| /* |
| * QEMU AVR CPU |
| * |
| * Copyright (c) 2019-2020 Michael Rolnik |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see |
| * <http://www.gnu.org/licenses/lgpl-2.1.html> |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/qemu-print.h" |
| #include "tcg/tcg.h" |
| #include "cpu.h" |
| #include "exec/exec-all.h" |
| #include "tcg/tcg-op.h" |
| #include "exec/helper-proto.h" |
| #include "exec/helper-gen.h" |
| #include "exec/log.h" |
| #include "exec/translator.h" |
| |
| #define HELPER_H "helper.h" |
| #include "exec/helper-info.c.inc" |
| #undef HELPER_H |
| |
| |
| /* |
| * Define if you want a BREAK instruction translated to a breakpoint |
| * Active debugging connection is assumed |
| * This is for |
| * https://github.com/seharris/qemu-avr-tests/tree/master/instruction-tests |
| * tests |
| */ |
| #undef BREAKPOINT_ON_BREAK |
| |
| static TCGv cpu_pc; |
| |
| static TCGv cpu_Cf; |
| static TCGv cpu_Zf; |
| static TCGv cpu_Nf; |
| static TCGv cpu_Vf; |
| static TCGv cpu_Sf; |
| static TCGv cpu_Hf; |
| static TCGv cpu_Tf; |
| static TCGv cpu_If; |
| |
| static TCGv cpu_rampD; |
| static TCGv cpu_rampX; |
| static TCGv cpu_rampY; |
| static TCGv cpu_rampZ; |
| |
| static TCGv cpu_r[NUMBER_OF_CPU_REGISTERS]; |
| static TCGv cpu_eind; |
| static TCGv cpu_sp; |
| |
| static TCGv cpu_skip; |
| |
| static const char reg_names[NUMBER_OF_CPU_REGISTERS][8] = { |
| "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", |
| "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", |
| "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", |
| "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", |
| }; |
| #define REG(x) (cpu_r[x]) |
| |
| #define DISAS_EXIT DISAS_TARGET_0 /* We want return to the cpu main loop. */ |
| #define DISAS_LOOKUP DISAS_TARGET_1 /* We have a variable condition exit. */ |
| #define DISAS_CHAIN DISAS_TARGET_2 /* We have a single condition exit. */ |
| |
| typedef struct DisasContext DisasContext; |
| |
| /* This is the state at translation time. */ |
| struct DisasContext { |
| DisasContextBase base; |
| |
| CPUAVRState *env; |
| CPUState *cs; |
| |
| target_long npc; |
| uint32_t opcode; |
| |
| /* Routine used to access memory */ |
| int memidx; |
| |
| /* |
| * some AVR instructions can make the following instruction to be skipped |
| * Let's name those instructions |
| * A - instruction that can skip the next one |
| * B - instruction that can be skipped. this depends on execution of A |
| * there are two scenarios |
| * 1. A and B belong to the same translation block |
| * 2. A is the last instruction in the translation block and B is the last |
| * |
| * following variables are used to simplify the skipping logic, they are |
| * used in the following manner (sketch) |
| * |
| * TCGLabel *skip_label = NULL; |
| * if (ctx->skip_cond != TCG_COND_NEVER) { |
| * skip_label = gen_new_label(); |
| * tcg_gen_brcond_tl(skip_cond, skip_var0, skip_var1, skip_label); |
| * } |
| * |
| * translate(ctx); |
| * |
| * if (skip_label) { |
| * gen_set_label(skip_label); |
| * } |
| */ |
| TCGv skip_var0; |
| TCGv skip_var1; |
| TCGCond skip_cond; |
| }; |
| |
| void avr_cpu_tcg_init(void) |
| { |
| int i; |
| |
| #define AVR_REG_OFFS(x) offsetof(CPUAVRState, x) |
| cpu_pc = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(pc_w), "pc"); |
| cpu_Cf = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(sregC), "Cf"); |
| cpu_Zf = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(sregZ), "Zf"); |
| cpu_Nf = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(sregN), "Nf"); |
| cpu_Vf = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(sregV), "Vf"); |
| cpu_Sf = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(sregS), "Sf"); |
| cpu_Hf = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(sregH), "Hf"); |
| cpu_Tf = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(sregT), "Tf"); |
| cpu_If = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(sregI), "If"); |
| cpu_rampD = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(rampD), "rampD"); |
| cpu_rampX = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(rampX), "rampX"); |
| cpu_rampY = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(rampY), "rampY"); |
| cpu_rampZ = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(rampZ), "rampZ"); |
| cpu_eind = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(eind), "eind"); |
| cpu_sp = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(sp), "sp"); |
| cpu_skip = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(skip), "skip"); |
| |
| for (i = 0; i < NUMBER_OF_CPU_REGISTERS; i++) { |
| cpu_r[i] = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(r[i]), |
| reg_names[i]); |
| } |
| #undef AVR_REG_OFFS |
| } |
| |
| static int to_regs_16_31_by_one(DisasContext *ctx, int indx) |
| { |
| return 16 + (indx % 16); |
| } |
| |
| static int to_regs_16_23_by_one(DisasContext *ctx, int indx) |
| { |
| return 16 + (indx % 8); |
| } |
| |
| static int to_regs_24_30_by_two(DisasContext *ctx, int indx) |
| { |
| return 24 + (indx % 4) * 2; |
| } |
| |
| static int to_regs_00_30_by_two(DisasContext *ctx, int indx) |
| { |
| return (indx % 16) * 2; |
| } |
| |
| static uint16_t next_word(DisasContext *ctx) |
| { |
| return translator_lduw(ctx->env, &ctx->base, ctx->npc++ * 2); |
| } |
| |
| static int append_16(DisasContext *ctx, int x) |
| { |
| return x << 16 | next_word(ctx); |
| } |
| |
| static bool avr_have_feature(DisasContext *ctx, int feature) |
| { |
| if (!avr_feature(ctx->env, feature)) { |
| gen_helper_unsupported(tcg_env); |
| ctx->base.is_jmp = DISAS_NORETURN; |
| return false; |
| } |
| return true; |
| } |
| |
| static bool decode_insn(DisasContext *ctx, uint16_t insn); |
| #include "decode-insn.c.inc" |
| |
| /* |
| * Arithmetic Instructions |
| */ |
| |
| /* |
| * Utility functions for updating status registers: |
| * |
| * - gen_add_CHf() |
| * - gen_add_Vf() |
| * - gen_sub_CHf() |
| * - gen_sub_Vf() |
| * - gen_NSf() |
| * - gen_ZNSf() |
| * |
| */ |
| |
| static void gen_add_CHf(TCGv R, TCGv Rd, TCGv Rr) |
| { |
| TCGv t1 = tcg_temp_new_i32(); |
| TCGv t2 = tcg_temp_new_i32(); |
| TCGv t3 = tcg_temp_new_i32(); |
| |
| tcg_gen_and_tl(t1, Rd, Rr); /* t1 = Rd & Rr */ |
| tcg_gen_andc_tl(t2, Rd, R); /* t2 = Rd & ~R */ |
| tcg_gen_andc_tl(t3, Rr, R); /* t3 = Rr & ~R */ |
| tcg_gen_or_tl(t1, t1, t2); /* t1 = t1 | t2 | t3 */ |
| tcg_gen_or_tl(t1, t1, t3); |
| |
| tcg_gen_shri_tl(cpu_Cf, t1, 7); /* Cf = t1(7) */ |
| tcg_gen_shri_tl(cpu_Hf, t1, 3); /* Hf = t1(3) */ |
| tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1); |
| } |
| |
| static void gen_add_Vf(TCGv R, TCGv Rd, TCGv Rr) |
| { |
| TCGv t1 = tcg_temp_new_i32(); |
| TCGv t2 = tcg_temp_new_i32(); |
| |
| /* t1 = Rd & Rr & ~R | ~Rd & ~Rr & R */ |
| /* = (Rd ^ R) & ~(Rd ^ Rr) */ |
| tcg_gen_xor_tl(t1, Rd, R); |
| tcg_gen_xor_tl(t2, Rd, Rr); |
| tcg_gen_andc_tl(t1, t1, t2); |
| |
| tcg_gen_shri_tl(cpu_Vf, t1, 7); /* Vf = t1(7) */ |
| } |
| |
| static void gen_sub_CHf(TCGv R, TCGv Rd, TCGv Rr) |
| { |
| TCGv t1 = tcg_temp_new_i32(); |
| TCGv t2 = tcg_temp_new_i32(); |
| TCGv t3 = tcg_temp_new_i32(); |
| |
| tcg_gen_not_tl(t1, Rd); /* t1 = ~Rd */ |
| tcg_gen_and_tl(t2, t1, Rr); /* t2 = ~Rd & Rr */ |
| tcg_gen_or_tl(t3, t1, Rr); /* t3 = (~Rd | Rr) & R */ |
| tcg_gen_and_tl(t3, t3, R); |
| tcg_gen_or_tl(t2, t2, t3); /* t2 = ~Rd & Rr | ~Rd & R | R & Rr */ |
| |
| tcg_gen_shri_tl(cpu_Cf, t2, 7); /* Cf = t2(7) */ |
| tcg_gen_shri_tl(cpu_Hf, t2, 3); /* Hf = t2(3) */ |
| tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1); |
| } |
| |
| static void gen_sub_Vf(TCGv R, TCGv Rd, TCGv Rr) |
| { |
| TCGv t1 = tcg_temp_new_i32(); |
| TCGv t2 = tcg_temp_new_i32(); |
| |
| /* t1 = Rd & ~Rr & ~R | ~Rd & Rr & R */ |
| /* = (Rd ^ R) & (Rd ^ R) */ |
| tcg_gen_xor_tl(t1, Rd, R); |
| tcg_gen_xor_tl(t2, Rd, Rr); |
| tcg_gen_and_tl(t1, t1, t2); |
| |
| tcg_gen_shri_tl(cpu_Vf, t1, 7); /* Vf = t1(7) */ |
| } |
| |
| static void gen_NSf(TCGv R) |
| { |
| tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */ |
| tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */ |
| } |
| |
| static void gen_ZNSf(TCGv R) |
| { |
| tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ |
| |
| /* update status register */ |
| tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */ |
| tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */ |
| } |
| |
| /* |
| * Adds two registers without the C Flag and places the result in the |
| * destination register Rd. |
| */ |
| static bool trans_ADD(DisasContext *ctx, arg_ADD *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv Rr = cpu_r[a->rr]; |
| TCGv R = tcg_temp_new_i32(); |
| |
| tcg_gen_add_tl(R, Rd, Rr); /* Rd = Rd + Rr */ |
| tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ |
| |
| /* update status register */ |
| gen_add_CHf(R, Rd, Rr); |
| gen_add_Vf(R, Rd, Rr); |
| gen_ZNSf(R); |
| |
| /* update output registers */ |
| tcg_gen_mov_tl(Rd, R); |
| return true; |
| } |
| |
| /* |
| * Adds two registers and the contents of the C Flag and places the result in |
| * the destination register Rd. |
| */ |
| static bool trans_ADC(DisasContext *ctx, arg_ADC *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv Rr = cpu_r[a->rr]; |
| TCGv R = tcg_temp_new_i32(); |
| |
| tcg_gen_add_tl(R, Rd, Rr); /* R = Rd + Rr + Cf */ |
| tcg_gen_add_tl(R, R, cpu_Cf); |
| tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ |
| |
| /* update status register */ |
| gen_add_CHf(R, Rd, Rr); |
| gen_add_Vf(R, Rd, Rr); |
| gen_ZNSf(R); |
| |
| /* update output registers */ |
| tcg_gen_mov_tl(Rd, R); |
| return true; |
| } |
| |
| /* |
| * Adds an immediate value (0 - 63) to a register pair and places the result |
| * in the register pair. This instruction operates on the upper four register |
| * pairs, and is well suited for operations on the pointer registers. This |
| * instruction is not available in all devices. Refer to the device specific |
| * instruction set summary. |
| */ |
| static bool trans_ADIW(DisasContext *ctx, arg_ADIW *a) |
| { |
| if (!avr_have_feature(ctx, AVR_FEATURE_ADIW_SBIW)) { |
| return true; |
| } |
| |
| TCGv RdL = cpu_r[a->rd]; |
| TCGv RdH = cpu_r[a->rd + 1]; |
| int Imm = (a->imm); |
| TCGv R = tcg_temp_new_i32(); |
| TCGv Rd = tcg_temp_new_i32(); |
| |
| tcg_gen_deposit_tl(Rd, RdL, RdH, 8, 8); /* Rd = RdH:RdL */ |
| tcg_gen_addi_tl(R, Rd, Imm); /* R = Rd + Imm */ |
| tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */ |
| |
| /* update status register */ |
| tcg_gen_andc_tl(cpu_Cf, Rd, R); /* Cf = Rd & ~R */ |
| tcg_gen_shri_tl(cpu_Cf, cpu_Cf, 15); |
| tcg_gen_andc_tl(cpu_Vf, R, Rd); /* Vf = R & ~Rd */ |
| tcg_gen_shri_tl(cpu_Vf, cpu_Vf, 15); |
| tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ |
| tcg_gen_shri_tl(cpu_Nf, R, 15); /* Nf = R(15) */ |
| tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf);/* Sf = Nf ^ Vf */ |
| |
| /* update output registers */ |
| tcg_gen_andi_tl(RdL, R, 0xff); |
| tcg_gen_shri_tl(RdH, R, 8); |
| return true; |
| } |
| |
| /* |
| * Subtracts two registers and places the result in the destination |
| * register Rd. |
| */ |
