| /* |
| * PowerPC floating point and SPE emulation helpers for QEMU. |
| * |
| * Copyright (c) 2003-2007 Jocelyn Mayer |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include "cpu.h" |
| #include "helper.h" |
| |
| /*****************************************************************************/ |
| /* Floating point operations helpers */ |
| uint64_t helper_float32_to_float64(CPUPPCState *env, uint32_t arg) |
| { |
| CPU_FloatU f; |
| CPU_DoubleU d; |
| |
| f.l = arg; |
| d.d = float32_to_float64(f.f, &env->fp_status); |
| return d.ll; |
| } |
| |
| uint32_t helper_float64_to_float32(CPUPPCState *env, uint64_t arg) |
| { |
| CPU_FloatU f; |
| CPU_DoubleU d; |
| |
| d.ll = arg; |
| f.f = float64_to_float32(d.d, &env->fp_status); |
| return f.l; |
| } |
| |
| static inline int isden(float64 d) |
| { |
| CPU_DoubleU u; |
| |
| u.d = d; |
| |
| return ((u.ll >> 52) & 0x7FF) == 0; |
| } |
| |
| static inline int ppc_float32_get_unbiased_exp(float32 f) |
| { |
| return ((f >> 23) & 0xFF) - 127; |
| } |
| |
| static inline int ppc_float64_get_unbiased_exp(float64 f) |
| { |
| return ((f >> 52) & 0x7FF) - 1023; |
| } |
| |
| uint32_t helper_compute_fprf(CPUPPCState *env, uint64_t arg, uint32_t set_fprf) |
| { |
| CPU_DoubleU farg; |
| int isneg; |
| int ret; |
| |
| farg.ll = arg; |
| isneg = float64_is_neg(farg.d); |
| if (unlikely(float64_is_any_nan(farg.d))) { |
| if (float64_is_signaling_nan(farg.d)) { |
| /* Signaling NaN: flags are undefined */ |
| ret = 0x00; |
| } else { |
| /* Quiet NaN */ |
| ret = 0x11; |
| } |
| } else if (unlikely(float64_is_infinity(farg.d))) { |
| /* +/- infinity */ |
| if (isneg) { |
| ret = 0x09; |
| } else { |
| ret = 0x05; |
| } |
| } else { |
| if (float64_is_zero(farg.d)) { |
| /* +/- zero */ |
| if (isneg) { |
| ret = 0x12; |
| } else { |
| ret = 0x02; |
| } |
| } else { |
| if (isden(farg.d)) { |
| /* Denormalized numbers */ |
| ret = 0x10; |
| } else { |
| /* Normalized numbers */ |
| ret = 0x00; |
| } |
| if (isneg) { |
| ret |= 0x08; |
| } else { |
| ret |= 0x04; |
| } |
| } |
| } |
| if (set_fprf) { |
| /* We update FPSCR_FPRF */ |
| env->fpscr &= ~(0x1F << FPSCR_FPRF); |
| env->fpscr |= ret << FPSCR_FPRF; |
| } |
| /* We just need fpcc to update Rc1 */ |
| return ret & 0xF; |
| } |
| |
| /* Floating-point invalid operations exception */ |
| static inline uint64_t fload_invalid_op_excp(CPUPPCState *env, int op, |
| int set_fpcc) |
| { |
| uint64_t ret = 0; |
| int ve; |
| |
| ve = fpscr_ve; |
| switch (op) { |
| case POWERPC_EXCP_FP_VXSNAN: |
| env->fpscr |= 1 << FPSCR_VXSNAN; |
| break; |
| case POWERPC_EXCP_FP_VXSOFT: |
| env->fpscr |= 1 << FPSCR_VXSOFT; |
| break; |
| case POWERPC_EXCP_FP_VXISI: |
| /* Magnitude subtraction of infinities */ |
| env->fpscr |= 1 << FPSCR_VXISI; |
| goto update_arith; |
| case POWERPC_EXCP_FP_VXIDI: |
| /* Division of infinity by infinity */ |
| env->fpscr |= 1 << FPSCR_VXIDI; |
| goto update_arith; |
| case POWERPC_EXCP_FP_VXZDZ: |
| /* Division of zero by zero */ |
| env->fpscr |= 1 << FPSCR_VXZDZ; |
| goto update_arith; |
| case POWERPC_EXCP_FP_VXIMZ: |
| /* Multiplication of zero by infinity */ |
| env->fpscr |= 1 << FPSCR_VXIMZ; |
| goto update_arith; |
| case POWERPC_EXCP_FP_VXVC: |
| /* Ordered comparison of NaN */ |
| env->fpscr |= 1 << FPSCR_VXVC; |
| if (set_fpcc) { |
| env->fpscr &= ~(0xF << FPSCR_FPCC); |
| env->fpscr |= 0x11 << FPSCR_FPCC; |
| } |
| /* We must update the target FPR before raising the exception */ |
| if (ve != 0) { |
| env->exception_index = POWERPC_EXCP_PROGRAM; |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC; |
| /* Update the floating-point enabled exception summary */ |
| env->fpscr |= 1 << FPSCR_FEX; |
| /* Exception is differed */ |
| ve = 0; |
| } |
| break; |
| case POWERPC_EXCP_FP_VXSQRT: |
| /* Square root of a negative number */ |
| env->fpscr |= 1 << FPSCR_VXSQRT; |
| update_arith: |
| env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); |
| if (ve == 0) { |
| /* Set the result to quiet NaN */ |
| ret = 0x7FF8000000000000ULL; |
| if (set_fpcc) { |
| env->fpscr &= ~(0xF << FPSCR_FPCC); |
| env->fpscr |= 0x11 << FPSCR_FPCC; |
| } |
| } |
| break; |
| case POWERPC_EXCP_FP_VXCVI: |
| /* Invalid conversion */ |
| env->fpscr |= 1 << FPSCR_VXCVI; |
| env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); |
| if (ve == 0) { |
| /* Set the result to quiet NaN */ |
| ret = 0x7FF8000000000000ULL; |
| if (set_fpcc) { |
| env->fpscr &= ~(0xF << FPSCR_FPCC); |
| env->fpscr |= 0x11 << FPSCR_FPCC; |
| } |
| } |
| break; |
| } |
| /* Update the floating-point invalid operation summary */ |
| env->fpscr |= 1 << FPSCR_VX; |
| /* Update the floating-point exception summary */ |
| env->fpscr |= 1 << FPSCR_FX; |
| if (ve != 0) { |
| /* Update the floating-point enabled exception summary */ |
| env->fpscr |= 1 << FPSCR_FEX; |
| if (msr_fe0 != 0 || msr_fe1 != 0) { |
| helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_FP | op); |
| } |
| } |
| return ret; |
| } |
| |
| static inline void float_zero_divide_excp(CPUPPCState *env) |
| { |
| env->fpscr |= 1 << FPSCR_ZX; |
| env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); |
| /* Update the floating-point exception summary */ |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_ze != 0) { |
| /* Update the floating-point enabled exception summary */ |
| env->fpscr |= 1 << FPSCR_FEX; |
| if (msr_fe0 != 0 || msr_fe1 != 0) { |
| helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX); |
| } |
| } |
| } |
| |
| static inline void float_overflow_excp(CPUPPCState *env) |
| { |
| env->fpscr |= 1 << FPSCR_OX; |
| /* Update the floating-point exception summary */ |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_oe != 0) { |
| /* XXX: should adjust the result */ |
| /* Update the floating-point enabled exception summary */ |
| env->fpscr |= 1 << FPSCR_FEX; |
| /* We must update the target FPR before raising the exception */ |
| env->exception_index = POWERPC_EXCP_PROGRAM; |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; |
| } else { |
| env->fpscr |= 1 << FPSCR_XX; |
| env->fpscr |= 1 << FPSCR_FI; |
| } |
| } |
| |
| static inline void float_underflow_excp(CPUPPCState *env) |
| { |
| env->fpscr |= 1 << FPSCR_UX; |
| /* Update the floating-point exception summary */ |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_ue != 0) { |
| /* XXX: should adjust the result */ |
| /* Update the floating-point enabled exception summary */ |
| env->fpscr |= 1 << FPSCR_FEX; |
| /* We must update the target FPR before raising the exception */ |
| env->exception_index = POWERPC_EXCP_PROGRAM; |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; |
| } |
| } |
| |
| static inline void float_inexact_excp(CPUPPCState *env) |
| { |
| env->fpscr |= 1 << FPSCR_XX; |
| /* Update the floating-point exception summary */ |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_xe != 0) { |
| /* Update the floating-point enabled exception summary */ |
| env->fpscr |= 1 << FPSCR_FEX; |
| /* We must update the target FPR before raising the exception */ |
| env->exception_index = POWERPC_EXCP_PROGRAM; |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; |
| } |
| } |
| |
| static inline void fpscr_set_rounding_mode(CPUPPCState *env) |
| { |
| int rnd_type; |
| |
| /* Set rounding mode */ |
| switch (fpscr_rn) { |
| case 0: |
| /* Best approximation (round to nearest) */ |
| rnd_type = float_round_nearest_even; |
| break; |
| case 1: |
| /* Smaller magnitude (round toward zero) */ |
| rnd_type = float_round_to_zero; |
| break; |
| case 2: |
| /* Round toward +infinite */ |
| rnd_type = float_round_up; |
| break; |
| default: |
| case 3: |
| /* Round toward -infinite */ |
| rnd_type = float_round_down; |
| break; |
| } |
| set_float_rounding_mode(rnd_type, &env->fp_status); |
| } |
| |
| void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit) |
| { |
| int prev; |
| |
| prev = (env->fpscr >> bit) & 1; |
| env->fpscr &= ~(1 << bit); |
| if (prev == 1) { |
| switch (bit) { |
| case FPSCR_RN1: |
| case FPSCR_RN: |
| fpscr_set_rounding_mode(env); |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| |
| void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit) |
| { |
| int prev; |
| |
| prev = (env->fpscr >> bit) & 1; |
| env->fpscr |= 1 << bit; |
| if (prev == 0) { |
| switch (bit) { |
| case FPSCR_VX: |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_ve) { |
| goto raise_ve; |
| } |
| break; |
| case FPSCR_OX: |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_oe) { |
| goto raise_oe; |
| } |
| break; |
| case FPSCR_UX: |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_ue) { |
| goto raise_ue; |
| } |
| break; |
| case FPSCR_ZX: |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_ze) { |
| goto raise_ze; |
| } |
| break; |
| case FPSCR_XX: |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_xe) { |
| goto raise_xe; |
| } |
| break; |
| case FPSCR_VXSNAN: |
| case FPSCR_VXISI: |
| case FPSCR_VXIDI: |
| case FPSCR_VXZDZ: |
| case FPSCR_VXIMZ: |
| case FPSCR_VXVC: |
| case FPSCR_VXSOFT: |
| case FPSCR_VXSQRT: |
| case FPSCR_VXCVI: |
| env->fpscr |= 1 << FPSCR_VX; |
| env->fpscr |= 1 << FPSCR_FX; |
| if (fpscr_ve != 0) { |
| goto raise_ve; |
| } |
| break; |
| case FPSCR_VE: |
| if (fpscr_vx != 0) { |
| raise_ve: |
| env->error_code = POWERPC_EXCP_FP; |
| if (fpscr_vxsnan) { |
| env->error_code |= POWERPC_EXCP_FP_VXSNAN; |
| } |
| if (fpscr_vxisi) { |
| env->error_code |= POWERPC_EXCP_FP_VXISI; |
| } |
| if (fpscr_vxidi) { |
| env->error_code |= POWERPC_EXCP_FP_VXIDI; |
| } |
| if (fpscr_vxzdz) { |
| env->error_code |= POWERPC_EXCP_FP_VXZDZ; |
| } |
| if (fpscr_vximz) { |
| env->error_code |= POWERPC_EXCP_FP_VXIMZ; |
| } |
| if (fpscr_vxvc) { |
