blob: 58f255873ffb0e439bfdadcac4085f8d6a5f0897 [file] [log] [blame]
/*
* New-style TCG opcode generator for i386 instructions
*
* Copyright (c) 2022 Red Hat, Inc.
*
* Author: Paolo Bonzini <pbonzini@redhat.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* Sometimes, knowing what the backend has can produce better code.
* The exact opcode to check depends on 32- vs. 64-bit.
*/
#ifdef TARGET_X86_64
#define TCG_TARGET_HAS_extract2_tl TCG_TARGET_HAS_extract2_i64
#define TCG_TARGET_deposit_tl_valid TCG_TARGET_deposit_i64_valid
#define TCG_TARGET_extract_tl_valid TCG_TARGET_extract_i64_valid
#else
#define TCG_TARGET_HAS_extract2_tl TCG_TARGET_HAS_extract2_i32
#define TCG_TARGET_deposit_tl_valid TCG_TARGET_deposit_i32_valid
#define TCG_TARGET_extract_tl_valid TCG_TARGET_extract_i32_valid
#endif
#define ZMM_OFFSET(reg) offsetof(CPUX86State, xmm_regs[reg])
typedef void (*SSEFunc_i_ep)(TCGv_i32 val, TCGv_ptr env, TCGv_ptr reg);
typedef void (*SSEFunc_l_ep)(TCGv_i64 val, TCGv_ptr env, TCGv_ptr reg);
typedef void (*SSEFunc_0_epp)(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b);
typedef void (*SSEFunc_0_eppp)(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b,
TCGv_ptr reg_c);
typedef void (*SSEFunc_0_epppp)(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b,
TCGv_ptr reg_c, TCGv_ptr reg_d);
typedef void (*SSEFunc_0_eppi)(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b,
TCGv_i32 val);
typedef void (*SSEFunc_0_epppi)(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b,
TCGv_ptr reg_c, TCGv_i32 val);
typedef void (*SSEFunc_0_ppi)(TCGv_ptr reg_a, TCGv_ptr reg_b, TCGv_i32 val);
typedef void (*SSEFunc_0_pppi)(TCGv_ptr reg_a, TCGv_ptr reg_b, TCGv_ptr reg_c,
TCGv_i32 val);
typedef void (*SSEFunc_0_eppt)(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b,
TCGv val);
typedef void (*SSEFunc_0_epppti)(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b,
TCGv_ptr reg_c, TCGv a0, TCGv_i32 scale);
typedef void (*SSEFunc_0_eppppi)(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b,
TCGv_ptr reg_c, TCGv_ptr reg_d, TCGv_i32 flags);
typedef void (*SSEFunc_0_eppppii)(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b,
TCGv_ptr reg_c, TCGv_ptr reg_d, TCGv_i32 even,
TCGv_i32 odd);
static void gen_JMP_m(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode);
static void gen_JMP(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode);
static inline TCGv_i32 tcg_constant8u_i32(uint8_t val)
{
return tcg_constant_i32(val);
}
static void gen_NM_exception(DisasContext *s)
{
gen_exception(s, EXCP07_PREX);
}
static void gen_load_ea(DisasContext *s, AddressParts *mem, bool is_vsib)
{
TCGv ea = gen_lea_modrm_1(s, *mem, is_vsib);
gen_lea_v_seg(s, s->aflag, ea, mem->def_seg, s->override);
}
static inline int mmx_offset(MemOp ot)
{
switch (ot) {
case MO_8:
return offsetof(MMXReg, MMX_B(0));
case MO_16:
return offsetof(MMXReg, MMX_W(0));
case MO_32:
return offsetof(MMXReg, MMX_L(0));
case MO_64:
return offsetof(MMXReg, MMX_Q(0));
default:
g_assert_not_reached();
}
}
static inline int xmm_offset(MemOp ot)
{
switch (ot) {
case MO_8:
return offsetof(ZMMReg, ZMM_B(0));
case MO_16:
return offsetof(ZMMReg, ZMM_W(0));
case MO_32:
return offsetof(ZMMReg, ZMM_L(0));
case MO_64:
return offsetof(ZMMReg, ZMM_Q(0));
case MO_128:
return offsetof(ZMMReg, ZMM_X(0));
case MO_256:
return offsetof(ZMMReg, ZMM_Y(0));
default:
g_assert_not_reached();
}
}
static int vector_reg_offset(X86DecodedOp *op)
{
assert(op->unit == X86_OP_MMX || op->unit == X86_OP_SSE);
if (op->unit == X86_OP_MMX) {
return op->offset - mmx_offset(op->ot);
} else {
return op->offset - xmm_offset(op->ot);
}
}
static int vector_elem_offset(X86DecodedOp *op, MemOp ot, int n)
{
int base_ofs = vector_reg_offset(op);
switch(ot) {
case MO_8:
if (op->unit == X86_OP_MMX) {
return base_ofs + offsetof(MMXReg, MMX_B(n));
} else {
return base_ofs + offsetof(ZMMReg, ZMM_B(n));
}
case MO_16:
if (op->unit == X86_OP_MMX) {
return base_ofs + offsetof(MMXReg, MMX_W(n));
} else {
return base_ofs + offsetof(ZMMReg, ZMM_W(n));
}
case MO_32:
if (op->unit == X86_OP_MMX) {
return base_ofs + offsetof(MMXReg, MMX_L(n));
} else {
return base_ofs + offsetof(ZMMReg, ZMM_L(n));
}
case MO_64:
if (op->unit == X86_OP_MMX) {
return base_ofs;
} else {
return base_ofs + offsetof(ZMMReg, ZMM_Q(n));
}
case MO_128:
assert(op->unit == X86_OP_SSE);
return base_ofs + offsetof(ZMMReg, ZMM_X(n));
case MO_256:
assert(op->unit == X86_OP_SSE);
return base_ofs + offsetof(ZMMReg, ZMM_Y(n));
default:
g_assert_not_reached();
}
}
static void compute_mmx_offset(X86DecodedOp *op)
{
if (!op->has_ea) {
op->offset = offsetof(CPUX86State, fpregs[op->n].mmx) + mmx_offset(op->ot);
} else {
op->offset = offsetof(CPUX86State, mmx_t0) + mmx_offset(op->ot);
}
}
static void compute_xmm_offset(X86DecodedOp *op)
{
if (!op->has_ea) {
op->offset = ZMM_OFFSET(op->n) + xmm_offset(op->ot);
} else {
op->offset = offsetof(CPUX86State, xmm_t0) + xmm_offset(op->ot);
}
}
static void gen_load_sse(DisasContext *s, TCGv temp, MemOp ot, int dest_ofs, bool aligned)
{
switch(ot) {
case MO_8:
gen_op_ld_v(s, MO_8, temp, s->A0);
tcg_gen_st8_tl(temp, tcg_env, dest_ofs);
break;
case MO_16:
gen_op_ld_v(s, MO_16, temp, s->A0);
tcg_gen_st16_tl(temp, tcg_env, dest_ofs);
break;
case MO_32:
gen_op_ld_v(s, MO_32, temp, s->A0);
tcg_gen_st32_tl(temp, tcg_env, dest_ofs);
break;
case MO_64:
gen_ldq_env_A0(s, dest_ofs);
break;
case MO_128:
gen_ldo_env_A0(s, dest_ofs, aligned);
break;
case MO_256:
gen_ldy_env_A0(s, dest_ofs, aligned);
break;
default:
g_assert_not_reached();
}
}
static bool sse_needs_alignment(DisasContext *s, X86DecodedInsn *decode, MemOp ot)
{
switch (decode->e.vex_class) {
case 2:
case 4:
if ((s->prefix & PREFIX_VEX) ||
decode->e.vex_special == X86_VEX_SSEUnaligned) {
/* MOST legacy SSE instructions require aligned memory operands, but not all. */
return false;
}
/* fall through */
case 1:
return ot >= MO_128;
default:
return false;
}
}
static void gen_load(DisasContext *s, X86DecodedInsn *decode, int opn, TCGv v)
{
X86DecodedOp *op = &decode->op[opn];
switch (op->unit) {
case X86_OP_SKIP:
return;
case X86_OP_SEG:
tcg_gen_ld32u_tl(v, tcg_env,
offsetof(CPUX86State,segs[op->n].selector));
break;
case X86_OP_CR:
tcg_gen_ld_tl(v, tcg_env, offsetof(CPUX86State, cr[op->n]));
break;
case X86_OP_DR:
tcg_gen_ld_tl(v, tcg_env, offsetof(CPUX86State, dr[op->n]));
break;
case X86_OP_INT:
if (op->has_ea) {
if (v == s->T0 && decode->e.special == X86_SPECIAL_SExtT0) {
gen_op_ld_v(s, op->ot | MO_SIGN, v, s->A0);
} else {
gen_op_ld_v(s, op->ot, v, s->A0);
}
} else if (op->ot == MO_8 && byte_reg_is_xH(s, op->n)) {
if (v == s->T0 && decode->e.special == X86_SPECIAL_SExtT0) {
tcg_gen_sextract_tl(v, cpu_regs[op->n - 4], 8, 8);
} else {
tcg_gen_extract_tl(v, cpu_regs[op->n - 4], 8, 8);
}
} else if (op->ot < MO_TL && v == s->T0 &&
(decode->e.special == X86_SPECIAL_SExtT0 ||
decode->e.special == X86_SPECIAL_ZExtT0)) {
if (decode->e.special == X86_SPECIAL_SExtT0) {
tcg_gen_ext_tl(v, cpu_regs[op->n], op->ot | MO_SIGN);
} else {
tcg_gen_ext_tl(v, cpu_regs[op->n], op->ot);
}
} else {
tcg_gen_mov_tl(v, cpu_regs[op->n]);
}
break;
case X86_OP_IMM:
tcg_gen_movi_tl(v, op->imm);
break;
case X86_OP_MMX:
compute_mmx_offset(op);
goto load_vector;
case X86_OP_SSE:
compute_xmm_offset(op);
load_vector:
if (op->has_ea) {
bool aligned = sse_needs_alignment(s, decode, op->ot);
gen_load_sse(s, v, op->ot, op->offset, aligned);
}
break;
default:
g_assert_not_reached();
}
}
static TCGv_ptr op_ptr(X86DecodedInsn *decode, int opn)
{
X86DecodedOp *op = &decode->op[opn];
assert(op->unit == X86_OP_MMX || op->unit == X86_OP_SSE);
if (op->v_ptr) {
return op->v_ptr;
}
op->v_ptr = tcg_temp_new_ptr();
/* The temporary points to the MMXReg or ZMMReg. */
tcg_gen_addi_ptr(op->v_ptr, tcg_env, vector_reg_offset(op));
return op->v_ptr;
}
#define OP_PTR0 op_ptr(decode, 0)
#define OP_PTR1 op_ptr(decode, 1)
#define OP_PTR2 op_ptr(decode, 2)
static void gen_writeback(DisasContext *s, X86DecodedInsn *decode, int opn, TCGv v)
{
X86DecodedOp *op = &decode->op[opn];
switch (op->unit) {
case X86_OP_SKIP:
break;
case X86_OP_SEG:
/* Note that gen_movl_seg takes care of interrupt shadow and TF. */
gen_movl_seg(s, op->n, s->T0);
break;
case X86_OP_INT:
if (op->has_ea) {
gen_op_st_v(s, op->ot, v, s->A0);
} else {
gen_op_mov_reg_v(s, op->ot, op->n, v);
}
break;
case X86_OP_MMX:
break;
case X86_OP_SSE:
if (!op->has_ea && (s->prefix & PREFIX_VEX) && op->ot <= MO_128) {
tcg_gen_gvec_dup_imm(MO_64,
offsetof(CPUX86State, xmm_regs[op->n].ZMM_X(1)),
16, 16, 0);
}
break;
case X86_OP_CR:
case X86_OP_DR:
default:
g_assert_not_reached();
}
op->unit = X86_OP_SKIP;
}
static inline int vector_len(DisasContext *s, X86DecodedInsn *decode)
{
if (decode->e.special == X86_SPECIAL_MMX &&
!(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
return 8;
}
return s->vex_l ? 32 : 16;
}
static void prepare_update1_cc(X86DecodedInsn *decode, DisasContext *s, CCOp op)
{
decode->cc_dst = s->T0;
decode->cc_op = op;
}
static void prepare_update2_cc(X86DecodedInsn *decode, DisasContext *s, CCOp op)
{
decode->cc_src = s->T1;
decode->cc_dst = s->T0;
decode->cc_op = op;
}
static void prepare_update_cc_incdec(X86DecodedInsn *decode, DisasContext *s, CCOp op)
{
gen_compute_eflags_c(s, s->T1);
prepare_update2_cc(decode, s, op);
}
static void prepare_update3_cc(X86DecodedInsn *decode, DisasContext *s, CCOp op, TCGv reg)
{
decode->cc_src2 = reg;
decode->cc_src = s->T1;
decode->cc_dst = s->T0;
decode->cc_op = op;
}
static void gen_store_sse(DisasContext *s, X86DecodedInsn *decode, int src_ofs)
{
MemOp ot = decode->op[0].ot;
int vec_len = vector_len(s, decode);
bool aligned = sse_needs_alignment(s, decode, ot);
if (!decode->op[0].has_ea) {
tcg_gen_gvec_mov(MO_64, decode->op[0].offset, src_ofs, vec_len, vec_len);
return;
}
switch (ot) {
case MO_64:
gen_stq_env_A0(s, src_ofs);
break;
case MO_128:
gen_sto_env_A0(s, src_ofs, aligned);
break;
case MO_256:
gen_sty_env_A0(s, src_ofs, aligned);
break;
default:
g_assert_not_reached();
}
}
static void gen_helper_pavgusb(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b)
{
gen_helper_pavgb_mmx(env, reg_a, reg_a, reg_b);
}
#define FN_3DNOW_MOVE ((SSEFunc_0_epp) (uintptr_t) 1)
static const SSEFunc_0_epp fns_3dnow[] = {
[0x0c] = gen_helper_pi2fw,
[0x0d] = gen_helper_pi2fd,
[0x1c] = gen_helper_pf2iw,
[0x1d] = gen_helper_pf2id,
[0x8a] = gen_helper_pfnacc,
[0x8e] = gen_helper_pfpnacc,
[0x90] = gen_helper_pfcmpge,
[0x94] = gen_helper_pfmin,
[0x96] = gen_helper_pfrcp,
[0x97] = gen_helper_pfrsqrt,
[0x9a] = gen_helper_pfsub,
[0x9e] = gen_helper_pfadd,
[0xa0] = gen_helper_pfcmpgt,
[0xa4] = gen_helper_pfmax,
[0xa6] = FN_3DNOW_MOVE, /* PFRCPIT1; no need to actually increase precision */
[0xa7] = FN_3DNOW_MOVE, /* PFRSQIT1 */
[0xb6] = FN_3DNOW_MOVE, /* PFRCPIT2 */
[0xaa] = gen_helper_pfsubr,
[0xae] = gen_helper_pfacc,
[0xb0] = gen_helper_pfcmpeq,
[0xb4] = gen_helper_pfmul,
[0xb7] = gen_helper_pmulhrw_mmx,
[0xbb] = gen_helper_pswapd,
[0xbf] = gen_helper_pavgusb,
};
static void gen_3dnow(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
uint8_t b = decode->immediate;
SSEFunc_0_epp fn = b < ARRAY_SIZE(fns_3dnow) ? fns_3dnow[b] : NULL;
if (!fn) {
gen_illegal_opcode(s);
return;
}
if (s->flags & HF_TS_MASK) {
gen_NM_exception(s);
return;
}
if (s->flags & HF_EM_MASK) {
gen_illegal_opcode(s);
return;
}
gen_helper_enter_mmx(tcg_env);
if (fn == FN_3DNOW_MOVE) {
tcg_gen_ld_i64(s->tmp1_i64, tcg_env, decode->op[1].offset);
tcg_gen_st_i64(s->tmp1_i64, tcg_env, decode->op[0].offset);
} else {
fn(tcg_env, OP_PTR0, OP_PTR1);
}
}
/*
* 00 = v*ps Vps, Hps, Wpd
* 66 = v*pd Vpd, Hpd, Wps
* f3 = v*ss Vss, Hss, Wps
* f2 = v*sd Vsd, Hsd, Wps
*/
static inline void gen_unary_fp_sse(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
SSEFunc_0_epp pd_xmm, SSEFunc_0_epp ps_xmm,
SSEFunc_0_epp pd_ymm, SSEFunc_0_epp ps_ymm,
SSEFunc_0_eppp sd, SSEFunc_0_eppp ss)
{
if ((s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) != 0) {
SSEFunc_0_eppp fn = s->prefix & PREFIX_REPZ ? ss : sd;
if (!fn) {
gen_illegal_opcode(s);
return;
}
fn(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2);
} else {
SSEFunc_0_epp ps, pd, fn;
ps = s->vex_l ? ps_ymm : ps_xmm;
pd = s->vex_l ? pd_ymm : pd_xmm;
fn = s->prefix & PREFIX_DATA ? pd : ps;
if (!fn) {
gen_illegal_opcode(s);
return;
}
fn(tcg_env, OP_PTR0, OP_PTR2);
}
}
#define UNARY_FP_SSE(uname, lname) \
static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
{ \
gen_unary_fp_sse(s, env, decode, \