| static bool trans_SUB(DisasContext *ctx, arg_SUB *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv Rr = cpu_r[a->rr]; |
| TCGv R = tcg_temp_new_i32(); |
| |
| tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */ |
| tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ |
| |
| /* update status register */ |
| tcg_gen_andc_tl(cpu_Cf, Rd, R); /* Cf = Rd & ~R */ |
| gen_sub_CHf(R, Rd, Rr); |
| gen_sub_Vf(R, Rd, Rr); |
| gen_ZNSf(R); |
| |
| /* update output registers */ |
| tcg_gen_mov_tl(Rd, R); |
| return true; |
| } |
| |
| /* |
| * Subtracts a register and a constant and places the result in the |
| * destination register Rd. This instruction is working on Register R16 to R31 |
| * and is very well suited for operations on the X, Y, and Z-pointers. |
| */ |
| static bool trans_SUBI(DisasContext *ctx, arg_SUBI *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv Rr = tcg_constant_i32(a->imm); |
| TCGv R = tcg_temp_new_i32(); |
| |
| tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Imm */ |
| tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ |
| |
| /* update status register */ |
| gen_sub_CHf(R, Rd, Rr); |
| gen_sub_Vf(R, Rd, Rr); |
| gen_ZNSf(R); |
| |
| /* update output registers */ |
| tcg_gen_mov_tl(Rd, R); |
| return true; |
| } |
| |
| /* |
| * Subtracts two registers and subtracts with the C Flag and places the |
| * result in the destination register Rd. |
| */ |
| static bool trans_SBC(DisasContext *ctx, arg_SBC *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv Rr = cpu_r[a->rr]; |
| TCGv R = tcg_temp_new_i32(); |
| TCGv zero = tcg_constant_i32(0); |
| |
| tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */ |
| tcg_gen_sub_tl(R, R, cpu_Cf); |
| tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ |
| |
| /* update status register */ |
| gen_sub_CHf(R, Rd, Rr); |
| gen_sub_Vf(R, Rd, Rr); |
| gen_NSf(R); |
| |
| /* |
| * Previous value remains unchanged when the result is zero; |
| * cleared otherwise. |
| */ |
| tcg_gen_movcond_tl(TCG_COND_EQ, cpu_Zf, R, zero, cpu_Zf, zero); |
| |
| /* update output registers */ |
| tcg_gen_mov_tl(Rd, R); |
| return true; |
| } |
| |
| /* |
| * SBCI -- Subtract Immediate with Carry |
| */ |
| static bool trans_SBCI(DisasContext *ctx, arg_SBCI *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv Rr = tcg_constant_i32(a->imm); |
| TCGv R = tcg_temp_new_i32(); |
| TCGv zero = tcg_constant_i32(0); |
| |
| tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */ |
| tcg_gen_sub_tl(R, R, cpu_Cf); |
| tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ |
| |
| /* update status register */ |
| gen_sub_CHf(R, Rd, Rr); |
| gen_sub_Vf(R, Rd, Rr); |
| gen_NSf(R); |
| |
| /* |
| * Previous value remains unchanged when the result is zero; |
| * cleared otherwise. |
| */ |
| tcg_gen_movcond_tl(TCG_COND_EQ, cpu_Zf, R, zero, cpu_Zf, zero); |
| |
| /* update output registers */ |
| tcg_gen_mov_tl(Rd, R); |
| return true; |
| } |
| |
| /* |
| * Subtracts an immediate value (0-63) from a register pair and places the |
| * result in the register pair. This instruction operates on the upper four |
| * register pairs, and is well suited for operations on the Pointer Registers. |
| * This instruction is not available in all devices. Refer to the device |
| * specific instruction set summary. |
| */ |
| static bool trans_SBIW(DisasContext *ctx, arg_SBIW *a) |
| { |
| if (!avr_have_feature(ctx, AVR_FEATURE_ADIW_SBIW)) { |
| return true; |
| } |
| |
| TCGv RdL = cpu_r[a->rd]; |
| TCGv RdH = cpu_r[a->rd + 1]; |
| int Imm = (a->imm); |
| TCGv R = tcg_temp_new_i32(); |
| TCGv Rd = tcg_temp_new_i32(); |
| |
| tcg_gen_deposit_tl(Rd, RdL, RdH, 8, 8); /* Rd = RdH:RdL */ |
| tcg_gen_subi_tl(R, Rd, Imm); /* R = Rd - Imm */ |
| tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */ |
| |
| /* update status register */ |
| tcg_gen_andc_tl(cpu_Cf, R, Rd); |
| tcg_gen_shri_tl(cpu_Cf, cpu_Cf, 15); /* Cf = R & ~Rd */ |
| tcg_gen_andc_tl(cpu_Vf, Rd, R); |
| tcg_gen_shri_tl(cpu_Vf, cpu_Vf, 15); /* Vf = Rd & ~R */ |
| tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ |
| tcg_gen_shri_tl(cpu_Nf, R, 15); /* Nf = R(15) */ |
| tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */ |
| |
| /* update output registers */ |
| tcg_gen_andi_tl(RdL, R, 0xff); |
| tcg_gen_shri_tl(RdH, R, 8); |
| return true; |
| } |
| |
| /* |
| * Performs the logical AND between the contents of register Rd and register |
| * Rr and places the result in the destination register Rd. |
| */ |
| static bool trans_AND(DisasContext *ctx, arg_AND *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv Rr = cpu_r[a->rr]; |
| TCGv R = tcg_temp_new_i32(); |
| |
| tcg_gen_and_tl(R, Rd, Rr); /* Rd = Rd and Rr */ |
| |
| /* update status register */ |
| tcg_gen_movi_tl(cpu_Vf, 0); /* Vf = 0 */ |
| tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ |
| gen_ZNSf(R); |
| |
| /* update output registers */ |
| tcg_gen_mov_tl(Rd, R); |
| return true; |
| } |
| |
| /* |
| * Performs the logical AND between the contents of register Rd and a constant |
| * and places the result in the destination register Rd. |
| */ |
| static bool trans_ANDI(DisasContext *ctx, arg_ANDI *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| int Imm = (a->imm); |
| |
| tcg_gen_andi_tl(Rd, Rd, Imm); /* Rd = Rd & Imm */ |
| |
| /* update status register */ |
| tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */ |
| gen_ZNSf(Rd); |
| |
| return true; |
| } |
| |
| /* |
| * Performs the logical OR between the contents of register Rd and register |
| * Rr and places the result in the destination register Rd. |
| */ |
| static bool trans_OR(DisasContext *ctx, arg_OR *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv Rr = cpu_r[a->rr]; |
| TCGv R = tcg_temp_new_i32(); |
| |
| tcg_gen_or_tl(R, Rd, Rr); |
| |
| /* update status register */ |
| tcg_gen_movi_tl(cpu_Vf, 0); |
| gen_ZNSf(R); |
| |
| /* update output registers */ |
| tcg_gen_mov_tl(Rd, R); |
| return true; |
| } |
| |
| /* |
| * Performs the logical OR between the contents of register Rd and a |
| * constant and places the result in the destination register Rd. |
| */ |
| static bool trans_ORI(DisasContext *ctx, arg_ORI *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| int Imm = (a->imm); |
| |
| tcg_gen_ori_tl(Rd, Rd, Imm); /* Rd = Rd | Imm */ |
| |
| /* update status register */ |
| tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */ |
| gen_ZNSf(Rd); |
| |
| return true; |
| } |
| |
| /* |
| * Performs the logical EOR between the contents of register Rd and |
| * register Rr and places the result in the destination register Rd. |
| */ |
| static bool trans_EOR(DisasContext *ctx, arg_EOR *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv Rr = cpu_r[a->rr]; |
| |
| tcg_gen_xor_tl(Rd, Rd, Rr); |
| |
| /* update status register */ |
| tcg_gen_movi_tl(cpu_Vf, 0); |
| gen_ZNSf(Rd); |
| |
| return true; |
| } |
| |
| /* |
| * Clears the specified bits in register Rd. Performs the logical AND |
| * between the contents of register Rd and the complement of the constant mask |
| * K. The result will be placed in register Rd. |
| */ |
| static bool trans_COM(DisasContext *ctx, arg_COM *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| |
| tcg_gen_xori_tl(Rd, Rd, 0xff); |
| |
| /* update status register */ |
| tcg_gen_movi_tl(cpu_Cf, 1); /* Cf = 1 */ |
| tcg_gen_movi_tl(cpu_Vf, 0); /* Vf = 0 */ |
| gen_ZNSf(Rd); |
| return true; |
| } |
| |
| /* |
| * Replaces the contents of register Rd with its two's complement; the |
| * value $80 is left unchanged. |
| */ |
| static bool trans_NEG(DisasContext *ctx, arg_NEG *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv t0 = tcg_constant_i32(0); |
| TCGv R = tcg_temp_new_i32(); |
| |
| tcg_gen_sub_tl(R, t0, Rd); /* R = 0 - Rd */ |
| tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ |
| |
| /* update status register */ |
| gen_sub_CHf(R, t0, Rd); |
| gen_sub_Vf(R, t0, Rd); |
| gen_ZNSf(R); |
| |
| /* update output registers */ |
| tcg_gen_mov_tl(Rd, R); |
| return true; |
| } |
| |
| /* |
| * Adds one -1- to the contents of register Rd and places the result in the |
| * destination register Rd. The C Flag in SREG is not affected by the |
| * operation, thus allowing the INC instruction to be used on a loop counter in |
| * multiple-precision computations. When operating on unsigned numbers, only |
| * BREQ and BRNE branches can be expected to perform consistently. When |
| * operating on two's complement values, all signed branches are available. |
| */ |
| static bool trans_INC(DisasContext *ctx, arg_INC *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| |
| tcg_gen_addi_tl(Rd, Rd, 1); |
| tcg_gen_andi_tl(Rd, Rd, 0xff); |
| |
| /* update status register */ |
| tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x80); /* Vf = Rd == 0x80 */ |
| gen_ZNSf(Rd); |
| |
| return true; |
| } |
| |
| /* |
| * Subtracts one -1- from the contents of register Rd and places the result |
| * in the destination register Rd. The C Flag in SREG is not affected by the |
| * operation, thus allowing the DEC instruction to be used on a loop counter in |
| * multiple-precision computations. When operating on unsigned values, only |
| * BREQ and BRNE branches can be expected to perform consistently. When |
| * operating on two's complement values, all signed branches are available. |
| */ |
| static bool trans_DEC(DisasContext *ctx, arg_DEC *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| |
| tcg_gen_subi_tl(Rd, Rd, 1); /* Rd = Rd - 1 */ |
| tcg_gen_andi_tl(Rd, Rd, 0xff); /* make it 8 bits */ |
| |
| /* update status register */ |
| tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x7f); /* Vf = Rd == 0x7f */ |
| gen_ZNSf(Rd); |
| |
| return true; |
| } |
| |
| /* |
| * This instruction performs 8-bit x 8-bit -> 16-bit unsigned multiplication. |
| */ |
| static bool trans_MUL(DisasContext *ctx, arg_MUL *a) |
| { |
| if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) { |
| return true; |
| } |
| |
| TCGv R0 = cpu_r[0]; |
| TCGv R1 = cpu_r[1]; |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv Rr = cpu_r[a->rr]; |
| TCGv R = tcg_temp_new_i32(); |
| |
| tcg_gen_mul_tl(R, Rd, Rr); /* R = Rd * Rr */ |
| tcg_gen_andi_tl(R0, R, 0xff); |
| tcg_gen_shri_tl(R1, R, 8); |
| |
| /* update status register */ |
| tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */ |
| tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ |
| return true; |
| } |
| |
| /* |
| * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication. |
| */ |
| static bool trans_MULS(DisasContext *ctx, arg_MULS *a) |
| { |
| if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) { |
| return true; |
| } |
| |
| TCGv R0 = cpu_r[0]; |
| TCGv R1 = cpu_r[1]; |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv Rr = cpu_r[a->rr]; |
| TCGv R = tcg_temp_new_i32(); |
| TCGv t0 = tcg_temp_new_i32(); |
| TCGv t1 = tcg_temp_new_i32(); |
| |
| tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */ |
| tcg_gen_ext8s_tl(t1, Rr); /* make Rr full 32 bit signed */ |
| tcg_gen_mul_tl(R, t0, t1); /* R = Rd * Rr */ |
| tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */ |
| tcg_gen_andi_tl(R0, R, 0xff); |
| tcg_gen_shri_tl(R1, R, 8); |
