); |
| } |
| env = saved_env; |
| } |
| |
| void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32) |
| { |
| CPUX86State *saved_env; |
| |
| saved_env = env; |
| env = s; |
| |
| helper_fsave(ptr, data32); |
| |
| env = saved_env; |
| } |
| |
| void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32) |
| { |
| CPUX86State *saved_env; |
| |
| saved_env = env; |
| env = s; |
| |
| helper_frstor(ptr, data32); |
| |
| env = saved_env; |
| } |
| |
| #endif /* TARGET_I386 */ |
| |
| #if !defined(CONFIG_SOFTMMU) |
| |
| #if defined(TARGET_I386) |
| |
| /* 'pc' is the host PC at which the exception was raised. 'address' is |
| the effective address of the memory exception. 'is_write' is 1 if a |
| write caused the exception and otherwise 0'. 'old_set' is the |
| signal set which should be restored */ |
| static inline int handle_cpu_signal(unsigned long pc, unsigned long address, |
| int is_write, sigset_t *old_set, |
| void *puc) |
| { |
| TranslationBlock *tb; |
| int ret; |
| |
| if (cpu_single_env) |
| env = cpu_single_env; /* XXX: find a correct solution for multithread */ |
| #if defined(DEBUG_SIGNAL) |
| qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
| pc, address, is_write, *(unsigned long *)old_set); |
| #endif |
| /* XXX: locking issue */ |
| if (is_write && page_unprotect(h2g(address), pc, puc)) { |
| return 1; |
| } |
| |
| /* see if it is an MMU fault */ |
| ret = cpu_x86_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); |
| if (ret < 0) |
| return 0; /* not an MMU fault */ |
| if (ret == 0) |
| return 1; /* the MMU fault was handled without causing real CPU fault */ |
| /* now we have a real cpu fault */ |
| tb = tb_find_pc(pc); |
| if (tb) { |
| /* the PC is inside the translated code. It means that we have |
| a virtual CPU fault */ |
| cpu_restore_state(tb, env, pc, puc); |
| } |
| if (ret == 1) { |
| #if 0 |
| printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", |
| env->eip, env->cr[2], env->error_code); |
| #endif |
| /* we restore the process signal mask as the sigreturn should |
| do it (XXX: use sigsetjmp) */ |
| sigprocmask(SIG_SETMASK, old_set, NULL); |
| raise_exception_err(env->exception_index, env->error_code); |
| } else { |
| /* activate soft MMU for this block */ |
| env->hflags |= HF_SOFTMMU_MASK; |
| cpu_resume_from_signal(env, puc); |
| } |
| /* never comes here */ |
| return 1; |
| } |
| |
| #elif defined(TARGET_ARM) |
| static inline int handle_cpu_signal(unsigned long pc, unsigned long address, |
| int is_write, sigset_t *old_set, |
| void *puc) |
| { |
| TranslationBlock *tb; |
| int ret; |
| |
| if (cpu_single_env) |
| env = cpu_single_env; /* XXX: find a correct solution for multithread */ |
| #if defined(DEBUG_SIGNAL) |
| printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
| pc, address, is_write, *(unsigned long *)old_set); |
| #endif |
| /* XXX: locking issue */ |
| if (is_write && page_unprotect(h2g(address), pc, puc)) { |
| return 1; |
| } |
| /* see if it is an MMU fault */ |
| ret = cpu_arm_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); |
| if (ret < 0) |
| return 0; /* not an MMU fault */ |
| if (ret == 0) |
| return 1; /* the MMU fault was handled without causing real CPU fault */ |
| /* now we have a real cpu fault */ |
| tb = tb_find_pc(pc); |
| if (tb) { |
| /* the PC is inside the translated code. It means that we have |
| a virtual CPU fault */ |
| cpu_restore_state(tb, env, pc, puc); |
| } |
| /* we restore the process signal mask as the sigreturn should |
| do it (XXX: use sigsetjmp) */ |
| sigprocmask(SIG_SETMASK, old_set, NULL); |
| cpu_loop_exit(); |
| /* never comes here */ |
| return 1; |
| } |
| #elif defined(TARGET_SPARC) |
| static inline int handle_cpu_signal(unsigned long pc, unsigned long address, |
| int is_write, sigset_t *old_set, |
| void *puc) |