| env->error_code |= POWERPC_EXCP_FP_VXVC; |
| } |
| if (fpscr_vxsoft) { |
| env->error_code |= POWERPC_EXCP_FP_VXSOFT; |
| } |
| if (fpscr_vxsqrt) { |
| env->error_code |= POWERPC_EXCP_FP_VXSQRT; |
| } |
| if (fpscr_vxcvi) { |
| env->error_code |= POWERPC_EXCP_FP_VXCVI; |
| } |
| goto raise_excp; |
| } |
| break; |
| case FPSCR_OE: |
| if (fpscr_ox != 0) { |
| raise_oe: |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; |
| goto raise_excp; |
| } |
| break; |
| case FPSCR_UE: |
| if (fpscr_ux != 0) { |
| raise_ue: |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; |
| goto raise_excp; |
| } |
| break; |
| case FPSCR_ZE: |
| if (fpscr_zx != 0) { |
| raise_ze: |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX; |
| goto raise_excp; |
| } |
| break; |
| case FPSCR_XE: |
| if (fpscr_xx != 0) { |
| raise_xe: |
| env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; |
| goto raise_excp; |
| } |
| break; |
| case FPSCR_RN1: |
| case FPSCR_RN: |
| fpscr_set_rounding_mode(env); |
| break; |
| default: |
| break; |
| raise_excp: |
| /* Update the floating-point enabled exception summary */ |
| env->fpscr |= 1 << FPSCR_FEX; |
| /* We have to update Rc1 before raising the exception */ |
| env->exception_index = POWERPC_EXCP_PROGRAM; |
| break; |
| } |
| } |
| } |
| |
| void helper_store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask) |
| { |
| target_ulong prev, new; |
| int i; |
| |
| prev = env->fpscr; |
| new = (target_ulong)arg; |
| new &= ~0x60000000LL; |
| new |= prev & 0x60000000LL; |
| for (i = 0; i < sizeof(target_ulong) * 2; i++) { |
| if (mask & (1 << i)) { |
| env->fpscr &= ~(0xFLL << (4 * i)); |
| env->fpscr |= new & (0xFLL << (4 * i)); |
| } |
| } |
| /* Update VX and FEX */ |
| if (fpscr_ix != 0) { |
| env->fpscr |= 1 << FPSCR_VX; |
| } else { |
| env->fpscr &= ~(1 << FPSCR_VX); |
| } |
| if ((fpscr_ex & fpscr_eex) != 0) { |
| env->fpscr |= 1 << FPSCR_FEX; |
| env->exception_index = POWERPC_EXCP_PROGRAM; |
| /* XXX: we should compute it properly */ |
| env->error_code = POWERPC_EXCP_FP; |
| } else { |
| env->fpscr &= ~(1 << FPSCR_FEX); |
| } |
| fpscr_set_rounding_mode(env); |
| } |
| |
| void store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask) |
| { |
| helper_store_fpscr(env, arg, mask); |
| } |
| |
| void helper_float_check_status(CPUPPCState *env) |
| { |
| int status = get_float_exception_flags(&env->fp_status); |
| |
| if (status & float_flag_divbyzero) { |
| float_zero_divide_excp(env); |
| } else if (status & float_flag_overflow) { |
| float_overflow_excp(env); |
| } else if (status & float_flag_underflow) { |
| float_underflow_excp(env); |
| } else if (status & float_flag_inexact) { |
| float_inexact_excp(env); |
| } |
| |
| if (env->exception_index == POWERPC_EXCP_PROGRAM && |
| (env->error_code & POWERPC_EXCP_FP)) { |
| /* Differred floating-point exception after target FPR update */ |
| if (msr_fe0 != 0 || msr_fe1 != 0) { |
| helper_raise_exception_err(env, env->exception_index, |
| env->error_code); |
| } |
| } |
| } |
| |
| void helper_reset_fpstatus(CPUPPCState *env) |
| { |
| set_float_exception_flags(0, &env->fp_status); |
| } |
| |
| /* fadd - fadd. */ |
| uint64_t helper_fadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2) |
| { |
| CPU_DoubleU farg1, farg2; |
| |
| farg1.ll = arg1; |
| farg2.ll = arg2; |
| |
| if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) && |
| float64_is_neg(farg1.d) != float64_is_neg(farg2.d))) { |
| /* Magnitude subtraction of infinities */ |
| farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1); |
| } else { |
| if (unlikely(float64_is_signaling_nan(farg1.d) || |
| float64_is_signaling_nan(farg2.d))) { |
| /* sNaN addition */ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); |
| } |
| farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status); |
| } |
| |
| return farg1.ll; |
| } |
| |
| /* fsub - fsub. */ |
| uint64_t helper_fsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2) |
| { |
| CPU_DoubleU farg1, farg2; |
| |
| farg1.ll = arg1; |
| farg2.ll = arg2; |
| |
| if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) && |
| float64_is_neg(farg1.d) == float64_is_neg(farg2.d))) { |
| /* Magnitude subtraction of infinities */ |
| farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1); |
| } else { |
| if (unlikely(float64_is_signaling_nan(farg1.d) || |
| float64_is_signaling_nan(farg2.d))) { |
| /* sNaN subtraction */ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); |
| } |
| farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status); |
| } |
| |
| return farg1.ll; |
| } |
| |
| /* fmul - fmul. */ |
| uint64_t helper_fmul(CPUPPCState *env, uint64_t arg1, uint64_t arg2) |
| { |
| CPU_DoubleU farg1, farg2; |
| |
| farg1.ll = arg1; |
| farg2.ll = arg2; |
| |
| if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || |
| (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) { |
| /* Multiplication of zero by infinity */ |
| farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1); |
| } else { |
| if (unlikely(float64_is_signaling_nan(farg1.d) || |
| float64_is_signaling_nan(farg2.d))) { |
| /* sNaN multiplication */ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); |
| } |
| farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status); |
| } |
| |
| return farg1.ll; |
| } |
| |
| /* fdiv - fdiv. */ |
| uint64_t helper_fdiv(CPUPPCState *env, uint64_t arg1, uint64_t arg2) |
| { |
| CPU_DoubleU farg1, farg2; |
| |
| farg1.ll = arg1; |
| farg2.ll = arg2; |
| |
| if (unlikely(float64_is_infinity(farg1.d) && |
| float64_is_infinity(farg2.d))) { |
| /* Division of infinity by infinity */ |
| farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, 1); |
| } else if (unlikely(float64_is_zero(farg1.d) && float64_is_zero(farg2.d))) { |
| /* Division of zero by zero */ |
| farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, 1); |
| } else { |
| if (unlikely(float64_is_signaling_nan(farg1.d) || |
| float64_is_signaling_nan(farg2.d))) { |
| /* sNaN division */ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); |
| } |
| farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status); |
| } |
| |
| return farg1.ll; |
| } |
| |
| |
| #define FPU_FCTI(op, cvt, nanval) \ |
| uint64_t helper_##op(CPUPPCState *env, uint64_t arg) \ |
| { \ |
| CPU_DoubleU farg; \ |
| \ |
| farg.ll = arg; \ |
| farg.ll = float64_to_##cvt(farg.d, &env->fp_status); \ |
| \ |
| if (unlikely(env->fp_status.float_exception_flags)) { \ |
| if (float64_is_any_nan(arg)) { \ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 1); \ |
| if (float64_is_signaling_nan(arg)) { \ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); \ |
| } \ |
| farg.ll = nanval; \ |
| } else if (env->fp_status.float_exception_flags & \ |
| float_flag_invalid) { \ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 1); \ |
| } \ |
| helper_float_check_status(env); \ |
| } \ |
| return farg.ll; \ |
| } |
| |
| FPU_FCTI(fctiw, int32, 0x80000000) |
| FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000) |
| FPU_FCTI(fctiwu, uint32, 0x00000000) |
| FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000) |
| #if defined(TARGET_PPC64) |
| FPU_FCTI(fctid, int64, 0x8000000000000000) |
| FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000) |
| FPU_FCTI(fctidu, uint64, 0x0000000000000000) |
| FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000) |
| #endif |
| |
| #if defined(TARGET_PPC64) |
| |
| #define FPU_FCFI(op, cvtr, is_single) \ |
| uint64_t helper_##op(CPUPPCState *env, uint64_t arg) \ |
| { \ |
| CPU_DoubleU farg; \ |
| \ |
| if (is_single) { \ |
| float32 tmp = cvtr(arg, &env->fp_status); \ |
| farg.d = float32_to_float64(tmp, &env->fp_status); \ |
| } else { \ |
| farg.d = cvtr(arg, &env->fp_status); \ |
| } \ |
| helper_float_check_status(env); \ |
| return farg.ll; \ |
| } |
| |
| FPU_FCFI(fcfid, int64_to_float64, 0) |
| FPU_FCFI(fcfids, int64_to_float32, 1) |
| FPU_FCFI(fcfidu, uint64_to_float64, 0) |
| FPU_FCFI(fcfidus, uint64_to_float32, 1) |
| |
| #endif |
| |
| static inline uint64_t do_fri(CPUPPCState *env, uint64_t arg, |
| int rounding_mode) |
| { |
| CPU_DoubleU farg; |
| |
| farg.ll = arg; |
| |
| if (unlikely(float64_is_signaling_nan(farg.d))) { |
| /* sNaN round */ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); |
| farg.ll = arg | 0x0008000000000000ul; |
| } else { |
| int inexact = get_float_exception_flags(&env->fp_status) & |
| float_flag_inexact; |
| set_float_rounding_mode(rounding_mode, &env->fp_status); |
| farg.ll = float64_round_to_int(farg.d, &env->fp_status); |
| /* Restore rounding mode from FPSCR */ |
| fpscr_set_rounding_mode(env); |
| |
| /* fri* does not set FPSCR[XX] */ |
| if (!inexact) { |
| env->fp_status.float_exception_flags &= ~float_flag_inexact; |
| } |
| } |
| helper_float_check_status(env); |
| return farg.ll; |
| } |
| |
| uint64_t helper_frin(CPUPPCState *env, uint64_t arg) |
| { |
| return do_fri(env, arg, float_round_ties_away); |
| } |
| |
| uint64_t helper_friz(CPUPPCState *env, uint64_t arg) |
| { |
| return do_fri(env, arg, float_round_to_zero); |
| } |
| |
| uint64_t helper_frip(CPUPPCState *env, uint64_t arg) |
| { |
| return do_fri(env, arg, float_round_up); |
| } |
| |
| uint64_t helper_frim(CPUPPCState *env, uint64_t arg) |
| { |
| return do_fri(env, arg, float_round_down); |
| } |
| |
| /* fmadd - fmadd. */ |
| uint64_t helper_fmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2, |
| uint64_t arg3) |
| { |
| CPU_DoubleU farg1, farg2, farg3; |
| |
| farg1.ll = arg1; |
| farg2.ll = arg2; |
| farg3.ll = arg3; |
| |
| if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || |
| (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) { |