| |
| /* update status register */ |
| tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */ |
| tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ |
| return true; |
| } |
| |
| /* |
| * This instruction performs 8-bit x 8-bit -> 16-bit multiplication of a |
| * signed and an unsigned number. |
| */ |
| static bool trans_MULSU(DisasContext *ctx, arg_MULSU *a) |
| { |
| if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) { |
| return true; |
| } |
| |
| TCGv R0 = cpu_r[0]; |
| TCGv R1 = cpu_r[1]; |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv Rr = cpu_r[a->rr]; |
| TCGv R = tcg_temp_new_i32(); |
| TCGv t0 = tcg_temp_new_i32(); |
| |
| tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */ |
| tcg_gen_mul_tl(R, t0, Rr); /* R = Rd * Rr */ |
| tcg_gen_andi_tl(R, R, 0xffff); /* make R 16 bits */ |
| tcg_gen_andi_tl(R0, R, 0xff); |
| tcg_gen_shri_tl(R1, R, 8); |
| |
| /* update status register */ |
| tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */ |
| tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ |
| return true; |
| } |
| |
| /* |
| * This instruction performs 8-bit x 8-bit -> 16-bit unsigned |
| * multiplication and shifts the result one bit left. |
| */ |
| static bool trans_FMUL(DisasContext *ctx, arg_FMUL *a) |
| { |
| if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) { |
| return true; |
| } |
| |
| TCGv R0 = cpu_r[0]; |
| TCGv R1 = cpu_r[1]; |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv Rr = cpu_r[a->rr]; |
| TCGv R = tcg_temp_new_i32(); |
| |
| tcg_gen_mul_tl(R, Rd, Rr); /* R = Rd * Rr */ |
| |
| /* update status register */ |
| tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */ |
| tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ |
| |
| /* update output registers */ |
| tcg_gen_shli_tl(R, R, 1); |
| tcg_gen_andi_tl(R0, R, 0xff); |
| tcg_gen_shri_tl(R1, R, 8); |
| tcg_gen_andi_tl(R1, R1, 0xff); |
| return true; |
| } |
| |
| /* |
| * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication |
| * and shifts the result one bit left. |
| */ |
| static bool trans_FMULS(DisasContext *ctx, arg_FMULS *a) |
| { |
| if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) { |
| return true; |
| } |
| |
| TCGv R0 = cpu_r[0]; |
| TCGv R1 = cpu_r[1]; |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv Rr = cpu_r[a->rr]; |
| TCGv R = tcg_temp_new_i32(); |
| TCGv t0 = tcg_temp_new_i32(); |
| TCGv t1 = tcg_temp_new_i32(); |
| |
| tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */ |
| tcg_gen_ext8s_tl(t1, Rr); /* make Rr full 32 bit signed */ |
| tcg_gen_mul_tl(R, t0, t1); /* R = Rd * Rr */ |
| tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */ |
| |
| /* update status register */ |
| tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */ |
| tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ |
| |
| /* update output registers */ |
| tcg_gen_shli_tl(R, R, 1); |
| tcg_gen_andi_tl(R0, R, 0xff); |
| tcg_gen_shri_tl(R1, R, 8); |
| tcg_gen_andi_tl(R1, R1, 0xff); |
| return true; |
| } |
| |
| /* |
| * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication |
| * and shifts the result one bit left. |
| */ |
| static bool trans_FMULSU(DisasContext *ctx, arg_FMULSU *a) |
| { |
| if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) { |
| return true; |
| } |
| |
| TCGv R0 = cpu_r[0]; |
| TCGv R1 = cpu_r[1]; |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv Rr = cpu_r[a->rr]; |
| TCGv R = tcg_temp_new_i32(); |
| TCGv t0 = tcg_temp_new_i32(); |
| |
| tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */ |
| tcg_gen_mul_tl(R, t0, Rr); /* R = Rd * Rr */ |
| tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */ |
| |
| /* update status register */ |
| tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */ |
| tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ |
| |
| /* update output registers */ |
| tcg_gen_shli_tl(R, R, 1); |
| tcg_gen_andi_tl(R0, R, 0xff); |
| tcg_gen_shri_tl(R1, R, 8); |
| tcg_gen_andi_tl(R1, R1, 0xff); |
| return true; |
| } |
| |
| /* |
| * The module is an instruction set extension to the AVR CPU, performing |
| * DES iterations. The 64-bit data block (plaintext or ciphertext) is placed in |
| * the CPU register file, registers R0-R7, where LSB of data is placed in LSB |
| * of R0 and MSB of data is placed in MSB of R7. The full 64-bit key (including |
| * parity bits) is placed in registers R8- R15, organized in the register file |
| * with LSB of key in LSB of R8 and MSB of key in MSB of R15. Executing one DES |
| * instruction performs one round in the DES algorithm. Sixteen rounds must be |
| * executed in increasing order to form the correct DES ciphertext or |
| * plaintext. Intermediate results are stored in the register file (R0-R15) |
| * after each DES instruction. The instruction's operand (K) determines which |
| * round is executed, and the half carry flag (H) determines whether encryption |
| * or decryption is performed. The DES algorithm is described in |
| * "Specifications for the Data Encryption Standard" (Federal Information |
| * Processing Standards Publication 46). Intermediate results in this |
| * implementation differ from the standard because the initial permutation and |
| * the inverse initial permutation are performed each iteration. This does not |
| * affect the result in the final ciphertext or plaintext, but reduces |
| * execution time. |
| */ |
| static bool trans_DES(DisasContext *ctx, arg_DES *a) |
| { |
| /* TODO */ |
| if (!avr_have_feature(ctx, AVR_FEATURE_DES)) { |
| return true; |
| } |
| |
| qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); |
| |
| return true; |
| } |
| |
| /* |
| * Branch Instructions |
| */ |
| static void gen_jmp_ez(DisasContext *ctx) |
| { |
| tcg_gen_deposit_tl(cpu_pc, cpu_r[30], cpu_r[31], 8, 8); |
| tcg_gen_or_tl(cpu_pc, cpu_pc, cpu_eind); |
| ctx->base.is_jmp = DISAS_LOOKUP; |
| } |
| |
| static void gen_jmp_z(DisasContext *ctx) |
| { |
| tcg_gen_deposit_tl(cpu_pc, cpu_r[30], cpu_r[31], 8, 8); |
| ctx->base.is_jmp = DISAS_LOOKUP; |
| } |
| |
| static void gen_push_ret(DisasContext *ctx, int ret) |
| { |
| if (avr_feature(ctx->env, AVR_FEATURE_1_BYTE_PC)) { |
| TCGv t0 = tcg_constant_i32(ret & 0x0000ff); |
| |
| tcg_gen_qemu_st_tl(t0, cpu_sp, MMU_DATA_IDX, MO_UB); |
| tcg_gen_subi_tl(cpu_sp, cpu_sp, 1); |
| } else if (avr_feature(ctx->env, AVR_FEATURE_2_BYTE_PC)) { |
| TCGv t0 = tcg_constant_i32(ret & 0x00ffff); |
| |
| tcg_gen_subi_tl(cpu_sp, cpu_sp, 1); |
| tcg_gen_qemu_st_tl(t0, cpu_sp, MMU_DATA_IDX, MO_BEUW); |
| tcg_gen_subi_tl(cpu_sp, cpu_sp, 1); |
| } else if (avr_feature(ctx->env, AVR_FEATURE_3_BYTE_PC)) { |
| TCGv lo = tcg_constant_i32(ret & 0x0000ff); |
| TCGv hi = tcg_constant_i32((ret & 0xffff00) >> 8); |
| |
| tcg_gen_qemu_st_tl(lo, cpu_sp, MMU_DATA_IDX, MO_UB); |
| tcg_gen_subi_tl(cpu_sp, cpu_sp, 2); |
| tcg_gen_qemu_st_tl(hi, cpu_sp, MMU_DATA_IDX, MO_BEUW); |
| tcg_gen_subi_tl(cpu_sp, cpu_sp, 1); |
| } |
| } |
| |
| static void gen_pop_ret(DisasContext *ctx, TCGv ret) |
| { |
| if (avr_feature(ctx->env, AVR_FEATURE_1_BYTE_PC)) { |
| tcg_gen_addi_tl(cpu_sp, cpu_sp, 1); |
| tcg_gen_qemu_ld_tl(ret, cpu_sp, MMU_DATA_IDX, MO_UB); |
| } else if (avr_feature(ctx->env, AVR_FEATURE_2_BYTE_PC)) { |
| tcg_gen_addi_tl(cpu_sp, cpu_sp, 1); |
| tcg_gen_qemu_ld_tl(ret, cpu_sp, MMU_DATA_IDX, MO_BEUW); |
| tcg_gen_addi_tl(cpu_sp, cpu_sp, 1); |
| } else if (avr_feature(ctx->env, AVR_FEATURE_3_BYTE_PC)) { |
| TCGv lo = tcg_temp_new_i32(); |
| TCGv hi = tcg_temp_new_i32(); |
| |
| tcg_gen_addi_tl(cpu_sp, cpu_sp, 1); |
| tcg_gen_qemu_ld_tl(hi, cpu_sp, MMU_DATA_IDX, MO_BEUW); |
| |
| tcg_gen_addi_tl(cpu_sp, cpu_sp, 2); |
| tcg_gen_qemu_ld_tl(lo, cpu_sp, MMU_DATA_IDX, MO_UB); |
| |
| tcg_gen_deposit_tl(ret, lo, hi, 8, 16); |
| } |
| } |
| |
| static void gen_goto_tb(DisasContext *ctx, int n, target_ulong dest) |
| { |
| const TranslationBlock *tb = ctx->base.tb; |
| |
| if (translator_use_goto_tb(&ctx->base, dest)) { |
| tcg_gen_goto_tb(n); |
| tcg_gen_movi_i32(cpu_pc, dest); |
| tcg_gen_exit_tb(tb, n); |
| } else { |
| tcg_gen_movi_i32(cpu_pc, dest); |
| tcg_gen_lookup_and_goto_ptr(); |
| } |
| ctx->base.is_jmp = DISAS_NORETURN; |
| } |
| |
| /* |
| * Relative jump to an address within PC - 2K +1 and PC + 2K (words). For |
| * AVR microcontrollers with Program memory not exceeding 4K words (8KB) this |
| * instruction can address the entire memory from every address location. See |
| * also JMP. |
| */ |
| static bool trans_RJMP(DisasContext *ctx, arg_RJMP *a) |
| { |
| int dst = ctx->npc + a->imm; |
| |
| gen_goto_tb(ctx, 0, dst); |
| |
| return true; |
| } |
| |
| /* |
| * Indirect jump to the address pointed to by the Z (16 bits) Pointer |
| * Register in the Register File. The Z-pointer Register is 16 bits wide and |
| * allows jump within the lowest 64K words (128KB) section of Program memory. |
| * This instruction is not available in all devices. Refer to the device |
| * specific instruction set summary. |
| */ |
| static bool trans_IJMP(DisasContext *ctx, arg_IJMP *a) |
| { |
| if (!avr_have_feature(ctx, AVR_FEATURE_IJMP_ICALL)) { |
| return true; |
| } |
| |
| gen_jmp_z(ctx); |
| |
| return true; |
| } |
| |
| /* |
| * Indirect jump to the address pointed to by the Z (16 bits) Pointer |
| * Register in the Register File and the EIND Register in the I/O space. This |
| * instruction allows for indirect jumps to the entire 4M (words) Program |
| * memory space. See also IJMP. This instruction is not available in all |
| * devices. Refer to the device specific instruction set summary. |
| */ |
| static bool trans_EIJMP(DisasContext *ctx, arg_EIJMP *a) |
| { |
| if (!avr_have_feature(ctx, AVR_FEATURE_EIJMP_EICALL)) { |
| return true; |
| } |
| |
| gen_jmp_ez(ctx); |
| return true; |
| } |
| |
| /* |
| * Jump to an address within the entire 4M (words) Program memory. See also |
| * RJMP. This instruction is not available in all devices. Refer to the device |
| * specific instruction set summary.0 |
| */ |
| static bool trans_JMP(DisasContext *ctx, arg_JMP *a) |
| { |
| if (!avr_have_feature(ctx, AVR_FEATURE_JMP_CALL)) { |
| return true; |
| } |
| |
| gen_goto_tb(ctx, 0, a->imm); |
| |
| return true; |
| } |
| |
| /* |
| * Relative call to an address within PC - 2K + 1 and PC + 2K (words). The |
| * return address (the instruction after the RCALL) is stored onto the Stack. |
| * See also CALL. For AVR microcontrollers with Program memory not exceeding 4K |
| * words (8KB) this instruction can address the entire memory from every |
| * address location. The Stack Pointer uses a post-decrement scheme during |
| * RCALL. |
| */ |
| static bool trans_RCALL(DisasContext *ctx, arg_RCALL *a) |
| { |
| int ret = ctx->npc; |
| int dst = ctx->npc + a->imm; |
| |
| gen_push_ret(ctx, ret); |
| gen_goto_tb(ctx, 0, dst); |
| |
| return true; |
| } |
| |
| /* |
| * Calls to a subroutine within the entire 4M (words) Program memory. The |
| * return address (to the instruction after the CALL) will be stored onto the |
| * Stack. See also RCALL. The Stack Pointer uses a post-decrement scheme during |
| * CALL. This instruction is not available in all devices. Refer to the device |
