blob: bc2d63528ba631cc54e34b92d22e91c3faaa495b [file] [log] [blame]
/*
* STM32L4X5 RCC (Reset and clock control)
*
* Copyright (c) 2023 Arnaud Minier <arnaud.minier@telecom-paris.fr>
* Copyright (c) 2023 Inès Varhol <ines.varhol@telecom-paris.fr>
*
* SPDX-License-Identifier: GPL-2.0-or-later
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
* The reference used is the STMicroElectronics RM0351 Reference manual
* for STM32L4x5 and STM32L4x6 advanced Arm ® -based 32-bit MCUs.
*
* Inspired by the BCM2835 CPRMAN clock manager implementation by Luc Michel.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "qemu/timer.h"
#include "qapi/error.h"
#include "migration/vmstate.h"
#include "hw/misc/stm32l4x5_rcc.h"
#include "hw/misc/stm32l4x5_rcc_internals.h"
#include "hw/clock.h"
#include "hw/irq.h"
#include "hw/qdev-clock.h"
#include "hw/qdev-properties.h"
#include "hw/qdev-properties-system.h"
#include "hw/registerfields.h"
#include "trace.h"
#define HSE_DEFAULT_FRQ 48000000ULL
#define HSI_FRQ 16000000ULL
#define MSI_DEFAULT_FRQ 4000000ULL
#define LSE_FRQ 32768ULL
#define LSI_FRQ 32000ULL
/*
* Function to simply acknowledge and propagate changes in a clock mux
* frequency.
* `bypass_source` allows to bypass the period of the current source and just
* consider it equal to 0. This is useful during the hold phase of reset.
*/
static void clock_mux_update(RccClockMuxState *mux, bool bypass_source)
{
uint64_t src_freq;
Clock *current_source = mux->srcs[mux->src];
uint32_t freq_multiplier = 0;
/*
* To avoid rounding errors, we use the clock period instead of the
* frequency.
* This means that the multiplier of the mux becomes the divider of
* the clock and the divider of the mux becomes the multiplier of the
* clock.
*/
if (!bypass_source && mux->enabled && mux->divider) {
freq_multiplier = mux->divider;
}
clock_set_mul_div(mux->out, freq_multiplier, mux->multiplier);
clock_update(mux->out, clock_get(current_source));
src_freq = clock_get_hz(current_source);
/* TODO: can we simply detect if the config changed so that we reduce log spam ? */
trace_stm32l4x5_rcc_mux_update(mux->id, mux->src, src_freq,
mux->multiplier, mux->divider);
}
static void clock_mux_src_update(void *opaque, ClockEvent event)
{
RccClockMuxState **backref = opaque;
RccClockMuxState *s = *backref;
/*
* The backref value is equal to:
* s->backref + (sizeof(RccClockMuxState *) * update_src).
* By subtracting we can get back the index of the updated clock.