gen_helper_##lname##pd_xmm, \
gen_helper_##lname##ps_xmm, \
gen_helper_##lname##pd_ymm, \
gen_helper_##lname##ps_ymm, \
gen_helper_##lname##sd, \
gen_helper_##lname##ss); \
}
UNARY_FP_SSE(VSQRT, sqrt)
/*
* 00 = v*ps Vps, Hps, Wpd
* 66 = v*pd Vpd, Hpd, Wps
* f3 = v*ss Vss, Hss, Wps
* f2 = v*sd Vsd, Hsd, Wps
*/
static inline void gen_fp_sse(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
SSEFunc_0_eppp pd_xmm, SSEFunc_0_eppp ps_xmm,
SSEFunc_0_eppp pd_ymm, SSEFunc_0_eppp ps_ymm,
SSEFunc_0_eppp sd, SSEFunc_0_eppp ss)
{
SSEFunc_0_eppp ps, pd, fn;
if ((s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) != 0) {
fn = s->prefix & PREFIX_REPZ ? ss : sd;
} else {
ps = s->vex_l ? ps_ymm : ps_xmm;
pd = s->vex_l ? pd_ymm : pd_xmm;
fn = s->prefix & PREFIX_DATA ? pd : ps;
}
if (fn) {
fn(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2);
} else {
gen_illegal_opcode(s);
}
}
#define FP_SSE(uname, lname) \
static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
{ \
gen_fp_sse(s, env, decode, \
gen_helper_##lname##pd_xmm, \
gen_helper_##lname##ps_xmm, \
gen_helper_##lname##pd_ymm, \
gen_helper_##lname##ps_ymm, \
gen_helper_##lname##sd, \
gen_helper_##lname##ss); \
}
FP_SSE(VADD, add)
FP_SSE(VMUL, mul)
FP_SSE(VSUB, sub)
FP_SSE(VMIN, min)
FP_SSE(VDIV, div)
FP_SSE(VMAX, max)
#define FMA_SSE_PACKED(uname, ptr0, ptr1, ptr2, even, odd) \
static void gen_##uname##Px(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
{ \
SSEFunc_0_eppppii xmm = s->vex_w ? gen_helper_fma4pd_xmm : gen_helper_fma4ps_xmm; \
SSEFunc_0_eppppii ymm = s->vex_w ? gen_helper_fma4pd_ymm : gen_helper_fma4ps_ymm; \
SSEFunc_0_eppppii fn = s->vex_l ? ymm : xmm; \
\
fn(tcg_env, OP_PTR0, ptr0, ptr1, ptr2, \
tcg_constant_i32(even), \
tcg_constant_i32((even) ^ (odd))); \
}
#define FMA_SSE(uname, ptr0, ptr1, ptr2, flags) \
FMA_SSE_PACKED(uname, ptr0, ptr1, ptr2, flags, flags) \
static void gen_##uname##Sx(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
{ \
SSEFunc_0_eppppi fn = s->vex_w ? gen_helper_fma4sd : gen_helper_fma4ss; \
\
fn(tcg_env, OP_PTR0, ptr0, ptr1, ptr2, \
tcg_constant_i32(flags)); \
} \
FMA_SSE(VFMADD231, OP_PTR1, OP_PTR2, OP_PTR0, 0)
FMA_SSE(VFMADD213, OP_PTR1, OP_PTR0, OP_PTR2, 0)
FMA_SSE(VFMADD132, OP_PTR0, OP_PTR2, OP_PTR1, 0)
FMA_SSE(VFNMADD231, OP_PTR1, OP_PTR2, OP_PTR0, float_muladd_negate_product)
FMA_SSE(VFNMADD213, OP_PTR1, OP_PTR0, OP_PTR2, float_muladd_negate_product)
FMA_SSE(VFNMADD132, OP_PTR0, OP_PTR2, OP_PTR1, float_muladd_negate_product)
FMA_SSE(VFMSUB231, OP_PTR1, OP_PTR2, OP_PTR0, float_muladd_negate_c)
FMA_SSE(VFMSUB213, OP_PTR1, OP_PTR0, OP_PTR2, float_muladd_negate_c)
FMA_SSE(VFMSUB132, OP_PTR0, OP_PTR2, OP_PTR1, float_muladd_negate_c)
FMA_SSE(VFNMSUB231, OP_PTR1, OP_PTR2, OP_PTR0, float_muladd_negate_c|float_muladd_negate_product)
FMA_SSE(VFNMSUB213, OP_PTR1, OP_PTR0, OP_PTR2, float_muladd_negate_c|float_muladd_negate_product)
FMA_SSE(VFNMSUB132, OP_PTR0, OP_PTR2, OP_PTR1, float_muladd_negate_c|float_muladd_negate_product)
FMA_SSE_PACKED(VFMADDSUB231, OP_PTR1, OP_PTR2, OP_PTR0, float_muladd_negate_c, 0)
FMA_SSE_PACKED(VFMADDSUB213, OP_PTR1, OP_PTR0, OP_PTR2, float_muladd_negate_c, 0)
FMA_SSE_PACKED(VFMADDSUB132, OP_PTR0, OP_PTR2, OP_PTR1, float_muladd_negate_c, 0)
FMA_SSE_PACKED(VFMSUBADD231, OP_PTR1, OP_PTR2, OP_PTR0, 0, float_muladd_negate_c)
FMA_SSE_PACKED(VFMSUBADD213, OP_PTR1, OP_PTR0, OP_PTR2, 0, float_muladd_negate_c)
FMA_SSE_PACKED(VFMSUBADD132, OP_PTR0, OP_PTR2, OP_PTR1, 0, float_muladd_negate_c)
#define FP_UNPACK_SSE(uname, lname) \
static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
{ \
/* PS maps to the DQ integer instruction, PD maps to QDQ. */ \
gen_fp_sse(s, env, decode, \
gen_helper_##lname##qdq_xmm, \
gen_helper_##lname##dq_xmm, \
gen_helper_##lname##qdq_ymm, \
gen_helper_##lname##dq_ymm, \
NULL, NULL); \
}
FP_UNPACK_SSE(VUNPCKLPx, punpckl)
FP_UNPACK_SSE(VUNPCKHPx, punpckh)
/*
* 00 = v*ps Vps, Wpd
* f3 = v*ss Vss, Wps
*/
static inline void gen_unary_fp32_sse(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
SSEFunc_0_epp ps_xmm,
SSEFunc_0_epp ps_ymm,
SSEFunc_0_eppp ss)
{
if ((s->prefix & (PREFIX_DATA | PREFIX_REPNZ)) != 0) {
goto illegal_op;
} else if (s->prefix & PREFIX_REPZ) {
if (!ss) {
goto illegal_op;
}
ss(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2);
} else {
SSEFunc_0_epp fn = s->vex_l ? ps_ymm : ps_xmm;
if (!fn) {
goto illegal_op;
}
fn(tcg_env, OP_PTR0, OP_PTR2);
}
return;
illegal_op:
gen_illegal_opcode(s);
}
#define UNARY_FP32_SSE(uname, lname) \
static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
{ \
gen_unary_fp32_sse(s, env, decode, \
gen_helper_##lname##ps_xmm, \
gen_helper_##lname##ps_ymm, \
gen_helper_##lname##ss); \
}
UNARY_FP32_SSE(VRSQRT, rsqrt)
UNARY_FP32_SSE(VRCP, rcp)
/*
* 66 = v*pd Vpd, Hpd, Wpd
* f2 = v*ps Vps, Hps, Wps
*/
static inline void gen_horizontal_fp_sse(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
SSEFunc_0_eppp pd_xmm, SSEFunc_0_eppp ps_xmm,
SSEFunc_0_eppp pd_ymm, SSEFunc_0_eppp ps_ymm)
{
SSEFunc_0_eppp ps, pd, fn;
ps = s->vex_l ? ps_ymm : ps_xmm;
pd = s->vex_l ? pd_ymm : pd_xmm;
fn = s->prefix & PREFIX_DATA ? pd : ps;
fn(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2);
}
#define HORIZONTAL_FP_SSE(uname, lname) \
static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
{ \
gen_horizontal_fp_sse(s, env, decode, \
gen_helper_##lname##pd_xmm, gen_helper_##lname##ps_xmm, \
gen_helper_##lname##pd_ymm, gen_helper_##lname##ps_ymm); \
}
HORIZONTAL_FP_SSE(VHADD, hadd)
HORIZONTAL_FP_SSE(VHSUB, hsub)
HORIZONTAL_FP_SSE(VADDSUB, addsub)
static inline void gen_ternary_sse(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
int op3, SSEFunc_0_epppp xmm, SSEFunc_0_epppp ymm)
{
SSEFunc_0_epppp fn = s->vex_l ? ymm : xmm;
TCGv_ptr ptr3 = tcg_temp_new_ptr();
/* The format of the fourth input is Lx */
tcg_gen_addi_ptr(ptr3, tcg_env, ZMM_OFFSET(op3));
fn(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2, ptr3);
}
#define TERNARY_SSE(uname, uvname, lname) \
static void gen_##uvname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
{ \
gen_ternary_sse(s, env, decode, (uint8_t)decode->immediate >> 4, \
gen_helper_##lname##_xmm, gen_helper_##lname##_ymm); \
} \
static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
{ \
gen_ternary_sse(s, env, decode, 0, \
gen_helper_##lname##_xmm, gen_helper_##lname##_ymm); \
}
TERNARY_SSE(BLENDVPS, VBLENDVPS, blendvps)
TERNARY_SSE(BLENDVPD, VBLENDVPD, blendvpd)
TERNARY_SSE(PBLENDVB, VPBLENDVB, pblendvb)
static inline void gen_binary_imm_sse(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
SSEFunc_0_epppi xmm, SSEFunc_0_epppi ymm)
{
TCGv_i32 imm = tcg_constant8u_i32(decode->immediate);
if (!s->vex_l) {
xmm(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2, imm);
} else {
ymm(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2, imm);
}
}
#define BINARY_IMM_SSE(uname, lname) \
static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
{ \
gen_binary_imm_sse(s, env, decode, \
gen_helper_##lname##_xmm, \
gen_helper_##lname##_ymm); \
}
BINARY_IMM_SSE(VBLENDPD, blendpd)
BINARY_IMM_SSE(VBLENDPS, blendps)
BINARY_IMM_SSE(VPBLENDW, pblendw)
BINARY_IMM_SSE(VDDPS, dpps)
#define gen_helper_dppd_ymm NULL
BINARY_IMM_SSE(VDDPD, dppd)
BINARY_IMM_SSE(VMPSADBW, mpsadbw)
BINARY_IMM_SSE(PCLMULQDQ, pclmulqdq)
#define UNARY_INT_GVEC(uname, func, ...) \
static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
{ \
int vec_len = vector_len(s, decode); \
\
func(__VA_ARGS__, decode->op[0].offset, \
decode->op[2].offset, vec_len, vec_len); \
}
UNARY_INT_GVEC(PABSB, tcg_gen_gvec_abs, MO_8)
UNARY_INT_GVEC(PABSW, tcg_gen_gvec_abs, MO_16)
UNARY_INT_GVEC(PABSD, tcg_gen_gvec_abs, MO_32)
UNARY_INT_GVEC(VBROADCASTx128, tcg_gen_gvec_dup_mem, MO_128)
UNARY_INT_GVEC(VPBROADCASTB, tcg_gen_gvec_dup_mem, MO_8)
UNARY_INT_GVEC(VPBROADCASTW, tcg_gen_gvec_dup_mem, MO_16)
UNARY_INT_GVEC(VPBROADCASTD, tcg_gen_gvec_dup_mem, MO_32)
UNARY_INT_GVEC(VPBROADCASTQ, tcg_gen_gvec_dup_mem, MO_64)
#define BINARY_INT_GVEC(uname, func, ...) \
static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
{ \
int vec_len = vector_len(s, decode); \
\
func(__VA_ARGS__, \
decode->op[0].offset, decode->op[1].offset, \
decode->op[2].offset, vec_len, vec_len); \
}
BINARY_INT_GVEC(PADDB, tcg_gen_gvec_add, MO_8)
BINARY_INT_GVEC(PADDW, tcg_gen_gvec_add, MO_16)
BINARY_INT_GVEC(PADDD, tcg_gen_gvec_add, MO_32)
BINARY_INT_GVEC(PADDQ, tcg_gen_gvec_add, MO_64)
BINARY_INT_GVEC(PADDSB, tcg_gen_gvec_ssadd, MO_8)
BINARY_INT_GVEC(PADDSW, tcg_gen_gvec_ssadd, MO_16)
BINARY_INT_GVEC(PADDUSB, tcg_gen_gvec_usadd, MO_8)
BINARY_INT_GVEC(PADDUSW, tcg_gen_gvec_usadd, MO_16)
BINARY_INT_GVEC(PAND, tcg_gen_gvec_and, MO_64)
BINARY_INT_GVEC(PCMPEQB, tcg_gen_gvec_cmp, TCG_COND_EQ, MO_8)
BINARY_INT_GVEC(PCMPEQD, tcg_gen_gvec_cmp, TCG_COND_EQ, MO_32)
BINARY_INT_GVEC(PCMPEQW, tcg_gen_gvec_cmp, TCG_COND_EQ, MO_16)
BINARY_INT_GVEC(PCMPEQQ, tcg_gen_gvec_cmp, TCG_COND_EQ, MO_64)
BINARY_INT_GVEC(PCMPGTB, tcg_gen_gvec_cmp, TCG_COND_GT, MO_8)
BINARY_INT_GVEC(PCMPGTW, tcg_gen_gvec_cmp, TCG_COND_GT, MO_16)
BINARY_INT_GVEC(PCMPGTD, tcg_gen_gvec_cmp, TCG_COND_GT, MO_32)
BINARY_INT_GVEC(PCMPGTQ, tcg_gen_gvec_cmp, TCG_COND_GT, MO_64)
BINARY_INT_GVEC(PMAXSB, tcg_gen_gvec_smax, MO_8)
BINARY_INT_GVEC(PMAXSW, tcg_gen_gvec_smax, MO_16)
BINARY_INT_GVEC(PMAXSD, tcg_gen_gvec_smax, MO_32)
BINARY_INT_GVEC(PMAXUB, tcg_gen_gvec_umax, MO_8)
BINARY_INT_GVEC(PMAXUW, tcg_gen_gvec_umax, MO_16)
BINARY_INT_GVEC(PMAXUD, tcg_gen_gvec_umax, MO_32)
BINARY_INT_GVEC(PMINSB, tcg_gen_gvec_smin, MO_8)
BINARY_INT_GVEC(PMINSW, tcg_gen_gvec_smin, MO_16)
BINARY_INT_GVEC(PMINSD, tcg_gen_gvec_smin, MO_32)
BINARY_INT_GVEC(PMINUB, tcg_gen_gvec_umin, MO_8)
BINARY_INT_GVEC(PMINUW, tcg_gen_gvec_umin, MO_16)
BINARY_INT_GVEC(PMINUD, tcg_gen_gvec_umin, MO_32)
BINARY_INT_GVEC(PMULLW, tcg_gen_gvec_mul, MO_16)
BINARY_INT_GVEC(PMULLD, tcg_gen_gvec_mul, MO_32)
BINARY_INT_GVEC(POR, tcg_gen_gvec_or, MO_64)
BINARY_INT_GVEC(PSUBB, tcg_gen_gvec_sub, MO_8)
BINARY_INT_GVEC(PSUBW, tcg_gen_gvec_sub, MO_16)
BINARY_INT_GVEC(PSUBD, tcg_gen_gvec_sub, MO_32)
BINARY_INT_GVEC(PSUBQ, tcg_gen_gvec_sub, MO_64)
BINARY_INT_GVEC(PSUBSB, tcg_gen_gvec_sssub, MO_8)
BINARY_INT_GVEC(PSUBSW, tcg_gen_gvec_sssub, MO_16)
BINARY_INT_GVEC(PSUBUSB, tcg_gen_gvec_ussub, MO_8)
BINARY_INT_GVEC(PSUBUSW, tcg_gen_gvec_ussub, MO_16)
BINARY_INT_GVEC(PXOR, tcg_gen_gvec_xor, MO_64)
/*
* 00 = p* Pq, Qq (if mmx not NULL; no VEX)
* 66 = vp* Vx, Hx, Wx
*
* These are really the same encoding, because 1) V is the same as P when VEX.V
* is not present 2) P and Q are the same as H and W apart from MM/XMM
*/
static inline void gen_binary_int_sse(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
SSEFunc_0_eppp mmx, SSEFunc_0_eppp xmm, SSEFunc_0_eppp ymm)
{
assert(!!mmx == !!(decode->e.special == X86_SPECIAL_MMX));
if (mmx && (s->prefix & PREFIX_VEX) && !(s->prefix & PREFIX_DATA)) {
/* VEX encoding is not applicable to MMX instructions. */
gen_illegal_opcode(s);
return;
}
if (!(s->prefix & PREFIX_DATA)) {
mmx(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2);
} else if (!s->vex_l) {
xmm(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2);
} else {
ymm(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2);
}
}
#define BINARY_INT_MMX(uname, lname) \
static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
{ \
gen_binary_int_sse(s, env, decode, \
gen_helper_##lname##_mmx, \
gen_helper_##lname##_xmm, \
gen_helper_##lname##_ymm); \
}
BINARY_INT_MMX(PUNPCKLBW, punpcklbw)
BINARY_INT_MMX(PUNPCKLWD, punpcklwd)
BINARY_INT_MMX(PUNPCKLDQ, punpckldq)
BINARY_INT_MMX(PACKSSWB, packsswb)
BINARY_INT_MMX(PACKUSWB, packuswb)
BINARY_INT_MMX(PUNPCKHBW, punpckhbw)
BINARY_INT_MMX(PUNPCKHWD, punpckhwd)
BINARY_INT_MMX(PUNPCKHDQ, punpckhdq)
BINARY_INT_MMX(PACKSSDW, packssdw)
BINARY_INT_MMX(PAVGB, pavgb)
BINARY_INT_MMX(PAVGW, pavgw)
BINARY_INT_MMX(PMADDWD, pmaddwd)
BINARY_INT_MMX(PMULHUW, pmulhuw)
BINARY_INT_MMX(PMULHW, pmulhw)
BINARY_INT_MMX(PMULUDQ, pmuludq)
BINARY_INT_MMX(PSADBW, psadbw)
BINARY_INT_MMX(PSLLW_r, psllw)
BINARY_INT_MMX(PSLLD_r, pslld)
BINARY_INT_MMX(PSLLQ_r, psllq)
BINARY_INT_MMX(PSRLW_r, psrlw)
BINARY_INT_MMX(PSRLD_r, psrld)
BINARY_INT_MMX(PSRLQ_r, psrlq)
BINARY_INT_MMX(PSRAW_r, psraw)
BINARY_INT_MMX(PSRAD_r, psrad)
BINARY_INT_MMX(PHADDW, phaddw)
BINARY_INT_MMX(PHADDSW, phaddsw)
BINARY_INT_MMX(PHADDD, phaddd)
BINARY_INT_MMX(PHSUBW, phsubw)
BINARY_INT_MMX(PHSUBSW, phsubsw)
BINARY_INT_MMX(PHSUBD, phsubd)
BINARY_INT_MMX(PMADDUBSW, pmaddubsw)