| { |
| TranslationBlock *tb; |
| int ret; |
| |
| if (cpu_single_env) |
| env = cpu_single_env; /* XXX: find a correct solution for multithread */ |
| #if defined(DEBUG_SIGNAL) |
| printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
| pc, address, is_write, *(unsigned long *)old_set); |
| #endif |
| /* XXX: locking issue */ |
| if (is_write && page_unprotect(h2g(address), pc, puc)) { |
| return 1; |
| } |
| /* see if it is an MMU fault */ |
| ret = cpu_sparc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); |
| if (ret < 0) |
| return 0; /* not an MMU fault */ |
| if (ret == 0) |
| return 1; /* the MMU fault was handled without causing real CPU fault */ |
| /* now we have a real cpu fault */ |
| tb = tb_find_pc(pc); |
| if (tb) { |
| /* the PC is inside the translated code. It means that we have |
| a virtual CPU fault */ |
| cpu_restore_state(tb, env, pc, puc); |
| } |
| /* we restore the process signal mask as the sigreturn should |
| do it (XXX: use sigsetjmp) */ |
| sigprocmask(SIG_SETMASK, old_set, NULL); |
| cpu_loop_exit(); |
| /* never comes here */ |
| return 1; |
| } |
| #elif defined (TARGET_PPC) |
| static inline int handle_cpu_signal(unsigned long pc, unsigned long address, |
| int is_write, sigset_t *old_set, |
| void *puc) |
| { |
| TranslationBlock *tb; |
| int ret; |
| |
| if (cpu_single_env) |
| env = cpu_single_env; /* XXX: find a correct solution for multithread */ |
| #if defined(DEBUG_SIGNAL) |
| printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
| pc, address, is_write, *(unsigned long *)old_set); |
| #endif |
| /* XXX: locking issue */ |
| if (is_write && page_unprotect(h2g(address), pc, puc)) { |
| return 1; |
| } |
| |
| /* see if it is an MMU fault */ |
| ret = cpu_ppc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); |
| if (ret < 0) |
| return 0; /* not an MMU fault */ |
| if (ret == 0) |
| return 1; /* the MMU fault was handled without causing real CPU fault */ |
| |
| /* now we have a real cpu fault */ |
| tb = tb_find_pc(pc); |
| if (tb) { |
| /* the PC is inside the translated code. It means that we have |
| a virtual CPU fault */ |
| cpu_restore_state(tb, env, pc, puc); |
| } |
| if (ret == 1) { |
| #if 0 |
| printf("PF exception: NIP=0x%08x error=0x%x %p\n", |
| env->nip, env->error_code, tb); |
| #endif |
| /* we restore the process signal mask as the sigreturn should |
| do it (XXX: use sigsetjmp) */ |
| sigprocmask(SIG_SETMASK, old_set, NULL); |
| do_raise_exception_err(env->exception_index, env->error_code); |
| } else { |
| /* activate soft MMU for this block */ |
| cpu_resume_from_signal(env, puc); |
| } |
| /* never comes here */ |
| return 1; |
| } |
| |
| #elif defined(TARGET_M68K) |
| static inline int handle_cpu_signal(unsigned long pc, unsigned long address, |
| int is_write, sigset_t *old_set, |
| void *puc) |
| { |
| TranslationBlock *tb; |
| int ret; |
| |
| if (cpu_single_env) |
| env = cpu_single_env; /* XXX: find a correct solution for multithread */ |
| #if defined(DEBUG_SIGNAL) |
| printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
| pc, address, is_write, *(unsigned long *)old_set); |
| #endif |
| /* XXX: locking issue */ |
| if (is_write && page_unprotect(address, pc, puc)) { |
| return 1; |
| } |
| /* see if it is an MMU fault */ |
| ret = cpu_m68k_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); |
| if (ret < 0) |
| return 0; /* not an MMU fault */ |
| if (ret == 0) |
| return 1; /* the MMU fault was handled without causing real CPU fault */ |
| /* now we have a real cpu fault */ |
| tb = tb_find_pc(pc); |
| if (tb) { |
| /* the PC is inside the translated code. It means that we have |
| a virtual CPU fault */ |
| cpu_restore_state(tb, env, pc, puc); |
| } |
| /* we restore the process signal mask as the sigreturn should |
| do it (XXX: use sigsetjmp) */ |
