| /* |
| * IMX EPIT Timer |
| * |
| * Copyright (c) 2008 OK Labs |
| * Copyright (c) 2011 NICTA Pty Ltd |
| * Originally written by Hans Jiang |
| * Updated by Peter Chubb |
| * Updated by Jean-Christophe Dubois <jcd@tribudubois.net> |
| * Updated by Axel Heider |
| * |
| * This code is licensed under GPL version 2 or later. See |
| * the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "hw/timer/imx_epit.h" |
| #include "migration/vmstate.h" |
| #include "hw/irq.h" |
| #include "hw/misc/imx_ccm.h" |
| #include "qemu/module.h" |
| #include "qemu/log.h" |
| |
| #ifndef DEBUG_IMX_EPIT |
| #define DEBUG_IMX_EPIT 0 |
| #endif |
| |
| #define DPRINTF(fmt, args...) \ |
| do { \ |
| if (DEBUG_IMX_EPIT) { \ |
| fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX_EPIT, \ |
| __func__, ##args); \ |
| } \ |
| } while (0) |
| |
| static const char *imx_epit_reg_name(uint32_t reg) |
| { |
| switch (reg) { |
| case 0: |
| return "CR"; |
| case 1: |
| return "SR"; |
| case 2: |
| return "LR"; |
| case 3: |
| return "CMP"; |
| case 4: |
| return "CNT"; |
| default: |
| return "[?]"; |
| } |
| } |
| |
| /* |
| * Exact clock frequencies vary from board to board. |
| * These are typical. |
| */ |
| static const IMXClk imx_epit_clocks[] = { |
| CLK_NONE, /* 00 disabled */ |
| CLK_IPG, /* 01 ipg_clk, ~532MHz */ |
| CLK_IPG_HIGH, /* 10 ipg_clk_highfreq */ |
| CLK_32k, /* 11 ipg_clk_32k -- ~32kHz */ |
| }; |
| |
| /* |
| * Update interrupt status |
| */ |
| static void imx_epit_update_int(IMXEPITState *s) |
| { |
| if ((s->sr & SR_OCIF) && (s->cr & CR_OCIEN) && (s->cr & CR_EN)) { |
| qemu_irq_raise(s->irq); |
| } else { |
| qemu_irq_lower(s->irq); |
| } |
| } |
| |
| static uint32_t imx_epit_get_freq(IMXEPITState *s) |
| { |
| uint32_t clksrc = extract32(s->cr, CR_CLKSRC_SHIFT, CR_CLKSRC_BITS); |
| uint32_t prescaler = 1 + extract32(s->cr, CR_PRESCALE_SHIFT, CR_PRESCALE_BITS); |
| uint32_t f_in = imx_ccm_get_clock_frequency(s->ccm, imx_epit_clocks[clksrc]); |
| uint32_t freq = f_in / prescaler; |
| DPRINTF("ptimer frequency is %u\n", freq); |
| return freq; |
| } |
| |
| /* |
| * This is called both on hardware (device) reset and software reset. |
| */ |
| static void imx_epit_reset(IMXEPITState *s, bool is_hard_reset) |
| { |
| /* Soft reset doesn't touch some bits; hard reset clears them */ |
| if (is_hard_reset) { |
| s->cr = 0; |
| } else { |
| s->cr &= (CR_EN|CR_ENMOD|CR_STOPEN|CR_DOZEN|CR_WAITEN|CR_DBGEN); |
| } |
| s->sr = 0; |
| s->lr = EPIT_TIMER_MAX; |
| s->cmp = 0; |
| ptimer_transaction_begin(s->timer_cmp); |
| ptimer_transaction_begin(s->timer_reload); |
| |
| /* |
| * The reset switches off the input clock, so even if the CR.EN is still |
| * set, the timers are no longer running. |
| */ |
| assert(imx_epit_get_freq(s) == 0); |
| ptimer_stop(s->timer_cmp); |
| ptimer_stop(s->timer_reload); |
| /* init both timers to EPIT_TIMER_MAX */ |
| ptimer_set_limit(s->timer_cmp, EPIT_TIMER_MAX, 1); |
| ptimer_set_limit(s->timer_reload, EPIT_TIMER_MAX, 1); |
| ptimer_transaction_commit(s->timer_cmp); |
| ptimer_transaction_commit(s->timer_reload); |
| } |
| |
| static uint64_t imx_epit_read(void *opaque, hwaddr offset, unsigned size) |
| { |
| IMXEPITState *s = IMX_EPIT(opaque); |
| uint32_t reg_value = 0; |
| |
| switch (offset >> 2) { |
| case 0: /* Control Register */ |
| reg_value = s->cr; |
| break; |