BINARY_INT_MMX(PSHUFB, pshufb)
BINARY_INT_MMX(PSIGNB, psignb)
BINARY_INT_MMX(PSIGNW, psignw)
BINARY_INT_MMX(PSIGND, psignd)
BINARY_INT_MMX(PMULHRSW, pmulhrsw)
/* Instructions with no MMX equivalent. */
#define BINARY_INT_SSE(uname, lname) \
static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
{ \
gen_binary_int_sse(s, env, decode, \
NULL, \
gen_helper_##lname##_xmm, \
gen_helper_##lname##_ymm); \
}
/* Instructions with no MMX equivalent. */
BINARY_INT_SSE(PUNPCKLQDQ, punpcklqdq)
BINARY_INT_SSE(PUNPCKHQDQ, punpckhqdq)
BINARY_INT_SSE(VPACKUSDW, packusdw)
BINARY_INT_SSE(VPERMILPS, vpermilps)
BINARY_INT_SSE(VPERMILPD, vpermilpd)
BINARY_INT_SSE(VMASKMOVPS, vpmaskmovd)
BINARY_INT_SSE(VMASKMOVPD, vpmaskmovq)
BINARY_INT_SSE(PMULDQ, pmuldq)
BINARY_INT_SSE(VAESDEC, aesdec)
BINARY_INT_SSE(VAESDECLAST, aesdeclast)
BINARY_INT_SSE(VAESENC, aesenc)
BINARY_INT_SSE(VAESENCLAST, aesenclast)
#define UNARY_CMP_SSE(uname, lname) \
static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
{ \
if (!s->vex_l) { \
gen_helper_##lname##_xmm(tcg_env, OP_PTR1, OP_PTR2); \
} else { \
gen_helper_##lname##_ymm(tcg_env, OP_PTR1, OP_PTR2); \
} \
set_cc_op(s, CC_OP_EFLAGS); \
}
UNARY_CMP_SSE(VPTEST, ptest)
UNARY_CMP_SSE(VTESTPS, vtestps)
UNARY_CMP_SSE(VTESTPD, vtestpd)
static inline void gen_unary_int_sse(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
SSEFunc_0_epp xmm, SSEFunc_0_epp ymm)
{
if (!s->vex_l) {
xmm(tcg_env, OP_PTR0, OP_PTR2);
} else {
ymm(tcg_env, OP_PTR0, OP_PTR2);
}
}
#define UNARY_INT_SSE(uname, lname) \
static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
{ \
gen_unary_int_sse(s, env, decode, \
gen_helper_##lname##_xmm, \
gen_helper_##lname##_ymm); \
}
UNARY_INT_SSE(VPMOVSXBW, pmovsxbw)
UNARY_INT_SSE(VPMOVSXBD, pmovsxbd)
UNARY_INT_SSE(VPMOVSXBQ, pmovsxbq)
UNARY_INT_SSE(VPMOVSXWD, pmovsxwd)
UNARY_INT_SSE(VPMOVSXWQ, pmovsxwq)
UNARY_INT_SSE(VPMOVSXDQ, pmovsxdq)
UNARY_INT_SSE(VPMOVZXBW, pmovzxbw)
UNARY_INT_SSE(VPMOVZXBD, pmovzxbd)
UNARY_INT_SSE(VPMOVZXBQ, pmovzxbq)
UNARY_INT_SSE(VPMOVZXWD, pmovzxwd)
UNARY_INT_SSE(VPMOVZXWQ, pmovzxwq)
UNARY_INT_SSE(VPMOVZXDQ, pmovzxdq)
UNARY_INT_SSE(VMOVSLDUP, pmovsldup)
UNARY_INT_SSE(VMOVSHDUP, pmovshdup)
UNARY_INT_SSE(VMOVDDUP, pmovdldup)
UNARY_INT_SSE(VCVTDQ2PD, cvtdq2pd)
UNARY_INT_SSE(VCVTPD2DQ, cvtpd2dq)
UNARY_INT_SSE(VCVTTPD2DQ, cvttpd2dq)
UNARY_INT_SSE(VCVTDQ2PS, cvtdq2ps)
UNARY_INT_SSE(VCVTPS2DQ, cvtps2dq)
UNARY_INT_SSE(VCVTTPS2DQ, cvttps2dq)
UNARY_INT_SSE(VCVTPH2PS, cvtph2ps)
static inline void gen_unary_imm_sse(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
SSEFunc_0_ppi xmm, SSEFunc_0_ppi ymm)
{
TCGv_i32 imm = tcg_constant8u_i32(decode->immediate);
if (!s->vex_l) {
xmm(OP_PTR0, OP_PTR1, imm);
} else {
ymm(OP_PTR0, OP_PTR1, imm);
}
}
#define UNARY_IMM_SSE(uname, lname) \
static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
{ \
gen_unary_imm_sse(s, env, decode, \
gen_helper_##lname##_xmm, \
gen_helper_##lname##_ymm); \
}
UNARY_IMM_SSE(PSHUFD, pshufd)
UNARY_IMM_SSE(PSHUFHW, pshufhw)
UNARY_IMM_SSE(PSHUFLW, pshuflw)
#define gen_helper_vpermq_xmm NULL
UNARY_IMM_SSE(VPERMQ, vpermq)
UNARY_IMM_SSE(VPERMILPS_i, vpermilps_imm)
UNARY_IMM_SSE(VPERMILPD_i, vpermilpd_imm)
static inline void gen_unary_imm_fp_sse(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
SSEFunc_0_eppi xmm, SSEFunc_0_eppi ymm)
{
TCGv_i32 imm = tcg_constant8u_i32(decode->immediate);
if (!s->vex_l) {
xmm(tcg_env, OP_PTR0, OP_PTR1, imm);
} else {
ymm(tcg_env, OP_PTR0, OP_PTR1, imm);
}
}
#define UNARY_IMM_FP_SSE(uname, lname) \
static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
{ \
gen_unary_imm_fp_sse(s, env, decode, \
gen_helper_##lname##_xmm, \
gen_helper_##lname##_ymm); \
}
UNARY_IMM_FP_SSE(VROUNDPS, roundps)
UNARY_IMM_FP_SSE(VROUNDPD, roundpd)
static inline void gen_vexw_avx(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
SSEFunc_0_eppp d_xmm, SSEFunc_0_eppp q_xmm,
SSEFunc_0_eppp d_ymm, SSEFunc_0_eppp q_ymm)
{
SSEFunc_0_eppp d = s->vex_l ? d_ymm : d_xmm;
SSEFunc_0_eppp q = s->vex_l ? q_ymm : q_xmm;
SSEFunc_0_eppp fn = s->vex_w ? q : d;
fn(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2);
}
/* VEX.W affects whether to operate on 32- or 64-bit elements. */
#define VEXW_AVX(uname, lname) \
static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
{ \
gen_vexw_avx(s, env, decode, \
gen_helper_##lname##d_xmm, gen_helper_##lname##q_xmm, \
gen_helper_##lname##d_ymm, gen_helper_##lname##q_ymm); \
}
VEXW_AVX(VPSLLV, vpsllv)
VEXW_AVX(VPSRLV, vpsrlv)
VEXW_AVX(VPSRAV, vpsrav)
VEXW_AVX(VPMASKMOV, vpmaskmov)
/* Same as above, but with extra arguments to the helper. */
static inline void gen_vsib_avx(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
SSEFunc_0_epppti d_xmm, SSEFunc_0_epppti q_xmm,
SSEFunc_0_epppti d_ymm, SSEFunc_0_epppti q_ymm)
{
SSEFunc_0_epppti d = s->vex_l ? d_ymm : d_xmm;
SSEFunc_0_epppti q = s->vex_l ? q_ymm : q_xmm;
SSEFunc_0_epppti fn = s->vex_w ? q : d;
TCGv_i32 scale = tcg_constant_i32(decode->mem.scale);
TCGv_ptr index = tcg_temp_new_ptr();
/* Pass third input as (index, base, scale) */
tcg_gen_addi_ptr(index, tcg_env, ZMM_OFFSET(decode->mem.index));
fn(tcg_env, OP_PTR0, OP_PTR1, index, s->A0, scale);
/*
* There are two output operands, so zero OP1's high 128 bits
* in the VEX.128 case.
*/
if (!s->vex_l) {
int ymmh_ofs = vector_elem_offset(&decode->op[1], MO_128, 1);
tcg_gen_gvec_dup_imm(MO_64, ymmh_ofs, 16, 16, 0);
}
}
#define VSIB_AVX(uname, lname) \
static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
{ \
gen_vsib_avx(s, env, decode, \
gen_helper_##lname##d_xmm, gen_helper_##lname##q_xmm, \
gen_helper_##lname##d_ymm, gen_helper_##lname##q_ymm); \
}
VSIB_AVX(VPGATHERD, vpgatherd)
VSIB_AVX(VPGATHERQ, vpgatherq)
static void gen_AAA(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_update_cc_op(s);
gen_helper_aaa(tcg_env);
set_cc_op(s, CC_OP_EFLAGS);
}
static void gen_AAD(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_helper_aad(tcg_env, tcg_constant_i32(decode->immediate));
set_cc_op(s, CC_OP_LOGICB);
}
static void gen_AAM(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
if (decode->immediate == 0) {
gen_exception(s, EXCP00_DIVZ);
} else {
gen_helper_aam(tcg_env, tcg_constant_i32(decode->immediate));
set_cc_op(s, CC_OP_LOGICB);
}
}
static void gen_AAS(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_update_cc_op(s);
gen_helper_aas(tcg_env);
set_cc_op(s, CC_OP_EFLAGS);
}
static void gen_ADC(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[1].ot;
TCGv c_in = tcg_temp_new();
gen_compute_eflags_c(s, c_in);
if (s->prefix & PREFIX_LOCK) {
tcg_gen_add_tl(s->T0, c_in, s->T1);
tcg_gen_atomic_add_fetch_tl(s->T0, s->A0, s->T0,
s->mem_index, ot | MO_LE);
} else {
tcg_gen_add_tl(s->T0, s->T0, s->T1);
tcg_gen_add_tl(s->T0, s->T0, c_in);
}
prepare_update3_cc(decode, s, CC_OP_ADCB + ot, c_in);
}
/* ADCX/ADOX do not have memory operands and can use set_cc_op. */
static void gen_ADCOX(DisasContext *s, CPUX86State *env, MemOp ot, int cc_op)
{
int opposite_cc_op;
TCGv carry_in = NULL;
TCGv carry_out = (cc_op == CC_OP_ADCX ? cpu_cc_dst : cpu_cc_src2);
TCGv zero;
if (cc_op == s->cc_op || s->cc_op == CC_OP_ADCOX) {
/* Re-use the carry-out from a previous round. */
carry_in = carry_out;
} else {
/* We don't have a carry-in, get it out of EFLAGS. */
if (s->cc_op != CC_OP_ADCX && s->cc_op != CC_OP_ADOX) {
gen_compute_eflags(s);
}
carry_in = s->tmp0;
tcg_gen_extract_tl(carry_in, cpu_cc_src,
ctz32(cc_op == CC_OP_ADCX ? CC_C : CC_O), 1);
}
switch (ot) {
#ifdef TARGET_X86_64
case MO_32:
/* If TL is 64-bit just do everything in 64-bit arithmetic. */
tcg_gen_ext32u_tl(s->T0, s->T0);
tcg_gen_ext32u_tl(s->T1, s->T1);
tcg_gen_add_i64(s->T0, s->T0, s->T1);
tcg_gen_add_i64(s->T0, s->T0, carry_in);
tcg_gen_shri_i64(carry_out, s->T0, 32);
break;
#endif
default:
zero = tcg_constant_tl(0);
tcg_gen_add2_tl(s->T0, carry_out, s->T0, zero, carry_in, zero);
tcg_gen_add2_tl(s->T0, carry_out, s->T0, carry_out, s->T1, zero);
break;
}
opposite_cc_op = cc_op == CC_OP_ADCX ? CC_OP_ADOX : CC_OP_ADCX;
if (s->cc_op == CC_OP_ADCOX || s->cc_op == opposite_cc_op) {
/* Merge with the carry-out from the opposite instruction. */
set_cc_op(s, CC_OP_ADCOX);
} else {
set_cc_op(s, cc_op);
}
}
static void gen_ADCX(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_ADCOX(s, env, decode->op[0].ot, CC_OP_ADCX);
}
static void gen_ADD(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[1].ot;
if (s->prefix & PREFIX_LOCK) {
tcg_gen_atomic_add_fetch_tl(s->T0, s->A0, s->T1,
s->mem_index, ot | MO_LE);
} else {
tcg_gen_add_tl(s->T0, s->T0, s->T1);
}
prepare_update2_cc(decode, s, CC_OP_ADDB + ot);
}
static void gen_ADOX(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_ADCOX(s, env, decode->op[0].ot, CC_OP_ADOX);
}
static void gen_AND(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[1].ot;
if (s->prefix & PREFIX_LOCK) {
tcg_gen_atomic_and_fetch_tl(s->T0, s->A0, s->T1,
s->mem_index, ot | MO_LE);
} else {
tcg_gen_and_tl(s->T0, s->T0, s->T1);
}
prepare_update1_cc(decode, s, CC_OP_LOGICB + ot);
}
static void gen_ANDN(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[0].ot;
tcg_gen_andc_tl(s->T0, s->T1, s->T0);
prepare_update1_cc(decode, s, CC_OP_LOGICB + ot);
}
static void gen_ARPL(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
TCGv zf = tcg_temp_new();
TCGv flags = tcg_temp_new();
gen_mov_eflags(s, flags);
/* Compute adjusted DST in T1, merging in SRC[RPL]. */
tcg_gen_deposit_tl(s->T1, s->T0, s->T1, 0, 2);
/* Z flag set if DST[RPL] < SRC[RPL] */
tcg_gen_setcond_tl(TCG_COND_LTU, zf, s->T0, s->T1);
tcg_gen_deposit_tl(flags, flags, zf, ctz32(CC_Z), 1);
/* Place maximum RPL in DST */
tcg_gen_umax_tl(s->T0, s->T0, s->T1);
decode->cc_src = flags;
decode->cc_op = CC_OP_EFLAGS;
}
static void gen_BEXTR(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[0].ot;
TCGv bound = tcg_constant_tl(ot == MO_64 ? 63 : 31);
TCGv zero = tcg_constant_tl(0);
TCGv mone = tcg_constant_tl(-1);
/*
* Extract START, and shift the operand.
* Shifts larger than operand size get zeros.
*/
tcg_gen_ext8u_tl(s->A0, s->T1);
tcg_gen_shr_tl(s->T0, s->T0, s->A0);
tcg_gen_movcond_tl(TCG_COND_LEU, s->T0, s->A0, bound, s->T0, zero);
/*
* Extract the LEN into an inverse mask. Lengths larger than
* operand size get all zeros, length 0 gets all ones.
*/
tcg_gen_extract_tl(s->A0, s->T1, 8, 8);
tcg_gen_shl_tl(s->T1, mone, s->A0);
tcg_gen_movcond_tl(TCG_COND_LEU, s->T1, s->A0, bound, s->T1, zero);
tcg_gen_andc_tl(s->T0, s->T0, s->T1);
prepare_update1_cc(decode, s, CC_OP_LOGICB + ot);
}
/* BLSI do not have memory operands and can use set_cc_op. */
static void gen_BLSI(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[0].ot;
tcg_gen_mov_tl(cpu_cc_src, s->T0);
tcg_gen_neg_tl(s->T1, s->T0);
tcg_gen_and_tl(s->T0, s->T0, s->T1);
tcg_gen_mov_tl(cpu_cc_dst, s->T0);
set_cc_op(s, CC_OP_BMILGB + ot);
}
/* BLSMSK do not have memory operands and can use set_cc_op. */
static void gen_BLSMSK(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[0].ot;
tcg_gen_mov_tl(cpu_cc_src, s->T0);
tcg_gen_subi_tl(s->T1, s->T0, 1);
tcg_gen_xor_tl(s->T0, s->T0, s->T1);
tcg_gen_mov_tl(cpu_cc_dst, s->T0);
set_cc_op(s, CC_OP_BMILGB + ot);
}
/* BLSR do not have memory operands and can use set_cc_op. */
static void gen_BLSR(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[0].ot;
tcg_gen_mov_tl(cpu_cc_src, s->T0);
tcg_gen_subi_tl(s->T1, s->T0, 1);
tcg_gen_and_tl(s->T0, s->T0, s->T1);
tcg_gen_mov_tl(cpu_cc_dst, s->T0);
set_cc_op(s, CC_OP_BMILGB + ot);
}
static void gen_BOUND(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
TCGv_i32 op = tcg_temp_new_i32();
tcg_gen_trunc_tl_i32(op, s->T0);
if (decode->op[1].ot == MO_16) {
gen_helper_boundw(tcg_env, s->A0, op);
} else {
gen_helper_boundl(tcg_env, s->A0, op);
}
}
static void gen_BSWAP(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
#ifdef TARGET_X86_64
if (s->dflag == MO_64) {
tcg_gen_bswap64_i64(s->T0, s->T0);
return;
}
#endif
tcg_gen_bswap32_tl(s->T0, s->T0, TCG_BSWAP_OZ);
}
static void gen_BZHI(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[0].ot;
TCGv bound = tcg_constant_tl(ot == MO_64 ? 63 : 31);
TCGv zero = tcg_constant_tl(0);
TCGv mone = tcg_constant_tl(-1);
tcg_gen_ext8u_tl(s->T1, s->T1);
tcg_gen_shl_tl(s->A0, mone, s->T1);
tcg_gen_movcond_tl(TCG_COND_LEU, s->A0, s->T1, bound, s->A0, zero);
tcg_gen_andc_tl(s->T0, s->T0, s->A0);
/*
* Note that since we're using BMILG (in order to get O
* cleared) we need to store the inverse into C.