| sigprocmask(SIG_SETMASK, old_set, NULL); |
| cpu_loop_exit(); |
| /* never comes here */ |
| return 1; |
| } |
| |
| #elif defined (TARGET_MIPS) |
| static inline int handle_cpu_signal(unsigned long pc, unsigned long address, |
| int is_write, sigset_t *old_set, |
| void *puc) |
| { |
| TranslationBlock *tb; |
| int ret; |
| |
| if (cpu_single_env) |
| env = cpu_single_env; /* XXX: find a correct solution for multithread */ |
| #if defined(DEBUG_SIGNAL) |
| printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
| pc, address, is_write, *(unsigned long *)old_set); |
| #endif |
| /* XXX: locking issue */ |
| if (is_write && page_unprotect(h2g(address), pc, puc)) { |
| return 1; |
| } |
| |
| /* see if it is an MMU fault */ |
| ret = cpu_mips_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); |
| if (ret < 0) |
| return 0; /* not an MMU fault */ |
| if (ret == 0) |
| return 1; /* the MMU fault was handled without causing real CPU fault */ |
| |
| /* now we have a real cpu fault */ |
| tb = tb_find_pc(pc); |
| if (tb) { |
| /* the PC is inside the translated code. It means that we have |
| a virtual CPU fault */ |
| cpu_restore_state(tb, env, pc, puc); |
| } |
| if (ret == 1) { |
| #if 0 |
| printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n", |
| env->PC, env->error_code, tb); |
| #endif |
| /* we restore the process signal mask as the sigreturn should |
| do it (XXX: use sigsetjmp) */ |
| sigprocmask(SIG_SETMASK, old_set, NULL); |
| do_raise_exception_err(env->exception_index, env->error_code); |
| } else { |
| /* activate soft MMU for this block */ |
| cpu_resume_from_signal(env, puc); |
| } |
| /* never comes here */ |
| return 1; |
| } |
| |
| #elif defined (TARGET_SH4) |
| static inline int handle_cpu_signal(unsigned long pc, unsigned long address, |
| int is_write, sigset_t *old_set, |
| void *puc) |
| { |
| TranslationBlock *tb; |
| int ret; |
| |
| if (cpu_single_env) |
| env = cpu_single_env; /* XXX: find a correct solution for multithread */ |
| #if defined(DEBUG_SIGNAL) |
| printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
| pc, address, is_write, *(unsigned long *)old_set); |
| #endif |
| /* XXX: locking issue */ |
| if (is_write && page_unprotect(h2g(address), pc, puc)) { |
| return 1; |
| } |
| |
| /* see if it is an MMU fault */ |
| ret = cpu_sh4_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); |
| if (ret < 0) |
| return 0; /* not an MMU fault */ |
| if (ret == 0) |
| return 1; /* the MMU fault was handled without causing real CPU fault */ |
| |
| /* now we have a real cpu fault */ |
| tb = tb_find_pc(pc); |
| if (tb) { |
| /* the PC is inside the translated code. It means that we have |
| a virtual CPU fault */ |
| cpu_restore_state(tb, env, pc, puc); |
| } |
| #if 0 |
| printf("PF exception: NIP=0x%08x error=0x%x %p\n", |
| env->nip, env->error_code, tb); |
| #endif |
| /* we restore the process signal mask as the sigreturn should |
| do it (XXX: use sigsetjmp) */ |
| sigprocmask(SIG_SETMASK, old_set, NULL); |
| cpu_loop_exit(); |
| /* never comes here */ |
| return 1; |
| } |
| |
| #elif defined (TARGET_ALPHA) |
| static inline int handle_cpu_signal(unsigned long pc, unsigned long address, |
| int is_write, sigset_t *old_set, |
| void *puc) |
| { |
| TranslationBlock *tb; |
| int ret; |
| |
| if (cpu_single_env) |
| env = cpu_single_env; /* XXX: find a correct solution for multithread */ |
| #if defined(DEBUG_SIGNAL) |
| printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
| pc, address, is_write, *(unsigned long *)old_set); |
| #endif |
| /* XXX: locking issue */ |
| if (is_write && page_unprotect(h2g(address), pc, puc)) { |
| return 1; |
| } |
| |
| /* see if it is an MMU fault */ |
| ret = cpu_alpha_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); |
| if (ret < 0) |
| return 0; /* not an MMU fault */ |