| /* Multiplication of zero by infinity */ |
| farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1); |
| } else { |
| if (unlikely(float64_is_signaling_nan(farg1.d) || |
| float64_is_signaling_nan(farg2.d) || |
| float64_is_signaling_nan(farg3.d))) { |
| /* sNaN operation */ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); |
| } |
| /* This is the way the PowerPC specification defines it */ |
| float128 ft0_128, ft1_128; |
| |
| ft0_128 = float64_to_float128(farg1.d, &env->fp_status); |
| ft1_128 = float64_to_float128(farg2.d, &env->fp_status); |
| ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); |
| if (unlikely(float128_is_infinity(ft0_128) && |
| float64_is_infinity(farg3.d) && |
| float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) { |
| /* Magnitude subtraction of infinities */ |
| farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1); |
| } else { |
| ft1_128 = float64_to_float128(farg3.d, &env->fp_status); |
| ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status); |
| farg1.d = float128_to_float64(ft0_128, &env->fp_status); |
| } |
| } |
| |
| return farg1.ll; |
| } |
| |
| /* fmsub - fmsub. */ |
| uint64_t helper_fmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2, |
| uint64_t arg3) |
| { |
| CPU_DoubleU farg1, farg2, farg3; |
| |
| farg1.ll = arg1; |
| farg2.ll = arg2; |
| farg3.ll = arg3; |
| |
| if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || |
| (float64_is_zero(farg1.d) && |
| float64_is_infinity(farg2.d)))) { |
| /* Multiplication of zero by infinity */ |
| farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1); |
| } else { |
| if (unlikely(float64_is_signaling_nan(farg1.d) || |
| float64_is_signaling_nan(farg2.d) || |
| float64_is_signaling_nan(farg3.d))) { |
| /* sNaN operation */ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); |
| } |
| /* This is the way the PowerPC specification defines it */ |
| float128 ft0_128, ft1_128; |
| |
| ft0_128 = float64_to_float128(farg1.d, &env->fp_status); |
| ft1_128 = float64_to_float128(farg2.d, &env->fp_status); |
| ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); |
| if (unlikely(float128_is_infinity(ft0_128) && |
| float64_is_infinity(farg3.d) && |
| float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) { |
| /* Magnitude subtraction of infinities */ |
| farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1); |
| } else { |
| ft1_128 = float64_to_float128(farg3.d, &env->fp_status); |
| ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status); |
| farg1.d = float128_to_float64(ft0_128, &env->fp_status); |
| } |
| } |
| return farg1.ll; |
| } |
| |
| /* fnmadd - fnmadd. */ |
| uint64_t helper_fnmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2, |
| uint64_t arg3) |
| { |
| CPU_DoubleU farg1, farg2, farg3; |
| |
| farg1.ll = arg1; |
| farg2.ll = arg2; |
| farg3.ll = arg3; |
| |
| if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || |
| (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) { |
| /* Multiplication of zero by infinity */ |
| farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1); |
| } else { |
| if (unlikely(float64_is_signaling_nan(farg1.d) || |
| float64_is_signaling_nan(farg2.d) || |
| float64_is_signaling_nan(farg3.d))) { |
| /* sNaN operation */ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); |
| } |
| /* This is the way the PowerPC specification defines it */ |
| float128 ft0_128, ft1_128; |
| |
| ft0_128 = float64_to_float128(farg1.d, &env->fp_status); |
| ft1_128 = float64_to_float128(farg2.d, &env->fp_status); |
| ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); |
| if (unlikely(float128_is_infinity(ft0_128) && |
| float64_is_infinity(farg3.d) && |
| float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) { |
| /* Magnitude subtraction of infinities */ |
| farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1); |
| } else { |
| ft1_128 = float64_to_float128(farg3.d, &env->fp_status); |
| ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status); |
| farg1.d = float128_to_float64(ft0_128, &env->fp_status); |
| } |
| if (likely(!float64_is_any_nan(farg1.d))) { |
| farg1.d = float64_chs(farg1.d); |
| } |
| } |
| return farg1.ll; |
| } |
| |
| /* fnmsub - fnmsub. */ |
| uint64_t helper_fnmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2, |
| uint64_t arg3) |
| { |
| CPU_DoubleU farg1, farg2, farg3; |
| |
| farg1.ll = arg1; |
| farg2.ll = arg2; |
| farg3.ll = arg3; |
| |
| if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || |
| (float64_is_zero(farg1.d) && |
| float64_is_infinity(farg2.d)))) { |
| /* Multiplication of zero by infinity */ |
| farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1); |
| } else { |
| if (unlikely(float64_is_signaling_nan(farg1.d) || |
| float64_is_signaling_nan(farg2.d) || |
| float64_is_signaling_nan(farg3.d))) { |
| /* sNaN operation */ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); |
| } |
| /* This is the way the PowerPC specification defines it */ |
| float128 ft0_128, ft1_128; |
| |
| ft0_128 = float64_to_float128(farg1.d, &env->fp_status); |
| ft1_128 = float64_to_float128(farg2.d, &env->fp_status); |
| ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); |
| if (unlikely(float128_is_infinity(ft0_128) && |
| float64_is_infinity(farg3.d) && |
| float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) { |
| /* Magnitude subtraction of infinities */ |
| farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1); |
| } else { |
| ft1_128 = float64_to_float128(farg3.d, &env->fp_status); |
| ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status); |
| farg1.d = float128_to_float64(ft0_128, &env->fp_status); |
| } |
| if (likely(!float64_is_any_nan(farg1.d))) { |
| farg1.d = float64_chs(farg1.d); |
| } |
| } |
| return farg1.ll; |
| } |
| |
| /* frsp - frsp. */ |
| uint64_t helper_frsp(CPUPPCState *env, uint64_t arg) |
| { |
| CPU_DoubleU farg; |
| float32 f32; |
| |
| farg.ll = arg; |
| |
| if (unlikely(float64_is_signaling_nan(farg.d))) { |
| /* sNaN square root */ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); |
| } |
| f32 = float64_to_float32(farg.d, &env->fp_status); |
| farg.d = float32_to_float64(f32, &env->fp_status); |
| |
| return farg.ll; |
| } |
| |
| /* fsqrt - fsqrt. */ |
| uint64_t helper_fsqrt(CPUPPCState *env, uint64_t arg) |
| { |
| CPU_DoubleU farg; |
| |
| farg.ll = arg; |
| |
| if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) { |
| /* Square root of a negative nonzero number */ |
| farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, 1); |
| } else { |
| if (unlikely(float64_is_signaling_nan(farg.d))) { |
| /* sNaN square root */ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); |
| } |
| farg.d = float64_sqrt(farg.d, &env->fp_status); |
| } |
| return farg.ll; |
| } |
| |
| /* fre - fre. */ |
| uint64_t helper_fre(CPUPPCState *env, uint64_t arg) |
| { |
| CPU_DoubleU farg; |
| |
| farg.ll = arg; |
| |
| if (unlikely(float64_is_signaling_nan(farg.d))) { |
| /* sNaN reciprocal */ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); |
| } |
| farg.d = float64_div(float64_one, farg.d, &env->fp_status); |
| return farg.d; |
| } |
| |
| /* fres - fres. */ |
| uint64_t helper_fres(CPUPPCState *env, uint64_t arg) |
| { |
| CPU_DoubleU farg; |
| float32 f32; |
| |
| farg.ll = arg; |
| |
| if (unlikely(float64_is_signaling_nan(farg.d))) { |
| /* sNaN reciprocal */ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); |
| } |
| farg.d = float64_div(float64_one, farg.d, &env->fp_status); |
| f32 = float64_to_float32(farg.d, &env->fp_status); |
| farg.d = float32_to_float64(f32, &env->fp_status); |
| |
| return farg.ll; |
| } |
| |
| /* frsqrte - frsqrte. */ |
| uint64_t helper_frsqrte(CPUPPCState *env, uint64_t arg) |
| { |
| CPU_DoubleU farg; |
| float32 f32; |
| |
| farg.ll = arg; |
| |
| if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) { |
| /* Reciprocal square root of a negative nonzero number */ |
| farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, 1); |
| } else { |
| if (unlikely(float64_is_signaling_nan(farg.d))) { |
| /* sNaN reciprocal square root */ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); |
| } |
| farg.d = float64_sqrt(farg.d, &env->fp_status); |
| farg.d = float64_div(float64_one, farg.d, &env->fp_status); |
| f32 = float64_to_float32(farg.d, &env->fp_status); |
| farg.d = float32_to_float64(f32, &env->fp_status); |
| } |
| return farg.ll; |
| } |
| |
| /* fsel - fsel. */ |
| uint64_t helper_fsel(CPUPPCState *env, uint64_t arg1, uint64_t arg2, |
| uint64_t arg3) |
| { |
| CPU_DoubleU farg1; |
| |
| farg1.ll = arg1; |
| |
| if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) && |
| !float64_is_any_nan(farg1.d)) { |
| return arg2; |
| } else { |
| return arg3; |
| } |
| } |
| |
| uint32_t helper_ftdiv(uint64_t fra, uint64_t frb) |
| { |
| int fe_flag = 0; |
| int fg_flag = 0; |
| |
| if (unlikely(float64_is_infinity(fra) || |
| float64_is_infinity(frb) || |
| float64_is_zero(frb))) { |
| fe_flag = 1; |
| fg_flag = 1; |
| } else { |
| int e_a = ppc_float64_get_unbiased_exp(fra); |
| int e_b = ppc_float64_get_unbiased_exp(frb); |
| |
| if (unlikely(float64_is_any_nan(fra) || |
| float64_is_any_nan(frb))) { |
| fe_flag = 1; |
| } else if ((e_b <= -1022) || (e_b >= 1021)) { |
| fe_flag = 1; |
| } else if (!float64_is_zero(fra) && |
| (((e_a - e_b) >= 1023) || |
| ((e_a - e_b) <= -1021) || |
| (e_a <= -970))) { |
| fe_flag = 1; |
| } |
| |
| if (unlikely(float64_is_zero_or_denormal(frb))) { |
| /* XB is not zero because of the above check and */ |
| /* so must be denormalized. */ |
| fg_flag = 1; |
| } |
| } |
| |
| return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); |
| } |
| |