*/
tcg_gen_setcond_tl(TCG_COND_LEU, s->T1, s->T1, bound);
prepare_update2_cc(decode, s, CC_OP_BMILGB + ot);
}
static void gen_CALL(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_push_v(s, eip_next_tl(s));
gen_JMP(s, env, decode);
}
static void gen_CALL_m(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_push_v(s, eip_next_tl(s));
gen_JMP_m(s, env, decode);
}
static void gen_CALLF(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_far_call(s);
}
static void gen_CALLF_m(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[2].ot;
gen_op_ld_v(s, ot, s->T0, s->A0);
gen_add_A0_im(s, 1 << ot);
gen_op_ld_v(s, MO_16, s->T1, s->A0);
gen_far_call(s);
}
static void gen_CBW(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp src_ot = decode->op[0].ot - 1;
tcg_gen_ext_tl(s->T0, s->T0, src_ot | MO_SIGN);
}
static void gen_CLC(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_compute_eflags(s);
tcg_gen_andi_tl(cpu_cc_src, cpu_cc_src, ~CC_C);
}
static void gen_CLD(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
tcg_gen_st_i32(tcg_constant_i32(1), tcg_env, offsetof(CPUX86State, df));
}
static void gen_CLI(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_reset_eflags(s, IF_MASK);
}
static void gen_CMC(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_compute_eflags(s);
tcg_gen_xori_tl(cpu_cc_src, cpu_cc_src, CC_C);
}
static void gen_CMOVcc(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_cmovcc1(s, decode->b & 0xf, s->T0, s->T1);
}
static void gen_CMPccXADD(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
TCGLabel *label_top = gen_new_label();
TCGLabel *label_bottom = gen_new_label();
TCGv oldv = tcg_temp_new();
TCGv newv = tcg_temp_new();
TCGv cmpv = tcg_temp_new();
TCGCond cond;
TCGv cmp_lhs, cmp_rhs;
MemOp ot, ot_full;
int jcc_op = (decode->b >> 1) & 7;
static const TCGCond cond_table[8] = {
[JCC_O] = TCG_COND_LT, /* test sign bit by comparing against 0 */
[JCC_B] = TCG_COND_LTU,
[JCC_Z] = TCG_COND_EQ,
[JCC_BE] = TCG_COND_LEU,
[JCC_S] = TCG_COND_LT, /* test sign bit by comparing against 0 */
[JCC_P] = TCG_COND_TSTEQ, /* even parity - tests low bit of popcount */
[JCC_L] = TCG_COND_LT,
[JCC_LE] = TCG_COND_LE,
};
cond = cond_table[jcc_op];
if (decode->b & 1) {
cond = tcg_invert_cond(cond);
}
ot = decode->op[0].ot;
ot_full = ot | MO_LE;
if (jcc_op >= JCC_S) {
/*
* Sign-extend values before subtracting for S, P (zero/sign extension
* does not matter there) L, LE and their inverses.
*/
ot_full |= MO_SIGN;
}
/*
* cmpv will be moved to cc_src *after* cpu_regs[] is written back, so use
* tcg_gen_ext_tl instead of gen_ext_tl.
*/
tcg_gen_ext_tl(cmpv, cpu_regs[decode->op[1].n], ot_full);
/*
* Cmpxchg loop starts here.
* - s->T1: addition operand (from decoder)
* - s->A0: dest address (from decoder)
* - s->cc_srcT: memory operand (lhs for comparison)
* - cmpv: rhs for comparison
*/
gen_set_label(label_top);
gen_op_ld_v(s, ot_full, s->cc_srcT, s->A0);
tcg_gen_sub_tl(s->T0, s->cc_srcT, cmpv);
/* Compute the comparison result by hand, to avoid clobbering cc_*. */
switch (jcc_op) {
case JCC_O:
/* (src1 ^ src2) & (src1 ^ dst). newv is only used here for a moment */
tcg_gen_xor_tl(newv, s->cc_srcT, s->T0);
tcg_gen_xor_tl(s->tmp0, s->cc_srcT, cmpv);
tcg_gen_and_tl(s->tmp0, s->tmp0, newv);
tcg_gen_sextract_tl(s->tmp0, s->tmp0, 0, 8 << ot);
cmp_lhs = s->tmp0, cmp_rhs = tcg_constant_tl(0);
break;
case JCC_P:
tcg_gen_ext8u_tl(s->tmp0, s->T0);
tcg_gen_ctpop_tl(s->tmp0, s->tmp0);
cmp_lhs = s->tmp0, cmp_rhs = tcg_constant_tl(1);
break;
case JCC_S:
tcg_gen_sextract_tl(s->tmp0, s->T0, 0, 8 << ot);
cmp_lhs = s->tmp0, cmp_rhs = tcg_constant_tl(0);
break;
default:
cmp_lhs = s->cc_srcT, cmp_rhs = cmpv;
break;
}
/* Compute new value: if condition does not hold, just store back s->cc_srcT */
tcg_gen_add_tl(newv, s->cc_srcT, s->T1);
tcg_gen_movcond_tl(cond, newv, cmp_lhs, cmp_rhs, newv, s->cc_srcT);
tcg_gen_atomic_cmpxchg_tl(oldv, s->A0, s->cc_srcT, newv, s->mem_index, ot_full);
/* Exit unconditionally if cmpxchg succeeded. */
tcg_gen_brcond_tl(TCG_COND_EQ, oldv, s->cc_srcT, label_bottom);
/* Try again if there was actually a store to make. */
tcg_gen_brcond_tl(cond, cmp_lhs, cmp_rhs, label_top);
gen_set_label(label_bottom);
/* Store old value to registers only after a successful store. */
gen_writeback(s, decode, 1, s->cc_srcT);
decode->cc_dst = s->T0;
decode->cc_src = cmpv;
decode->cc_op = CC_OP_SUBB + ot;
}
static void gen_CMPS(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[2].ot;
if (s->prefix & PREFIX_REPNZ) {
gen_repz_cmps(s, ot, 1);
} else if (s->prefix & PREFIX_REPZ) {
gen_repz_cmps(s, ot, 0);
} else {
gen_cmps(s, ot);
}
}
static void gen_CRC32(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[2].ot;
tcg_gen_trunc_tl_i32(s->tmp2_i32, s->T0);
gen_helper_crc32(s->T0, s->tmp2_i32, s->T1, tcg_constant_i32(8 << ot));
}
static void gen_CVTPI2Px(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_helper_enter_mmx(tcg_env);
if (s->prefix & PREFIX_DATA) {
gen_helper_cvtpi2pd(tcg_env, OP_PTR0, OP_PTR2);
} else {
gen_helper_cvtpi2ps(tcg_env, OP_PTR0, OP_PTR2);
}
}
static void gen_CVTPx2PI(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_helper_enter_mmx(tcg_env);
if (s->prefix & PREFIX_DATA) {
gen_helper_cvtpd2pi(tcg_env, OP_PTR0, OP_PTR2);
} else {
gen_helper_cvtps2pi(tcg_env, OP_PTR0, OP_PTR2);
}
}
static void gen_CVTTPx2PI(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_helper_enter_mmx(tcg_env);
if (s->prefix & PREFIX_DATA) {
gen_helper_cvttpd2pi(tcg_env, OP_PTR0, OP_PTR2);
} else {
gen_helper_cvttps2pi(tcg_env, OP_PTR0, OP_PTR2);
}
}
static void gen_CWD(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
int shift = 8 << decode->op[0].ot;
tcg_gen_sextract_tl(s->T0, s->T0, shift - 1, 1);
}
static void gen_DAA(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_update_cc_op(s);
gen_helper_daa(tcg_env);
set_cc_op(s, CC_OP_EFLAGS);
}
static void gen_DAS(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_update_cc_op(s);
gen_helper_das(tcg_env);
set_cc_op(s, CC_OP_EFLAGS);
}
static void gen_DEC(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[1].ot;
tcg_gen_movi_tl(s->T1, -1);
if (s->prefix & PREFIX_LOCK) {
tcg_gen_atomic_add_fetch_tl(s->T0, s->A0, s->T1,
s->mem_index, ot | MO_LE);
} else {
tcg_gen_add_tl(s->T0, s->T0, s->T1);
}
prepare_update_cc_incdec(decode, s, CC_OP_DECB + ot);
}
static void gen_DIV(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[2].ot;
switch(ot) {
case MO_8:
gen_helper_divb_AL(tcg_env, s->T1);
break;
case MO_16:
gen_helper_divw_AX(tcg_env, s->T1);
break;
default:
case MO_32:
gen_helper_divl_EAX(tcg_env, s->T1);
break;
#ifdef TARGET_X86_64
case MO_64:
gen_helper_divq_EAX(tcg_env, s->T1);
break;
#endif
}
}
static void gen_EMMS(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_helper_emms(tcg_env);
}
static void gen_ENTER(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_enter(s, decode->op[1].imm, decode->op[2].imm);
}
static void gen_EXTRQ_i(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
TCGv_i32 length = tcg_constant_i32(decode->immediate & 63);
TCGv_i32 index = tcg_constant_i32((decode->immediate >> 8) & 63);
gen_helper_extrq_i(tcg_env, OP_PTR0, index, length);
}
static void gen_EXTRQ_r(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_helper_extrq_r(tcg_env, OP_PTR0, OP_PTR2);
}
static void gen_HLT(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
#ifdef CONFIG_SYSTEM_ONLY
gen_update_cc_op(s);
gen_update_eip_cur(s);
gen_helper_hlt(tcg_env, cur_insn_len_i32(s));
s->base.is_jmp = DISAS_NORETURN;
#endif
}
static void gen_IDIV(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[2].ot;
switch(ot) {
case MO_8:
gen_helper_idivb_AL(tcg_env, s->T1);
break;
case MO_16:
gen_helper_idivw_AX(tcg_env, s->T1);
break;
default:
case MO_32:
gen_helper_idivl_EAX(tcg_env, s->T1);
break;
#ifdef TARGET_X86_64
case MO_64:
gen_helper_idivq_EAX(tcg_env, s->T1);
break;
#endif
}
}
static void gen_IMUL3(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[0].ot;
TCGv cc_src_rhs;
switch (ot) {
case MO_16:
/* s->T0 already sign-extended */
tcg_gen_ext16s_tl(s->T1, s->T1);
tcg_gen_mul_tl(s->T0, s->T0, s->T1);
/* Compare the full result to the extension of the truncated result. */
tcg_gen_ext16s_tl(s->T1, s->T0);
cc_src_rhs = s->T0;
break;
case MO_32:
#ifdef TARGET_X86_64
if (TCG_TARGET_REG_BITS == 64) {
/*
* This produces fewer TCG ops, and better code if flags are needed,
* but it requires a 64-bit multiply even if they are not. Use it
* only if the target has 64-bits registers.
*
* s->T0 is already sign-extended.
*/
tcg_gen_ext32s_tl(s->T1, s->T1);
tcg_gen_mul_tl(s->T0, s->T0, s->T1);
/* Compare the full result to the extension of the truncated result. */
tcg_gen_ext32s_tl(s->T1, s->T0);
cc_src_rhs = s->T0;
} else {
/* Variant that only needs a 32-bit widening multiply. */
TCGv_i32 hi = tcg_temp_new_i32();
TCGv_i32 lo = tcg_temp_new_i32();
tcg_gen_trunc_tl_i32(lo, s->T0);
tcg_gen_trunc_tl_i32(hi, s->T1);
tcg_gen_muls2_i32(lo, hi, lo, hi);
tcg_gen_extu_i32_tl(s->T0, lo);
cc_src_rhs = tcg_temp_new();
tcg_gen_extu_i32_tl(cc_src_rhs, hi);
/* Compare the high part to the sign bit of the truncated result */
tcg_gen_sari_i32(lo, lo, 31);
tcg_gen_extu_i32_tl(s->T1, lo);
}
break;
case MO_64:
#endif
cc_src_rhs = tcg_temp_new();
tcg_gen_muls2_tl(s->T0, cc_src_rhs, s->T0, s->T1);
/* Compare the high part to the sign bit of the truncated result */
tcg_gen_sari_tl(s->T1, s->T0, TARGET_LONG_BITS - 1);
break;
default:
g_assert_not_reached();
}
tcg_gen_sub_tl(s->T1, s->T1, cc_src_rhs);
prepare_update2_cc(decode, s, CC_OP_MULB + ot);
}
static void gen_IMUL(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[1].ot;
TCGv cc_src_rhs;
switch (ot) {
case MO_8:
/* s->T0 already sign-extended */
tcg_gen_ext8s_tl(s->T1, s->T1);
tcg_gen_mul_tl(s->T0, s->T0, s->T1);
gen_op_mov_reg_v(s, MO_16, R_EAX, s->T0);
/* Compare the full result to the extension of the truncated result. */
tcg_gen_ext8s_tl(s->T1, s->T0);
cc_src_rhs = s->T0;
break;
case MO_16:
/* s->T0 already sign-extended */
tcg_gen_ext16s_tl(s->T1, s->T1);
tcg_gen_mul_tl(s->T0, s->T0, s->T1);
gen_op_mov_reg_v(s, MO_16, R_EAX, s->T0);
tcg_gen_shri_tl(s->T1, s->T0, 16);
gen_op_mov_reg_v(s, MO_16, R_EDX, s->T1);
/* Compare the full result to the extension of the truncated result. */
tcg_gen_ext16s_tl(s->T1, s->T0);
cc_src_rhs = s->T0;
break;
case MO_32:
#ifdef TARGET_X86_64
/* s->T0 already sign-extended */
tcg_gen_ext32s_tl(s->T1, s->T1);
tcg_gen_mul_tl(s->T0, s->T0, s->T1);
tcg_gen_ext32u_tl(cpu_regs[R_EAX], s->T0);
tcg_gen_shri_tl(cpu_regs[R_EDX], s->T0, 32);
/* Compare the full result to the extension of the truncated result. */
tcg_gen_ext32s_tl(s->T1, s->T0);
cc_src_rhs = s->T0;
break;
case MO_64:
#endif
tcg_gen_muls2_tl(s->T0, cpu_regs[R_EDX], s->T0, s->T1);
tcg_gen_mov_tl(cpu_regs[R_EAX], s->T0);
/* Compare the high part to the sign bit of the truncated result */
tcg_gen_negsetcondi_tl(TCG_COND_LT, s->T1, s->T0, 0);
cc_src_rhs = cpu_regs[R_EDX];
break;
default:
g_assert_not_reached();
}
tcg_gen_sub_tl(s->T1, s->T1, cc_src_rhs);
prepare_update2_cc(decode, s, CC_OP_MULB + ot);
}
static void gen_IN(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[0].ot;
TCGv_i32 port = tcg_temp_new_i32();
tcg_gen_trunc_tl_i32(port, s->T1);
tcg_gen_ext16u_i32(port, port);
if (!gen_check_io(s, ot, port, SVM_IOIO_TYPE_MASK)) {
return;
}
translator_io_start(&s->base);
gen_helper_in_func(ot, s->T0, port);
gen_writeback(s, decode, 0, s->T0);
gen_bpt_io(s, port, ot);
}
static void gen_INC(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[1].ot;
tcg_gen_movi_tl(s->T1, 1);
if (s->prefix & PREFIX_LOCK) {
tcg_gen_atomic_add_fetch_tl(s->T0, s->A0, s->T1,
s->mem_index, ot | MO_LE);
} else {
tcg_gen_add_tl(s->T0, s->T0, s->T1);
}
prepare_update_cc_incdec(decode, s, CC_OP_INCB + ot);
}
static void gen_INS(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[1].ot;
TCGv_i32 port = tcg_temp_new_i32();
tcg_gen_trunc_tl_i32(port, s->T1);
tcg_gen_ext16u_i32(port, port);
if (!gen_check_io(s, ot, port,
SVM_IOIO_TYPE_MASK | SVM_IOIO_STR_MASK)) {
return;
}
translator_io_start(&s->base);
if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) {
gen_repz_ins(s, ot);
} else {
gen_ins(s, ot);
}
}
static void gen_INSERTQ_i(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
TCGv_i32 length = tcg_constant_i32(decode->immediate & 63);
TCGv_i32 index = tcg_constant_i32((decode->immediate >> 8) & 63);
gen_helper_insertq_i(tcg_env, OP_PTR0, OP_PTR1, index, length);
}
static void gen_INSERTQ_r(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_helper_insertq_r(tcg_env, OP_PTR0, OP_PTR2);
}
static void gen_INT(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_interrupt(s, decode->immediate);
}
static void gen_INT1(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_exception(s, EXCP01_DB);
}
static void gen_INT3(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_interrupt(s, EXCP03_INT3);
}
static void gen_INTO(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_update_cc_op(s);
gen_update_eip_cur(s);
gen_helper_into(tcg_env, cur_insn_len_i32(s));
}
static void gen_IRET(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
if (!PE(s) || VM86(s)) {
gen_helper_iret_real(tcg_env, tcg_constant_i32(s->dflag - 1));
} else {
gen_helper_iret_protected(tcg_env, tcg_constant_i32(s->dflag - 1),
eip_next_i32(s));
}
set_cc_op(s, CC_OP_EFLAGS);
s->base.is_jmp = DISAS_EOB_ONLY;
}
static void gen_Jcc(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_bnd_jmp(s);
gen_jcc(s, decode->b & 0xf, decode->immediate);
}
static void gen_JCXZ(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
TCGLabel *taken = gen_new_label();
gen_update_cc_op(s);
gen_op_jz_ecx(s, taken);
gen_conditional_jump_labels(s, decode->immediate, NULL, taken);
}
static void gen_JMP(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_update_cc_op(s);
gen_jmp_rel(s, s->dflag, decode->immediate, 0);
}
static void gen_JMP_m(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_op_jmp_v(s, s->T0);
gen_bnd_jmp(s);
s->base.is_jmp = DISAS_JUMP;
}
static void gen_JMPF(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_far_jmp(s);
}
static void gen_JMPF_m(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[2].ot;
gen_op_ld_v(s, ot, s->T0, s->A0);
gen_add_A0_im(s, 1 << ot);
gen_op_ld_v(s, MO_16, s->T1, s->A0);
gen_far_jmp(s);
}