| if (ret == 0) |
| return 1; /* the MMU fault was handled without causing real CPU fault */ |
| |
| /* now we have a real cpu fault */ |
| tb = tb_find_pc(pc); |
| if (tb) { |
| /* the PC is inside the translated code. It means that we have |
| a virtual CPU fault */ |
| cpu_restore_state(tb, env, pc, puc); |
| } |
| #if 0 |
| printf("PF exception: NIP=0x%08x error=0x%x %p\n", |
| env->nip, env->error_code, tb); |
| #endif |
| /* we restore the process signal mask as the sigreturn should |
| do it (XXX: use sigsetjmp) */ |
| sigprocmask(SIG_SETMASK, old_set, NULL); |
| cpu_loop_exit(); |
| /* never comes here */ |
| return 1; |
| } |
| #elif defined (TARGET_CRIS) |
| static inline int handle_cpu_signal(unsigned long pc, unsigned long address, |
| int is_write, sigset_t *old_set, |
| void *puc) |
| { |
| TranslationBlock *tb; |
| int ret; |
| |
| if (cpu_single_env) |
| env = cpu_single_env; /* XXX: find a correct solution for multithread */ |
| #if defined(DEBUG_SIGNAL) |
| printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
| pc, address, is_write, *(unsigned long *)old_set); |
| #endif |
| /* XXX: locking issue */ |
| if (is_write && page_unprotect(h2g(address), pc, puc)) { |
| return 1; |
| } |
| |
| /* see if it is an MMU fault */ |
| ret = cpu_cris_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0); |
| if (ret < 0) |
| return 0; /* not an MMU fault */ |
| if (ret == 0) |
| return 1; /* the MMU fault was handled without causing real CPU fault */ |
| |
| /* now we have a real cpu fault */ |
| tb = tb_find_pc(pc); |
| if (tb) { |
| /* the PC is inside the translated code. It means that we have |
| a virtual CPU fault */ |
| cpu_restore_state(tb, env, pc, puc); |
| } |
| /* we restore the process signal mask as the sigreturn should |
| do it (XXX: use sigsetjmp) */ |
| sigprocmask(SIG_SETMASK, old_set, NULL); |
| cpu_loop_exit(); |
| /* never comes here */ |
| return 1; |
| } |
| |
| #else |
| #error unsupported target CPU |
| #endif |
| |
| #if defined(__i386__) |
| |
| #if defined(__APPLE__) |
| # include <sys/ucontext.h> |
| |
| # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip)) |
| # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno) |
| # define ERROR_sig(context) ((context)->uc_mcontext->es.err) |
| #else |
| # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP]) |
| # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO]) |
| # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR]) |
| #endif |
| |
| int cpu_signal_handler(int host_signum, void *pinfo, |
| void *puc) |
| { |
| siginfo_t *info = pinfo; |
| struct ucontext *uc = puc; |
| unsigned long pc; |
| int trapno; |
| |
| #ifndef REG_EIP |
| /* for glibc 2.1 */ |
| #define REG_EIP EIP |
| #define REG_ERR ERR |
| #define REG_TRAPNO TRAPNO |
| #endif |
| pc = EIP_sig(uc); |
| trapno = TRAP_sig(uc); |
| return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
| trapno == 0xe ? |
| (ERROR_sig(uc) >> 1) & 1 : 0, |
| &uc->uc_sigmask, puc); |
| } |
| |
| #elif defined(__x86_64__) |
| |
| int cpu_signal_handler(int host_signum, void *pinfo, |
| void *puc) |
| { |
| siginfo_t *info = pinfo; |
| struct ucontext *uc = puc; |
| unsigned long pc; |
| |
| pc = uc->uc_mcontext.gregs[REG_RIP]; |
| return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
| uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? |
| (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0, |
| &uc->uc_sigmask, puc); |
| } |
| |
| #elif defined(__powerpc__) |
| |
| /*********************************************************************** |
| * signal context platform-specific definitions |
| * From Wine |
| */ |
| #ifdef linux |
| /* All Registers access - only for local access */ |
| # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name) |
| /* Gpr Registers access */ |
| # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context) |
| # define IAR_sig(context) REG_sig(nip, context) /* Program counter */ |
| # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */ |
| # define CTR_sig(context) REG_sig(ctr, context) /* Count register */ |
| # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */ |
| # define LR_sig(context) REG_sig(link, context) /* Link register */ |
| # define CR_sig(context) REG_sig(ccr, context) /* Condition register */ |
| /* Float Registers access */ |
| # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num]) |
| # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4))) |
| /* Exception Registers access */ |
| # define DAR_sig(context) REG_sig(dar, context) |
| # define DSISR_sig(context) REG_sig(dsisr, context) |
| # define TRAP_sig(context) REG_sig(trap, context) |
| #endif /* linux */ |
| |
| #ifdef __APPLE__ |
| # include <sys/ucontext.h> |
| typedef struct ucontext SIGCONTEXT; |
| /* All Registers access - only for local access */ |
| # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name) |
| # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name) |
| # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name) |
| # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name) |
| /* Gpr Registers access */ |
| # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context) |
| # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */ |
| # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */ |
| # define CTR_sig(context) REG_sig(ctr, context) |
| # define XER_sig(context) REG_sig(xer, context) /* Link register */ |
| # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */ |
| # define CR_sig(context) REG_sig(cr, context) /* Condition register */ |
| /* Float Registers access */ |
| # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context) |
| # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context)) |
| /* Exception Registers access */ |
| # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */ |
| # define DSISR_sig(context) EXCEPREG_sig(dsisr, context) |
| # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */ |
| #endif /* __APPLE__ */ |
| |
| int cpu_signal_handler(int host_signum, void *pinfo, |
| void *puc) |
| { |
| siginfo_t *info = pinfo; |
| struct ucontext *uc = puc; |
| unsigned long pc; |
| int is_write; |
| |
| pc = IAR_sig(uc); |
| is_write = 0; |
| #if 0 |
| /* ppc 4xx case */ |
| if (DSISR_sig(uc) & 0x00800000) |
| is_write = 1; |
| #else |
| if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000)) |
| is_write = 1; |
| #endif |
| return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
| is_write, &uc->uc_sigmask, puc); |
| } |
| |
| #elif defined(__alpha__) |
| |
| int cpu_signal_handler(int host_signum, void *pinfo, |
| void *puc) |
| { |
| siginfo_t *info = pinfo; |
| struct ucontext *uc = puc; |
| uint32_t *pc = uc->uc_mcontext.sc_pc; |
| uint32_t insn = *pc; |
| int is_write = 0; |
| |
| /* XXX: need kernel patch to get write flag faster */ |
| switch (insn >> 26) { |
| case 0x0d: // stw |
| case 0x0e: // stb |
| case 0x0f: // stq_u |
| case 0x24: // stf |
| case 0x25: // stg |
| case 0x26: // sts |
| case 0x27: // stt |
| case 0x2c: // stl |
| case 0x2d: // stq |
| case 0x2e: // stl_c |
| case 0x2f: // stq_c |
| is_write = 1; |
| } |
| |
| return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
| is_write, &uc->uc_sigmask, puc); |
| } |
| #elif defined(__sparc__) |
| |
| int cpu_signal_handler(int host_signum, void *pinfo, |
| void *puc) |
| { |
| siginfo_t *info = pinfo; |
| int is_write; |
| uint32_t insn; |
| #if !defined(__arch64__) || defined(HOST_SOLARIS) |
| uint32_t *regs = (uint32_t *)(info + 1); |
| void *sigmask = (regs + 20); |
| /* XXX: is there a standard glibc define ? */ |
| unsigned long pc = regs[1]; |
| #else |