| |
| case 1: /* Status Register */ |
| reg_value = s->sr; |
| break; |
| |
| case 2: /* LR - ticks*/ |
| reg_value = s->lr; |
| break; |
| |
| case 3: /* CMP */ |
| reg_value = s->cmp; |
| break; |
| |
| case 4: /* CNT */ |
| reg_value = ptimer_get_count(s->timer_reload); |
| break; |
| |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%" |
| HWADDR_PRIx "\n", TYPE_IMX_EPIT, __func__, offset); |
| break; |
| } |
| |
| DPRINTF("(%s) = 0x%08x\n", imx_epit_reg_name(offset >> 2), reg_value); |
| |
| return reg_value; |
| } |
| |
| /* |
| * Must be called from a ptimer_transaction_begin/commit block for |
| * s->timer_cmp, but outside of a transaction block of s->timer_reload, |
| * so the proper counter value is read. |
| */ |
| static void imx_epit_update_compare_timer(IMXEPITState *s) |
| { |
| uint64_t counter = 0; |
| bool is_oneshot = false; |
| /* |
| * The compare timer only has to run if the timer peripheral is active |
| * and there is an input clock, Otherwise it can be switched off. |
| */ |
| bool is_active = (s->cr & CR_EN) && imx_epit_get_freq(s); |
| if (is_active) { |
| /* |
| * Calculate next timeout for compare timer. Reading the reload |
| * counter returns proper results only if pending transactions |
| * on it are committed here. Otherwise stale values are be read. |
| */ |
| counter = ptimer_get_count(s->timer_reload); |
| uint64_t limit = ptimer_get_limit(s->timer_cmp); |
| /* |
| * The compare timer is a periodic timer if the limit is at least |
| * the compare value. Otherwise it may fire at most once in the |
| * current round. |
| */ |
| is_oneshot = (limit < s->cmp); |
| if (counter >= s->cmp) { |
| /* The compare timer fires in the current round. */ |
| counter -= s->cmp; |
| } else if (!is_oneshot) { |
| /* |
| * The compare timer fires after a reload, as it is below the |
| * compare value already in this round. Note that the counter |
| * value calculated below can be above the 32-bit limit, which |
| * is legal here because the compare timer is an internal |
| * helper ptimer only. |
| */ |
| counter += limit - s->cmp; |
| } else { |
| /* |
| * The compare timer won't fire in this round, and the limit is |
| * set to a value below the compare value. This practically means |
| * it will never fire, so it can be switched off. |
| */ |
| is_active = false; |
| } |
| } |
| |
| /* |
| * Set the compare timer and let it run, or stop it. This is agnostic |
| * of CR.OCIEN bit, as this bit affects interrupt generation only. The |
| * compare timer needs to run even if no interrupts are to be generated, |
| * because the SR.OCIF bit must be updated also. |
| * Note that the timer might already be stopped or be running with |
| * counter values. However, finding out when an update is needed and |
| * when not is not trivial. It's much easier applying the setting again, |
| * as this does not harm either and the overhead is negligible. |
| */ |
| if (is_active) { |
| ptimer_set_count(s->timer_cmp, counter); |
| ptimer_run(s->timer_cmp, is_oneshot ? 1 : 0); |
| } else { |
| ptimer_stop(s->timer_cmp); |
| } |
| |
| } |
| |
| static void imx_epit_write_cr(IMXEPITState *s, uint32_t value) |
| { |
| uint32_t oldcr = s->cr; |
| |
| s->cr = value & 0x03ffffff; |
| |
| if (s->cr & CR_SWR) { |
| /* |
| * Reset clears CR.SWR again. It does not touch CR.EN, but the timers |