static void gen_LAHF(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
if (CODE64(s) && !(s->cpuid_ext3_features & CPUID_EXT3_LAHF_LM)) {
return gen_illegal_opcode(s);
}
gen_compute_eflags(s);
/* Note: gen_compute_eflags() only gives the condition codes */
tcg_gen_ori_tl(s->T0, cpu_cc_src, 0x02);
tcg_gen_deposit_tl(cpu_regs[R_EAX], cpu_regs[R_EAX], s->T0, 8, 8);
}
static void gen_LDMXCSR(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
tcg_gen_trunc_tl_i32(s->tmp2_i32, s->T1);
gen_helper_ldmxcsr(tcg_env, s->tmp2_i32);
}
static void gen_lxx_seg(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode, int seg)
{
MemOp ot = decode->op[0].ot;
/* Offset already in s->T0. */
gen_add_A0_im(s, 1 << ot);
gen_op_ld_v(s, MO_16, s->T1, s->A0);
/* load the segment here to handle exceptions properly */
gen_movl_seg(s, seg, s->T1);
}
static void gen_LDS(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_lxx_seg(s, env, decode, R_DS);
}
static void gen_LEA(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
tcg_gen_mov_tl(s->T0, s->A0);
}
static void gen_LEAVE(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_leave(s);
}
static void gen_LES(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_lxx_seg(s, env, decode, R_ES);
}
static void gen_LFS(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_lxx_seg(s, env, decode, R_FS);
}
static void gen_LGS(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_lxx_seg(s, env, decode, R_GS);
}
static void gen_LODS(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[2].ot;
if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) {
gen_repz_lods(s, ot);
} else {
gen_lods(s, ot);
}
}
static void gen_LOOP(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
TCGLabel *taken = gen_new_label();
gen_update_cc_op(s);
gen_op_add_reg_im(s, s->aflag, R_ECX, -1);
gen_op_jnz_ecx(s, taken);
gen_conditional_jump_labels(s, decode->immediate, NULL, taken);
}
static void gen_LOOPE(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
TCGLabel *taken = gen_new_label();
TCGLabel *not_taken = gen_new_label();
gen_update_cc_op(s);
gen_op_add_reg_im(s, s->aflag, R_ECX, -1);
gen_op_jz_ecx(s, not_taken);
gen_jcc1(s, (JCC_Z << 1), taken); /* jz taken */
gen_conditional_jump_labels(s, decode->immediate, not_taken, taken);
}
static void gen_LOOPNE(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
TCGLabel *taken = gen_new_label();
TCGLabel *not_taken = gen_new_label();
gen_update_cc_op(s);
gen_op_add_reg_im(s, s->aflag, R_ECX, -1);
gen_op_jz_ecx(s, not_taken);
gen_jcc1(s, (JCC_Z << 1) | 1, taken); /* jnz taken */
gen_conditional_jump_labels(s, decode->immediate, not_taken, taken);
}
static void gen_LSS(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_lxx_seg(s, env, decode, R_SS);
}
static void gen_MOV(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
/* nothing to do! */
}
#define gen_NOP gen_MOV
static void gen_MASKMOV(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_lea_v_seg(s, s->aflag, cpu_regs[R_EDI], R_DS, s->override);
if (s->prefix & PREFIX_DATA) {
gen_helper_maskmov_xmm(tcg_env, OP_PTR1, OP_PTR2, s->A0);
} else {
gen_helper_maskmov_mmx(tcg_env, OP_PTR1, OP_PTR2, s->A0);
}
}
static void gen_MOVBE(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[0].ot;
/* M operand type does not load/store */
if (decode->e.op0 == X86_TYPE_M) {
tcg_gen_qemu_st_tl(s->T0, s->A0, s->mem_index, ot | MO_BE);
} else {
tcg_gen_qemu_ld_tl(s->T0, s->A0, s->mem_index, ot | MO_BE);
}
}
static void gen_MOVD_from(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[2].ot;
switch (ot) {
case MO_32:
#ifdef TARGET_X86_64
tcg_gen_ld32u_tl(s->T0, tcg_env, decode->op[2].offset);
break;
case MO_64:
#endif
tcg_gen_ld_tl(s->T0, tcg_env, decode->op[2].offset);
break;
default:
abort();
}
}
static void gen_MOVD_to(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[2].ot;
int vec_len = vector_len(s, decode);
int lo_ofs = vector_elem_offset(&decode->op[0], ot, 0);
tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0);
switch (ot) {
case MO_32:
#ifdef TARGET_X86_64
tcg_gen_st32_tl(s->T1, tcg_env, lo_ofs);
break;
case MO_64:
#endif
tcg_gen_st_tl(s->T1, tcg_env, lo_ofs);
break;
default:
g_assert_not_reached();
}
}
static void gen_MOVDQ(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_store_sse(s, decode, decode->op[2].offset);
}
static void gen_MOVMSK(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
typeof(gen_helper_movmskps_ymm) *ps, *pd, *fn;
ps = s->vex_l ? gen_helper_movmskps_ymm : gen_helper_movmskps_xmm;
pd = s->vex_l ? gen_helper_movmskpd_ymm : gen_helper_movmskpd_xmm;
fn = s->prefix & PREFIX_DATA ? pd : ps;
fn(s->tmp2_i32, tcg_env, OP_PTR2);
tcg_gen_extu_i32_tl(s->T0, s->tmp2_i32);
}
static void gen_MOVQ(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
int vec_len = vector_len(s, decode);
int lo_ofs = vector_elem_offset(&decode->op[0], MO_64, 0);
tcg_gen_ld_i64(s->tmp1_i64, tcg_env, decode->op[2].offset);
if (decode->op[0].has_ea) {
tcg_gen_qemu_st_i64(s->tmp1_i64, s->A0, s->mem_index, MO_LEUQ);
} else {
/*
* tcg_gen_gvec_dup_i64(MO_64, op0.offset, 8, vec_len, s->tmp1_64) would
* seem to work, but it does not on big-endian platforms; the cleared parts
* are always at higher addresses, but cross-endian emulation inverts the
* byte order so that the cleared parts need to be at *lower* addresses.
* Because oprsz is 8, we see this here even for SSE; but more in general,
* it disqualifies using oprsz < maxsz to emulate VEX128.
*/
tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0);
tcg_gen_st_i64(s->tmp1_i64, tcg_env, lo_ofs);
}
}
static void gen_MOVq_dq(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_helper_enter_mmx(tcg_env);
/* Otherwise the same as any other movq. */
return gen_MOVQ(s, env, decode);
}
static void gen_MOVS(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[2].ot;
if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) {
gen_repz_movs(s, ot);
} else {
gen_movs(s, ot);
}
}
static void gen_MUL(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[1].ot;
switch (ot) {
case MO_8:
/* s->T0 already zero-extended */
tcg_gen_ext8u_tl(s->T1, s->T1);
tcg_gen_mul_tl(s->T0, s->T0, s->T1);
gen_op_mov_reg_v(s, MO_16, R_EAX, s->T0);
tcg_gen_andi_tl(s->T1, s->T0, 0xff00);
decode->cc_dst = s->T0;
decode->cc_src = s->T1;
break;
case MO_16:
/* s->T0 already zero-extended */
tcg_gen_ext16u_tl(s->T1, s->T1);
tcg_gen_mul_tl(s->T0, s->T0, s->T1);
gen_op_mov_reg_v(s, MO_16, R_EAX, s->T0);
tcg_gen_shri_tl(s->T1, s->T0, 16);
gen_op_mov_reg_v(s, MO_16, R_EDX, s->T1);
decode->cc_dst = s->T0;
decode->cc_src = s->T1;
break;
case MO_32:
#ifdef TARGET_X86_64
/* s->T0 already zero-extended */
tcg_gen_ext32u_tl(s->T1, s->T1);
tcg_gen_mul_tl(s->T0, s->T0, s->T1);
tcg_gen_ext32u_tl(cpu_regs[R_EAX], s->T0);
tcg_gen_shri_tl(cpu_regs[R_EDX], s->T0, 32);
decode->cc_dst = cpu_regs[R_EAX];
decode->cc_src = cpu_regs[R_EDX];
break;
case MO_64:
#endif
tcg_gen_mulu2_tl(cpu_regs[R_EAX], cpu_regs[R_EDX], s->T0, s->T1);
decode->cc_dst = cpu_regs[R_EAX];
decode->cc_src = cpu_regs[R_EDX];
break;
default:
g_assert_not_reached();
}
decode->cc_op = CC_OP_MULB + ot;
}
static void gen_MULX(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[0].ot;
/* low part of result in VEX.vvvv, high in MODRM */
switch (ot) {
case MO_32:
#ifdef TARGET_X86_64
tcg_gen_trunc_tl_i32(s->tmp2_i32, s->T0);
tcg_gen_trunc_tl_i32(s->tmp3_i32, s->T1);
tcg_gen_mulu2_i32(s->tmp2_i32, s->tmp3_i32,
s->tmp2_i32, s->tmp3_i32);
tcg_gen_extu_i32_tl(cpu_regs[s->vex_v], s->tmp2_i32);
tcg_gen_extu_i32_tl(s->T0, s->tmp3_i32);
break;
case MO_64:
#endif
tcg_gen_mulu2_tl(cpu_regs[s->vex_v], s->T0, s->T0, s->T1);
break;
default:
g_assert_not_reached();
}
}
static void gen_NEG(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[0].ot;
TCGv oldv = tcg_temp_new();
if (s->prefix & PREFIX_LOCK) {
TCGv newv = tcg_temp_new();
TCGv cmpv = tcg_temp_new();
TCGLabel *label1 = gen_new_label();
gen_set_label(label1);
gen_op_ld_v(s, ot, oldv, s->A0);
tcg_gen_neg_tl(newv, oldv);
tcg_gen_atomic_cmpxchg_tl(cmpv, s->A0, oldv, newv,
s->mem_index, ot | MO_LE);
tcg_gen_brcond_tl(TCG_COND_NE, oldv, cmpv, label1);
} else {
tcg_gen_mov_tl(oldv, s->T0);
}
tcg_gen_neg_tl(s->T0, oldv);
decode->cc_dst = s->T0;
decode->cc_src = oldv;
tcg_gen_movi_tl(s->cc_srcT, 0);
decode->cc_op = CC_OP_SUBB + ot;
}
static void gen_NOT(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[0].ot;
if (s->prefix & PREFIX_LOCK) {
tcg_gen_movi_tl(s->T0, ~0);
tcg_gen_atomic_xor_fetch_tl(s->T0, s->A0, s->T0,
s->mem_index, ot | MO_LE);
} else {
tcg_gen_not_tl(s->T0, s->T0);
}
}
static void gen_OR(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[1].ot;
if (s->prefix & PREFIX_LOCK) {
tcg_gen_atomic_or_fetch_tl(s->T0, s->A0, s->T1,
s->mem_index, ot | MO_LE);
} else {
tcg_gen_or_tl(s->T0, s->T0, s->T1);
}
prepare_update1_cc(decode, s, CC_OP_LOGICB + ot);
}
static void gen_OUT(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[1].ot;
TCGv_i32 port = tcg_temp_new_i32();
TCGv_i32 value = tcg_temp_new_i32();
tcg_gen_trunc_tl_i32(port, s->T1);
tcg_gen_ext16u_i32(port, port);
if (!gen_check_io(s, ot, port, 0)) {
return;
}
tcg_gen_trunc_tl_i32(value, s->T0);
translator_io_start(&s->base);
gen_helper_out_func(ot, port, value);
gen_bpt_io(s, port, ot);
}
static void gen_OUTS(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[1].ot;
TCGv_i32 port = tcg_temp_new_i32();
tcg_gen_trunc_tl_i32(port, s->T1);
tcg_gen_ext16u_i32(port, port);
if (!gen_check_io(s, ot, port, SVM_IOIO_STR_MASK)) {
return;
}
translator_io_start(&s->base);
if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) {
gen_repz_outs(s, ot);
} else {
gen_outs(s, ot);
}
}
static void gen_PALIGNR(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
TCGv_i32 imm = tcg_constant8u_i32(decode->immediate);
if (!(s->prefix & PREFIX_DATA)) {
gen_helper_palignr_mmx(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2, imm);
} else if (!s->vex_l) {
gen_helper_palignr_xmm(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2, imm);
} else {
gen_helper_palignr_ymm(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2, imm);
}
}
static void gen_PANDN(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
int vec_len = vector_len(s, decode);
/* Careful, operand order is reversed! */
tcg_gen_gvec_andc(MO_64,
decode->op[0].offset, decode->op[2].offset,
decode->op[1].offset, vec_len, vec_len);
}
static void gen_PCMPESTRI(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
TCGv_i32 imm = tcg_constant8u_i32(decode->immediate);
gen_helper_pcmpestri_xmm(tcg_env, OP_PTR1, OP_PTR2, imm);
set_cc_op(s, CC_OP_EFLAGS);
}
static void gen_PCMPESTRM(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
TCGv_i32 imm = tcg_constant8u_i32(decode->immediate);
gen_helper_pcmpestrm_xmm(tcg_env, OP_PTR1, OP_PTR2, imm);
set_cc_op(s, CC_OP_EFLAGS);
if ((s->prefix & PREFIX_VEX) && !s->vex_l) {
tcg_gen_gvec_dup_imm(MO_64, offsetof(CPUX86State, xmm_regs[0].ZMM_X(1)),
16, 16, 0);
}
}
static void gen_PCMPISTRI(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
TCGv_i32 imm = tcg_constant8u_i32(decode->immediate);
gen_helper_pcmpistri_xmm(tcg_env, OP_PTR1, OP_PTR2, imm);
set_cc_op(s, CC_OP_EFLAGS);
}
static void gen_PCMPISTRM(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
TCGv_i32 imm = tcg_constant8u_i32(decode->immediate);
gen_helper_pcmpistrm_xmm(tcg_env, OP_PTR1, OP_PTR2, imm);
set_cc_op(s, CC_OP_EFLAGS);
if ((s->prefix & PREFIX_VEX) && !s->vex_l) {
tcg_gen_gvec_dup_imm(MO_64, offsetof(CPUX86State, xmm_regs[0].ZMM_X(1)),
16, 16, 0);
}
}
static void gen_PDEP(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_helper_pdep(s->T0, s->T0, s->T1);
}
static void gen_PEXT(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_helper_pext(s->T0, s->T0, s->T1);
}
static inline void gen_pextr(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode, MemOp ot)
{
int vec_len = vector_len(s, decode);
int mask = (vec_len >> ot) - 1;
int val = decode->immediate & mask;
switch (ot) {
case MO_8:
tcg_gen_ld8u_tl(s->T0, tcg_env, vector_elem_offset(&decode->op[1], ot, val));
break;
case MO_16:
tcg_gen_ld16u_tl(s->T0, tcg_env, vector_elem_offset(&decode->op[1], ot, val));
break;
case MO_32:
#ifdef TARGET_X86_64
tcg_gen_ld32u_tl(s->T0, tcg_env, vector_elem_offset(&decode->op[1], ot, val));
break;
case MO_64:
#endif
tcg_gen_ld_tl(s->T0, tcg_env, vector_elem_offset(&decode->op[1], ot, val));
break;
default:
abort();
}
}
static void gen_PEXTRB(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_pextr(s, env, decode, MO_8);
}
static void gen_PEXTRW(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_pextr(s, env, decode, MO_16);
}
static void gen_PEXTR(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[0].ot;
gen_pextr(s, env, decode, ot);
}
static inline void gen_pinsr(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode, MemOp ot)
{
int vec_len = vector_len(s, decode);
int mask = (vec_len >> ot) - 1;
int val = decode->immediate & mask;
if (decode->op[1].offset != decode->op[0].offset) {
assert(vec_len == 16);
gen_store_sse(s, decode, decode->op[1].offset);
}
switch (ot) {
case MO_8:
tcg_gen_st8_tl(s->T1, tcg_env, vector_elem_offset(&decode->op[0], ot, val));
break;
case MO_16:
tcg_gen_st16_tl(s->T1, tcg_env, vector_elem_offset(&decode->op[0], ot, val));
break;
case MO_32:
#ifdef TARGET_X86_64
tcg_gen_st32_tl(s->T1, tcg_env, vector_elem_offset(&decode->op[0], ot, val));
break;
case MO_64:
#endif
tcg_gen_st_tl(s->T1, tcg_env, vector_elem_offset(&decode->op[0], ot, val));
break;
default:
abort();
}
}
static void gen_PINSRB(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_pinsr(s, env, decode, MO_8);
}
static void gen_PINSRW(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_pinsr(s, env, decode, MO_16);
}
static void gen_PINSR(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_pinsr(s, env, decode, decode->op[2].ot);
}
static void gen_pmovmskb_i64(TCGv_i64 d, TCGv_i64 s)
{
TCGv_i64 t = tcg_temp_new_i64();
tcg_gen_andi_i64(d, s, 0x8080808080808080ull);
/*
* After each shift+or pair:
* 0: a.......b.......c.......d.......e.......f.......g.......h.......
* 7: ab......bc......cd......de......ef......fg......gh......h.......
* 14: abcd....bcde....cdef....defg....efgh....fgh.....gh......h.......
* 28: abcdefghbcdefgh.cdefgh..defgh...efgh....fgh.....gh......h.......
* The result is left in the high bits of the word.