| void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2, |
| uint32_t crfD) |
| { |
| CPU_DoubleU farg1, farg2; |
| uint32_t ret = 0; |
| |
| farg1.ll = arg1; |
| farg2.ll = arg2; |
| |
| if (unlikely(float64_is_any_nan(farg1.d) || |
| float64_is_any_nan(farg2.d))) { |
| ret = 0x01UL; |
| } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) { |
| ret = 0x08UL; |
| } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) { |
| ret = 0x04UL; |
| } else { |
| ret = 0x02UL; |
| } |
| |
| env->fpscr &= ~(0x0F << FPSCR_FPRF); |
| env->fpscr |= ret << FPSCR_FPRF; |
| env->crf[crfD] = ret; |
| if (unlikely(ret == 0x01UL |
| && (float64_is_signaling_nan(farg1.d) || |
| float64_is_signaling_nan(farg2.d)))) { |
| /* sNaN comparison */ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); |
| } |
| } |
| |
| void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2, |
| uint32_t crfD) |
| { |
| CPU_DoubleU farg1, farg2; |
| uint32_t ret = 0; |
| |
| farg1.ll = arg1; |
| farg2.ll = arg2; |
| |
| if (unlikely(float64_is_any_nan(farg1.d) || |
| float64_is_any_nan(farg2.d))) { |
| ret = 0x01UL; |
| } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) { |
| ret = 0x08UL; |
| } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) { |
| ret = 0x04UL; |
| } else { |
| ret = 0x02UL; |
| } |
| |
| env->fpscr &= ~(0x0F << FPSCR_FPRF); |
| env->fpscr |= ret << FPSCR_FPRF; |
| env->crf[crfD] = ret; |
| if (unlikely(ret == 0x01UL)) { |
| if (float64_is_signaling_nan(farg1.d) || |
| float64_is_signaling_nan(farg2.d)) { |
| /* sNaN comparison */ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN | |
| POWERPC_EXCP_FP_VXVC, 1); |
| } else { |
| /* qNaN comparison */ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 1); |
| } |
| } |
| } |
| |
| /* Single-precision floating-point conversions */ |
| static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val) |
| { |
| CPU_FloatU u; |
| |
| u.f = int32_to_float32(val, &env->vec_status); |
| |
| return u.l; |
| } |
| |
| static inline uint32_t efscfui(CPUPPCState *env, uint32_t val) |
| { |
| CPU_FloatU u; |
| |
| u.f = uint32_to_float32(val, &env->vec_status); |
| |
| return u.l; |
| } |
| |
| static inline int32_t efsctsi(CPUPPCState *env, uint32_t val) |
| { |
| CPU_FloatU u; |
| |
| u.l = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float32_is_quiet_nan(u.f))) { |
| return 0; |
| } |
| |
| return float32_to_int32(u.f, &env->vec_status); |
| } |
| |
| static inline uint32_t efsctui(CPUPPCState *env, uint32_t val) |
| { |
| CPU_FloatU u; |
| |
| u.l = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float32_is_quiet_nan(u.f))) { |
| return 0; |
| } |
| |
| return float32_to_uint32(u.f, &env->vec_status); |
| } |
| |
| static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val) |
| { |
| CPU_FloatU u; |
| |
| u.l = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float32_is_quiet_nan(u.f))) { |
| return 0; |
| } |
| |
| return float32_to_int32_round_to_zero(u.f, &env->vec_status); |
| } |
| |
| static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val) |
| { |
| CPU_FloatU u; |
| |
| u.l = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float32_is_quiet_nan(u.f))) { |
| return 0; |
| } |
| |
| return float32_to_uint32_round_to_zero(u.f, &env->vec_status); |
| } |
| |
| static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val) |
| { |
| CPU_FloatU u; |
| float32 tmp; |
| |
| u.f = int32_to_float32(val, &env->vec_status); |
| tmp = int64_to_float32(1ULL << 32, &env->vec_status); |
| u.f = float32_div(u.f, tmp, &env->vec_status); |
| |
| return u.l; |
| } |
| |
| static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val) |
| { |
| CPU_FloatU u; |
| float32 tmp; |
| |
| u.f = uint32_to_float32(val, &env->vec_status); |
| tmp = uint64_to_float32(1ULL << 32, &env->vec_status); |
| u.f = float32_div(u.f, tmp, &env->vec_status); |
| |
| return u.l; |
| } |
| |
| static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val) |
| { |
| CPU_FloatU u; |
| float32 tmp; |
| |
| u.l = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float32_is_quiet_nan(u.f))) { |
| return 0; |
| } |
| tmp = uint64_to_float32(1ULL << 32, &env->vec_status); |
| u.f = float32_mul(u.f, tmp, &env->vec_status); |
| |
| return float32_to_int32(u.f, &env->vec_status); |
| } |
| |
| static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val) |
| { |
| CPU_FloatU u; |
| float32 tmp; |
| |
| u.l = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float32_is_quiet_nan(u.f))) { |
| return 0; |
| } |
| tmp = uint64_to_float32(1ULL << 32, &env->vec_status); |
| u.f = float32_mul(u.f, tmp, &env->vec_status); |
| |
| return float32_to_uint32(u.f, &env->vec_status); |
| } |
| |
| #define HELPER_SPE_SINGLE_CONV(name) \ |
| uint32_t helper_e##name(CPUPPCState *env, uint32_t val) \ |
| { \ |
| return e##name(env, val); \ |
| } |
| /* efscfsi */ |
| HELPER_SPE_SINGLE_CONV(fscfsi); |
| /* efscfui */ |
| HELPER_SPE_SINGLE_CONV(fscfui); |
| /* efscfuf */ |
| HELPER_SPE_SINGLE_CONV(fscfuf); |
| /* efscfsf */ |
| HELPER_SPE_SINGLE_CONV(fscfsf); |
| /* efsctsi */ |
| HELPER_SPE_SINGLE_CONV(fsctsi); |
| /* efsctui */ |
| HELPER_SPE_SINGLE_CONV(fsctui); |
| /* efsctsiz */ |
| HELPER_SPE_SINGLE_CONV(fsctsiz); |
| /* efsctuiz */ |
| HELPER_SPE_SINGLE_CONV(fsctuiz); |
| /* efsctsf */ |
| HELPER_SPE_SINGLE_CONV(fsctsf); |
| /* efsctuf */ |
| HELPER_SPE_SINGLE_CONV(fsctuf); |
| |
| #define HELPER_SPE_VECTOR_CONV(name) \ |
| uint64_t helper_ev##name(CPUPPCState *env, uint64_t val) \ |
| { \ |
| return ((uint64_t)e##name(env, val >> 32) << 32) | \ |
| (uint64_t)e##name(env, val); \ |
| } |
| /* evfscfsi */ |
| HELPER_SPE_VECTOR_CONV(fscfsi); |
| /* evfscfui */ |
| HELPER_SPE_VECTOR_CONV(fscfui); |
| /* evfscfuf */ |
| HELPER_SPE_VECTOR_CONV(fscfuf); |
| /* evfscfsf */ |
| HELPER_SPE_VECTOR_CONV(fscfsf); |
| /* evfsctsi */ |
| HELPER_SPE_VECTOR_CONV(fsctsi); |
| /* evfsctui */ |
| HELPER_SPE_VECTOR_CONV(fsctui); |
| /* evfsctsiz */ |
| HELPER_SPE_VECTOR_CONV(fsctsiz); |
| /* evfsctuiz */ |
| HELPER_SPE_VECTOR_CONV(fsctuiz); |
| /* evfsctsf */ |
| HELPER_SPE_VECTOR_CONV(fsctsf); |
| /* evfsctuf */ |
| HELPER_SPE_VECTOR_CONV(fsctuf); |
| |
| /* Single-precision floating-point arithmetic */ |
| static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2) |
| { |
| CPU_FloatU u1, u2; |
| |
| u1.l = op1; |
| u2.l = op2; |
| u1.f = float32_add(u1.f, u2.f, &env->vec_status); |
| return u1.l; |
| } |
| |
| static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2) |
| { |
| CPU_FloatU u1, u2; |
| |
| u1.l = op1; |
| u2.l = op2; |
| u1.f = float32_sub(u1.f, u2.f, &env->vec_status); |
| return u1.l; |
| } |
| |
| static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2) |
| { |
| CPU_FloatU u1, u2; |
| |
| u1.l = op1; |
| u2.l = op2; |
| u1.f = float32_mul(u1.f, u2.f, &env->vec_status); |
| return u1.l; |
| } |
| |
| static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2) |
| { |
| CPU_FloatU u1, u2; |
| |
| u1.l = op1; |
| u2.l = op2; |
| u1.f = float32_div(u1.f, u2.f, &env->vec_status); |
| return u1.l; |
| } |
| |
| #define HELPER_SPE_SINGLE_ARITH(name) \ |
| uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \ |
| { \ |
| return e##name(env, op1, op2); \ |
| } |
| /* efsadd */ |
| HELPER_SPE_SINGLE_ARITH(fsadd); |
| /* efssub */ |
| HELPER_SPE_SINGLE_ARITH(fssub); |
| /* efsmul */ |
| HELPER_SPE_SINGLE_ARITH(fsmul); |
| /* efsdiv */ |
| HELPER_SPE_SINGLE_ARITH(fsdiv); |
| |
| #define HELPER_SPE_VECTOR_ARITH(name) \ |
| uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \ |
| { \ |
| return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) | \ |
| (uint64_t)e##name(env, op1, op2); \ |
| } |
| /* evfsadd */ |
| HELPER_SPE_VECTOR_ARITH(fsadd); |
| /* evfssub */ |
| HELPER_SPE_VECTOR_ARITH(fssub); |
| /* evfsmul */ |
| HELPER_SPE_VECTOR_ARITH(fsmul); |
| /* evfsdiv */ |
| HELPER_SPE_VECTOR_ARITH(fsdiv); |
| |
| /* Single-precision floating-point comparisons */ |
| static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2) |
| { |
| CPU_FloatU u1, u2; |
| |
| u1.l = op1; |
| u2.l = op2; |
| return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0; |
| } |
| |
| static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2) |
| { |
| CPU_FloatU u1, u2; |
| |
| u1.l = op1; |
| u2.l = op2; |
| return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4; |
| } |
| |
| static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2) |
| { |
| CPU_FloatU u1, u2; |
| |
| u1.l = op1; |
| u2.l = op2; |
| return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0; |
| } |
| |
| static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2) |
| { |
| /* XXX: TODO: ignore special values (NaN, infinites, ...) */ |
| return efscmplt(env, op1, op2); |
| } |
| |
| static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2) |
| { |
| /* XXX: TODO: ignore special values (NaN, infinites, ...) */ |
| return efscmpgt(env, op1, op2); |
| } |
| |
| static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2) |
| { |
| /* XXX: TODO: ignore special values (NaN, infinites, ...) */ |
| return efscmpeq(env, op1, op2); |
| } |
| |
| #define HELPER_SINGLE_SPE_CMP(name) \ |
| uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \ |
| { \ |
| return e##name(env, op1, op2) << 2; \ |
| } |
| /* efststlt */ |
| HELPER_SINGLE_SPE_CMP(fststlt); |
| /* efststgt */ |
| HELPER_SINGLE_SPE_CMP(fststgt); |
| /* efststeq */ |
| HELPER_SINGLE_SPE_CMP(fststeq); |
| /* efscmplt */ |
| HELPER_SINGLE_SPE_CMP(fscmplt); |
| /* efscmpgt */ |
| HELPER_SINGLE_SPE_CMP(fscmpgt); |
| /* efscmpeq */ |
| HELPER_SINGLE_SPE_CMP(fscmpeq); |
| |
| static inline uint32_t evcmp_merge(int t0, int t1) |
| { |
| return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1); |