| #ifdef __linux__ |
| struct sigcontext *sc = puc; |
| unsigned long pc = sc->sigc_regs.tpc; |
| void *sigmask = (void *)sc->sigc_mask; |
| #elif defined(__OpenBSD__) |
| struct sigcontext *uc = puc; |
| unsigned long pc = uc->sc_pc; |
| void *sigmask = (void *)(long)uc->sc_mask; |
| #endif |
| #endif |
| |
| /* XXX: need kernel patch to get write flag faster */ |
| is_write = 0; |
| insn = *(uint32_t *)pc; |
| if ((insn >> 30) == 3) { |
| switch((insn >> 19) & 0x3f) { |
| case 0x05: // stb |
| case 0x06: // sth |
| case 0x04: // st |
| case 0x07: // std |
| case 0x24: // stf |
| case 0x27: // stdf |
| case 0x25: // stfsr |
| is_write = 1; |
| break; |
| } |
| } |
| return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
| is_write, sigmask, NULL); |
| } |
| |
| #elif defined(__arm__) |
| |
| int cpu_signal_handler(int host_signum, void *pinfo, |
| void *puc) |
| { |
| siginfo_t *info = pinfo; |
| struct ucontext *uc = puc; |
| unsigned long pc; |
| int is_write; |
| |
| #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3)) |
| pc = uc->uc_mcontext.gregs[R15]; |
| #else |
| pc = uc->uc_mcontext.arm_pc; |
| #endif |
| /* XXX: compute is_write */ |
| is_write = 0; |
| return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
| is_write, |
| &uc->uc_sigmask, puc); |
| } |
| |
| #elif defined(__mc68000) |
| |
| int cpu_signal_handler(int host_signum, void *pinfo, |
| void *puc) |
| { |
| siginfo_t *info = pinfo; |
| struct ucontext *uc = puc; |
| unsigned long pc; |
| int is_write; |
| |
| pc = uc->uc_mcontext.gregs[16]; |
| /* XXX: compute is_write */ |
| is_write = 0; |
| return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
| is_write, |
| &uc->uc_sigmask, puc); |
| } |
| |
| #elif defined(__ia64) |
| |
| #ifndef __ISR_VALID |
| /* This ought to be in <bits/siginfo.h>... */ |
| # define __ISR_VALID 1 |
| #endif |
| |
| int cpu_signal_handler(int host_signum, void *pinfo, void *puc) |
| { |
| siginfo_t *info = pinfo; |
| struct ucontext *uc = puc; |
| unsigned long ip; |
| int is_write = 0; |
| |
| ip = uc->uc_mcontext.sc_ip; |
| switch (host_signum) { |
| case SIGILL: |
| case SIGFPE: |
| case SIGSEGV: |
| case SIGBUS: |
| case SIGTRAP: |
| if (info->si_code && (info->si_segvflags & __ISR_VALID)) |
| /* ISR.W (write-access) is bit 33: */ |
| is_write = (info->si_isr >> 33) & 1; |
| break; |
| |
| default: |
| break; |
| } |
| return handle_cpu_signal(ip, (unsigned long)info->si_addr, |
| is_write, |
| &uc->uc_sigmask, puc); |
| } |
| |
| #elif defined(__s390__) |
| |
| int cpu_signal_handler(int host_signum, void *pinfo, |
| void *puc) |
| { |
| siginfo_t *info = pinfo; |
| struct ucontext *uc = puc; |
| unsigned long pc; |
| int is_write; |
| |
| pc = uc->uc_mcontext.psw.addr; |
| /* XXX: compute is_write */ |
| is_write = 0; |
| return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
| is_write, &uc->uc_sigmask, puc); |
| } |
| |
| #elif defined(__mips__) |
| |
| int cpu_signal_handler(int host_signum, void *pinfo, |
| void *puc) |
| { |
| siginfo_t *info = pinfo; |
| struct ucontext *uc = puc; |
| greg_t pc = uc->uc_mcontext.pc; |
| int is_write; |
| |
| /* XXX: compute is_write */ |
| is_write = 0; |
| return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
| is_write, &uc->uc_sigmask, puc); |
| } |
| |
| #elif defined(__hppa__) |
| |
| int cpu_signal_handler(int host_signum, void *pinfo, |
| void *puc) |
| { |
| struct siginfo *info = pinfo; |
| struct ucontext *uc = puc; |
| unsigned long pc; |
| int is_write; |
| |
| pc = uc->uc_mcontext.sc_iaoq[0]; |
| /* FIXME: compute is_write */ |
| is_write = 0; |
| return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
| is_write, |
| &uc->uc_sigmask, puc); |
| } |
| |
| #else |
| |
| #error host CPU specific signal handler needed |
| |
| #endif |
| |
| #endif /* !defined(CONFIG_SOFTMMU) */ |