| * are still stopped because the input clock is disabled. |
| */ |
| imx_epit_reset(s, false); |
| } else { |
| uint32_t freq; |
| uint32_t toggled_cr_bits = oldcr ^ s->cr; |
| /* re-initialize the limits if CR.RLD has changed */ |
| bool set_limit = toggled_cr_bits & CR_RLD; |
| /* set the counter if the timer got just enabled and CR.ENMOD is set */ |
| bool is_switched_on = (toggled_cr_bits & s->cr) & CR_EN; |
| bool set_counter = is_switched_on && (s->cr & CR_ENMOD); |
| |
| ptimer_transaction_begin(s->timer_cmp); |
| ptimer_transaction_begin(s->timer_reload); |
| freq = imx_epit_get_freq(s); |
| if (freq) { |
| ptimer_set_freq(s->timer_reload, freq); |
| ptimer_set_freq(s->timer_cmp, freq); |
| } |
| |
| if (set_limit || set_counter) { |
| uint64_t limit = (s->cr & CR_RLD) ? s->lr : EPIT_TIMER_MAX; |
| ptimer_set_limit(s->timer_reload, limit, set_counter ? 1 : 0); |
| if (set_limit) { |
| ptimer_set_limit(s->timer_cmp, limit, 0); |
| } |
| } |
| /* |
| * If there is an input clock and the peripheral is enabled, then |
| * ensure the wall clock timer is ticking. Otherwise stop the timers. |
| * The compare timer will be updated later. |
| */ |
| if (freq && (s->cr & CR_EN)) { |
| ptimer_run(s->timer_reload, 0); |
| } else { |
| ptimer_stop(s->timer_reload); |
| } |
| /* Commit changes to reload timer, so they can propagate. */ |
| ptimer_transaction_commit(s->timer_reload); |
| /* Update compare timer based on the committed reload timer value. */ |
| imx_epit_update_compare_timer(s); |
| ptimer_transaction_commit(s->timer_cmp); |
| } |
| |
| /* |
| * The interrupt state can change due to: |
| * - reset clears both SR.OCIF and CR.OCIE |
| * - write to CR.EN or CR.OCIE |
| */ |
| imx_epit_update_int(s); |
| } |
| |
| static void imx_epit_write_sr(IMXEPITState *s, uint32_t value) |
| { |
| /* writing 1 to SR.OCIF clears this bit and turns the interrupt off */ |
| if (value & SR_OCIF) { |
| s->sr = 0; /* SR.OCIF is the only bit in this register anyway */ |
| imx_epit_update_int(s); |
| } |
| } |
| |
| static void imx_epit_write_lr(IMXEPITState *s, uint32_t value) |
| { |
| s->lr = value; |
| |
| ptimer_transaction_begin(s->timer_cmp); |
| ptimer_transaction_begin(s->timer_reload); |
| if (s->cr & CR_RLD) { |
| /* Also set the limit if the LRD bit is set */ |
| /* If IOVW bit is set then set the timer value */ |
| ptimer_set_limit(s->timer_reload, s->lr, s->cr & CR_IOVW); |
| ptimer_set_limit(s->timer_cmp, s->lr, 0); |
| } else if (s->cr & CR_IOVW) { |
| /* If IOVW bit is set then set the timer value */ |
| ptimer_set_count(s->timer_reload, s->lr); |
| } |
| /* Commit the changes to s->timer_reload, so they can propagate. */ |
| ptimer_transaction_commit(s->timer_reload); |
| /* Update the compare timer based on the committed reload timer value. */ |
| imx_epit_update_compare_timer(s); |
| ptimer_transaction_commit(s->timer_cmp); |
| } |
| |
| static void imx_epit_write_cmp(IMXEPITState *s, uint32_t value) |
| { |
| s->cmp = value; |
| |
| /* Update the compare timer based on the committed reload timer value. */ |
| ptimer_transaction_begin(s->timer_cmp); |
| imx_epit_update_compare_timer(s); |
| ptimer_transaction_commit(s->timer_cmp); |
| } |
| |
| static void imx_epit_write(void *opaque, hwaddr offset, uint64_t value, |
| unsigned size) |
| { |
| IMXEPITState *s = IMX_EPIT(opaque); |
| |