| } |
| |
| #define HELPER_VECTOR_SPE_CMP(name) \ |
| uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \ |
| { \ |
| return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32), \ |
| e##name(env, op1, op2)); \ |
| } |
| /* evfststlt */ |
| HELPER_VECTOR_SPE_CMP(fststlt); |
| /* evfststgt */ |
| HELPER_VECTOR_SPE_CMP(fststgt); |
| /* evfststeq */ |
| HELPER_VECTOR_SPE_CMP(fststeq); |
| /* evfscmplt */ |
| HELPER_VECTOR_SPE_CMP(fscmplt); |
| /* evfscmpgt */ |
| HELPER_VECTOR_SPE_CMP(fscmpgt); |
| /* evfscmpeq */ |
| HELPER_VECTOR_SPE_CMP(fscmpeq); |
| |
| /* Double-precision floating-point conversion */ |
| uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.d = int32_to_float64(val, &env->vec_status); |
| |
| return u.ll; |
| } |
| |
| uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.d = int64_to_float64(val, &env->vec_status); |
| |
| return u.ll; |
| } |
| |
| uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.d = uint32_to_float64(val, &env->vec_status); |
| |
| return u.ll; |
| } |
| |
| uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.d = uint64_to_float64(val, &env->vec_status); |
| |
| return u.ll; |
| } |
| |
| uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float64_is_any_nan(u.d))) { |
| return 0; |
| } |
| |
| return float64_to_int32(u.d, &env->vec_status); |
| } |
| |
| uint32_t helper_efdctui(CPUPPCState *env, uint64_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float64_is_any_nan(u.d))) { |
| return 0; |
| } |
| |
| return float64_to_uint32(u.d, &env->vec_status); |
| } |
| |
| uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float64_is_any_nan(u.d))) { |
| return 0; |
| } |
| |
| return float64_to_int32_round_to_zero(u.d, &env->vec_status); |
| } |
| |
| uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float64_is_any_nan(u.d))) { |
| return 0; |
| } |
| |
| return float64_to_int64_round_to_zero(u.d, &env->vec_status); |
| } |
| |
| uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float64_is_any_nan(u.d))) { |
| return 0; |
| } |
| |
| return float64_to_uint32_round_to_zero(u.d, &env->vec_status); |
| } |
| |
| uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val) |
| { |
| CPU_DoubleU u; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float64_is_any_nan(u.d))) { |
| return 0; |
| } |
| |
| return float64_to_uint64_round_to_zero(u.d, &env->vec_status); |
| } |
| |
| uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val) |
| { |
| CPU_DoubleU u; |
| float64 tmp; |
| |
| u.d = int32_to_float64(val, &env->vec_status); |
| tmp = int64_to_float64(1ULL << 32, &env->vec_status); |
| u.d = float64_div(u.d, tmp, &env->vec_status); |
| |
| return u.ll; |
| } |
| |
| uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val) |
| { |
| CPU_DoubleU u; |
| float64 tmp; |
| |
| u.d = uint32_to_float64(val, &env->vec_status); |
| tmp = int64_to_float64(1ULL << 32, &env->vec_status); |
| u.d = float64_div(u.d, tmp, &env->vec_status); |
| |
| return u.ll; |
| } |
| |
| uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val) |
| { |
| CPU_DoubleU u; |
| float64 tmp; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float64_is_any_nan(u.d))) { |
| return 0; |
| } |
| tmp = uint64_to_float64(1ULL << 32, &env->vec_status); |
| u.d = float64_mul(u.d, tmp, &env->vec_status); |
| |
| return float64_to_int32(u.d, &env->vec_status); |
| } |
| |
| uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val) |
| { |
| CPU_DoubleU u; |
| float64 tmp; |
| |
| u.ll = val; |
| /* NaN are not treated the same way IEEE 754 does */ |
| if (unlikely(float64_is_any_nan(u.d))) { |
| return 0; |
| } |
| tmp = uint64_to_float64(1ULL << 32, &env->vec_status); |
| u.d = float64_mul(u.d, tmp, &env->vec_status); |
| |
| return float64_to_uint32(u.d, &env->vec_status); |
| } |
| |
| uint32_t helper_efscfd(CPUPPCState *env, uint64_t val) |
| { |
| CPU_DoubleU u1; |
| CPU_FloatU u2; |
| |
| u1.ll = val; |
| u2.f = float64_to_float32(u1.d, &env->vec_status); |
| |
| return u2.l; |
| } |
| |
| uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val) |
| { |
| CPU_DoubleU u2; |
| CPU_FloatU u1; |
| |
| u1.l = val; |
| u2.d = float32_to_float64(u1.f, &env->vec_status); |
| |
| return u2.ll; |
| } |
| |
| /* Double precision fixed-point arithmetic */ |
| uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2) |
| { |
| CPU_DoubleU u1, u2; |
| |
| u1.ll = op1; |
| u2.ll = op2; |
| u1.d = float64_add(u1.d, u2.d, &env->vec_status); |
| return u1.ll; |
| } |
| |
| uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2) |
| { |
| CPU_DoubleU u1, u2; |
| |
| u1.ll = op1; |
| u2.ll = op2; |
| u1.d = float64_sub(u1.d, u2.d, &env->vec_status); |
| return u1.ll; |
| } |
| |
| uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2) |
| { |
| CPU_DoubleU u1, u2; |
| |
| u1.ll = op1; |
| u2.ll = op2; |
| u1.d = float64_mul(u1.d, u2.d, &env->vec_status); |
| return u1.ll; |
| } |
| |
| uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2) |
| { |
| CPU_DoubleU u1, u2; |
| |
| u1.ll = op1; |
| u2.ll = op2; |
| u1.d = float64_div(u1.d, u2.d, &env->vec_status); |
| return u1.ll; |
| } |
| |
| /* Double precision floating point helpers */ |
| uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2) |
| { |
| CPU_DoubleU u1, u2; |
| |
| u1.ll = op1; |
| u2.ll = op2; |
| return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0; |
| } |
| |
| uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2) |
| { |
| CPU_DoubleU u1, u2; |
| |
| u1.ll = op1; |
| u2.ll = op2; |
| return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4; |
| } |
| |
| uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2) |
| { |
| CPU_DoubleU u1, u2; |
| |
| u1.ll = op1; |
| u2.ll = op2; |
| return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0; |
| } |
| |
| uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2) |
| { |
| /* XXX: TODO: test special values (NaN, infinites, ...) */ |
| return helper_efdtstlt(env, op1, op2); |
| } |
| |
| uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2) |
| { |
| /* XXX: TODO: test special values (NaN, infinites, ...) */ |
| return helper_efdtstgt(env, op1, op2); |
| } |
| |
| uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2) |
| { |
| /* XXX: TODO: test special values (NaN, infinites, ...) */ |
| return helper_efdtsteq(env, op1, op2); |
| } |
| |
| #define DECODE_SPLIT(opcode, shift1, nb1, shift2, nb2) \ |
| (((((opcode) >> (shift1)) & ((1 << (nb1)) - 1)) << nb2) | \ |
| (((opcode) >> (shift2)) & ((1 << (nb2)) - 1))) |
| |
| #define xT(opcode) DECODE_SPLIT(opcode, 0, 1, 21, 5) |
| #define xA(opcode) DECODE_SPLIT(opcode, 2, 1, 16, 5) |
| #define xB(opcode) DECODE_SPLIT(opcode, 1, 1, 11, 5) |
| #define xC(opcode) DECODE_SPLIT(opcode, 3, 1, 6, 5) |
| #define BF(opcode) (((opcode) >> (31-8)) & 7) |
| |
| typedef union _ppc_vsr_t { |
| uint64_t u64[2]; |
| uint32_t u32[4]; |
| float32 f32[4]; |
| float64 f64[2]; |
| } ppc_vsr_t; |
| |
| static void getVSR(int n, ppc_vsr_t *vsr, CPUPPCState *env) |
| { |
| if (n < 32) { |
| vsr->f64[0] = env->fpr[n]; |
| vsr->u64[1] = env->vsr[n]; |
| } else { |
| vsr->u64[0] = env->avr[n-32].u64[0]; |
| vsr->u64[1] = env->avr[n-32].u64[1]; |
| } |
| } |
| |
| static void putVSR(int n, ppc_vsr_t *vsr, CPUPPCState *env) |
| { |
| if (n < 32) { |
| env->fpr[n] = vsr->f64[0]; |
| env->vsr[n] = vsr->u64[1]; |
| } else { |
| env->avr[n-32].u64[0] = vsr->u64[0]; |
| env->avr[n-32].u64[1] = vsr->u64[1]; |
| } |
| } |
| |
| #define float64_to_float64(x, env) x |
| |
| |
| /* VSX_ADD_SUB - VSX floating point add/subract |
| * name - instruction mnemonic |
| * op - operation (add or sub) |
| * nels - number of elements (1, 2 or 4) |
| * tp - type (float32 or float64) |
| * fld - vsr_t field (f32 or f64) |
| * sfprf - set FPRF |
| */ |
| #define VSX_ADD_SUB(name, op, nels, tp, fld, sfprf, r2sp) \ |
| void helper_##name(CPUPPCState *env, uint32_t opcode) \ |
| { \ |
| ppc_vsr_t xt, xa, xb; \ |
| int i; \ |
| \ |
| getVSR(xA(opcode), &xa, env); \ |
| getVSR(xB(opcode), &xb, env); \ |
| getVSR(xT(opcode), &xt, env); \ |
| helper_reset_fpstatus(env); \ |
| \ |
| for (i = 0; i < nels; i++) { \ |
| float_status tstat = env->fp_status; \ |
| set_float_exception_flags(0, &tstat); \ |
| xt.fld[i] = tp##_##op(xa.fld[i], xb.fld[i], &tstat); \ |
| env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ |
| \ |
| if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ |
| if (tp##_is_infinity(xa.fld[i]) && tp##_is_infinity(xb.fld[i])) {\ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, sfprf); \ |
| } else if (tp##_is_signaling_nan(xa.fld[i]) || \ |
| tp##_is_signaling_nan(xb.fld[i])) { \ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \ |
| } \ |
| } \ |
| \ |
| if (r2sp) { \ |
| xt.fld[i] = helper_frsp(env, xt.fld[i]); \ |
| } \ |
| \ |
| if (sfprf) { \ |
| helper_compute_fprf(env, xt.fld[i], sfprf); \ |
| } \ |
| } \ |
| putVSR(xT(opcode), &xt, env); \ |
| helper_float_check_status(env); \ |
| } |
| |
| VSX_ADD_SUB(xsadddp, add, 1, float64, f64, 1, 0) |
| VSX_ADD_SUB(xsaddsp, add, 1, float64, f64, 1, 1) |
| VSX_ADD_SUB(xvadddp, add, 2, float64, f64, 0, 0) |
| VSX_ADD_SUB(xvaddsp, add, 4, float32, f32, 0, 0) |
| VSX_ADD_SUB(xssubdp, sub, 1, float64, f64, 1, 0) |
| VSX_ADD_SUB(xssubsp, sub, 1, float64, f64, 1, 1) |
| VSX_ADD_SUB(xvsubdp, sub, 2, float64, f64, 0, 0) |
| VSX_ADD_SUB(xvsubsp, sub, 4, float32, f32, 0, 0) |
| |
| /* VSX_MUL - VSX floating point multiply |
| * op - instruction mnemonic |
| * nels - number of elements (1, 2 or 4) |
| * tp - type (float32 or float64) |
| * fld - vsr_t field (f32 or f64) |
| * sfprf - set FPRF |
| */ |
| #define VSX_MUL(op, nels, tp, fld, sfprf, r2sp) \ |