*/
const uint32_t update_src = backref - s->backref;
/* Only update if the clock that was updated is the current source */
if (update_src == s->src) {
clock_mux_update(s, false);
}
}
static void clock_mux_init(Object *obj)
{
RccClockMuxState *s = RCC_CLOCK_MUX(obj);
size_t i;
for (i = 0; i < RCC_NUM_CLOCK_MUX_SRC; i++) {
char *name = g_strdup_printf("srcs[%zu]", i);
s->backref[i] = s;
s->srcs[i] = qdev_init_clock_in(DEVICE(s), name,
clock_mux_src_update,
&s->backref[i],
ClockUpdate);
g_free(name);
}
s->out = qdev_init_clock_out(DEVICE(s), "out");
}
static void clock_mux_reset_enter(Object *obj, ResetType type)
{
RccClockMuxState *s = RCC_CLOCK_MUX(obj);
set_clock_mux_init_info(s, s->id);
}
static void clock_mux_reset_hold(Object *obj)
{
RccClockMuxState *s = RCC_CLOCK_MUX(obj);
clock_mux_update(s, true);
}
static void clock_mux_reset_exit(Object *obj)
{
RccClockMuxState *s = RCC_CLOCK_MUX(obj);
clock_mux_update(s, false);
}
static const VMStateDescription clock_mux_vmstate = {
.name = TYPE_RCC_CLOCK_MUX,
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(id, RccClockMuxState),
VMSTATE_ARRAY_CLOCK(srcs, RccClockMuxState,
RCC_NUM_CLOCK_MUX_SRC),
VMSTATE_BOOL(enabled, RccClockMuxState),
VMSTATE_UINT32(src, RccClockMuxState),
VMSTATE_UINT32(multiplier, RccClockMuxState),
VMSTATE_UINT32(divider, RccClockMuxState),
VMSTATE_END_OF_LIST()
}
};
static void clock_mux_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
ResettableClass *rc = RESETTABLE_CLASS(klass);
rc->phases.enter = clock_mux_reset_enter;
rc->phases.hold = clock_mux_reset_hold;
rc->phases.exit = clock_mux_reset_exit;
dc->vmsd = &clock_mux_vmstate;
}
static void clock_mux_set_enable(RccClockMuxState *mux, bool enabled)
{
if (mux->enabled == enabled) {
return;
}
if (enabled) {
trace_stm32l4x5_rcc_mux_enable(mux->id);
} else {
trace_stm32l4x5_rcc_mux_disable(mux->id);
}
mux->enabled = enabled;
clock_mux_update(mux, false);
}
static void clock_mux_set_factor(RccClockMuxState *mux,
uint32_t multiplier, uint32_t divider)
{
if (mux->multiplier == multiplier && mux->divider == divider) {
return;
}
trace_stm32l4x5_rcc_mux_set_factor(mux->id,
mux->multiplier, multiplier, mux->divider, divider);
mux->multiplier = multiplier;
mux->divider = divider;
clock_mux_update(mux, false);
}
static void clock_mux_set_source(RccClockMuxState *mux, RccClockMuxSource src)
{
if (mux->src == src) {
return;
}
trace_stm32l4x5_rcc_mux_set_src(mux->id, mux->src, src);
mux->src = src;
clock_mux_update(mux, false);
}
/*
* Acknowledge and propagate changes in a PLL frequency.
* `bypass_source` allows to bypass the period of the current source and just
* consider it equal to 0. This is useful during the hold phase of reset.
*/
static void pll_update(RccPllState *pll, bool bypass_source)
{
uint64_t vco_freq, old_channel_freq, channel_freq;
int i;
/* The common PLLM factor is handled by the PLL mux */
vco_freq = muldiv64(clock_get_hz(pll->in), pll->vco_multiplier, 1);
for (i = 0; i < RCC_NUM_CHANNEL_PLL_OUT; i++) {
if (!pll->channel_exists[i]) {
continue;
}
old_channel_freq = clock_get_hz(pll->channels[i]);
if (bypass_source ||
!pll->enabled ||
!pll->channel_enabled[i] ||
!pll->channel_divider[i]) {
channel_freq = 0;
} else {
channel_freq = muldiv64(vco_freq,
1,
pll->channel_divider[i]);
}
/* No change, early continue to avoid log spam and useless propagation */
if (old_channel_freq == channel_freq) {
continue;
}
clock_update_hz(pll->channels[i], channel_freq);
trace_stm32l4x5_rcc_pll_update(pll->id, i, vco_freq,
old_channel_freq, channel_freq);
}
}
static void pll_src_update(void *opaque, ClockEvent event)
{
RccPllState *s = opaque;
pll_update(s, false);
}
static void pll_init(Object *obj)
{
RccPllState *s = RCC_PLL(obj);