| DPRINTF("(%s, value = 0x%08x)\n", imx_epit_reg_name(offset >> 2), |
| (uint32_t)value); |
| |
| switch (offset >> 2) { |
| case 0: /* CR */ |
| imx_epit_write_cr(s, (uint32_t)value); |
| break; |
| |
| case 1: /* SR */ |
| imx_epit_write_sr(s, (uint32_t)value); |
| break; |
| |
| case 2: /* LR */ |
| imx_epit_write_lr(s, (uint32_t)value); |
| break; |
| |
| case 3: /* CMP */ |
| imx_epit_write_cmp(s, (uint32_t)value); |
| break; |
| |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%" |
| HWADDR_PRIx "\n", TYPE_IMX_EPIT, __func__, offset); |
| break; |
| } |
| } |
| |
| static void imx_epit_cmp(void *opaque) |
| { |
| IMXEPITState *s = IMX_EPIT(opaque); |
| |
| /* The cmp ptimer can't be running when the peripheral is disabled */ |
| assert(s->cr & CR_EN); |
| |
| DPRINTF("sr was %d\n", s->sr); |
| /* Set interrupt status bit SR.OCIF and update the interrupt state */ |
| s->sr |= SR_OCIF; |
| imx_epit_update_int(s); |
| } |
| |
| static void imx_epit_reload(void *opaque) |
| { |
| /* No action required on rollover of timer_reload */ |
| } |
| |
| static const MemoryRegionOps imx_epit_ops = { |
| .read = imx_epit_read, |
| .write = imx_epit_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| }; |
| |
| static const VMStateDescription vmstate_imx_timer_epit = { |
| .name = TYPE_IMX_EPIT, |
| .version_id = 3, |
| .minimum_version_id = 3, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT32(cr, IMXEPITState), |
| VMSTATE_UINT32(sr, IMXEPITState), |
| VMSTATE_UINT32(lr, IMXEPITState), |
| VMSTATE_UINT32(cmp, IMXEPITState), |
| VMSTATE_PTIMER(timer_reload, IMXEPITState), |
| VMSTATE_PTIMER(timer_cmp, IMXEPITState), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static void imx_epit_realize(DeviceState *dev, Error **errp) |
| { |
| IMXEPITState *s = IMX_EPIT(dev); |
| SysBusDevice *sbd = SYS_BUS_DEVICE(dev); |
| |
| DPRINTF("\n"); |
| |
| sysbus_init_irq(sbd, &s->irq); |
| memory_region_init_io(&s->iomem, OBJECT(s), &imx_epit_ops, s, TYPE_IMX_EPIT, |
| 0x00001000); |
| sysbus_init_mmio(sbd, &s->iomem); |
| |
| /* |
| * The reload timer keeps running when the peripheral is enabled. It is a |
| * kind of wall clock that does not generate any interrupts. The callback |
| * needs to be provided, but it does nothing as the ptimer already supports |
| * all necessary reloading functionality. |
| */ |
| s->timer_reload = ptimer_init(imx_epit_reload, s, PTIMER_POLICY_LEGACY); |
| |
| /* |
| * The compare timer is running only when the peripheral configuration is |
| * in a state that will generate compare interrupts. |
| */ |
| s->timer_cmp = ptimer_init(imx_epit_cmp, s, PTIMER_POLICY_LEGACY); |
| } |
| |
| static void imx_epit_dev_reset(DeviceState *dev) |
| { |
| IMXEPITState *s = IMX_EPIT(dev); |
| imx_epit_reset(s, true); |
| } |
| |
| static void imx_epit_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| |
| dc->realize = imx_epit_realize; |
| dc->reset = imx_epit_dev_reset; |
| dc->vmsd = &vmstate_imx_timer_epit; |
| dc->desc = "i.MX periodic timer"; |
| } |
| |
| static const TypeInfo imx_epit_info = { |
| .name = TYPE_IMX_EPIT, |
| .parent = TYPE_SYS_BUS_DEVICE, |
| .instance_size = sizeof(IMXEPITState), |
| .class_init = imx_epit_class_init, |
| }; |
| |
| static void imx_epit_register_types(void) |
| { |
| type_register_static(&imx_epit_info); |
| } |
| |
| type_init(imx_epit_register_types) |