*/
tcg_gen_shli_i64(t, d, 7);
tcg_gen_or_i64(d, d, t);
tcg_gen_shli_i64(t, d, 14);
tcg_gen_or_i64(d, d, t);
tcg_gen_shli_i64(t, d, 28);
tcg_gen_or_i64(d, d, t);
}
static void gen_pmovmskb_vec(unsigned vece, TCGv_vec d, TCGv_vec s)
{
TCGv_vec t = tcg_temp_new_vec_matching(d);
TCGv_vec m = tcg_constant_vec_matching(d, MO_8, 0x80);
/* See above */
tcg_gen_and_vec(vece, d, s, m);
tcg_gen_shli_vec(vece, t, d, 7);
tcg_gen_or_vec(vece, d, d, t);
tcg_gen_shli_vec(vece, t, d, 14);
tcg_gen_or_vec(vece, d, d, t);
tcg_gen_shli_vec(vece, t, d, 28);
tcg_gen_or_vec(vece, d, d, t);
}
static void gen_PMOVMSKB(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
static const TCGOpcode vecop_list[] = { INDEX_op_shli_vec, 0 };
static const GVecGen2 g = {
.fni8 = gen_pmovmskb_i64,
.fniv = gen_pmovmskb_vec,
.opt_opc = vecop_list,
.vece = MO_64,
.prefer_i64 = TCG_TARGET_REG_BITS == 64
};
MemOp ot = decode->op[2].ot;
int vec_len = vector_len(s, decode);
TCGv t = tcg_temp_new();
tcg_gen_gvec_2(offsetof(CPUX86State, xmm_t0) + xmm_offset(ot), decode->op[2].offset,
vec_len, vec_len, &g);
tcg_gen_ld8u_tl(s->T0, tcg_env, offsetof(CPUX86State, xmm_t0.ZMM_B(vec_len - 1)));
while (vec_len > 8) {
vec_len -= 8;
if (TCG_TARGET_HAS_extract2_tl) {
/*
* Load the next byte of the result into the high byte of T.
* TCG does a similar expansion of deposit to shl+extract2; by
* loading the whole word, the shift left is avoided.
*/
#ifdef TARGET_X86_64
tcg_gen_ld_tl(t, tcg_env, offsetof(CPUX86State, xmm_t0.ZMM_Q((vec_len - 1) / 8)));
#else
tcg_gen_ld_tl(t, tcg_env, offsetof(CPUX86State, xmm_t0.ZMM_L((vec_len - 1) / 4)));
#endif
tcg_gen_extract2_tl(s->T0, t, s->T0, TARGET_LONG_BITS - 8);
} else {
/*
* The _previous_ value is deposited into bits 8 and higher of t. Because
* those bits are known to be zero after ld8u, this becomes a shift+or
* if deposit is not available.
*/
tcg_gen_ld8u_tl(t, tcg_env, offsetof(CPUX86State, xmm_t0.ZMM_B(vec_len - 1)));
tcg_gen_deposit_tl(s->T0, t, s->T0, 8, TARGET_LONG_BITS - 8);
}
}
}
static void gen_POP(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = gen_pop_T0(s);
if (decode->op[0].has_ea) {
/* NOTE: order is important for MMU exceptions */
gen_op_st_v(s, ot, s->T0, s->A0);
decode->op[0].unit = X86_OP_SKIP;
}
/* NOTE: writing back registers after update is important for pop %sp */
gen_pop_update(s, ot);
}
static void gen_POPA(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_popa(s);
}
static void gen_POPF(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot;
int mask = TF_MASK | AC_MASK | ID_MASK | NT_MASK;
if (CPL(s) == 0) {
mask |= IF_MASK | IOPL_MASK;
} else if (CPL(s) <= IOPL(s)) {
mask |= IF_MASK;
}
if (s->dflag == MO_16) {
mask &= 0xffff;
}
ot = gen_pop_T0(s);
gen_helper_write_eflags(tcg_env, s->T0, tcg_constant_i32(mask));
gen_pop_update(s, ot);
set_cc_op(s, CC_OP_EFLAGS);
/* abort translation because TF/AC flag may change */
s->base.is_jmp = DISAS_EOB_NEXT;
}
static void gen_PSHUFW(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
TCGv_i32 imm = tcg_constant8u_i32(decode->immediate);
gen_helper_pshufw_mmx(OP_PTR0, OP_PTR1, imm);
}
static void gen_PSRLW_i(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
int vec_len = vector_len(s, decode);
if (decode->immediate >= 16) {
tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0);
} else {
tcg_gen_gvec_shri(MO_16,
decode->op[0].offset, decode->op[1].offset,
decode->immediate, vec_len, vec_len);
}
}
static void gen_PSLLW_i(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
int vec_len = vector_len(s, decode);
if (decode->immediate >= 16) {
tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0);
} else {
tcg_gen_gvec_shli(MO_16,
decode->op[0].offset, decode->op[1].offset,
decode->immediate, vec_len, vec_len);
}
}
static void gen_PSRAW_i(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
int vec_len = vector_len(s, decode);
if (decode->immediate >= 16) {
decode->immediate = 15;
}
tcg_gen_gvec_sari(MO_16,
decode->op[0].offset, decode->op[1].offset,
decode->immediate, vec_len, vec_len);
}
static void gen_PSRLD_i(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
int vec_len = vector_len(s, decode);
if (decode->immediate >= 32) {
tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0);
} else {
tcg_gen_gvec_shri(MO_32,
decode->op[0].offset, decode->op[1].offset,
decode->immediate, vec_len, vec_len);
}
}
static void gen_PSLLD_i(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
int vec_len = vector_len(s, decode);
if (decode->immediate >= 32) {
tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0);
} else {
tcg_gen_gvec_shli(MO_32,
decode->op[0].offset, decode->op[1].offset,
decode->immediate, vec_len, vec_len);
}
}
static void gen_PSRAD_i(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
int vec_len = vector_len(s, decode);
if (decode->immediate >= 32) {
decode->immediate = 31;
}
tcg_gen_gvec_sari(MO_32,
decode->op[0].offset, decode->op[1].offset,
decode->immediate, vec_len, vec_len);
}
static void gen_PSRLQ_i(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
int vec_len = vector_len(s, decode);
if (decode->immediate >= 64) {
tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0);
} else {
tcg_gen_gvec_shri(MO_64,
decode->op[0].offset, decode->op[1].offset,
decode->immediate, vec_len, vec_len);
}
}
static void gen_PSLLQ_i(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
int vec_len = vector_len(s, decode);
if (decode->immediate >= 64) {
tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0);
} else {
tcg_gen_gvec_shli(MO_64,
decode->op[0].offset, decode->op[1].offset,
decode->immediate, vec_len, vec_len);
}
}
static TCGv_ptr make_imm8u_xmm_vec(uint8_t imm, int vec_len)
{
MemOp ot = vec_len == 16 ? MO_128 : MO_256;
TCGv_i32 imm_v = tcg_constant8u_i32(imm);
TCGv_ptr ptr = tcg_temp_new_ptr();
tcg_gen_gvec_dup_imm(MO_64, offsetof(CPUX86State, xmm_t0) + xmm_offset(ot),
vec_len, vec_len, 0);
tcg_gen_addi_ptr(ptr, tcg_env, offsetof(CPUX86State, xmm_t0));
tcg_gen_st_i32(imm_v, tcg_env, offsetof(CPUX86State, xmm_t0.ZMM_L(0)));
return ptr;
}
static void gen_PSRLDQ_i(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
int vec_len = vector_len(s, decode);
TCGv_ptr imm_vec = make_imm8u_xmm_vec(decode->immediate, vec_len);
if (s->vex_l) {
gen_helper_psrldq_ymm(tcg_env, OP_PTR0, OP_PTR1, imm_vec);
} else {
gen_helper_psrldq_xmm(tcg_env, OP_PTR0, OP_PTR1, imm_vec);
}
}
static void gen_PSLLDQ_i(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
int vec_len = vector_len(s, decode);
TCGv_ptr imm_vec = make_imm8u_xmm_vec(decode->immediate, vec_len);
if (s->vex_l) {
gen_helper_pslldq_ymm(tcg_env, OP_PTR0, OP_PTR1, imm_vec);
} else {
gen_helper_pslldq_xmm(tcg_env, OP_PTR0, OP_PTR1, imm_vec);
}
}
static void gen_PUSH(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_push_v(s, s->T1);
}
static void gen_PUSHA(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_pusha(s);
}
static void gen_PUSHF(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_update_cc_op(s);
gen_helper_read_eflags(s->T0, tcg_env);
gen_push_v(s, s->T0);
}
static MemOp gen_shift_count(DisasContext *s, X86DecodedInsn *decode,
bool *can_be_zero, TCGv *count)
{
MemOp ot = decode->op[0].ot;
int mask = (ot <= MO_32 ? 0x1f : 0x3f);
*can_be_zero = false;
switch (decode->op[2].unit) {
case X86_OP_INT:
*count = tcg_temp_new();
tcg_gen_andi_tl(*count, s->T1, mask);
*can_be_zero = true;
break;
case X86_OP_IMM:
if ((decode->immediate & mask) == 0) {
*count = NULL;
break;
}
*count = tcg_temp_new();
tcg_gen_movi_tl(*count, decode->immediate & mask);
break;
case X86_OP_SKIP:
*count = tcg_temp_new();
tcg_gen_movi_tl(*count, 1);
break;
default:
g_assert_not_reached();
}
return ot;
}
/*
* Compute existing flags in decode->cc_src, for gen_* functions that wants
* to set the cc_op set to CC_OP_ADCOX. In particular, this allows rotate
* operations to compute the carry in decode->cc_dst and the overflow in
* decode->cc_src2.
*
* If need_flags is true, decode->cc_dst and decode->cc_src2 are preloaded
* with the value of CF and OF before the instruction, so that it is possible
* to keep the flags unmodified.
*
* Return true if carry could be made available cheaply as a 1-bit value in
* decode->cc_dst (trying a bit harder if want_carry is true). If false is
* returned, decode->cc_dst is uninitialized and the carry is only available
* as bit 0 of decode->cc_src.
*/
static bool gen_eflags_adcox(DisasContext *s, X86DecodedInsn *decode, bool want_carry, bool need_flags)
{
bool got_cf = false;
bool got_of = false;
decode->cc_dst = tcg_temp_new();
decode->cc_src = tcg_temp_new();
decode->cc_src2 = tcg_temp_new();
decode->cc_op = CC_OP_ADCOX;
/* A lot more cc_ops could be "optimized" to avoid the extracts at
* the end (INC/DEC, BMILG, MUL), but they are all really unlikely
* to be followed by rotations within the same basic block.
*/
switch (s->cc_op) {
case CC_OP_ADCOX:
/* No need to compute the full EFLAGS, CF/OF are already isolated. */
tcg_gen_mov_tl(decode->cc_src, cpu_cc_src);
if (need_flags) {
tcg_gen_mov_tl(decode->cc_src2, cpu_cc_src2);
got_of = true;
}
if (want_carry || need_flags) {
tcg_gen_mov_tl(decode->cc_dst, cpu_cc_dst);
got_cf = true;
}
break;
case CC_OP_LOGICB ... CC_OP_LOGICQ:
/* CF and OF are zero, do it just because it's easy. */
gen_mov_eflags(s, decode->cc_src);
if (need_flags) {
tcg_gen_movi_tl(decode->cc_src2, 0);
got_of = true;
}
if (want_carry || need_flags) {
tcg_gen_movi_tl(decode->cc_dst, 0);
got_cf = true;
}
break;
case CC_OP_SARB ... CC_OP_SARQ:
/*
* SHR/RCR/SHR/RCR/... is a relatively common occurrence of RCR.
* By computing CF without using eflags, the calls to cc_compute_all
* can be eliminated as dead code (except for the last RCR).
*/
if (want_carry || need_flags) {
tcg_gen_andi_tl(decode->cc_dst, cpu_cc_src, 1);
got_cf = true;
}
gen_mov_eflags(s, decode->cc_src);
break;
case CC_OP_SHLB ... CC_OP_SHLQ:
/*
* Likewise for SHL/RCL/SHL/RCL/... but, if CF is not in the sign
* bit, we might as well fish CF out of EFLAGS and save a shift.
*/
if (want_carry && (!need_flags || s->cc_op == CC_OP_SHLB + MO_TL)) {
tcg_gen_shri_tl(decode->cc_dst, cpu_cc_src, (8 << (s->cc_op - CC_OP_SHLB)) - 1);
got_cf = true;
}
gen_mov_eflags(s, decode->cc_src);
break;
default:
gen_mov_eflags(s, decode->cc_src);
break;
}
if (need_flags) {
/* If the flags could be left unmodified, always load them. */
if (!got_of) {
tcg_gen_extract_tl(decode->cc_src2, decode->cc_src, ctz32(CC_O), 1);
got_of = true;
}
if (!got_cf) {
tcg_gen_extract_tl(decode->cc_dst, decode->cc_src, ctz32(CC_C), 1);
got_cf = true;
}
}
return got_cf;
}
static void gen_rot_overflow(X86DecodedInsn *decode, TCGv result, TCGv old, TCGv count)
{
MemOp ot = decode->op[0].ot;
TCGv temp = count ? tcg_temp_new() : decode->cc_src2;
tcg_gen_xor_tl(temp, old, result);
tcg_gen_extract_tl(temp, temp, (8 << ot) - 1, 1);
if (count) {
tcg_gen_movcond_tl(TCG_COND_EQ, decode->cc_src2, count, tcg_constant_tl(0),
decode->cc_src2, temp);
}
}
/*
* RCx operations are invariant modulo 8*operand_size+1. For 8 and 16-bit operands,
* this is less than 0x1f (the mask applied by gen_shift_count) so reduce further.
*/
static void gen_rotc_mod(MemOp ot, TCGv count)
{
TCGv temp;
switch (ot) {
case MO_8:
temp = tcg_temp_new();
tcg_gen_subi_tl(temp, count, 18);
tcg_gen_movcond_tl(TCG_COND_GE, count, temp, tcg_constant_tl(0), temp, count);
tcg_gen_subi_tl(temp, count, 9);
tcg_gen_movcond_tl(TCG_COND_GE, count, temp, tcg_constant_tl(0), temp, count);
break;
case MO_16:
temp = tcg_temp_new();
tcg_gen_subi_tl(temp, count, 17);
tcg_gen_movcond_tl(TCG_COND_GE, count, temp, tcg_constant_tl(0), temp, count);
break;
default:
break;
}
}
/*
* The idea here is that the bit to the right of the new bit 0 is the
* new carry, and the bit to the right of the old bit 0 is the old carry.
* Just like a regular rotation, the result of the rotation is composed
* from a right shifted part and a left shifted part of s->T0. The new carry
* is extracted from the right-shifted portion, and the old carry is
* inserted at the end of the left-shifted portion.
*
* Because of the separate shifts involving the carry, gen_RCL and gen_RCR
* mostly operate on count-1. This also comes in handy when computing
* length - count, because (length-1) - (count-1) can be computed with
* a XOR, and that is commutative unlike subtraction.
*/
static void gen_RCL(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
bool have_1bit_cin, can_be_zero;
TCGv count;
TCGLabel *zero_label = NULL;
MemOp ot = gen_shift_count(s, decode, &can_be_zero, &count);
TCGv low, high, low_count;
if (!count) {
return;
}
low = tcg_temp_new();
high = tcg_temp_new();
low_count = tcg_temp_new();
gen_rotc_mod(ot, count);
have_1bit_cin = gen_eflags_adcox(s, decode, true, can_be_zero);
if (can_be_zero) {
zero_label = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, count, 0, zero_label);
}
/* Compute high part, including incoming carry. */
if (!have_1bit_cin || TCG_TARGET_deposit_tl_valid(1, TARGET_LONG_BITS - 1)) {
/* high = (T0 << 1) | cin */
TCGv cin = have_1bit_cin ? decode->cc_dst : decode->cc_src;
tcg_gen_deposit_tl(high, cin, s->T0, 1, TARGET_LONG_BITS - 1);
} else {
/* Same as above but without deposit; cin in cc_dst. */
tcg_gen_add_tl(high, s->T0, decode->cc_dst);
tcg_gen_add_tl(high, high, s->T0);
}
tcg_gen_subi_tl(count, count, 1);
tcg_gen_shl_tl(high, high, count);
/* Compute low part and outgoing carry, incoming s->T0 is zero extended */
tcg_gen_xori_tl(low_count, count, (8 << ot) - 1); /* LENGTH - 1 - (count - 1) */
tcg_gen_shr_tl(low, s->T0, low_count);
tcg_gen_andi_tl(decode->cc_dst, low, 1);
tcg_gen_shri_tl(low, low, 1);
/* Compute result and outgoing overflow */
tcg_gen_mov_tl(decode->cc_src2, s->T0);
tcg_gen_or_tl(s->T0, low, high);
gen_rot_overflow(decode, s->T0, decode->cc_src2, NULL);
if (zero_label) {
gen_set_label(zero_label);
}
}
static void gen_RCR(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
bool have_1bit_cin, can_be_zero;
TCGv count;
TCGLabel *zero_label = NULL;
MemOp ot = gen_shift_count(s, decode, &can_be_zero, &count);
TCGv low, high, high_count;
if (!count) {
return;
}
low = tcg_temp_new();
high = tcg_temp_new();
high_count = tcg_temp_new();
gen_rotc_mod(ot, count);
have_1bit_cin = gen_eflags_adcox(s, decode, true, can_be_zero);
if (can_be_zero) {
zero_label = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, count, 0, zero_label);
}
/* Save incoming carry into high, it will be shifted later. */
if (!have_1bit_cin || TCG_TARGET_deposit_tl_valid(1, TARGET_LONG_BITS - 1)) {
TCGv cin = have_1bit_cin ? decode->cc_dst : decode->cc_src;
tcg_gen_deposit_tl(high, cin, s->T0, 1, TARGET_LONG_BITS - 1);
} else {
/* Same as above but without deposit; cin in cc_dst. */
tcg_gen_add_tl(high, s->T0, decode->cc_dst);
tcg_gen_add_tl(high, high, s->T0);
}
/* Compute low part and outgoing carry, incoming s->T0 is zero extended */
tcg_gen_subi_tl(count, count, 1);
tcg_gen_shr_tl(low, s->T0, count);
tcg_gen_andi_tl(decode->cc_dst, low, 1);
tcg_gen_shri_tl(low, low, 1);
/* Move high part to the right position */
tcg_gen_xori_tl(high_count, count, (8 << ot) - 1); /* LENGTH - 1 - (count - 1) */
tcg_gen_shl_tl(high, high, high_count);
/* Compute result and outgoing overflow */
tcg_gen_mov_tl(decode->cc_src2, s->T0);
tcg_gen_or_tl(s->T0, low, high);
gen_rot_overflow(decode, s->T0, decode->cc_src2, NULL);
if (zero_label) {
gen_set_label(zero_label);
}
}
static void gen_RET(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
int16_t adjust = decode->e.op2 == X86_TYPE_I ? decode->immediate : 0;
MemOp ot = gen_pop_T0(s);
gen_stack_update(s, adjust + (1 << ot));
gen_op_jmp_v(s, s->T0);
gen_bnd_jmp(s);
s->base.is_jmp = DISAS_JUMP;
}
static void gen_RETF(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
int16_t adjust = decode->e.op2 == X86_TYPE_I ? decode->immediate : 0;
if (!PE(s) || VM86(s)) {
gen_stack_A0(s);
/* pop offset */
gen_op_ld_v(s, s->dflag, s->T0, s->A0);
/* NOTE: keeping EIP updated is not a problem in case of
exception */
gen_op_jmp_v(s, s->T0);
/* pop selector */
gen_add_A0_im(s, 1 << s->dflag);
gen_op_ld_v(s, s->dflag, s->T0, s->A0);
gen_op_movl_seg_real(s, R_CS, s->T0);
/* add stack offset */
gen_stack_update(s, adjust + (2 << s->dflag));
} else {
gen_update_cc_op(s);
gen_update_eip_cur(s);
gen_helper_lret_protected(tcg_env, tcg_constant_i32(s->dflag - 1),
tcg_constant_i32(adjust));
}
s->base.is_jmp = DISAS_EOB_ONLY;
}
/*
* Return non-NULL if a 32-bit rotate works, after possibly replicating the input.