| * specific instruction set summary. |
| */ |
| static bool trans_ICALL(DisasContext *ctx, arg_ICALL *a) |
| { |
| if (!avr_have_feature(ctx, AVR_FEATURE_IJMP_ICALL)) { |
| return true; |
| } |
| |
| int ret = ctx->npc; |
| |
| gen_push_ret(ctx, ret); |
| gen_jmp_z(ctx); |
| |
| return true; |
| } |
| |
| /* |
| * Indirect call of a subroutine pointed to by the Z (16 bits) Pointer |
| * Register in the Register File and the EIND Register in the I/O space. This |
| * instruction allows for indirect calls to the entire 4M (words) Program |
| * memory space. See also ICALL. The Stack Pointer uses a post-decrement scheme |
| * during EICALL. This instruction is not available in all devices. Refer to |
| * the device specific instruction set summary. |
| */ |
| static bool trans_EICALL(DisasContext *ctx, arg_EICALL *a) |
| { |
| if (!avr_have_feature(ctx, AVR_FEATURE_EIJMP_EICALL)) { |
| return true; |
| } |
| |
| int ret = ctx->npc; |
| |
| gen_push_ret(ctx, ret); |
| gen_jmp_ez(ctx); |
| return true; |
| } |
| |
| /* |
| * Calls to a subroutine within the entire Program memory. The return |
| * address (to the instruction after the CALL) will be stored onto the Stack. |
| * (See also RCALL). The Stack Pointer uses a post-decrement scheme during |
| * CALL. This instruction is not available in all devices. Refer to the device |
| * specific instruction set summary. |
| */ |
| static bool trans_CALL(DisasContext *ctx, arg_CALL *a) |
| { |
| if (!avr_have_feature(ctx, AVR_FEATURE_JMP_CALL)) { |
| return true; |
| } |
| |
| int Imm = a->imm; |
| int ret = ctx->npc; |
| |
| gen_push_ret(ctx, ret); |
| gen_goto_tb(ctx, 0, Imm); |
| |
| return true; |
| } |
| |
| /* |
| * Returns from subroutine. The return address is loaded from the STACK. |
| * The Stack Pointer uses a preincrement scheme during RET. |
| */ |
| static bool trans_RET(DisasContext *ctx, arg_RET *a) |
| { |
| gen_pop_ret(ctx, cpu_pc); |
| |
| ctx->base.is_jmp = DISAS_LOOKUP; |
| return true; |
| } |
| |
| /* |
| * Returns from interrupt. The return address is loaded from the STACK and |
| * the Global Interrupt Flag is set. Note that the Status Register is not |
| * automatically stored when entering an interrupt routine, and it is not |
| * restored when returning from an interrupt routine. This must be handled by |
| * the application program. The Stack Pointer uses a pre-increment scheme |
| * during RETI. |
| */ |
| static bool trans_RETI(DisasContext *ctx, arg_RETI *a) |
| { |
| gen_pop_ret(ctx, cpu_pc); |
| tcg_gen_movi_tl(cpu_If, 1); |
| |
| /* Need to return to main loop to re-evaluate interrupts. */ |
| ctx->base.is_jmp = DISAS_EXIT; |
| return true; |
| } |
| |
| /* |
| * This instruction performs a compare between two registers Rd and Rr, and |
| * skips the next instruction if Rd = Rr. |
| */ |
| static bool trans_CPSE(DisasContext *ctx, arg_CPSE *a) |
| { |
| ctx->skip_cond = TCG_COND_EQ; |
| ctx->skip_var0 = cpu_r[a->rd]; |
| ctx->skip_var1 = cpu_r[a->rr]; |
| return true; |
| } |
| |
| /* |
| * This instruction performs a compare between two registers Rd and Rr. |
| * None of the registers are changed. All conditional branches can be used |
| * after this instruction. |
| */ |
| static bool trans_CP(DisasContext *ctx, arg_CP *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv Rr = cpu_r[a->rr]; |
| TCGv R = tcg_temp_new_i32(); |
| |
| tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */ |
| tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ |
| |
| /* update status register */ |
| gen_sub_CHf(R, Rd, Rr); |
| gen_sub_Vf(R, Rd, Rr); |
| gen_ZNSf(R); |
| return true; |
| } |
| |
| /* |
| * This instruction performs a compare between two registers Rd and Rr and |
| * also takes into account the previous carry. None of the registers are |
| * changed. All conditional branches can be used after this instruction. |
| */ |
| static bool trans_CPC(DisasContext *ctx, arg_CPC *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv Rr = cpu_r[a->rr]; |
| TCGv R = tcg_temp_new_i32(); |
| TCGv zero = tcg_constant_i32(0); |
| |
| tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */ |
| tcg_gen_sub_tl(R, R, cpu_Cf); |
| tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ |
| /* update status register */ |
| gen_sub_CHf(R, Rd, Rr); |
| gen_sub_Vf(R, Rd, Rr); |
| gen_NSf(R); |
| |
| /* |
| * Previous value remains unchanged when the result is zero; |
| * cleared otherwise. |
| */ |
| tcg_gen_movcond_tl(TCG_COND_EQ, cpu_Zf, R, zero, cpu_Zf, zero); |
| return true; |
| } |
| |
| /* |
| * This instruction performs a compare between register Rd and a constant. |
| * The register is not changed. All conditional branches can be used after this |
| * instruction. |
| */ |
| static bool trans_CPI(DisasContext *ctx, arg_CPI *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| int Imm = a->imm; |
| TCGv Rr = tcg_constant_i32(Imm); |
| TCGv R = tcg_temp_new_i32(); |
| |
| tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */ |
| tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ |
| |
| /* update status register */ |
| gen_sub_CHf(R, Rd, Rr); |
| gen_sub_Vf(R, Rd, Rr); |
| gen_ZNSf(R); |
| return true; |
| } |
| |
| /* |
| * This instruction tests a single bit in a register and skips the next |
| * instruction if the bit is cleared. |
| */ |
| static bool trans_SBRC(DisasContext *ctx, arg_SBRC *a) |
| { |
| TCGv Rr = cpu_r[a->rr]; |
| |
| ctx->skip_cond = TCG_COND_EQ; |
| ctx->skip_var0 = tcg_temp_new(); |
| |
| tcg_gen_andi_tl(ctx->skip_var0, Rr, 1 << a->bit); |
| return true; |
| } |
| |
| /* |
| * This instruction tests a single bit in a register and skips the next |
| * instruction if the bit is set. |
| */ |
| static bool trans_SBRS(DisasContext *ctx, arg_SBRS *a) |
| { |
| TCGv Rr = cpu_r[a->rr]; |
| |
| ctx->skip_cond = TCG_COND_NE; |
| ctx->skip_var0 = tcg_temp_new(); |
| |
| tcg_gen_andi_tl(ctx->skip_var0, Rr, 1 << a->bit); |
| return true; |
| } |
| |
| /* |
| * This instruction tests a single bit in an I/O Register and skips the |
| * next instruction if the bit is cleared. This instruction operates on the |
| * lower 32 I/O Registers -- addresses 0-31. |
| */ |
| static bool trans_SBIC(DisasContext *ctx, arg_SBIC *a) |
| { |
| TCGv data = tcg_temp_new_i32(); |
| TCGv port = tcg_constant_i32(a->reg); |
| |
| gen_helper_inb(data, tcg_env, port); |
| tcg_gen_andi_tl(data, data, 1 << a->bit); |
| ctx->skip_cond = TCG_COND_EQ; |
| ctx->skip_var0 = data; |
| |
| return true; |
| } |
| |
| /* |
| * This instruction tests a single bit in an I/O Register and skips the |
| * next instruction if the bit is set. This instruction operates on the lower |
| * 32 I/O Registers -- addresses 0-31. |
| */ |
| static bool trans_SBIS(DisasContext *ctx, arg_SBIS *a) |
| { |
| TCGv data = tcg_temp_new_i32(); |
| TCGv port = tcg_constant_i32(a->reg); |
| |
| gen_helper_inb(data, tcg_env, port); |
| tcg_gen_andi_tl(data, data, 1 << a->bit); |
| ctx->skip_cond = TCG_COND_NE; |
| ctx->skip_var0 = data; |
| |
| return true; |
| } |
| |
| /* |
| * Conditional relative branch. Tests a single bit in SREG and branches |
| * relatively to PC if the bit is cleared. This instruction branches relatively |
| * to PC in either direction (PC - 63 < = destination <= PC + 64). The |
| * parameter k is the offset from PC and is represented in two's complement |
| * form. |
| */ |
| static bool trans_BRBC(DisasContext *ctx, arg_BRBC *a) |
| { |
| TCGLabel *not_taken = gen_new_label(); |
| |
| TCGv var; |
| |
| switch (a->bit) { |
| case 0x00: |
| var = cpu_Cf; |
| break; |
| case 0x01: |
| var = cpu_Zf; |
| break; |
| case 0x02: |
| var = cpu_Nf; |
| break; |
| case 0x03: |
| var = cpu_Vf; |
| break; |
| case 0x04: |
| var = cpu_Sf; |
| break; |
| case 0x05: |
| var = cpu_Hf; |
| break; |
| case 0x06: |
| var = cpu_Tf; |
| break; |
| case 0x07: |
| var = cpu_If; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| tcg_gen_brcondi_i32(TCG_COND_NE, var, 0, not_taken); |
| gen_goto_tb(ctx, 0, ctx->npc + a->imm); |
| gen_set_label(not_taken); |
| |
| ctx->base.is_jmp = DISAS_CHAIN; |
| return true; |
| } |
| |
| /* |
| * Conditional relative branch. Tests a single bit in SREG and branches |
| * relatively to PC if the bit is set. This instruction branches relatively to |
| * PC in either direction (PC - 63 < = destination <= PC + 64). The parameter k |
| * is the offset from PC and is represented in two's complement form. |
| */ |
| static bool trans_BRBS(DisasContext *ctx, arg_BRBS *a) |
| { |
| TCGLabel *not_taken = gen_new_label(); |
| |
| TCGv var; |
| |
| switch (a->bit) { |
| case 0x00: |
| var = cpu_Cf; |
| break; |
| case 0x01: |
| var = cpu_Zf; |
| break; |
| case 0x02: |
| var = cpu_Nf; |
| break; |
| case 0x03: |
| var = cpu_Vf; |
| break; |
| case 0x04: |
| var = cpu_Sf; |
| break; |
| case 0x05: |
| var = cpu_Hf; |
| break; |
| case 0x06: |
| var = cpu_Tf; |
| break; |
| case 0x07: |
| var = cpu_If; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| tcg_gen_brcondi_i32(TCG_COND_EQ, var, 0, not_taken); |
| gen_goto_tb(ctx, 0, ctx->npc + a->imm); |
| gen_set_label(not_taken); |
| |
| ctx->base.is_jmp = DISAS_CHAIN; |
| return true; |
| } |
| |
| /* |
| * Data Transfer Instructions |
| */ |
| |
| /* |
| * in the gen_set_addr & gen_get_addr functions |
| * H assumed to be in 0x00ff0000 format |
| * M assumed to be in 0x000000ff format |
| * L assumed to be in 0x000000ff format |
| */ |
| static void gen_set_addr(TCGv addr, TCGv H, TCGv M, TCGv L) |
| { |
| |
| tcg_gen_andi_tl(L, addr, 0x000000ff); |
| |
| tcg_gen_andi_tl(M, addr, 0x0000ff00); |
| tcg_gen_shri_tl(M, M, 8); |
| |
| tcg_gen_andi_tl(H, addr, 0x00ff0000); |
| } |
| |
| static void gen_set_xaddr(TCGv addr) |
| { |
| gen_set_addr(addr, cpu_rampX, cpu_r[27], cpu_r[26]); |
| } |
| |
| static void gen_set_yaddr(TCGv addr) |
| { |
| gen_set_addr(addr, cpu_rampY, cpu_r[29], cpu_r[28]); |
| } |
| |
| static void gen_set_zaddr(TCGv addr) |
| { |
| gen_set_addr(addr, cpu_rampZ, cpu_r[31], cpu_r[30]); |
| } |
| |
| static TCGv gen_get_addr(TCGv H, TCGv M, TCGv L) |
| { |
| TCGv addr = tcg_temp_new_i32(); |
| |
| tcg_gen_deposit_tl(addr, M, H, 8, 8); |
| tcg_gen_deposit_tl(addr, L, addr, 8, 16); |
| |
| return addr; |
| } |
| |
| static TCGv gen_get_xaddr(void) |
| { |
| return gen_get_addr(cpu_rampX, cpu_r[27], cpu_r[26]); |
| } |
| |
| static TCGv gen_get_yaddr(void) |
| { |
| return gen_get_addr(cpu_rampY, cpu_r[29], cpu_r[28]); |
| } |
| |
| static TCGv gen_get_zaddr(void) |
| { |
| return gen_get_addr(cpu_rampZ, cpu_r[31], cpu_r[30]); |
| } |
| |
| /* |
| * Load one byte indirect from data space to register and stores an clear |
| * the bits in data space specified by the register. The instruction can only |
| * be used towards internal SRAM. The data location is pointed to by the Z (16 |
| * bits) Pointer Register in the Register File. Memory access is limited to the |
| * current data segment of 64KB. To access another data segment in devices with |
| * more than 64KB data space, the RAMPZ in register in the I/O area has to be |
| * changed. The Z-pointer Register is left unchanged by the operation. This |