| void helper_##op(CPUPPCState *env, uint32_t opcode) \ |
| { \ |
| ppc_vsr_t xt, xa, xb; \ |
| int i; \ |
| \ |
| getVSR(xA(opcode), &xa, env); \ |
| getVSR(xB(opcode), &xb, env); \ |
| getVSR(xT(opcode), &xt, env); \ |
| helper_reset_fpstatus(env); \ |
| \ |
| for (i = 0; i < nels; i++) { \ |
| float_status tstat = env->fp_status; \ |
| set_float_exception_flags(0, &tstat); \ |
| xt.fld[i] = tp##_mul(xa.fld[i], xb.fld[i], &tstat); \ |
| env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ |
| \ |
| if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ |
| if ((tp##_is_infinity(xa.fld[i]) && tp##_is_zero(xb.fld[i])) || \ |
| (tp##_is_infinity(xb.fld[i]) && tp##_is_zero(xa.fld[i]))) { \ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, sfprf); \ |
| } else if (tp##_is_signaling_nan(xa.fld[i]) || \ |
| tp##_is_signaling_nan(xb.fld[i])) { \ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \ |
| } \ |
| } \ |
| \ |
| if (r2sp) { \ |
| xt.fld[i] = helper_frsp(env, xt.fld[i]); \ |
| } \ |
| \ |
| if (sfprf) { \ |
| helper_compute_fprf(env, xt.fld[i], sfprf); \ |
| } \ |
| } \ |
| \ |
| putVSR(xT(opcode), &xt, env); \ |
| helper_float_check_status(env); \ |
| } |
| |
| VSX_MUL(xsmuldp, 1, float64, f64, 1, 0) |
| VSX_MUL(xsmulsp, 1, float64, f64, 1, 1) |
| VSX_MUL(xvmuldp, 2, float64, f64, 0, 0) |
| VSX_MUL(xvmulsp, 4, float32, f32, 0, 0) |
| |
| /* VSX_DIV - VSX floating point divide |
| * op - instruction mnemonic |
| * nels - number of elements (1, 2 or 4) |
| * tp - type (float32 or float64) |
| * fld - vsr_t field (f32 or f64) |
| * sfprf - set FPRF |
| */ |
| #define VSX_DIV(op, nels, tp, fld, sfprf, r2sp) \ |
| void helper_##op(CPUPPCState *env, uint32_t opcode) \ |
| { \ |
| ppc_vsr_t xt, xa, xb; \ |
| int i; \ |
| \ |
| getVSR(xA(opcode), &xa, env); \ |
| getVSR(xB(opcode), &xb, env); \ |
| getVSR(xT(opcode), &xt, env); \ |
| helper_reset_fpstatus(env); \ |
| \ |
| for (i = 0; i < nels; i++) { \ |
| float_status tstat = env->fp_status; \ |
| set_float_exception_flags(0, &tstat); \ |
| xt.fld[i] = tp##_div(xa.fld[i], xb.fld[i], &tstat); \ |
| env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ |
| \ |
| if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ |
| if (tp##_is_infinity(xa.fld[i]) && tp##_is_infinity(xb.fld[i])) { \ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, sfprf); \ |
| } else if (tp##_is_zero(xa.fld[i]) && \ |
| tp##_is_zero(xb.fld[i])) { \ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, sfprf); \ |
| } else if (tp##_is_signaling_nan(xa.fld[i]) || \ |
| tp##_is_signaling_nan(xb.fld[i])) { \ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \ |
| } \ |
| } \ |
| \ |
| if (r2sp) { \ |
| xt.fld[i] = helper_frsp(env, xt.fld[i]); \ |
| } \ |
| \ |
| if (sfprf) { \ |
| helper_compute_fprf(env, xt.fld[i], sfprf); \ |
| } \ |
| } \ |
| \ |
| putVSR(xT(opcode), &xt, env); \ |
| helper_float_check_status(env); \ |
| } |
| |
| VSX_DIV(xsdivdp, 1, float64, f64, 1, 0) |
| VSX_DIV(xsdivsp, 1, float64, f64, 1, 1) |
| VSX_DIV(xvdivdp, 2, float64, f64, 0, 0) |
| VSX_DIV(xvdivsp, 4, float32, f32, 0, 0) |
| |
| /* VSX_RE - VSX floating point reciprocal estimate |
| * op - instruction mnemonic |
| * nels - number of elements (1, 2 or 4) |
| * tp - type (float32 or float64) |
| * fld - vsr_t field (f32 or f64) |
| * sfprf - set FPRF |
| */ |
| #define VSX_RE(op, nels, tp, fld, sfprf, r2sp) \ |
| void helper_##op(CPUPPCState *env, uint32_t opcode) \ |
| { \ |
| ppc_vsr_t xt, xb; \ |
| int i; \ |
| \ |
| getVSR(xB(opcode), &xb, env); \ |
| getVSR(xT(opcode), &xt, env); \ |
| helper_reset_fpstatus(env); \ |
| \ |
| for (i = 0; i < nels; i++) { \ |
| if (unlikely(tp##_is_signaling_nan(xb.fld[i]))) { \ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \ |
| } \ |
| xt.fld[i] = tp##_div(tp##_one, xb.fld[i], &env->fp_status); \ |
| \ |
| if (r2sp) { \ |
| xt.fld[i] = helper_frsp(env, xt.fld[i]); \ |
| } \ |
| \ |
| if (sfprf) { \ |
| helper_compute_fprf(env, xt.fld[0], sfprf); \ |
| } \ |
| } \ |
| \ |
| putVSR(xT(opcode), &xt, env); \ |
| helper_float_check_status(env); \ |
| } |
| |
| VSX_RE(xsredp, 1, float64, f64, 1, 0) |
| VSX_RE(xsresp, 1, float64, f64, 1, 1) |
| VSX_RE(xvredp, 2, float64, f64, 0, 0) |
| VSX_RE(xvresp, 4, float32, f32, 0, 0) |
| |
| /* VSX_SQRT - VSX floating point square root |
| * op - instruction mnemonic |
| * nels - number of elements (1, 2 or 4) |
| * tp - type (float32 or float64) |
| * fld - vsr_t field (f32 or f64) |
| * sfprf - set FPRF |
| */ |
| #define VSX_SQRT(op, nels, tp, fld, sfprf, r2sp) \ |
| void helper_##op(CPUPPCState *env, uint32_t opcode) \ |
| { \ |
| ppc_vsr_t xt, xb; \ |
| int i; \ |
| \ |
| getVSR(xB(opcode), &xb, env); \ |
| getVSR(xT(opcode), &xt, env); \ |
| helper_reset_fpstatus(env); \ |
| \ |
| for (i = 0; i < nels; i++) { \ |
| float_status tstat = env->fp_status; \ |
| set_float_exception_flags(0, &tstat); \ |
| xt.fld[i] = tp##_sqrt(xb.fld[i], &tstat); \ |
| env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ |
| \ |
| if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ |
| if (tp##_is_neg(xb.fld[i]) && !tp##_is_zero(xb.fld[i])) { \ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, sfprf); \ |
| } else if (tp##_is_signaling_nan(xb.fld[i])) { \ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \ |
| } \ |
| } \ |
| \ |
| if (r2sp) { \ |
| xt.fld[i] = helper_frsp(env, xt.fld[i]); \ |
| } \ |
| \ |
| if (sfprf) { \ |
| helper_compute_fprf(env, xt.fld[i], sfprf); \ |
| } \ |
| } \ |
| \ |
| putVSR(xT(opcode), &xt, env); \ |
| helper_float_check_status(env); \ |
| } |
| |
| VSX_SQRT(xssqrtdp, 1, float64, f64, 1, 0) |
| VSX_SQRT(xssqrtsp, 1, float64, f64, 1, 1) |
| VSX_SQRT(xvsqrtdp, 2, float64, f64, 0, 0) |
| VSX_SQRT(xvsqrtsp, 4, float32, f32, 0, 0) |
| |
| /* VSX_RSQRTE - VSX floating point reciprocal square root estimate |
| * op - instruction mnemonic |
| * nels - number of elements (1, 2 or 4) |
| * tp - type (float32 or float64) |
| * fld - vsr_t field (f32 or f64) |
| * sfprf - set FPRF |
| */ |
| #define VSX_RSQRTE(op, nels, tp, fld, sfprf, r2sp) \ |
| void helper_##op(CPUPPCState *env, uint32_t opcode) \ |
| { \ |
| ppc_vsr_t xt, xb; \ |
| int i; \ |
| \ |
| getVSR(xB(opcode), &xb, env); \ |
| getVSR(xT(opcode), &xt, env); \ |
| helper_reset_fpstatus(env); \ |
| \ |
| for (i = 0; i < nels; i++) { \ |
| float_status tstat = env->fp_status; \ |
| set_float_exception_flags(0, &tstat); \ |
| xt.fld[i] = tp##_sqrt(xb.fld[i], &tstat); \ |
| xt.fld[i] = tp##_div(tp##_one, xt.fld[i], &tstat); \ |
| env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ |
| \ |
| if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ |
| if (tp##_is_neg(xb.fld[i]) && !tp##_is_zero(xb.fld[i])) { \ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, sfprf); \ |
| } else if (tp##_is_signaling_nan(xb.fld[i])) { \ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \ |
| } \ |
| } \ |
| \ |
| if (r2sp) { \ |
| xt.fld[i] = helper_frsp(env, xt.fld[i]); \ |
| } \ |
| \ |
| if (sfprf) { \ |
| helper_compute_fprf(env, xt.fld[i], sfprf); \ |
| } \ |
| } \ |
| \ |
| putVSR(xT(opcode), &xt, env); \ |
| helper_float_check_status(env); \ |
| } |
| |
| VSX_RSQRTE(xsrsqrtedp, 1, float64, f64, 1, 0) |
| VSX_RSQRTE(xsrsqrtesp, 1, float64, f64, 1, 1) |
| VSX_RSQRTE(xvrsqrtedp, 2, float64, f64, 0, 0) |
| VSX_RSQRTE(xvrsqrtesp, 4, float32, f32, 0, 0) |
| |
| /* VSX_TDIV - VSX floating point test for divide |
| * op - instruction mnemonic |
| * nels - number of elements (1, 2 or 4) |
| * tp - type (float32 or float64) |
| * fld - vsr_t field (f32 or f64) |
| * emin - minimum unbiased exponent |
| * emax - maximum unbiased exponent |
| * nbits - number of fraction bits |
| */ |
| #define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits) \ |
| void helper_##op(CPUPPCState *env, uint32_t opcode) \ |
| { \ |
| ppc_vsr_t xa, xb; \ |
| int i; \ |
| int fe_flag = 0; \ |
| int fg_flag = 0; \ |
| \ |
| getVSR(xA(opcode), &xa, env); \ |
| getVSR(xB(opcode), &xb, env); \ |
| \ |
| for (i = 0; i < nels; i++) { \ |
| if (unlikely(tp##_is_infinity(xa.fld[i]) || \ |
| tp##_is_infinity(xb.fld[i]) || \ |
| tp##_is_zero(xb.fld[i]))) { \ |
| fe_flag = 1; \ |
| fg_flag = 1; \ |
| } else { \ |
| int e_a = ppc_##tp##_get_unbiased_exp(xa.fld[i]); \ |
| int e_b = ppc_##tp##_get_unbiased_exp(xb.fld[i]); \ |
| \ |
| if (unlikely(tp##_is_any_nan(xa.fld[i]) || \ |
| tp##_is_any_nan(xb.fld[i]))) { \ |
| fe_flag = 1; \ |
| } else if ((e_b <= emin) || (e_b >= (emax-2))) { \ |
| fe_flag = 1; \ |
| } else if (!tp##_is_zero(xa.fld[i]) && \ |
| (((e_a - e_b) >= emax) || \ |
| ((e_a - e_b) <= (emin+1)) || \ |
| (e_a <= (emin+nbits)))) { \ |
| fe_flag = 1; \ |
| } \ |
| \ |
| if (unlikely(tp##_is_zero_or_denormal(xb.fld[i]))) { \ |
| /* XB is not zero because of the above check and */ \ |
| /* so must be denormalized. */ \ |
| fg_flag = 1; \ |
| } \ |
| } \ |
| } \ |
| \ |
| env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \ |
| } |
| |
| VSX_TDIV(xstdivdp, 1, float64, f64, -1022, 1023, 52) |
| VSX_TDIV(xvtdivdp, 2, float64, f64, -1022, 1023, 52) |
| VSX_TDIV(xvtdivsp, 4, float32, f32, -126, 127, 23) |
| |
| /* VSX_TSQRT - VSX floating point test for square root |
| * op - instruction mnemonic |
| * nels - number of elements (1, 2 or 4) |
| * tp - type (float32 or float64) |
| * fld - vsr_t field (f32 or f64) |
| * emin - minimum unbiased exponent |
| * emax - maximum unbiased exponent |
| * nbits - number of fraction bits |
| */ |
| #define VSX_TSQRT(op, nels, tp, fld, emin, nbits) \ |
| void helper_##op(CPUPPCState *env, uint32_t opcode) \ |
| { \ |
| ppc_vsr_t xa, xb; \ |
| int i; \ |
| int fe_flag = 0; \ |
| int fg_flag = 0; \ |
| \ |
| getVSR(xA(opcode), &xa, env); \ |
| getVSR(xB(opcode), &xb, env); \ |