* The input has already been zero-extended upon operand decode.
*/
static TCGv_i32 gen_rot_replicate(MemOp ot, TCGv in)
{
TCGv_i32 temp;
switch (ot) {
case MO_8:
temp = tcg_temp_new_i32();
tcg_gen_trunc_tl_i32(temp, in);
tcg_gen_muli_i32(temp, temp, 0x01010101);
return temp;
case MO_16:
temp = tcg_temp_new_i32();
tcg_gen_trunc_tl_i32(temp, in);
tcg_gen_deposit_i32(temp, temp, temp, 16, 16);
return temp;
#ifdef TARGET_X86_64
case MO_32:
temp = tcg_temp_new_i32();
tcg_gen_trunc_tl_i32(temp, in);
return temp;
#endif
default:
return NULL;
}
}
static void gen_rot_carry(X86DecodedInsn *decode, TCGv result, TCGv count, int bit)
{
if (count == NULL) {
tcg_gen_extract_tl(decode->cc_dst, result, bit, 1);
} else {
TCGv temp = tcg_temp_new();
tcg_gen_extract_tl(temp, result, bit, 1);
tcg_gen_movcond_tl(TCG_COND_EQ, decode->cc_dst, count, tcg_constant_tl(0),
decode->cc_dst, temp);
}
}
static void gen_ROL(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
bool can_be_zero;
TCGv count;
MemOp ot = gen_shift_count(s, decode, &can_be_zero, &count);
TCGv_i32 temp32, count32;
TCGv old = tcg_temp_new();
if (!count) {
return;
}
gen_eflags_adcox(s, decode, false, can_be_zero);
tcg_gen_mov_tl(old, s->T0);
temp32 = gen_rot_replicate(ot, s->T0);
if (temp32) {
count32 = tcg_temp_new_i32();
tcg_gen_trunc_tl_i32(count32, count);
tcg_gen_rotl_i32(temp32, temp32, count32);
/* Zero extend to facilitate later optimization. */
tcg_gen_extu_i32_tl(s->T0, temp32);
} else {
tcg_gen_rotl_tl(s->T0, s->T0, count);
}
gen_rot_carry(decode, s->T0, count, 0);
gen_rot_overflow(decode, s->T0, old, count);
}
static void gen_ROR(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
bool can_be_zero;
TCGv count;
MemOp ot = gen_shift_count(s, decode, &can_be_zero, &count);
TCGv_i32 temp32, count32;
TCGv old = tcg_temp_new();
if (!count) {
return;
}
gen_eflags_adcox(s, decode, false, can_be_zero);
tcg_gen_mov_tl(old, s->T0);
temp32 = gen_rot_replicate(ot, s->T0);
if (temp32) {
count32 = tcg_temp_new_i32();
tcg_gen_trunc_tl_i32(count32, count);
tcg_gen_rotr_i32(temp32, temp32, count32);
/* Zero extend to facilitate later optimization. */
tcg_gen_extu_i32_tl(s->T0, temp32);
gen_rot_carry(decode, s->T0, count, 31);
} else {
tcg_gen_rotr_tl(s->T0, s->T0, count);
gen_rot_carry(decode, s->T0, count, TARGET_LONG_BITS - 1);
}
gen_rot_overflow(decode, s->T0, old, count);
}
static void gen_RORX(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[0].ot;
int mask = ot == MO_64 ? 63 : 31;
int b = decode->immediate & mask;
switch (ot) {
case MO_32:
#ifdef TARGET_X86_64
tcg_gen_trunc_tl_i32(s->tmp2_i32, s->T0);
tcg_gen_rotri_i32(s->tmp2_i32, s->tmp2_i32, b);
tcg_gen_extu_i32_tl(s->T0, s->tmp2_i32);
break;
case MO_64:
#endif
tcg_gen_rotri_tl(s->T0, s->T0, b);
break;
default:
g_assert_not_reached();
}
}
static void gen_SAHF(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
if (CODE64(s) && !(s->cpuid_ext3_features & CPUID_EXT3_LAHF_LM)) {
return gen_illegal_opcode(s);
}
tcg_gen_shri_tl(s->T0, cpu_regs[R_EAX], 8);
gen_compute_eflags(s);
tcg_gen_andi_tl(cpu_cc_src, cpu_cc_src, CC_O);
tcg_gen_andi_tl(s->T0, s->T0, CC_S | CC_Z | CC_A | CC_P | CC_C);
tcg_gen_or_tl(cpu_cc_src, cpu_cc_src, s->T0);
}
static void gen_SALC(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_compute_eflags_c(s, s->T0);
tcg_gen_neg_tl(s->T0, s->T0);
}
static void gen_shift_dynamic_flags(DisasContext *s, X86DecodedInsn *decode, TCGv count, CCOp cc_op)
{
TCGv_i32 count32 = tcg_temp_new_i32();
TCGv_i32 old_cc_op;
decode->cc_op = CC_OP_DYNAMIC;
decode->cc_op_dynamic = tcg_temp_new_i32();
assert(decode->cc_dst == s->T0);
if (cc_op_live[s->cc_op] & USES_CC_DST) {
decode->cc_dst = tcg_temp_new();
tcg_gen_movcond_tl(TCG_COND_EQ, decode->cc_dst, count, tcg_constant_tl(0),
cpu_cc_dst, s->T0);
}
if (cc_op_live[s->cc_op] & USES_CC_SRC) {
tcg_gen_movcond_tl(TCG_COND_EQ, decode->cc_src, count, tcg_constant_tl(0),
cpu_cc_src, decode->cc_src);
}
tcg_gen_trunc_tl_i32(count32, count);
if (s->cc_op == CC_OP_DYNAMIC) {
old_cc_op = cpu_cc_op;
} else {
old_cc_op = tcg_constant_i32(s->cc_op);
}
tcg_gen_movcond_i32(TCG_COND_EQ, decode->cc_op_dynamic, count32, tcg_constant_i32(0),
old_cc_op, tcg_constant_i32(cc_op));
}
static void gen_SAR(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
bool can_be_zero;
TCGv count;
MemOp ot = gen_shift_count(s, decode, &can_be_zero, &count);
if (!count) {
return;
}
decode->cc_dst = s->T0;
decode->cc_src = tcg_temp_new();
tcg_gen_subi_tl(decode->cc_src, count, 1);
tcg_gen_sar_tl(decode->cc_src, s->T0, decode->cc_src);
tcg_gen_sar_tl(s->T0, s->T0, count);
if (can_be_zero) {
gen_shift_dynamic_flags(s, decode, count, CC_OP_SARB + ot);
} else {
decode->cc_op = CC_OP_SARB + ot;
}
}
static void gen_SARX(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[0].ot;
int mask;
mask = ot == MO_64 ? 63 : 31;
tcg_gen_andi_tl(s->T1, s->T1, mask);
tcg_gen_sar_tl(s->T0, s->T0, s->T1);
}
static void gen_SBB(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[0].ot;
TCGv c_in = tcg_temp_new();
gen_compute_eflags_c(s, c_in);
if (s->prefix & PREFIX_LOCK) {
tcg_gen_add_tl(s->T0, s->T1, c_in);
tcg_gen_neg_tl(s->T0, s->T0);
tcg_gen_atomic_add_fetch_tl(s->T0, s->A0, s->T0,
s->mem_index, ot | MO_LE);
} else {
/*
* TODO: SBB reg, reg could use gen_prepare_eflags_c followed by
* negsetcond, and CC_OP_SUBB as the cc_op.
*/
tcg_gen_sub_tl(s->T0, s->T0, s->T1);
tcg_gen_sub_tl(s->T0, s->T0, c_in);
}
prepare_update3_cc(decode, s, CC_OP_SBBB + ot, c_in);
}
static void gen_SCAS(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[2].ot;
if (s->prefix & PREFIX_REPNZ) {
gen_repz_scas(s, ot, 1);
} else if (s->prefix & PREFIX_REPZ) {
gen_repz_scas(s, ot, 0);
} else {
gen_scas(s, ot);
}
}
static void gen_SETcc(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_setcc1(s, decode->b & 0xf, s->T0);
}
static void gen_SHA1NEXTE(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_helper_sha1nexte(OP_PTR0, OP_PTR1, OP_PTR2);
}
static void gen_SHA1MSG1(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_helper_sha1msg1(OP_PTR0, OP_PTR1, OP_PTR2);
}
static void gen_SHA1MSG2(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_helper_sha1msg2(OP_PTR0, OP_PTR1, OP_PTR2);
}
static void gen_SHA1RNDS4(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
switch(decode->immediate & 3) {
case 0:
gen_helper_sha1rnds4_f0(OP_PTR0, OP_PTR0, OP_PTR1);
break;
case 1:
gen_helper_sha1rnds4_f1(OP_PTR0, OP_PTR0, OP_PTR1);
break;
case 2:
gen_helper_sha1rnds4_f2(OP_PTR0, OP_PTR0, OP_PTR1);
break;
case 3:
gen_helper_sha1rnds4_f3(OP_PTR0, OP_PTR0, OP_PTR1);
break;
}
}
static void gen_SHA256MSG1(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_helper_sha256msg1(OP_PTR0, OP_PTR1, OP_PTR2);
}
static void gen_SHA256MSG2(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_helper_sha256msg2(OP_PTR0, OP_PTR1, OP_PTR2);
}
static void gen_SHA256RNDS2(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
TCGv_i32 wk0 = tcg_temp_new_i32();
TCGv_i32 wk1 = tcg_temp_new_i32();
tcg_gen_ld_i32(wk0, tcg_env, ZMM_OFFSET(0) + offsetof(ZMMReg, ZMM_L(0)));
tcg_gen_ld_i32(wk1, tcg_env, ZMM_OFFSET(0) + offsetof(ZMMReg, ZMM_L(1)));
gen_helper_sha256rnds2(OP_PTR0, OP_PTR1, OP_PTR2, wk0, wk1);
}
static void gen_SHL(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
bool can_be_zero;
TCGv count;
MemOp ot = gen_shift_count(s, decode, &can_be_zero, &count);
if (!count) {
return;
}
decode->cc_dst = s->T0;
decode->cc_src = tcg_temp_new();
tcg_gen_subi_tl(decode->cc_src, count, 1);
tcg_gen_shl_tl(decode->cc_src, s->T0, decode->cc_src);
tcg_gen_shl_tl(s->T0, s->T0, count);
if (can_be_zero) {
gen_shift_dynamic_flags(s, decode, count, CC_OP_SHLB + ot);
} else {
decode->cc_op = CC_OP_SHLB + ot;
}
}
static void gen_SHLX(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[0].ot;
int mask;
mask = ot == MO_64 ? 63 : 31;
tcg_gen_andi_tl(s->T1, s->T1, mask);
tcg_gen_shl_tl(s->T0, s->T0, s->T1);
}
static void gen_SHR(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
bool can_be_zero;
TCGv count;
MemOp ot = gen_shift_count(s, decode, &can_be_zero, &count);
if (!count) {
return;
}
decode->cc_dst = s->T0;
decode->cc_src = tcg_temp_new();
tcg_gen_subi_tl(decode->cc_src, count, 1);
tcg_gen_shr_tl(decode->cc_src, s->T0, decode->cc_src);
tcg_gen_shr_tl(s->T0, s->T0, count);
if (can_be_zero) {
gen_shift_dynamic_flags(s, decode, count, CC_OP_SARB + ot);
} else {
decode->cc_op = CC_OP_SARB + ot;
}
}
static void gen_SHRX(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[0].ot;
int mask;
mask = ot == MO_64 ? 63 : 31;
tcg_gen_andi_tl(s->T1, s->T1, mask);
tcg_gen_shr_tl(s->T0, s->T0, s->T1);
}
static void gen_STC(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_compute_eflags(s);
tcg_gen_ori_tl(cpu_cc_src, cpu_cc_src, CC_C);
}
static void gen_STD(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
tcg_gen_st_i32(tcg_constant_i32(-1), tcg_env, offsetof(CPUX86State, df));
}
static void gen_STI(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_set_eflags(s, IF_MASK);
/* interruptions are enabled only the first insn after sti */
gen_update_eip_next(s);
gen_eob_inhibit_irq(s);
}
static void gen_VAESKEYGEN(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
TCGv_i32 imm = tcg_constant8u_i32(decode->immediate);
assert(!s->vex_l);
gen_helper_aeskeygenassist_xmm(tcg_env, OP_PTR0, OP_PTR1, imm);
}
static void gen_STMXCSR(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_helper_update_mxcsr(tcg_env);
tcg_gen_ld32u_tl(s->T0, tcg_env, offsetof(CPUX86State, mxcsr));
}
static void gen_STOS(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[1].ot;
if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) {
gen_repz_stos(s, ot);
} else {
gen_stos(s, ot);
}
}
static void gen_SUB(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
MemOp ot = decode->op[1].ot;
if (s->prefix & PREFIX_LOCK) {
tcg_gen_neg_tl(s->T0, s->T1);
tcg_gen_atomic_fetch_add_tl(s->cc_srcT, s->A0, s->T0,
s->mem_index, ot | MO_LE);
tcg_gen_sub_tl(s->T0, s->cc_srcT, s->T1);
} else {
tcg_gen_mov_tl(s->cc_srcT, s->T0);
tcg_gen_sub_tl(s->T0, s->T0, s->T1);
}
prepare_update2_cc(decode, s, CC_OP_SUBB + ot);
}
static void gen_VAESIMC(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
assert(!s->vex_l);
gen_helper_aesimc_xmm(tcg_env, OP_PTR0, OP_PTR2);
}
/*
* 00 = v*ps Vps, Hps, Wpd
* 66 = v*pd Vpd, Hpd, Wps
* f3 = v*ss Vss, Hss, Wps
* f2 = v*sd Vsd, Hsd, Wps
*/
#define SSE_CMP(x) { \
gen_helper_ ## x ## ps ## _xmm, gen_helper_ ## x ## pd ## _xmm, \
gen_helper_ ## x ## ss, gen_helper_ ## x ## sd, \
gen_helper_ ## x ## ps ## _ymm, gen_helper_ ## x ## pd ## _ymm}
static const SSEFunc_0_eppp gen_helper_cmp_funcs[32][6] = {
SSE_CMP(cmpeq),
SSE_CMP(cmplt),
SSE_CMP(cmple),
SSE_CMP(cmpunord),
SSE_CMP(cmpneq),
SSE_CMP(cmpnlt),
SSE_CMP(cmpnle),
SSE_CMP(cmpord),
SSE_CMP(cmpequ),
SSE_CMP(cmpnge),
SSE_CMP(cmpngt),
SSE_CMP(cmpfalse),
SSE_CMP(cmpnequ),
SSE_CMP(cmpge),
SSE_CMP(cmpgt),
SSE_CMP(cmptrue),
SSE_CMP(cmpeqs),
SSE_CMP(cmpltq),
SSE_CMP(cmpleq),
SSE_CMP(cmpunords),
SSE_CMP(cmpneqq),
SSE_CMP(cmpnltq),
SSE_CMP(cmpnleq),
SSE_CMP(cmpords),
SSE_CMP(cmpequs),
SSE_CMP(cmpngeq),
SSE_CMP(cmpngtq),
SSE_CMP(cmpfalses),
SSE_CMP(cmpnequs),
SSE_CMP(cmpgeq),
SSE_CMP(cmpgtq),
SSE_CMP(cmptrues),
};
#undef SSE_CMP
static void gen_VCMP(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
int index = decode->immediate & (s->prefix & PREFIX_VEX ? 31 : 7);
int b =
s->prefix & PREFIX_REPZ ? 2 /* ss */ :
s->prefix & PREFIX_REPNZ ? 3 /* sd */ :
!!(s->prefix & PREFIX_DATA) /* pd */ + (s->vex_l << 2);
gen_helper_cmp_funcs[index][b](tcg_env, OP_PTR0, OP_PTR1, OP_PTR2);
}
static void gen_VCOMI(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
SSEFunc_0_epp fn;
fn = s->prefix & PREFIX_DATA ? gen_helper_comisd : gen_helper_comiss;
fn(tcg_env, OP_PTR1, OP_PTR2);
set_cc_op(s, CC_OP_EFLAGS);
}
static void gen_VCVTPD2PS(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
if (s->vex_l) {
gen_helper_cvtpd2ps_ymm(tcg_env, OP_PTR0, OP_PTR2);
} else {
gen_helper_cvtpd2ps_xmm(tcg_env, OP_PTR0, OP_PTR2);
}
}
static void gen_VCVTPS2PD(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
if (s->vex_l) {
gen_helper_cvtps2pd_ymm(tcg_env, OP_PTR0, OP_PTR2);
} else {
gen_helper_cvtps2pd_xmm(tcg_env, OP_PTR0, OP_PTR2);
}
}
static void gen_VCVTPS2PH(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_unary_imm_fp_sse(s, env, decode,
gen_helper_cvtps2ph_xmm,
gen_helper_cvtps2ph_ymm);
/*
* VCVTPS2PH is the only instruction that performs an operation on a
* register source and then *stores* into memory.