size_t i;
s->in = qdev_init_clock_in(DEVICE(s), "in",
pll_src_update, s, ClockUpdate);
const char *names[] = {
"out-p", "out-q", "out-r",
};
for (i = 0; i < RCC_NUM_CHANNEL_PLL_OUT; i++) {
s->channels[i] = qdev_init_clock_out(DEVICE(s), names[i]);
}
}
static void pll_reset_enter(Object *obj, ResetType type)
{
RccPllState *s = RCC_PLL(obj);
set_pll_init_info(s, s->id);
}
static void pll_reset_hold(Object *obj)
{
RccPllState *s = RCC_PLL(obj);
pll_update(s, true);
}
static void pll_reset_exit(Object *obj)
{
RccPllState *s = RCC_PLL(obj);
pll_update(s, false);
}
static const VMStateDescription pll_vmstate = {
.name = TYPE_RCC_PLL,
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(id, RccPllState),
VMSTATE_CLOCK(in, RccPllState),
VMSTATE_ARRAY_CLOCK(channels, RccPllState,
RCC_NUM_CHANNEL_PLL_OUT),
VMSTATE_BOOL(enabled, RccPllState),
VMSTATE_UINT32(vco_multiplier, RccPllState),
VMSTATE_BOOL_ARRAY(channel_enabled, RccPllState, RCC_NUM_CHANNEL_PLL_OUT),
VMSTATE_BOOL_ARRAY(channel_exists, RccPllState, RCC_NUM_CHANNEL_PLL_OUT),
VMSTATE_UINT32_ARRAY(channel_divider, RccPllState, RCC_NUM_CHANNEL_PLL_OUT),
VMSTATE_END_OF_LIST()
}
};
static void pll_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
ResettableClass *rc = RESETTABLE_CLASS(klass);
rc->phases.enter = pll_reset_enter;
rc->phases.hold = pll_reset_hold;
rc->phases.exit = pll_reset_exit;
dc->vmsd = &pll_vmstate;
}
static void pll_set_vco_multiplier(RccPllState *pll, uint32_t vco_multiplier)
{
if (pll->vco_multiplier == vco_multiplier) {
return;
}
if (vco_multiplier < 8 || vco_multiplier > 86) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: VCO multiplier is out of bound (%u) for PLL %u\n",
__func__, vco_multiplier, pll->id);
return;
}
trace_stm32l4x5_rcc_pll_set_vco_multiplier(pll->id,
pll->vco_multiplier, vco_multiplier);
pll->vco_multiplier = vco_multiplier;
pll_update(pll, false);
}
static void pll_set_enable(RccPllState *pll, bool enabled)
{
if (pll->enabled == enabled) {
return;
}
pll->enabled = enabled;
pll_update(pll, false);
}
static void pll_set_channel_enable(RccPllState *pll,
PllCommonChannels channel,
bool enabled)
{
if (pll->channel_enabled[channel] == enabled) {
return;
}
if (enabled) {
trace_stm32l4x5_rcc_pll_channel_enable(pll->id, channel);
} else {
trace_stm32l4x5_rcc_pll_channel_disable(pll->id, channel);
}
pll->channel_enabled[channel] = enabled;
pll_update(pll, false);
}
static void pll_set_channel_divider(RccPllState *pll,
PllCommonChannels channel,
uint32_t divider)
{
if (pll->channel_divider[channel] == divider) {
return;
}
trace_stm32l4x5_rcc_pll_set_channel_divider(pll->id,
channel, pll->channel_divider[channel], divider);
pll->channel_divider[channel] = divider;
pll_update(pll, false);
}
static void rcc_update_irq(Stm32l4x5RccState *s)
{
/*
* TODO: Handle LSECSSF and CSSF flags when the CSS is implemented.
*/
if (s->cifr & CIFR_IRQ_MASK) {
qemu_irq_raise(s->irq);
} else {
qemu_irq_lower(s->irq);
}
}
static void rcc_update_msi(Stm32l4x5RccState *s, uint32_t previous_value)
{
uint32_t val;
static const uint32_t msirange[] = {
100000, 200000, 400000, 800000, 1000000, 2000000,
4000000, 8000000, 16000000, 24000000, 32000000, 48000000
};
/* MSIRANGE and MSIRGSEL */
val = extract32(s->cr, R_CR_MSIRGSEL_SHIFT, R_CR_MSIRGSEL_LENGTH);
if (val) {
/* MSIRGSEL is set, use the MSIRANGE field */
val = extract32(s->cr, R_CR_MSIRANGE_SHIFT, R_CR_MSIRANGE_LENGTH);
} else {
/* MSIRGSEL is not set, use the MSISRANGE field */
val = extract32(s->csr, R_CSR_MSISRANGE_SHIFT, R_CSR_MSISRANGE_LENGTH);
}
if (val < ARRAY_SIZE(msirange)) {
clock_update_hz(s->msi_rc, msirange[val]);
} else {
/*
* There is a hardware write protection if the value is out of bound.