| * instruction is especially suited for clearing status bits stored in SRAM. |
| */ |
| static void gen_data_store(DisasContext *ctx, TCGv data, TCGv addr) |
| { |
| if (ctx->base.tb->flags & TB_FLAGS_FULL_ACCESS) { |
| gen_helper_fullwr(tcg_env, data, addr); |
| } else { |
| tcg_gen_qemu_st_tl(data, addr, MMU_DATA_IDX, MO_UB); |
| } |
| } |
| |
| static void gen_data_load(DisasContext *ctx, TCGv data, TCGv addr) |
| { |
| if (ctx->base.tb->flags & TB_FLAGS_FULL_ACCESS) { |
| gen_helper_fullrd(data, tcg_env, addr); |
| } else { |
| tcg_gen_qemu_ld_tl(data, addr, MMU_DATA_IDX, MO_UB); |
| } |
| } |
| |
| /* |
| * This instruction makes a copy of one register into another. The source |
| * register Rr is left unchanged, while the destination register Rd is loaded |
| * with a copy of Rr. |
| */ |
| static bool trans_MOV(DisasContext *ctx, arg_MOV *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv Rr = cpu_r[a->rr]; |
| |
| tcg_gen_mov_tl(Rd, Rr); |
| |
| return true; |
| } |
| |
| /* |
| * This instruction makes a copy of one register pair into another register |
| * pair. The source register pair Rr+1:Rr is left unchanged, while the |
| * destination register pair Rd+1:Rd is loaded with a copy of Rr + 1:Rr. This |
| * instruction is not available in all devices. Refer to the device specific |
| * instruction set summary. |
| */ |
| static bool trans_MOVW(DisasContext *ctx, arg_MOVW *a) |
| { |
| if (!avr_have_feature(ctx, AVR_FEATURE_MOVW)) { |
| return true; |
| } |
| |
| TCGv RdL = cpu_r[a->rd]; |
| TCGv RdH = cpu_r[a->rd + 1]; |
| TCGv RrL = cpu_r[a->rr]; |
| TCGv RrH = cpu_r[a->rr + 1]; |
| |
| tcg_gen_mov_tl(RdH, RrH); |
| tcg_gen_mov_tl(RdL, RrL); |
| |
| return true; |
| } |
| |
| /* |
| * Loads an 8 bit constant directly to register 16 to 31. |
| */ |
| static bool trans_LDI(DisasContext *ctx, arg_LDI *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| int imm = a->imm; |
| |
| tcg_gen_movi_tl(Rd, imm); |
| |
| return true; |
| } |
| |
| /* |
| * Loads one byte from the data space to a register. For parts with SRAM, |
| * the data space consists of the Register File, I/O memory and internal SRAM |
| * (and external SRAM if applicable). For parts without SRAM, the data space |
| * consists of the register file only. The EEPROM has a separate address space. |
| * A 16-bit address must be supplied. Memory access is limited to the current |
| * data segment of 64KB. The LDS instruction uses the RAMPD Register to access |
| * memory above 64KB. To access another data segment in devices with more than |
| * 64KB data space, the RAMPD in register in the I/O area has to be changed. |
| * This instruction is not available in all devices. Refer to the device |
| * specific instruction set summary. |
| */ |
| static bool trans_LDS(DisasContext *ctx, arg_LDS *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv addr = tcg_temp_new_i32(); |
| TCGv H = cpu_rampD; |
| a->imm = next_word(ctx); |
| |
| tcg_gen_mov_tl(addr, H); /* addr = H:M:L */ |
| tcg_gen_shli_tl(addr, addr, 16); |
| tcg_gen_ori_tl(addr, addr, a->imm); |
| |
| gen_data_load(ctx, Rd, addr); |
| return true; |
| } |
| |
| /* |
| * Loads one byte indirect from the data space to a register. For parts |
| * with SRAM, the data space consists of the Register File, I/O memory and |
| * internal SRAM (and external SRAM if applicable). For parts without SRAM, the |
| * data space consists of the Register File only. In some parts the Flash |
| * Memory has been mapped to the data space and can be read using this command. |
| * The EEPROM has a separate address space. The data location is pointed to by |
| * the X (16 bits) Pointer Register in the Register File. Memory access is |
| * limited to the current data segment of 64KB. To access another data segment |
| * in devices with more than 64KB data space, the RAMPX in register in the I/O |
| * area has to be changed. The X-pointer Register can either be left unchanged |
| * by the operation, or it can be post-incremented or predecremented. These |
| * features are especially suited for accessing arrays, tables, and Stack |
| * Pointer usage of the X-pointer Register. Note that only the low byte of the |
| * X-pointer is updated in devices with no more than 256 bytes data space. For |
| * such devices, the high byte of the pointer is not used by this instruction |
| * and can be used for other purposes. The RAMPX Register in the I/O area is |
| * updated in parts with more than 64KB data space or more than 64KB Program |
| * memory, and the increment/decrement is added to the entire 24-bit address on |
| * such devices. Not all variants of this instruction is available in all |
| * devices. Refer to the device specific instruction set summary. In the |
| * Reduced Core tinyAVR the LD instruction can be used to achieve the same |
| * operation as LPM since the program memory is mapped to the data memory |
| * space. |
| */ |
| static bool trans_LDX1(DisasContext *ctx, arg_LDX1 *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv addr = gen_get_xaddr(); |
| |
| gen_data_load(ctx, Rd, addr); |
| return true; |
| } |
| |
| static bool trans_LDX2(DisasContext *ctx, arg_LDX2 *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv addr = gen_get_xaddr(); |
| |
| gen_data_load(ctx, Rd, addr); |
| tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ |
| |
| gen_set_xaddr(addr); |
| return true; |
| } |
| |
| static bool trans_LDX3(DisasContext *ctx, arg_LDX3 *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv addr = gen_get_xaddr(); |
| |
| tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ |
| gen_data_load(ctx, Rd, addr); |
| gen_set_xaddr(addr); |
| return true; |
| } |
| |
| /* |
| * Loads one byte indirect with or without displacement from the data space |
| * to a register. For parts with SRAM, the data space consists of the Register |
| * File, I/O memory and internal SRAM (and external SRAM if applicable). For |
| * parts without SRAM, the data space consists of the Register File only. In |
| * some parts the Flash Memory has been mapped to the data space and can be |
| * read using this command. The EEPROM has a separate address space. The data |
| * location is pointed to by the Y (16 bits) Pointer Register in the Register |
| * File. Memory access is limited to the current data segment of 64KB. To |
| * access another data segment in devices with more than 64KB data space, the |
| * RAMPY in register in the I/O area has to be changed. The Y-pointer Register |
| * can either be left unchanged by the operation, or it can be post-incremented |
| * or predecremented. These features are especially suited for accessing |
| * arrays, tables, and Stack Pointer usage of the Y-pointer Register. Note that |
| * only the low byte of the Y-pointer is updated in devices with no more than |
| * 256 bytes data space. For such devices, the high byte of the pointer is not |
| * used by this instruction and can be used for other purposes. The RAMPY |
| * Register in the I/O area is updated in parts with more than 64KB data space |
| * or more than 64KB Program memory, and the increment/decrement/displacement |
| * is added to the entire 24-bit address on such devices. Not all variants of |
| * this instruction is available in all devices. Refer to the device specific |
| * instruction set summary. In the Reduced Core tinyAVR the LD instruction can |
| * be used to achieve the same operation as LPM since the program memory is |
| * mapped to the data memory space. |
| */ |
| static bool trans_LDY2(DisasContext *ctx, arg_LDY2 *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv addr = gen_get_yaddr(); |
| |
| gen_data_load(ctx, Rd, addr); |
| tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ |
| |
| gen_set_yaddr(addr); |
| return true; |
| } |
| |
| static bool trans_LDY3(DisasContext *ctx, arg_LDY3 *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv addr = gen_get_yaddr(); |
| |
| tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ |
| gen_data_load(ctx, Rd, addr); |
| gen_set_yaddr(addr); |
| return true; |
| } |
| |
| static bool trans_LDDY(DisasContext *ctx, arg_LDDY *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv addr = gen_get_yaddr(); |
| |
| tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */ |
| gen_data_load(ctx, Rd, addr); |
| return true; |
| } |
| |
| /* |
| * Loads one byte indirect with or without displacement from the data space |
| * to a register. For parts with SRAM, the data space consists of the Register |
| * File, I/O memory and internal SRAM (and external SRAM if applicable). For |
| * parts without SRAM, the data space consists of the Register File only. In |
| * some parts the Flash Memory has been mapped to the data space and can be |
| * read using this command. The EEPROM has a separate address space. The data |
| * location is pointed to by the Z (16 bits) Pointer Register in the Register |
| * File. Memory access is limited to the current data segment of 64KB. To |
| * access another data segment in devices with more than 64KB data space, the |
| * RAMPZ in register in the I/O area has to be changed. The Z-pointer Register |
| * can either be left unchanged by the operation, or it can be post-incremented |
| * or predecremented. These features are especially suited for Stack Pointer |
| * usage of the Z-pointer Register, however because the Z-pointer Register can |
| * be used for indirect subroutine calls, indirect jumps and table lookup, it |
| * is often more convenient to use the X or Y-pointer as a dedicated Stack |
| * Pointer. Note that only the low byte of the Z-pointer is updated in devices |
| * with no more than 256 bytes data space. For such devices, the high byte of |
| * the pointer is not used by this instruction and can be used for other |
| * purposes. The RAMPZ Register in the I/O area is updated in parts with more |
| * than 64KB data space or more than 64KB Program memory, and the |
| * increment/decrement/displacement is added to the entire 24-bit address on |
| * such devices. Not all variants of this instruction is available in all |
| * devices. Refer to the device specific instruction set summary. In the |
| * Reduced Core tinyAVR the LD instruction can be used to achieve the same |
| * operation as LPM since the program memory is mapped to the data memory |
| * space. For using the Z-pointer for table lookup in Program memory see the |
| * LPM and ELPM instructions. |
| */ |
| static bool trans_LDZ2(DisasContext *ctx, arg_LDZ2 *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv addr = gen_get_zaddr(); |
| |
| gen_data_load(ctx, Rd, addr); |
| tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ |
| |
| gen_set_zaddr(addr); |
| return true; |
| } |
| |
| static bool trans_LDZ3(DisasContext *ctx, arg_LDZ3 *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv addr = gen_get_zaddr(); |
| |
| tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ |
| gen_data_load(ctx, Rd, addr); |
| |
| gen_set_zaddr(addr); |
| return true; |
| } |
| |
| static bool trans_LDDZ(DisasContext *ctx, arg_LDDZ *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv addr = gen_get_zaddr(); |
| |
| tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */ |
| gen_data_load(ctx, Rd, addr); |
| return true; |
| } |
| |
| /* |
| * Stores one byte from a Register to the data space. For parts with SRAM, |
| * the data space consists of the Register File, I/O memory and internal SRAM |
| * (and external SRAM if applicable). For parts without SRAM, the data space |
| * consists of the Register File only. The EEPROM has a separate address space. |
| * A 16-bit address must be supplied. Memory access is limited to the current |
| * data segment of 64KB. The STS instruction uses the RAMPD Register to access |
| * memory above 64KB. To access another data segment in devices with more than |
| * 64KB data space, the RAMPD in register in the I/O area has to be changed. |
| * This instruction is not available in all devices. Refer to the device |
| * specific instruction set summary. |
| */ |
| static bool trans_STS(DisasContext *ctx, arg_STS *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv addr = tcg_temp_new_i32(); |
| TCGv H = cpu_rampD; |
| a->imm = next_word(ctx); |
| |
| tcg_gen_mov_tl(addr, H); /* addr = H:M:L */ |
| tcg_gen_shli_tl(addr, addr, 16); |
| tcg_gen_ori_tl(addr, addr, a->imm); |
| gen_data_store(ctx, Rd, addr); |
| return true; |
| } |
| |
| /* |
| * Stores one byte indirect from a register to data space. For parts with SRAM, |
| * the data space consists of the Register File, I/O memory, and internal SRAM |
| * (and external SRAM if applicable). For parts without SRAM, the data space |
| * consists of the Register File only. The EEPROM has a separate address space. |
| * |
| * The data location is pointed to by the X (16 bits) Pointer Register in the |
| * Register File. Memory access is limited to the current data segment of 64KB. |
| * To access another data segment in devices with more than 64KB data space, the |
| * RAMPX in register in the I/O area has to be changed. |
| * |
| * The X-pointer Register can either be left unchanged by the operation, or it |
| * can be post-incremented or pre-decremented. These features are especially |
| * suited for accessing arrays, tables, and Stack Pointer usage of the |
| * X-pointer Register. Note that only the low byte of the X-pointer is updated |
| * in devices with no more than 256 bytes data space. For such devices, the high |
| * byte of the pointer is not used by this instruction and can be used for other |
| * purposes. The RAMPX Register in the I/O area is updated in parts with more |
| * than 64KB data space or more than 64KB Program memory, and the increment / |
| * decrement is added to the entire 24-bit address on such devices. |
| */ |
| static bool trans_STX1(DisasContext *ctx, arg_STX1 *a) |
| { |
| TCGv Rd = cpu_r[a->rr]; |
| TCGv addr = gen_get_xaddr(); |
| |
| gen_data_store(ctx, Rd, addr); |
| return true; |
| } |
| |
| static bool trans_STX2(DisasContext *ctx, arg_STX2 *a) |
| { |
| TCGv Rd = cpu_r[a->rr]; |
| TCGv addr = gen_get_xaddr(); |
| |
| gen_data_store(ctx, Rd, addr); |
| tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ |
| gen_set_xaddr(addr); |
| return true; |
| } |
| |
| static bool trans_STX3(DisasContext *ctx, arg_STX3 *a) |
| { |
| TCGv Rd = cpu_r[a->rr]; |
| TCGv addr = gen_get_xaddr(); |
| |
| tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ |
| gen_data_store(ctx, Rd, addr); |
| gen_set_xaddr(addr); |
| return true; |
| } |
| |
| /* |
| * Stores one byte indirect with or without displacement from a register to data |
| * space. For parts with SRAM, the data space consists of the Register File, I/O |
| * memory, and internal SRAM (and external SRAM if applicable). For parts |
| * without SRAM, the data space consists of the Register File only. The EEPROM |
| * has a separate address space. |
| * |
| * The data location is pointed to by the Y (16 bits) Pointer Register in the |
| * Register File. Memory access is limited to the current data segment of 64KB. |
| * To access another data segment in devices with more than 64KB data space, the |
| * RAMPY in register in the I/O area has to be changed. |
| * |
| * The Y-pointer Register can either be left unchanged by the operation, or it |
| * can be post-incremented or pre-decremented. These features are especially |
| * suited for accessing arrays, tables, and Stack Pointer usage of the Y-pointer |
| * Register. Note that only the low byte of the Y-pointer is updated in devices |
| * with no more than 256 bytes data space. For such devices, the high byte of |
| * the pointer is not used by this instruction and can be used for other |
| * purposes. The RAMPY Register in the I/O area is updated in parts with more |
| * than 64KB data space or more than 64KB Program memory, and the increment / |
| * decrement / displacement is added to the entire 24-bit address on such |
| * devices. |
| */ |
| static bool trans_STY2(DisasContext *ctx, arg_STY2 *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv addr = gen_get_yaddr(); |
| |
| gen_data_store(ctx, Rd, addr); |
| tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ |
| gen_set_yaddr(addr); |
| return true; |
| } |
| |
| static bool trans_STY3(DisasContext *ctx, arg_STY3 *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv addr = gen_get_yaddr(); |
| |
| tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ |
| gen_data_store(ctx, Rd, addr); |
| gen_set_yaddr(addr); |
| return true; |
| } |
| |
| static bool trans_STDY(DisasContext *ctx, arg_STDY *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv addr = gen_get_yaddr(); |
| |
| tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */ |
| gen_data_store(ctx, Rd, addr); |
| return true; |
| } |
| |
| /* |
| * Stores one byte indirect with or without displacement from a register to data |
| * space. For parts with SRAM, the data space consists of the Register File, I/O |
| * memory, and internal SRAM (and external SRAM if applicable). For parts |
| * without SRAM, the data space consists of the Register File only. The EEPROM |
| * has a separate address space. |
| * |
| * The data location is pointed to by the Y (16 bits) Pointer Register in the |
| * Register File. Memory access is limited to the current data segment of 64KB. |
| * To access another data segment in devices with more than 64KB data space, the |
| * RAMPY in register in the I/O area has to be changed. |
| * |
| * The Y-pointer Register can either be left unchanged by the operation, or it |
| * can be post-incremented or pre-decremented. These features are especially |
| * suited for accessing arrays, tables, and Stack Pointer usage of the Y-pointer |
| * Register. Note that only the low byte of the Y-pointer is updated in devices |
| * with no more than 256 bytes data space. For such devices, the high byte of |
| * the pointer is not used by this instruction and can be used for other |
| * purposes. The RAMPY Register in the I/O area is updated in parts with more |
| * than 64KB data space or more than 64KB Program memory, and the increment / |
| * decrement / displacement is added to the entire 24-bit address on such |
| * devices. |
| */ |
| static bool trans_STZ2(DisasContext *ctx, arg_STZ2 *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv addr = gen_get_zaddr(); |
| |
| gen_data_store(ctx, Rd, addr); |
| tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ |
| |
| gen_set_zaddr(addr); |
| return true; |
| } |
| |
| static bool trans_STZ3(DisasContext *ctx, arg_STZ3 *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv addr = gen_get_zaddr(); |
| |
| tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ |
| gen_data_store(ctx, Rd, addr); |
| |
| gen_set_zaddr(addr); |
| return true; |
| } |
| |
| static bool trans_STDZ(DisasContext *ctx, arg_STDZ *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv addr = gen_get_zaddr(); |
| |
| tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */ |
| gen_data_store(ctx, Rd, addr); |
| return true; |
| } |
| |
| /* |
| * Loads one byte pointed to by the Z-register into the destination |
| * register Rd. This instruction features a 100% space effective constant |
| * initialization or constant data fetch. The Program memory is organized in |
| * 16-bit words while the Z-pointer is a byte address. Thus, the least |
| * significant bit of the Z-pointer selects either low byte (ZLSB = 0) or high |
| * byte (ZLSB = 1). This instruction can address the first 64KB (32K words) of |
| * Program memory. The Zpointer Register can either be left unchanged by the |
| * operation, or it can be incremented. The incrementation does not apply to |
| * the RAMPZ Register. |
| * |
| * Devices with Self-Programming capability can use the LPM instruction to read |
| * the Fuse and Lock bit values. |
| */ |
| static bool trans_LPM1(DisasContext *ctx, arg_LPM1 *a) |
| { |
| if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) { |
| return true; |
| } |
| |
| TCGv Rd = cpu_r[0]; |
| TCGv addr = tcg_temp_new_i32(); |
| TCGv H = cpu_r[31]; |
| TCGv L = cpu_r[30]; |
| |
| tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */ |
| tcg_gen_or_tl(addr, addr, L); |
| tcg_gen_qemu_ld_tl(Rd, addr, MMU_CODE_IDX, MO_UB); |
| return true; |
| } |
| |
| static bool trans_LPM2(DisasContext *ctx, arg_LPM2 *a) |
| { |
| if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) { |
| return true; |
| } |
| |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv addr = tcg_temp_new_i32(); |
| TCGv H = cpu_r[31]; |
| TCGv L = cpu_r[30]; |
| |
| tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */ |
| tcg_gen_or_tl(addr, addr, L); |
| tcg_gen_qemu_ld_tl(Rd, addr, MMU_CODE_IDX, MO_UB); |
| return true; |
| } |
| |
| static bool trans_LPMX(DisasContext *ctx, arg_LPMX *a) |
| { |
| if (!avr_have_feature(ctx, AVR_FEATURE_LPMX)) { |
| return true; |
| } |
| |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv addr = tcg_temp_new_i32(); |
| TCGv H = cpu_r[31]; |
| TCGv L = cpu_r[30]; |
| |
| tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */ |
| tcg_gen_or_tl(addr, addr, L); |
| tcg_gen_qemu_ld_tl(Rd, addr, MMU_CODE_IDX, MO_UB); |
| tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ |
| tcg_gen_andi_tl(L, addr, 0xff); |
| tcg_gen_shri_tl(addr, addr, 8); |
| tcg_gen_andi_tl(H, addr, 0xff); |
| return true; |
| } |
| |
| /* |
| * Loads one byte pointed to by the Z-register and the RAMPZ Register in |
| * the I/O space, and places this byte in the destination register Rd. This |
| * instruction features a 100% space effective constant initialization or |
| * constant data fetch. The Program memory is organized in 16-bit words while |
| * the Z-pointer is a byte address. Thus, the least significant bit of the |
| * Z-pointer selects either low byte (ZLSB = 0) or high byte (ZLSB = 1). This |
| * instruction can address the entire Program memory space. The Z-pointer |
| * Register can either be left unchanged by the operation, or it can be |
| * incremented. The incrementation applies to the entire 24-bit concatenation |
| * of the RAMPZ and Z-pointer Registers. |
| * |
| * Devices with Self-Programming capability can use the ELPM instruction to |
| * read the Fuse and Lock bit value. |
| */ |
| static bool trans_ELPM1(DisasContext *ctx, arg_ELPM1 *a) |