| \ |
| for (i = 0; i < nels; i++) { \ |
| if (unlikely(tp##_is_infinity(xb.fld[i]) || \ |
| tp##_is_zero(xb.fld[i]))) { \ |
| fe_flag = 1; \ |
| fg_flag = 1; \ |
| } else { \ |
| int e_b = ppc_##tp##_get_unbiased_exp(xb.fld[i]); \ |
| \ |
| if (unlikely(tp##_is_any_nan(xb.fld[i]))) { \ |
| fe_flag = 1; \ |
| } else if (unlikely(tp##_is_zero(xb.fld[i]))) { \ |
| fe_flag = 1; \ |
| } else if (unlikely(tp##_is_neg(xb.fld[i]))) { \ |
| fe_flag = 1; \ |
| } else if (!tp##_is_zero(xb.fld[i]) && \ |
| (e_b <= (emin+nbits))) { \ |
| fe_flag = 1; \ |
| } \ |
| \ |
| if (unlikely(tp##_is_zero_or_denormal(xb.fld[i]))) { \ |
| /* XB is not zero because of the above check and */ \ |
| /* therefore must be denormalized. */ \ |
| fg_flag = 1; \ |
| } \ |
| } \ |
| } \ |
| \ |
| env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \ |
| } |
| |
| VSX_TSQRT(xstsqrtdp, 1, float64, f64, -1022, 52) |
| VSX_TSQRT(xvtsqrtdp, 2, float64, f64, -1022, 52) |
| VSX_TSQRT(xvtsqrtsp, 4, float32, f32, -126, 23) |
| |
| /* VSX_MADD - VSX floating point muliply/add variations |
| * op - instruction mnemonic |
| * nels - number of elements (1, 2 or 4) |
| * tp - type (float32 or float64) |
| * fld - vsr_t field (f32 or f64) |
| * maddflgs - flags for the float*muladd routine that control the |
| * various forms (madd, msub, nmadd, nmsub) |
| * afrm - A form (1=A, 0=M) |
| * sfprf - set FPRF |
| */ |
| #define VSX_MADD(op, nels, tp, fld, maddflgs, afrm, sfprf, r2sp) \ |
| void helper_##op(CPUPPCState *env, uint32_t opcode) \ |
| { \ |
| ppc_vsr_t xt_in, xa, xb, xt_out; \ |
| ppc_vsr_t *b, *c; \ |
| int i; \ |
| \ |
| if (afrm) { /* AxB + T */ \ |
| b = &xb; \ |
| c = &xt_in; \ |
| } else { /* AxT + B */ \ |
| b = &xt_in; \ |
| c = &xb; \ |
| } \ |
| \ |
| getVSR(xA(opcode), &xa, env); \ |
| getVSR(xB(opcode), &xb, env); \ |
| getVSR(xT(opcode), &xt_in, env); \ |
| \ |
| xt_out = xt_in; \ |
| \ |
| helper_reset_fpstatus(env); \ |
| \ |
| for (i = 0; i < nels; i++) { \ |
| float_status tstat = env->fp_status; \ |
| set_float_exception_flags(0, &tstat); \ |
| if (r2sp && (tstat.float_rounding_mode == float_round_nearest_even)) {\ |
| /* Avoid double rounding errors by rounding the intermediate */ \ |
| /* result to odd. */ \ |
| set_float_rounding_mode(float_round_to_zero, &tstat); \ |
| xt_out.fld[i] = tp##_muladd(xa.fld[i], b->fld[i], c->fld[i], \ |
| maddflgs, &tstat); \ |
| xt_out.fld[i] |= (get_float_exception_flags(&tstat) & \ |
| float_flag_inexact) != 0; \ |
| } else { \ |
| xt_out.fld[i] = tp##_muladd(xa.fld[i], b->fld[i], c->fld[i], \ |
| maddflgs, &tstat); \ |
| } \ |
| env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ |
| \ |
| if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ |
| if (tp##_is_signaling_nan(xa.fld[i]) || \ |
| tp##_is_signaling_nan(b->fld[i]) || \ |
| tp##_is_signaling_nan(c->fld[i])) { \ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \ |
| tstat.float_exception_flags &= ~float_flag_invalid; \ |
| } \ |
| if ((tp##_is_infinity(xa.fld[i]) && tp##_is_zero(b->fld[i])) || \ |
| (tp##_is_zero(xa.fld[i]) && tp##_is_infinity(b->fld[i]))) { \ |
| xt_out.fld[i] = float64_to_##tp(fload_invalid_op_excp(env, \ |
| POWERPC_EXCP_FP_VXIMZ, sfprf), &env->fp_status); \ |
| tstat.float_exception_flags &= ~float_flag_invalid; \ |
| } \ |
| if ((tstat.float_exception_flags & float_flag_invalid) && \ |
| ((tp##_is_infinity(xa.fld[i]) || \ |
| tp##_is_infinity(b->fld[i])) && \ |
| tp##_is_infinity(c->fld[i]))) { \ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, sfprf); \ |
| } \ |
| } \ |
| \ |
| if (r2sp) { \ |
| xt_out.fld[i] = helper_frsp(env, xt_out.fld[i]); \ |
| } \ |
| \ |
| if (sfprf) { \ |
| helper_compute_fprf(env, xt_out.fld[i], sfprf); \ |
| } \ |
| } \ |
| putVSR(xT(opcode), &xt_out, env); \ |
| helper_float_check_status(env); \ |
| } |
| |
| #define MADD_FLGS 0 |
| #define MSUB_FLGS float_muladd_negate_c |
| #define NMADD_FLGS float_muladd_negate_result |
| #define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result) |
| |
| VSX_MADD(xsmaddadp, 1, float64, f64, MADD_FLGS, 1, 1, 0) |
| VSX_MADD(xsmaddmdp, 1, float64, f64, MADD_FLGS, 0, 1, 0) |
| VSX_MADD(xsmsubadp, 1, float64, f64, MSUB_FLGS, 1, 1, 0) |
| VSX_MADD(xsmsubmdp, 1, float64, f64, MSUB_FLGS, 0, 1, 0) |
| VSX_MADD(xsnmaddadp, 1, float64, f64, NMADD_FLGS, 1, 1, 0) |
| VSX_MADD(xsnmaddmdp, 1, float64, f64, NMADD_FLGS, 0, 1, 0) |
| VSX_MADD(xsnmsubadp, 1, float64, f64, NMSUB_FLGS, 1, 1, 0) |
| VSX_MADD(xsnmsubmdp, 1, float64, f64, NMSUB_FLGS, 0, 1, 0) |
| |
| VSX_MADD(xsmaddasp, 1, float64, f64, MADD_FLGS, 1, 1, 1) |
| VSX_MADD(xsmaddmsp, 1, float64, f64, MADD_FLGS, 0, 1, 1) |
| VSX_MADD(xsmsubasp, 1, float64, f64, MSUB_FLGS, 1, 1, 1) |
| VSX_MADD(xsmsubmsp, 1, float64, f64, MSUB_FLGS, 0, 1, 1) |
| VSX_MADD(xsnmaddasp, 1, float64, f64, NMADD_FLGS, 1, 1, 1) |
| VSX_MADD(xsnmaddmsp, 1, float64, f64, NMADD_FLGS, 0, 1, 1) |
| VSX_MADD(xsnmsubasp, 1, float64, f64, NMSUB_FLGS, 1, 1, 1) |
| VSX_MADD(xsnmsubmsp, 1, float64, f64, NMSUB_FLGS, 0, 1, 1) |
| |
| VSX_MADD(xvmaddadp, 2, float64, f64, MADD_FLGS, 1, 0, 0) |
| VSX_MADD(xvmaddmdp, 2, float64, f64, MADD_FLGS, 0, 0, 0) |
| VSX_MADD(xvmsubadp, 2, float64, f64, MSUB_FLGS, 1, 0, 0) |
| VSX_MADD(xvmsubmdp, 2, float64, f64, MSUB_FLGS, 0, 0, 0) |
| VSX_MADD(xvnmaddadp, 2, float64, f64, NMADD_FLGS, 1, 0, 0) |
| VSX_MADD(xvnmaddmdp, 2, float64, f64, NMADD_FLGS, 0, 0, 0) |
| VSX_MADD(xvnmsubadp, 2, float64, f64, NMSUB_FLGS, 1, 0, 0) |
| VSX_MADD(xvnmsubmdp, 2, float64, f64, NMSUB_FLGS, 0, 0, 0) |
| |
| VSX_MADD(xvmaddasp, 4, float32, f32, MADD_FLGS, 1, 0, 0) |
| VSX_MADD(xvmaddmsp, 4, float32, f32, MADD_FLGS, 0, 0, 0) |
| VSX_MADD(xvmsubasp, 4, float32, f32, MSUB_FLGS, 1, 0, 0) |
| VSX_MADD(xvmsubmsp, 4, float32, f32, MSUB_FLGS, 0, 0, 0) |
| VSX_MADD(xvnmaddasp, 4, float32, f32, NMADD_FLGS, 1, 0, 0) |
| VSX_MADD(xvnmaddmsp, 4, float32, f32, NMADD_FLGS, 0, 0, 0) |
| VSX_MADD(xvnmsubasp, 4, float32, f32, NMSUB_FLGS, 1, 0, 0) |
| VSX_MADD(xvnmsubmsp, 4, float32, f32, NMSUB_FLGS, 0, 0, 0) |
| |
| #define VSX_SCALAR_CMP(op, ordered) \ |
| void helper_##op(CPUPPCState *env, uint32_t opcode) \ |
| { \ |
| ppc_vsr_t xa, xb; \ |
| uint32_t cc = 0; \ |
| \ |
| getVSR(xA(opcode), &xa, env); \ |
| getVSR(xB(opcode), &xb, env); \ |
| \ |
| if (unlikely(float64_is_any_nan(xa.f64[0]) || \ |
| float64_is_any_nan(xb.f64[0]))) { \ |
| if (float64_is_signaling_nan(xa.f64[0]) || \ |
| float64_is_signaling_nan(xb.f64[0])) { \ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \ |
| } \ |
| if (ordered) { \ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0); \ |
| } \ |
| cc = 1; \ |
| } else { \ |
| if (float64_lt(xa.f64[0], xb.f64[0], &env->fp_status)) { \ |
| cc = 8; \ |
| } else if (!float64_le(xa.f64[0], xb.f64[0], &env->fp_status)) { \ |
| cc = 4; \ |
| } else { \ |
| cc = 2; \ |
| } \ |
| } \ |
| \ |
| env->fpscr &= ~(0x0F << FPSCR_FPRF); \ |
| env->fpscr |= cc << FPSCR_FPRF; \ |
| env->crf[BF(opcode)] = cc; \ |
| \ |
| helper_float_check_status(env); \ |
| } |
| |
| VSX_SCALAR_CMP(xscmpodp, 1) |
| VSX_SCALAR_CMP(xscmpudp, 0) |
| |
| #define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ul) |
| #define float32_snan_to_qnan(x) ((x) | 0x00400000) |
| |
| /* VSX_MAX_MIN - VSX floating point maximum/minimum |
| * name - instruction mnemonic |
| * op - operation (max or min) |
| * nels - number of elements (1, 2 or 4) |
| * tp - type (float32 or float64) |
| * fld - vsr_t field (f32 or f64) |
| */ |
| #define VSX_MAX_MIN(name, op, nels, tp, fld) \ |
| void helper_##name(CPUPPCState *env, uint32_t opcode) \ |
| { \ |
| ppc_vsr_t xt, xa, xb; \ |
| int i; \ |
| \ |
| getVSR(xA(opcode), &xa, env); \ |
| getVSR(xB(opcode), &xb, env); \ |
| getVSR(xT(opcode), &xt, env); \ |
| \ |
| for (i = 0; i < nels; i++) { \ |
| xt.fld[i] = tp##_##op(xa.fld[i], xb.fld[i], &env->fp_status); \ |
| if (unlikely(tp##_is_signaling_nan(xa.fld[i]) || \ |
| tp##_is_signaling_nan(xb.fld[i]))) { \ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \ |
| } \ |
| } \ |
| \ |
| putVSR(xT(opcode), &xt, env); \ |
| helper_float_check_status(env); \ |
| } |
| |
| VSX_MAX_MIN(xsmaxdp, maxnum, 1, float64, f64) |
| VSX_MAX_MIN(xvmaxdp, maxnum, 2, float64, f64) |
| VSX_MAX_MIN(xvmaxsp, maxnum, 4, float32, f32) |
| VSX_MAX_MIN(xsmindp, minnum, 1, float64, f64) |
| VSX_MAX_MIN(xvmindp, minnum, 2, float64, f64) |
| VSX_MAX_MIN(xvminsp, minnum, 4, float32, f32) |
| |
| /* VSX_CMP - VSX floating point compare |
| * op - instruction mnemonic |
| * nels - number of elements (1, 2 or 4) |
| * tp - type (float32 or float64) |
| * fld - vsr_t field (f32 or f64) |
| * cmp - comparison operation |
| * svxvc - set VXVC bit |
| */ |
| #define VSX_CMP(op, nels, tp, fld, cmp, svxvc) \ |
| void helper_##op(CPUPPCState *env, uint32_t opcode) \ |
| { \ |
| ppc_vsr_t xt, xa, xb; \ |
| int i; \ |
| int all_true = 1; \ |
| int all_false = 1; \ |
| \ |
| getVSR(xA(opcode), &xa, env); \ |
| getVSR(xB(opcode), &xb, env); \ |
| getVSR(xT(opcode), &xt, env); \ |
| \ |
| for (i = 0; i < nels; i++) { \ |
| if (unlikely(tp##_is_any_nan(xa.fld[i]) || \ |
| tp##_is_any_nan(xb.fld[i]))) { \ |
| if (tp##_is_signaling_nan(xa.fld[i]) || \ |
| tp##_is_signaling_nan(xb.fld[i])) { \ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \ |
| } \ |
| if (svxvc) { \ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0); \ |
| } \ |
| xt.fld[i] = 0; \ |
| all_true = 0; \ |
| } else { \ |
| if (tp##_##cmp(xb.fld[i], xa.fld[i], &env->fp_status) == 1) { \ |
| xt.fld[i] = -1; \ |
| all_false = 0; \ |
| } else { \ |
| xt.fld[i] = 0; \ |
| all_true = 0; \ |
| } \ |
| } \ |
| } \ |
| \ |
| putVSR(xT(opcode), &xt, env); \ |
| if ((opcode >> (31-21)) & 1) { \ |
| env->crf[6] = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0); \ |