*/
if (decode->op[0].has_ea) {
gen_store_sse(s, decode, decode->op[0].offset);
}
}
static void gen_VCVTSD2SS(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_helper_cvtsd2ss(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2);
}
static void gen_VCVTSS2SD(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_helper_cvtss2sd(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2);
}
static void gen_VCVTSI2Sx(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
int vec_len = vector_len(s, decode);
TCGv_i32 in;
tcg_gen_gvec_mov(MO_64, decode->op[0].offset, decode->op[1].offset, vec_len, vec_len);
#ifdef TARGET_X86_64
MemOp ot = decode->op[2].ot;
if (ot == MO_64) {
if (s->prefix & PREFIX_REPNZ) {
gen_helper_cvtsq2sd(tcg_env, OP_PTR0, s->T1);
} else {
gen_helper_cvtsq2ss(tcg_env, OP_PTR0, s->T1);
}
return;
}
in = s->tmp2_i32;
tcg_gen_trunc_tl_i32(in, s->T1);
#else
in = s->T1;
#endif
if (s->prefix & PREFIX_REPNZ) {
gen_helper_cvtsi2sd(tcg_env, OP_PTR0, in);
} else {
gen_helper_cvtsi2ss(tcg_env, OP_PTR0, in);
}
}
static inline void gen_VCVTtSx2SI(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
SSEFunc_i_ep ss2si, SSEFunc_l_ep ss2sq,
SSEFunc_i_ep sd2si, SSEFunc_l_ep sd2sq)
{
TCGv_i32 out;
#ifdef TARGET_X86_64
MemOp ot = decode->op[0].ot;
if (ot == MO_64) {
if (s->prefix & PREFIX_REPNZ) {
sd2sq(s->T0, tcg_env, OP_PTR2);
} else {
ss2sq(s->T0, tcg_env, OP_PTR2);
}
return;
}
out = s->tmp2_i32;
#else
out = s->T0;
#endif
if (s->prefix & PREFIX_REPNZ) {
sd2si(out, tcg_env, OP_PTR2);
} else {
ss2si(out, tcg_env, OP_PTR2);
}
#ifdef TARGET_X86_64
tcg_gen_extu_i32_tl(s->T0, out);
#endif
}
#ifndef TARGET_X86_64
#define gen_helper_cvtss2sq NULL
#define gen_helper_cvtsd2sq NULL
#define gen_helper_cvttss2sq NULL
#define gen_helper_cvttsd2sq NULL
#endif
static void gen_VCVTSx2SI(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_VCVTtSx2SI(s, env, decode,
gen_helper_cvtss2si, gen_helper_cvtss2sq,
gen_helper_cvtsd2si, gen_helper_cvtsd2sq);
}
static void gen_VCVTTSx2SI(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_VCVTtSx2SI(s, env, decode,
gen_helper_cvttss2si, gen_helper_cvttss2sq,
gen_helper_cvttsd2si, gen_helper_cvttsd2sq);
}
static void gen_VEXTRACTx128(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
int mask = decode->immediate & 1;
int src_ofs = vector_elem_offset(&decode->op[1], MO_128, mask);
if (decode->op[0].has_ea) {
/* VEX-only instruction, no alignment requirements. */
gen_sto_env_A0(s, src_ofs, false);
} else {
tcg_gen_gvec_mov(MO_64, decode->op[0].offset, src_ofs, 16, 16);
}
}
static void gen_VEXTRACTPS(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_pextr(s, env, decode, MO_32);
}
static void gen_vinsertps(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
int val = decode->immediate;
int dest_word = (val >> 4) & 3;
int new_mask = (val & 15) | (1 << dest_word);
int vec_len = 16;
assert(!s->vex_l);
if (new_mask == 15) {
/* All zeroes except possibly for the inserted element */
tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0);
} else if (decode->op[1].offset != decode->op[0].offset) {
gen_store_sse(s, decode, decode->op[1].offset);
}
if (new_mask != (val & 15)) {
tcg_gen_st_i32(s->tmp2_i32, tcg_env,
vector_elem_offset(&decode->op[0], MO_32, dest_word));
}
if (new_mask != 15) {
TCGv_i32 zero = tcg_constant_i32(0); /* float32_zero */
int i;
for (i = 0; i < 4; i++) {
if ((val >> i) & 1) {
tcg_gen_st_i32(zero, tcg_env,
vector_elem_offset(&decode->op[0], MO_32, i));
}
}
}
}
static void gen_VINSERTPS_r(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
int val = decode->immediate;
tcg_gen_ld_i32(s->tmp2_i32, tcg_env,
vector_elem_offset(&decode->op[2], MO_32, (val >> 6) & 3));
gen_vinsertps(s, env, decode);
}
static void gen_VINSERTPS_m(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
tcg_gen_qemu_ld_i32(s->tmp2_i32, s->A0, s->mem_index, MO_LEUL);
gen_vinsertps(s, env, decode);
}
static void gen_VINSERTx128(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
int mask = decode->immediate & 1;
tcg_gen_gvec_mov(MO_64,
decode->op[0].offset + offsetof(YMMReg, YMM_X(mask)),
decode->op[2].offset + offsetof(YMMReg, YMM_X(0)), 16, 16);
tcg_gen_gvec_mov(MO_64,
decode->op[0].offset + offsetof(YMMReg, YMM_X(!mask)),
decode->op[1].offset + offsetof(YMMReg, YMM_X(!mask)), 16, 16);
}
static inline void gen_maskmov(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
SSEFunc_0_eppt xmm, SSEFunc_0_eppt ymm)
{
if (!s->vex_l) {
xmm(tcg_env, OP_PTR2, OP_PTR1, s->A0);
} else {
ymm(tcg_env, OP_PTR2, OP_PTR1, s->A0);
}
}
static void gen_VMASKMOVPD_st(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_maskmov(s, env, decode, gen_helper_vpmaskmovq_st_xmm, gen_helper_vpmaskmovq_st_ymm);
}
static void gen_VMASKMOVPS_st(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_maskmov(s, env, decode, gen_helper_vpmaskmovd_st_xmm, gen_helper_vpmaskmovd_st_ymm);
}
static void gen_VMOVHPx_ld(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_ldq_env_A0(s, decode->op[0].offset + offsetof(XMMReg, XMM_Q(1)));
if (decode->op[0].offset != decode->op[1].offset) {
tcg_gen_ld_i64(s->tmp1_i64, tcg_env, decode->op[1].offset + offsetof(XMMReg, XMM_Q(0)));
tcg_gen_st_i64(s->tmp1_i64, tcg_env, decode->op[0].offset + offsetof(XMMReg, XMM_Q(0)));
}
}
static void gen_VMOVHPx_st(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
gen_stq_env_A0(s, decode->op[2].offset + offsetof(XMMReg, XMM_Q(1)));
}
static void gen_VMOVHPx(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
if (decode->op[0].offset != decode->op[2].offset) {
tcg_gen_ld_i64(s->tmp1_i64, tcg_env, decode->op[2].offset + offsetof(XMMReg, XMM_Q(1)));
tcg_gen_st_i64(s->tmp1_i64, tcg_env, decode->op[0].offset + offsetof(XMMReg, XMM_Q(1)));
}
if (decode->op[0].offset != decode->op[1].offset) {
tcg_gen_ld_i64(s->tmp1_i64, tcg_env, decode->op[1].offset + offsetof(XMMReg, XMM_Q(0)));
tcg_gen_st_i64(s->tmp1_i64, tcg_env, decode->op[0].offset + offsetof(XMMReg, XMM_Q(0)));
}
}
static void gen_VMOVHLPS(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
tcg_gen_ld_i64(s->tmp1_i64, tcg_env, decode->op[2].offset + offsetof(XMMReg, XMM_Q(1)));
tcg_gen_st_i64(s->tmp1_i64, tcg_env, decode->op[0].offset + offsetof(XMMReg, XMM_Q(0)));
if (decode->op[0].offset != decode->op[1].offset) {
tcg_gen_ld_i64(s->tmp1_i64, tcg_env, decode->op[1].offset + offsetof(XMMReg, XMM_Q(1)));
tcg_gen_st_i64(s->tmp1_i64, tcg_env, decode->op[0].offset + offsetof(XMMReg, XMM_Q(1)));
}
}
static void gen_VMOVLHPS(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
tcg_gen_ld_i64(s->tmp1_i64, tcg_env, decode->op[2].offset);
tcg_gen_st_i64(s->tmp1_i64, tcg_env, decode->op[0].offset + offsetof(XMMReg, XMM_Q(1)));
if (decode->op[0].offset != decode->op[1].offset) {
tcg_gen_ld_i64(s->tmp1_i64, tcg_env, decode->op[1].offset + offsetof(XMMReg, XMM_Q(0)));
tcg_gen_st_i64(s->tmp1_i64, tcg_env, decode->op[0].offset + offsetof(XMMReg, XMM_Q(0)));
}
}
/*
* Note that MOVLPx supports 256-bit operation unlike MOVHLPx, MOVLHPx, MOXHPx.
* Use a gvec move to move everything above the bottom 64 bits.
*/
static void gen_VMOVLPx(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
int vec_len = vector_len(s, decode);
tcg_gen_ld_i64(s->tmp1_i64, tcg_env, decode->op[2].offset + offsetof(XMMReg, XMM_Q(0)));
tcg_gen_gvec_mov(MO_64, decode->op[0].offset, decode->op[1].offset, vec_len, vec_len);
tcg_gen_st_i64(s->tmp1_i64, tcg_env, decode->op[0].offset + offsetof(XMMReg, XMM_Q(0)));
}
static void gen_VMOVLPx_ld(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
int vec_len = vector_len(s, decode);
tcg_gen_qemu_ld_i64(s->tmp1_i64, s->A0, s->mem_index, MO_LEUQ);
tcg_gen_gvec_mov(MO_64, decode->op[0].offset, decode->op[1].offset, vec_len, vec_len);
tcg_gen_st_i64(s->tmp1_i64, OP_PTR0, offsetof(ZMMReg, ZMM_Q(0)));
}
static void gen_VMOVLPx_st(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
tcg_gen_ld_i64(s->tmp1_i64, OP_PTR2, offsetof(ZMMReg, ZMM_Q(0)));
tcg_gen_qemu_st_i64(s->tmp1_i64, s->A0, s->mem_index, MO_LEUQ);
}
static void gen_VMOVSD_ld(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
TCGv_i64 zero = tcg_constant_i64(0);
tcg_gen_qemu_ld_i64(s->tmp1_i64, s->A0, s->mem_index, MO_LEUQ);
tcg_gen_st_i64(zero, OP_PTR0, offsetof(ZMMReg, ZMM_Q(1)));
tcg_gen_st_i64(s->tmp1_i64, OP_PTR0, offsetof(ZMMReg, ZMM_Q(0)));
}
static void gen_VMOVSS(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
int vec_len = vector_len(s, decode);
tcg_gen_ld_i32(s->tmp2_i32, OP_PTR2, offsetof(ZMMReg, ZMM_L(0)));
tcg_gen_gvec_mov(MO_64, decode->op[0].offset, decode->op[1].offset, vec_len, vec_len);
tcg_gen_st_i32(s->tmp2_i32, OP_PTR0, offsetof(ZMMReg, ZMM_L(0)));
}
static void gen_VMOVSS_ld(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
int vec_len = vector_len(s, decode);
tcg_gen_qemu_ld_i32(s->tmp2_i32, s->A0, s->mem_index, MO_LEUL);
tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0);
tcg_gen_st_i32(s->tmp2_i32, OP_PTR0, offsetof(ZMMReg, ZMM_L(0)));
}
static void gen_VMOVSS_st(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
tcg_gen_ld_i32(s->tmp2_i32, OP_PTR2, offsetof(ZMMReg, ZMM_L(0)));
tcg_gen_qemu_st_i32(s->tmp2_i32, s->A0, s->mem_index, MO_LEUL);
}
static void gen_VPMASKMOV_st(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
if (s->vex_w) {
gen_VMASKMOVPD_st(s, env, decode);
} else {
gen_VMASKMOVPS_st(s, env, decode);
}
}
static void gen_VPERMD(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
assert(s->vex_l);
gen_helper_vpermd_ymm(OP_PTR0, OP_PTR1, OP_PTR2);
}
static void gen_VPERM2x128(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
TCGv_i32 imm = tcg_constant8u_i32(decode->immediate);
assert(s->vex_l);
gen_helper_vpermdq_ymm(OP_PTR0, OP_PTR1, OP_PTR2, imm);
}
static void gen_VPHMINPOSUW(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
assert(!s->vex_l);
gen_helper_phminposuw_xmm(tcg_env, OP_PTR0, OP_PTR2);
}
static void gen_VROUNDSD(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
TCGv_i32 imm = tcg_constant8u_i32(decode->immediate);
assert(!s->vex_l);
gen_helper_roundsd_xmm(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2, imm);
}
static void gen_VROUNDSS(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
TCGv_i32 imm = tcg_constant8u_i32(decode->immediate);
assert(!s->vex_l);
gen_helper_roundss_xmm(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2, imm);
}
static void gen_VSHUF(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
TCGv_i32 imm = tcg_constant_i32(decode->immediate);
SSEFunc_0_pppi ps, pd, fn;
ps = s->vex_l ? gen_helper_shufps_ymm : gen_helper_shufps_xmm;
pd = s->vex_l ? gen_helper_shufpd_ymm : gen_helper_shufpd_xmm;
fn = s->prefix & PREFIX_DATA ? pd : ps;
fn(OP_PTR0, OP_PTR1, OP_PTR2, imm);
}
static void gen_VUCOMI(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
SSEFunc_0_epp fn;
fn = s->prefix & PREFIX_DATA ? gen_helper_ucomisd : gen_helper_ucomiss;
fn(tcg_env, OP_PTR1, OP_PTR2);
set_cc_op(s, CC_OP_EFLAGS);
}
static void gen_VZEROALL(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
TCGv_ptr ptr = tcg_temp_new_ptr();
tcg_gen_addi_ptr(ptr, tcg_env, offsetof(CPUX86State, xmm_regs));
gen_helper_memset(ptr, ptr, tcg_constant_i32(0),
tcg_constant_ptr(CPU_NB_REGS * sizeof(ZMMReg)));
}
static void gen_VZEROUPPER(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
int i;
for (i = 0; i < CPU_NB_REGS; i++) {
int offset = offsetof(CPUX86State, xmm_regs[i].ZMM_X(1));
tcg_gen_gvec_dup_imm(MO_64, offset, 16, 16, 0);
}
}
static void gen_WAIT(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
if ((s->flags & (HF_MP_MASK | HF_TS_MASK)) == (HF_MP_MASK | HF_TS_MASK)) {
gen_NM_exception(s);
} else {
/* needs to be treated as I/O because of ferr_irq */
translator_io_start(&s->base);
gen_helper_fwait(tcg_env);
}
}
static void gen_XCHG(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
if (decode->b == 0x90 && !REX_B(s)) {
if (s->prefix & PREFIX_REPZ) {
gen_update_cc_op(s);
gen_update_eip_cur(s);
gen_helper_pause(tcg_env, cur_insn_len_i32(s));
s->base.is_jmp = DISAS_NORETURN;
}
/* No writeback. */
decode->op[0].unit = X86_OP_SKIP;
return;
}
if (s->prefix & PREFIX_LOCK) {
tcg_gen_atomic_xchg_tl(s->T0, s->A0, s->T1,
s->mem_index, decode->op[0].ot | MO_LE);
/* now store old value into register operand */
gen_op_mov_reg_v(s, decode->op[2].ot, decode->op[2].n, s->T0);
} else {
/* move destination value into source operand, source preserved in T1 */
gen_op_mov_reg_v(s, decode->op[2].ot, decode->op[2].n, s->T0);
tcg_gen_mov_tl(s->T0, s->T1);
}
}
static void gen_XLAT(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
/* AL is already zero-extended into s->T0. */
tcg_gen_add_tl(s->A0, cpu_regs[R_EBX], s->T0);
gen_add_A0_ds_seg(s);
gen_op_ld_v(s, MO_8, s->T0, s->A0);
}
static void gen_XOR(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
{
/* special case XOR reg, reg */
if (decode->op[1].unit == X86_OP_INT &&
decode->op[2].unit == X86_OP_INT &&
decode->op[1].n == decode->op[2].n) {
tcg_gen_movi_tl(s->T0, 0);
decode->cc_op = CC_OP_CLR;
} else {
MemOp ot = decode->op[1].ot;
if (s->prefix & PREFIX_LOCK) {
tcg_gen_atomic_xor_fetch_tl(s->T0, s->A0, s->T1,
s->mem_index, ot | MO_LE);
} else {
tcg_gen_xor_tl(s->T0, s->T0, s->T1);
}
prepare_update1_cc(decode, s, CC_OP_LOGICB + ot);
}
}