| { |
| if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) { |
| return true; |
| } |
| |
| TCGv Rd = cpu_r[0]; |
| TCGv addr = gen_get_zaddr(); |
| |
| tcg_gen_qemu_ld_tl(Rd, addr, MMU_CODE_IDX, MO_UB); |
| return true; |
| } |
| |
| static bool trans_ELPM2(DisasContext *ctx, arg_ELPM2 *a) |
| { |
| if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) { |
| return true; |
| } |
| |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv addr = gen_get_zaddr(); |
| |
| tcg_gen_qemu_ld_tl(Rd, addr, MMU_CODE_IDX, MO_UB); |
| return true; |
| } |
| |
| static bool trans_ELPMX(DisasContext *ctx, arg_ELPMX *a) |
| { |
| if (!avr_have_feature(ctx, AVR_FEATURE_ELPMX)) { |
| return true; |
| } |
| |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv addr = gen_get_zaddr(); |
| |
| tcg_gen_qemu_ld_tl(Rd, addr, MMU_CODE_IDX, MO_UB); |
| tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ |
| gen_set_zaddr(addr); |
| return true; |
| } |
| |
| /* |
| * SPM can be used to erase a page in the Program memory, to write a page |
| * in the Program memory (that is already erased), and to set Boot Loader Lock |
| * bits. In some devices, the Program memory can be written one word at a time, |
| * in other devices an entire page can be programmed simultaneously after first |
| * filling a temporary page buffer. In all cases, the Program memory must be |
| * erased one page at a time. When erasing the Program memory, the RAMPZ and |
| * Z-register are used as page address. When writing the Program memory, the |
| * RAMPZ and Z-register are used as page or word address, and the R1:R0 |
| * register pair is used as data(1). When setting the Boot Loader Lock bits, |
| * the R1:R0 register pair is used as data. Refer to the device documentation |
| * for detailed description of SPM usage. This instruction can address the |
| * entire Program memory. |
| * |
| * The SPM instruction is not available in all devices. Refer to the device |
| * specific instruction set summary. |
| * |
| * Note: 1. R1 determines the instruction high byte, and R0 determines the |
| * instruction low byte. |
| */ |
| static bool trans_SPM(DisasContext *ctx, arg_SPM *a) |
| { |
| /* TODO */ |
| if (!avr_have_feature(ctx, AVR_FEATURE_SPM)) { |
| return true; |
| } |
| |
| return true; |
| } |
| |
| static bool trans_SPMX(DisasContext *ctx, arg_SPMX *a) |
| { |
| /* TODO */ |
| if (!avr_have_feature(ctx, AVR_FEATURE_SPMX)) { |
| return true; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Loads data from the I/O Space (Ports, Timers, Configuration Registers, |
| * etc.) into register Rd in the Register File. |
| */ |
| static bool trans_IN(DisasContext *ctx, arg_IN *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv port = tcg_constant_i32(a->imm); |
| |
| gen_helper_inb(Rd, tcg_env, port); |
| return true; |
| } |
| |
| /* |
| * Stores data from register Rr in the Register File to I/O Space (Ports, |
| * Timers, Configuration Registers, etc.). |
| */ |
| static bool trans_OUT(DisasContext *ctx, arg_OUT *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv port = tcg_constant_i32(a->imm); |
| |
| gen_helper_outb(tcg_env, port, Rd); |
| return true; |
| } |
| |
| /* |
| * This instruction stores the contents of register Rr on the STACK. The |
| * Stack Pointer is post-decremented by 1 after the PUSH. This instruction is |
| * not available in all devices. Refer to the device specific instruction set |
| * summary. |
| */ |
| static bool trans_PUSH(DisasContext *ctx, arg_PUSH *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| |
| gen_data_store(ctx, Rd, cpu_sp); |
| tcg_gen_subi_tl(cpu_sp, cpu_sp, 1); |
| |
| return true; |
| } |
| |
| /* |
| * This instruction loads register Rd with a byte from the STACK. The Stack |
| * Pointer is pre-incremented by 1 before the POP. This instruction is not |
| * available in all devices. Refer to the device specific instruction set |
| * summary. |
| */ |
| static bool trans_POP(DisasContext *ctx, arg_POP *a) |
| { |
| /* |
| * Using a temp to work around some strange behaviour: |
| * tcg_gen_addi_tl(cpu_sp, cpu_sp, 1); |
| * gen_data_load(ctx, Rd, cpu_sp); |
| * seems to cause the add to happen twice. |
| * This doesn't happen if either the add or the load is removed. |
| */ |
| TCGv t1 = tcg_temp_new_i32(); |
| TCGv Rd = cpu_r[a->rd]; |
| |
| tcg_gen_addi_tl(t1, cpu_sp, 1); |
| gen_data_load(ctx, Rd, t1); |
| tcg_gen_mov_tl(cpu_sp, t1); |
| |
| return true; |
| } |
| |
| /* |
| * Exchanges one byte indirect between register and data space. The data |
| * location is pointed to by the Z (16 bits) Pointer Register in the Register |
| * File. Memory access is limited to the current data segment of 64KB. To |
| * access another data segment in devices with more than 64KB data space, the |
| * RAMPZ in register in the I/O area has to be changed. |
| * |
| * The Z-pointer Register is left unchanged by the operation. This instruction |
| * is especially suited for writing/reading status bits stored in SRAM. |
| */ |
| static bool trans_XCH(DisasContext *ctx, arg_XCH *a) |
| { |
| if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) { |
| return true; |
| } |
| |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv t0 = tcg_temp_new_i32(); |
| TCGv addr = gen_get_zaddr(); |
| |
| gen_data_load(ctx, t0, addr); |
| gen_data_store(ctx, Rd, addr); |
| tcg_gen_mov_tl(Rd, t0); |
| return true; |
| } |
| |
| /* |
| * Load one byte indirect from data space to register and set bits in data |
| * space specified by the register. The instruction can only be used towards |
| * internal SRAM. The data location is pointed to by the Z (16 bits) Pointer |
| * Register in the Register File. Memory access is limited to the current data |
| * segment of 64KB. To access another data segment in devices with more than |
| * 64KB data space, the RAMPZ in register in the I/O area has to be changed. |
| * |
| * The Z-pointer Register is left unchanged by the operation. This instruction |
| * is especially suited for setting status bits stored in SRAM. |
| */ |
| static bool trans_LAS(DisasContext *ctx, arg_LAS *a) |
| { |
| if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) { |
| return true; |
| } |
| |
| TCGv Rr = cpu_r[a->rd]; |
| TCGv addr = gen_get_zaddr(); |
| TCGv t0 = tcg_temp_new_i32(); |
| TCGv t1 = tcg_temp_new_i32(); |
| |
| gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */ |
| tcg_gen_or_tl(t1, t0, Rr); |
| tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */ |
| gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */ |
| return true; |
| } |
| |
| /* |
| * Load one byte indirect from data space to register and stores and clear |
| * the bits in data space specified by the register. The instruction can |
| * only be used towards internal SRAM. The data location is pointed to by |
| * the Z (16 bits) Pointer Register in the Register File. Memory access is |
| * limited to the current data segment of 64KB. To access another data |
| * segment in devices with more than 64KB data space, the RAMPZ in register |
| * in the I/O area has to be changed. |
| * |
| * The Z-pointer Register is left unchanged by the operation. This instruction |
| * is especially suited for clearing status bits stored in SRAM. |
| */ |
| static bool trans_LAC(DisasContext *ctx, arg_LAC *a) |
| { |
| if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) { |
| return true; |
| } |
| |
| TCGv Rr = cpu_r[a->rd]; |
| TCGv addr = gen_get_zaddr(); |
| TCGv t0 = tcg_temp_new_i32(); |
| TCGv t1 = tcg_temp_new_i32(); |
| |
| gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */ |
| tcg_gen_andc_tl(t1, t0, Rr); /* t1 = t0 & (0xff - Rr) = t0 & ~Rr */ |
| tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */ |
| gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */ |
| return true; |
| } |
| |
| |
| /* |
| * Load one byte indirect from data space to register and toggles bits in |
| * the data space specified by the register. The instruction can only be used |
| * towards SRAM. The data location is pointed to by the Z (16 bits) Pointer |
| * Register in the Register File. Memory access is limited to the current data |
| * segment of 64KB. To access another data segment in devices with more than |
| * 64KB data space, the RAMPZ in register in the I/O area has to be changed. |
| * |
| * The Z-pointer Register is left unchanged by the operation. This instruction |
| * is especially suited for changing status bits stored in SRAM. |
| */ |
| static bool trans_LAT(DisasContext *ctx, arg_LAT *a) |
| { |
| if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) { |
| return true; |
| } |
| |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv addr = gen_get_zaddr(); |
| TCGv t0 = tcg_temp_new_i32(); |
| TCGv t1 = tcg_temp_new_i32(); |
| |
| gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */ |
| tcg_gen_xor_tl(t1, t0, Rd); |
| tcg_gen_mov_tl(Rd, t0); /* Rd = t0 */ |
| gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */ |
| return true; |
| } |
| |
| /* |
| * Bit and Bit-test Instructions |
| */ |
| static void gen_rshift_ZNVSf(TCGv R) |
| { |
| tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ |
| tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */ |
| tcg_gen_xor_tl(cpu_Vf, cpu_Nf, cpu_Cf); |
| tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */ |
| } |
| |
| /* |
| * Shifts all bits in Rd one place to the right. Bit 7 is cleared. Bit 0 is |
| * loaded into the C Flag of the SREG. This operation effectively divides an |
| * unsigned value by two. The C Flag can be used to round the result. |
| */ |
| static bool trans_LSR(DisasContext *ctx, arg_LSR *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| |
| tcg_gen_andi_tl(cpu_Cf, Rd, 1); |
| tcg_gen_shri_tl(Rd, Rd, 1); |
| |
| /* update status register */ |
| tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, Rd, 0); /* Zf = Rd == 0 */ |
| tcg_gen_movi_tl(cpu_Nf, 0); |
| tcg_gen_mov_tl(cpu_Vf, cpu_Cf); |
| tcg_gen_mov_tl(cpu_Sf, cpu_Vf); |
| |
| return true; |
| } |
| |
| /* |
| * Shifts all bits in Rd one place to the right. The C Flag is shifted into |
| * bit 7 of Rd. Bit 0 is shifted into the C Flag. This operation, combined |
| * with ASR, effectively divides multi-byte signed values by two. Combined with |
| * LSR it effectively divides multi-byte unsigned values by two. The Carry Flag |
| * can be used to round the result. |
| */ |
| static bool trans_ROR(DisasContext *ctx, arg_ROR *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv t0 = tcg_temp_new_i32(); |
| |
| tcg_gen_shli_tl(t0, cpu_Cf, 7); |
| |
| /* update status register */ |
| tcg_gen_andi_tl(cpu_Cf, Rd, 1); |
| |
| /* update output register */ |
| tcg_gen_shri_tl(Rd, Rd, 1); |
| tcg_gen_or_tl(Rd, Rd, t0); |
| |
| /* update status register */ |
| gen_rshift_ZNVSf(Rd); |
| return true; |
| } |
| |
| /* |
| * Shifts all bits in Rd one place to the right. Bit 7 is held constant. Bit 0 |
| * is loaded into the C Flag of the SREG. This operation effectively divides a |
| * signed value by two without changing its sign. The Carry Flag can be used to |
| * round the result. |
| */ |