| } \ |
| helper_float_check_status(env); \ |
| } |
| |
| VSX_CMP(xvcmpeqdp, 2, float64, f64, eq, 0) |
| VSX_CMP(xvcmpgedp, 2, float64, f64, le, 1) |
| VSX_CMP(xvcmpgtdp, 2, float64, f64, lt, 1) |
| VSX_CMP(xvcmpeqsp, 4, float32, f32, eq, 0) |
| VSX_CMP(xvcmpgesp, 4, float32, f32, le, 1) |
| VSX_CMP(xvcmpgtsp, 4, float32, f32, lt, 1) |
| |
| #if defined(HOST_WORDS_BIGENDIAN) |
| #define JOFFSET 0 |
| #else |
| #define JOFFSET 1 |
| #endif |
| |
| /* VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion |
| * op - instruction mnemonic |
| * nels - number of elements (1, 2 or 4) |
| * stp - source type (float32 or float64) |
| * ttp - target type (float32 or float64) |
| * sfld - source vsr_t field |
| * tfld - target vsr_t field (f32 or f64) |
| * sfprf - set FPRF |
| */ |
| #define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf) \ |
| void helper_##op(CPUPPCState *env, uint32_t opcode) \ |
| { \ |
| ppc_vsr_t xt, xb; \ |
| int i; \ |
| \ |
| getVSR(xB(opcode), &xb, env); \ |
| getVSR(xT(opcode), &xt, env); \ |
| \ |
| for (i = 0; i < nels; i++) { \ |
| int j = 2*i + JOFFSET; \ |
| xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status); \ |
| if (unlikely(stp##_is_signaling_nan(xb.sfld))) { \ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \ |
| xt.tfld = ttp##_snan_to_qnan(xt.tfld); \ |
| } \ |
| if (sfprf) { \ |
| helper_compute_fprf(env, ttp##_to_float64(xt.tfld, \ |
| &env->fp_status), sfprf); \ |
| } \ |
| } \ |
| \ |
| putVSR(xT(opcode), &xt, env); \ |
| helper_float_check_status(env); \ |
| } |
| |
| VSX_CVT_FP_TO_FP(xscvdpsp, 1, float64, float32, f64[i], f32[j], 1) |
| VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, f32[j], f64[i], 1) |
| VSX_CVT_FP_TO_FP(xvcvdpsp, 2, float64, float32, f64[i], f32[j], 0) |
| VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, f32[j], f64[i], 0) |
| |
| uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb) |
| { |
| float_status tstat = env->fp_status; |
| set_float_exception_flags(0, &tstat); |
| |
| return (uint64_t)float64_to_float32(xb, &tstat) << 32; |
| } |
| |
| uint64_t helper_xscvspdpn(CPUPPCState *env, uint64_t xb) |
| { |
| float_status tstat = env->fp_status; |
| set_float_exception_flags(0, &tstat); |
| |
| return float32_to_float64(xb >> 32, &tstat); |
| } |
| |
| /* VSX_CVT_FP_TO_INT - VSX floating point to integer conversion |
| * op - instruction mnemonic |
| * nels - number of elements (1, 2 or 4) |
| * stp - source type (float32 or float64) |
| * ttp - target type (int32, uint32, int64 or uint64) |
| * sfld - source vsr_t field |
| * tfld - target vsr_t field |
| * jdef - definition of the j index (i or 2*i) |
| * rnan - resulting NaN |
| */ |
| #define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, jdef, rnan) \ |
| void helper_##op(CPUPPCState *env, uint32_t opcode) \ |
| { \ |
| ppc_vsr_t xt, xb; \ |
| int i; \ |
| \ |
| getVSR(xB(opcode), &xb, env); \ |
| getVSR(xT(opcode), &xt, env); \ |
| \ |
| for (i = 0; i < nels; i++) { \ |
| int j = jdef; \ |
| if (unlikely(stp##_is_any_nan(xb.sfld))) { \ |
| if (stp##_is_signaling_nan(xb.sfld)) { \ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \ |
| } \ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0); \ |
| xt.tfld = rnan; \ |
| } else { \ |
| xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status); \ |
| if (env->fp_status.float_exception_flags & float_flag_invalid) { \ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0); \ |
| } \ |
| } \ |
| } \ |
| \ |
| putVSR(xT(opcode), &xt, env); \ |
| helper_float_check_status(env); \ |
| } |
| |
| VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, f64[j], u64[i], i, \ |
| 0x8000000000000000ul) |
| VSX_CVT_FP_TO_INT(xscvdpsxws, 1, float64, int32, f64[i], u32[j], \ |
| 2*i + JOFFSET, 0x80000000l) |
| VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, f64[j], u64[i], i, 0ul) |
| VSX_CVT_FP_TO_INT(xscvdpuxws, 1, float64, uint32, f64[i], u32[j], \ |
| 2*i + JOFFSET, 0) |
| VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, f64[j], u64[i], i, \ |
| 0x8000000000000000ul) |
| VSX_CVT_FP_TO_INT(xvcvdpsxws, 2, float64, int32, f64[i], u32[j], \ |
| 2*i + JOFFSET, 0x80000000l) |
| VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, f64[j], u64[i], i, 0ul) |
| VSX_CVT_FP_TO_INT(xvcvdpuxws, 2, float64, uint32, f64[i], u32[j], \ |
| 2*i + JOFFSET, 0) |
| VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, f32[j], u64[i], \ |
| 2*i + JOFFSET, 0x8000000000000000ul) |
| VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, f32[j], u32[j], i, \ |
| 0x80000000l) |
| VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, f32[j], u64[i], \ |
| 2*i + JOFFSET, 0ul) |
| VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, f32[j], u32[i], i, 0) |
| |
| /* VSX_CVT_INT_TO_FP - VSX integer to floating point conversion |
| * op - instruction mnemonic |
| * nels - number of elements (1, 2 or 4) |
| * stp - source type (int32, uint32, int64 or uint64) |
| * ttp - target type (float32 or float64) |
| * sfld - source vsr_t field |
| * tfld - target vsr_t field |
| * jdef - definition of the j index (i or 2*i) |
| * sfprf - set FPRF |
| */ |
| #define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, jdef, sfprf, r2sp) \ |
| void helper_##op(CPUPPCState *env, uint32_t opcode) \ |
| { \ |
| ppc_vsr_t xt, xb; \ |
| int i; \ |
| \ |
| getVSR(xB(opcode), &xb, env); \ |
| getVSR(xT(opcode), &xt, env); \ |
| \ |
| for (i = 0; i < nels; i++) { \ |
| int j = jdef; \ |
| xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status); \ |
| if (r2sp) { \ |
| xt.tfld = helper_frsp(env, xt.tfld); \ |
| } \ |
| if (sfprf) { \ |
| helper_compute_fprf(env, xt.tfld, sfprf); \ |
| } \ |
| } \ |
| \ |
| putVSR(xT(opcode), &xt, env); \ |
| helper_float_check_status(env); \ |
| } |
| |
| VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, u64[j], f64[i], i, 1, 0) |
| VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, u64[j], f64[i], i, 1, 0) |
| VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, u64[j], f64[i], i, 1, 1) |
| VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, u64[j], f64[i], i, 1, 1) |
| VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, u64[j], f64[i], i, 0, 0) |
| VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, u64[j], f64[i], i, 0, 0) |
| VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, u32[j], f64[i], \ |
| 2*i + JOFFSET, 0, 0) |
| VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, u32[j], f64[i], \ |
| 2*i + JOFFSET, 0, 0) |
| VSX_CVT_INT_TO_FP(xvcvsxdsp, 2, int64, float32, u64[i], f32[j], \ |
| 2*i + JOFFSET, 0, 0) |
| VSX_CVT_INT_TO_FP(xvcvuxdsp, 2, uint64, float32, u64[i], f32[j], \ |
| 2*i + JOFFSET, 0, 0) |
| VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, u32[j], f32[i], i, 0, 0) |
| VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, u32[j], f32[i], i, 0, 0) |
| |
| /* For "use current rounding mode", define a value that will not be one of |
| * the existing rounding model enums. |
| */ |
| #define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \ |
| float_round_up + float_round_to_zero) |
| |
| /* VSX_ROUND - VSX floating point round |
| * op - instruction mnemonic |
| * nels - number of elements (1, 2 or 4) |
| * tp - type (float32 or float64) |
| * fld - vsr_t field (f32 or f64) |
| * rmode - rounding mode |
| * sfprf - set FPRF |
| */ |
| #define VSX_ROUND(op, nels, tp, fld, rmode, sfprf) \ |
| void helper_##op(CPUPPCState *env, uint32_t opcode) \ |
| { \ |
| ppc_vsr_t xt, xb; \ |
| int i; \ |
| getVSR(xB(opcode), &xb, env); \ |
| getVSR(xT(opcode), &xt, env); \ |
| \ |
| if (rmode != FLOAT_ROUND_CURRENT) { \ |
| set_float_rounding_mode(rmode, &env->fp_status); \ |
| } \ |
| \ |
| for (i = 0; i < nels; i++) { \ |
| if (unlikely(tp##_is_signaling_nan(xb.fld[i]))) { \ |
| fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \ |
| xt.fld[i] = tp##_snan_to_qnan(xb.fld[i]); \ |
| } else { \ |
| xt.fld[i] = tp##_round_to_int(xb.fld[i], &env->fp_status); \ |
| } \ |
| if (sfprf) { \ |
| helper_compute_fprf(env, xt.fld[i], sfprf); \ |
| } \ |
| } \ |
| \ |
| /* If this is not a "use current rounding mode" instruction, \ |
| * then inhibit setting of the XX bit and restore rounding \ |
| * mode from FPSCR */ \ |
| if (rmode != FLOAT_ROUND_CURRENT) { \ |
| fpscr_set_rounding_mode(env); \ |
| env->fp_status.float_exception_flags &= ~float_flag_inexact; \ |
| } \ |
| \ |
| putVSR(xT(opcode), &xt, env); \ |
| helper_float_check_status(env); \ |
| } |
| |
| VSX_ROUND(xsrdpi, 1, float64, f64, float_round_nearest_even, 1) |
| VSX_ROUND(xsrdpic, 1, float64, f64, FLOAT_ROUND_CURRENT, 1) |
| VSX_ROUND(xsrdpim, 1, float64, f64, float_round_down, 1) |
| VSX_ROUND(xsrdpip, 1, float64, f64, float_round_up, 1) |
| VSX_ROUND(xsrdpiz, 1, float64, f64, float_round_to_zero, 1) |
| |
| VSX_ROUND(xvrdpi, 2, float64, f64, float_round_nearest_even, 0) |
| VSX_ROUND(xvrdpic, 2, float64, f64, FLOAT_ROUND_CURRENT, 0) |
| VSX_ROUND(xvrdpim, 2, float64, f64, float_round_down, 0) |
| VSX_ROUND(xvrdpip, 2, float64, f64, float_round_up, 0) |
| VSX_ROUND(xvrdpiz, 2, float64, f64, float_round_to_zero, 0) |
| |
| VSX_ROUND(xvrspi, 4, float32, f32, float_round_nearest_even, 0) |
| VSX_ROUND(xvrspic, 4, float32, f32, FLOAT_ROUND_CURRENT, 0) |
| VSX_ROUND(xvrspim, 4, float32, f32, float_round_down, 0) |
| VSX_ROUND(xvrspip, 4, float32, f32, float_round_up, 0) |
| VSX_ROUND(xvrspiz, 4, float32, f32, float_round_to_zero, 0) |
| |
| uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb) |
| { |
| helper_reset_fpstatus(env); |
| |
| uint64_t xt = helper_frsp(env, xb); |
| |
| helper_compute_fprf(env, xt, 1); |
| helper_float_check_status(env); |
| return xt; |
| } |