| static bool trans_ASR(DisasContext *ctx, arg_ASR *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv t0 = tcg_temp_new_i32(); |
| |
| /* update status register */ |
| tcg_gen_andi_tl(cpu_Cf, Rd, 1); /* Cf = Rd(0) */ |
| |
| /* update output register */ |
| tcg_gen_andi_tl(t0, Rd, 0x80); /* Rd = (Rd & 0x80) | (Rd >> 1) */ |
| tcg_gen_shri_tl(Rd, Rd, 1); |
| tcg_gen_or_tl(Rd, Rd, t0); |
| |
| /* update status register */ |
| gen_rshift_ZNVSf(Rd); |
| return true; |
| } |
| |
| /* |
| * Swaps high and low nibbles in a register. |
| */ |
| static bool trans_SWAP(DisasContext *ctx, arg_SWAP *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv t0 = tcg_temp_new_i32(); |
| TCGv t1 = tcg_temp_new_i32(); |
| |
| tcg_gen_andi_tl(t0, Rd, 0x0f); |
| tcg_gen_shli_tl(t0, t0, 4); |
| tcg_gen_andi_tl(t1, Rd, 0xf0); |
| tcg_gen_shri_tl(t1, t1, 4); |
| tcg_gen_or_tl(Rd, t0, t1); |
| return true; |
| } |
| |
| /* |
| * Sets a specified bit in an I/O Register. This instruction operates on |
| * the lower 32 I/O Registers -- addresses 0-31. |
| */ |
| static bool trans_SBI(DisasContext *ctx, arg_SBI *a) |
| { |
| TCGv data = tcg_temp_new_i32(); |
| TCGv port = tcg_constant_i32(a->reg); |
| |
| gen_helper_inb(data, tcg_env, port); |
| tcg_gen_ori_tl(data, data, 1 << a->bit); |
| gen_helper_outb(tcg_env, port, data); |
| return true; |
| } |
| |
| /* |
| * Clears a specified bit in an I/O Register. This instruction operates on |
| * the lower 32 I/O Registers -- addresses 0-31. |
| */ |
| static bool trans_CBI(DisasContext *ctx, arg_CBI *a) |
| { |
| TCGv data = tcg_temp_new_i32(); |
| TCGv port = tcg_constant_i32(a->reg); |
| |
| gen_helper_inb(data, tcg_env, port); |
| tcg_gen_andi_tl(data, data, ~(1 << a->bit)); |
| gen_helper_outb(tcg_env, port, data); |
| return true; |
| } |
| |
| /* |
| * Stores bit b from Rd to the T Flag in SREG (Status Register). |
| */ |
| static bool trans_BST(DisasContext *ctx, arg_BST *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| |
| tcg_gen_andi_tl(cpu_Tf, Rd, 1 << a->bit); |
| tcg_gen_shri_tl(cpu_Tf, cpu_Tf, a->bit); |
| |
| return true; |
| } |
| |
| /* |
| * Copies the T Flag in the SREG (Status Register) to bit b in register Rd. |
| */ |
| static bool trans_BLD(DisasContext *ctx, arg_BLD *a) |
| { |
| TCGv Rd = cpu_r[a->rd]; |
| TCGv t1 = tcg_temp_new_i32(); |
| |
| tcg_gen_andi_tl(Rd, Rd, ~(1u << a->bit)); /* clear bit */ |
| tcg_gen_shli_tl(t1, cpu_Tf, a->bit); /* create mask */ |
| tcg_gen_or_tl(Rd, Rd, t1); |
| return true; |
| } |
| |
| /* |
| * Sets a single Flag or bit in SREG. |
| */ |
| static bool trans_BSET(DisasContext *ctx, arg_BSET *a) |
| { |
| switch (a->bit) { |
| case 0x00: |
| tcg_gen_movi_tl(cpu_Cf, 0x01); |
| break; |
| case 0x01: |
| tcg_gen_movi_tl(cpu_Zf, 0x01); |
| break; |
| case 0x02: |
| tcg_gen_movi_tl(cpu_Nf, 0x01); |
| break; |
| case 0x03: |
| tcg_gen_movi_tl(cpu_Vf, 0x01); |
| break; |
| case 0x04: |
| tcg_gen_movi_tl(cpu_Sf, 0x01); |
| break; |
| case 0x05: |
| tcg_gen_movi_tl(cpu_Hf, 0x01); |
| break; |
| case 0x06: |
| tcg_gen_movi_tl(cpu_Tf, 0x01); |
| break; |
| case 0x07: |
| tcg_gen_movi_tl(cpu_If, 0x01); |
| break; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Clears a single Flag in SREG. |
| */ |
| static bool trans_BCLR(DisasContext *ctx, arg_BCLR *a) |
| { |
| switch (a->bit) { |
| case 0x00: |
| tcg_gen_movi_tl(cpu_Cf, 0x00); |
| break; |
| case 0x01: |
| tcg_gen_movi_tl(cpu_Zf, 0x00); |
| break; |
| case 0x02: |
| tcg_gen_movi_tl(cpu_Nf, 0x00); |
| break; |
| case 0x03: |
| tcg_gen_movi_tl(cpu_Vf, 0x00); |
| break; |
| case 0x04: |
| tcg_gen_movi_tl(cpu_Sf, 0x00); |
| break; |
| case 0x05: |
| tcg_gen_movi_tl(cpu_Hf, 0x00); |
| break; |
| case 0x06: |
| tcg_gen_movi_tl(cpu_Tf, 0x00); |
| break; |
| case 0x07: |
| tcg_gen_movi_tl(cpu_If, 0x00); |
| break; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * MCU Control Instructions |
| */ |
| |
| /* |
| * The BREAK instruction is used by the On-chip Debug system, and is |
| * normally not used in the application software. When the BREAK instruction is |
| * executed, the AVR CPU is set in the Stopped Mode. This gives the On-chip |
| * Debugger access to internal resources. If any Lock bits are set, or either |
| * the JTAGEN or OCDEN Fuses are unprogrammed, the CPU will treat the BREAK |
| * instruction as a NOP and will not enter the Stopped mode. This instruction |
| * is not available in all devices. Refer to the device specific instruction |
| * set summary. |
| */ |
| static bool trans_BREAK(DisasContext *ctx, arg_BREAK *a) |
| { |
| if (!avr_have_feature(ctx, AVR_FEATURE_BREAK)) { |
| return true; |
| } |
| |
| #ifdef BREAKPOINT_ON_BREAK |
| tcg_gen_movi_tl(cpu_pc, ctx->npc - 1); |
| gen_helper_debug(tcg_env); |
| ctx->base.is_jmp = DISAS_EXIT; |
| #else |
| /* NOP */ |
| #endif |
| |
| return true; |
| } |
| |
| /* |
| * This instruction performs a single cycle No Operation. |
| */ |
| static bool trans_NOP(DisasContext *ctx, arg_NOP *a) |
| { |
| |
| /* NOP */ |
| |
| return true; |
| } |
| |
| /* |
| * This instruction sets the circuit in sleep mode defined by the MCU |
| * Control Register. |
| */ |
| static bool trans_SLEEP(DisasContext *ctx, arg_SLEEP *a) |
| { |
| gen_helper_sleep(tcg_env); |
| ctx->base.is_jmp = DISAS_NORETURN; |
| return true; |
| } |
| |
| /* |
| * This instruction resets the Watchdog Timer. This instruction must be |
| * executed within a limited time given by the WD prescaler. See the Watchdog |
| * Timer hardware specification. |
| */ |
| static bool trans_WDR(DisasContext *ctx, arg_WDR *a) |
| { |
| gen_helper_wdr(tcg_env); |
| |
| return true; |
| } |
| |
| /* |
| * Core translation mechanism functions: |
| * |
| * - translate() |
| * - canonicalize_skip() |
| * - gen_intermediate_code() |
| * - restore_state_to_opc() |
| * |
| */ |
| static void translate(DisasContext *ctx) |
| { |
| uint32_t opcode = next_word(ctx); |
| |
| if (!decode_insn(ctx, opcode)) { |
| gen_helper_unsupported(tcg_env); |
| ctx->base.is_jmp = DISAS_NORETURN; |
| } |
| } |
| |
| /* Standardize the cpu_skip condition to NE. */ |
| static bool canonicalize_skip(DisasContext *ctx) |
| { |
| switch (ctx->skip_cond) { |
| case TCG_COND_NEVER: |
| /* Normal case: cpu_skip is known to be false. */ |
| return false; |
| |
| case TCG_COND_ALWAYS: |
| /* |
| * Breakpoint case: cpu_skip is known to be true, via TB_FLAGS_SKIP. |
| * The breakpoint is on the instruction being skipped, at the start |
| * of the TranslationBlock. No need to update. |
| */ |
| return false; |
| |
| case TCG_COND_NE: |
| if (ctx->skip_var1 == NULL) { |
| tcg_gen_mov_tl(cpu_skip, ctx->skip_var0); |
| } else { |
| tcg_gen_xor_tl(cpu_skip, ctx->skip_var0, ctx->skip_var1); |
| ctx->skip_var1 = NULL; |
| } |
| break; |
| |
| default: |
| /* Convert to a NE condition vs 0. */ |
| if (ctx->skip_var1 == NULL) { |
| tcg_gen_setcondi_tl(ctx->skip_cond, cpu_skip, ctx->skip_var0, 0); |
| } else { |
| tcg_gen_setcond_tl(ctx->skip_cond, cpu_skip, |
| ctx->skip_var0, ctx->skip_var1); |
| ctx->skip_var1 = NULL; |
| } |
| ctx->skip_cond = TCG_COND_NE; |
| break; |
| } |
| ctx->skip_var0 = cpu_skip; |
| return true; |
| } |
| |
| static void avr_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs) |
| { |
| DisasContext *ctx = container_of(dcbase, DisasContext, base); |
| uint32_t tb_flags = ctx->base.tb->flags; |
| |
| ctx->cs = cs; |
| ctx->env = cpu_env(cs); |
| ctx->npc = ctx->base.pc_first / 2; |
| |
| ctx->skip_cond = TCG_COND_NEVER; |
| if (tb_flags & TB_FLAGS_SKIP) { |
| ctx->skip_cond = TCG_COND_ALWAYS; |
| ctx->skip_var0 = cpu_skip; |
| } |
| |
| if (tb_flags & TB_FLAGS_FULL_ACCESS) { |
| /* |
| * This flag is set by ST/LD instruction we will regenerate it ONLY |
| * with mem/cpu memory access instead of mem access |
| */ |
| ctx->base.max_insns = 1; |
| } |
| } |
| |
| static void avr_tr_tb_start(DisasContextBase *db, CPUState *cs) |
| { |
| } |
| |
| static void avr_tr_insn_start(DisasContextBase *dcbase, CPUState *cs) |
| { |
| DisasContext *ctx = container_of(dcbase, DisasContext, base); |
| |
| tcg_gen_insn_start(ctx->npc); |
| } |
| |
| static void avr_tr_translate_insn(DisasContextBase *dcbase, CPUState *cs) |
| { |
| DisasContext *ctx = container_of(dcbase, DisasContext, base); |
| TCGLabel *skip_label = NULL; |
| |
| /* Conditionally skip the next instruction, if indicated. */ |
| if (ctx->skip_cond != TCG_COND_NEVER) { |
| skip_label = gen_new_label(); |
| if (ctx->skip_var0 == cpu_skip) { |
| /* |
| * Copy cpu_skip so that we may zero it before the branch. |
| * This ensures that cpu_skip is non-zero after the label |
| * if and only if the skipped insn itself sets a skip. |
| */ |
| ctx->skip_var0 = tcg_temp_new(); |
| tcg_gen_mov_tl(ctx->skip_var0, cpu_skip); |
| tcg_gen_movi_tl(cpu_skip, 0); |
| } |
| if (ctx->skip_var1 == NULL) { |
| tcg_gen_brcondi_tl(ctx->skip_cond, ctx->skip_var0, 0, skip_label); |
| } else { |
| tcg_gen_brcond_tl(ctx->skip_cond, ctx->skip_var0, |
| ctx->skip_var1, skip_label); |
| ctx->skip_var1 = NULL; |
| } |
| ctx->skip_cond = TCG_COND_NEVER; |
| ctx->skip_var0 = NULL; |
| } |
| |
| translate(ctx); |
| |
| ctx->base.pc_next = ctx->npc * 2; |
| |
| if (skip_label) { |
| canonicalize_skip(ctx); |
| gen_set_label(skip_label); |
| |
| switch (ctx->base.is_jmp) { |
| case DISAS_NORETURN: |
| ctx->base.is_jmp = DISAS_CHAIN; |
| break; |
| case DISAS_NEXT: |
| if (ctx->base.tb->flags & TB_FLAGS_SKIP) { |
| ctx->base.is_jmp = DISAS_TOO_MANY; |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| if (ctx->base.is_jmp == DISAS_NEXT) { |
| target_ulong page_first = ctx->base.pc_first & TARGET_PAGE_MASK; |
| |
| if ((ctx->base.pc_next - page_first) >= TARGET_PAGE_SIZE - 4) { |
| ctx->base.is_jmp = DISAS_TOO_MANY; |
| } |
| } |
| } |
| |
| static void avr_tr_tb_stop(DisasContextBase *dcbase, CPUState *cs) |
| { |
| DisasContext *ctx = container_of(dcbase, DisasContext, base); |
| bool nonconst_skip = canonicalize_skip(ctx); |
| /* |
| * Because we disable interrupts while env->skip is set, |
| * we must return to the main loop to re-evaluate afterward. |
| */ |
| bool force_exit = ctx->base.tb->flags & TB_FLAGS_SKIP; |
| |
| switch (ctx->base.is_jmp) { |
| case DISAS_NORETURN: |
| assert(!nonconst_skip); |
| break; |
| case DISAS_NEXT: |
| case DISAS_TOO_MANY: |
| case DISAS_CHAIN: |
| if (!nonconst_skip && !force_exit) { |
| /* Note gen_goto_tb checks singlestep. */ |
| gen_goto_tb(ctx, 1, ctx->npc); |
| break; |
| } |
| tcg_gen_movi_tl(cpu_pc, ctx->npc); |
| /* fall through */ |
| case DISAS_LOOKUP: |
| if (!force_exit) { |
| tcg_gen_lookup_and_goto_ptr(); |
| break; |
| } |
| /* fall through */ |
| case DISAS_EXIT: |
| tcg_gen_exit_tb(NULL, 0); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static const TranslatorOps avr_tr_ops = { |
| .init_disas_context = avr_tr_init_disas_context, |
| .tb_start = avr_tr_tb_start, |
| .insn_start = avr_tr_insn_start, |
| .translate_insn = avr_tr_translate_insn, |
| .tb_stop = avr_tr_tb_stop, |
| }; |
| |
| void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int *max_insns, |
| vaddr pc, void *host_pc) |
| { |
| DisasContext dc = { }; |
| translator_loop(cs, tb, max_insns, pc, host_pc, &avr_tr_ops, &dc.base); |
| } |