* Restore the previous value.
*/
s->cr = (s->cr & ~R_CSR_MSISRANGE_MASK) |
(previous_value & R_CSR_MSISRANGE_MASK);
}
}
/*
* TODO: Add write-protection for all registers:
* DONE: CR
*/
static void rcc_update_cr_register(Stm32l4x5RccState *s, uint32_t previous_value)
{
int val;
const RccClockMuxSource current_pll_src =
CLOCK_MUX_INIT_INFO[RCC_CLOCK_MUX_PLL_INPUT].src_mapping[
s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT].src];
/* PLLSAI2ON and update PLLSAI2RDY */
val = FIELD_EX32(s->cr, CR, PLLSAI2ON);
pll_set_enable(&s->plls[RCC_PLL_PLLSAI2], val);
s->cr = (s->cr & ~R_CR_PLLSAI2RDY_MASK) |
(val << R_CR_PLLSAI2RDY_SHIFT);
if (s->cier & R_CIER_PLLSAI2RDYIE_MASK) {
s->cifr |= R_CIFR_PLLSAI2RDYF_MASK;
}
/* PLLSAI1ON and update PLLSAI1RDY */
val = FIELD_EX32(s->cr, CR, PLLSAI1ON);
pll_set_enable(&s->plls[RCC_PLL_PLLSAI1], val);
s->cr = (s->cr & ~R_CR_PLLSAI1RDY_MASK) |
(val << R_CR_PLLSAI1RDY_SHIFT);
if (s->cier & R_CIER_PLLSAI1RDYIE_MASK) {
s->cifr |= R_CIFR_PLLSAI1RDYF_MASK;
}
/*
* PLLON and update PLLRDY
* PLLON cannot be reset if the PLL clock is used as the system clock.
*/
val = FIELD_EX32(s->cr, CR, PLLON);
if (FIELD_EX32(s->cfgr, CFGR, SWS) != 0b11) {
pll_set_enable(&s->plls[RCC_PLL_PLL], val);
s->cr = (s->cr & ~R_CR_PLLRDY_MASK) |
(val << R_CR_PLLRDY_SHIFT);
if (s->cier & R_CIER_PLLRDYIE_MASK) {
s->cifr |= R_CIFR_PLLRDYF_MASK;
}
} else {
s->cr |= R_CR_PLLON_MASK;
}
/* CSSON: TODO */
/* HSEBYP: TODO */
/*
* HSEON and update HSERDY.
* HSEON cannot be reset if the HSE oscillator is used directly or
* indirectly as the system clock.
*/
val = FIELD_EX32(s->cr, CR, HSEON);
if (FIELD_EX32(s->cfgr, CFGR, SWS) != 0b10 &&
current_pll_src != RCC_CLOCK_MUX_SRC_HSE) {
s->cr = (s->cr & ~R_CR_HSERDY_MASK) |
(val << R_CR_HSERDY_SHIFT);
if (val) {
clock_update_hz(s->hse, s->hse_frequency);
if (s->cier & R_CIER_HSERDYIE_MASK) {
s->cifr |= R_CIFR_HSERDYF_MASK;
}
} else {
clock_update(s->hse, 0);
}
} else {
s->cr |= R_CR_HSEON_MASK;
}
/* HSIAFS: TODO*/
/* HSIKERON: TODO*/
/*
* HSION and update HSIRDY
* HSION is set by hardware if the HSI16 is used directly
* or indirectly as system clock.
*/
if (FIELD_EX32(s->cfgr, CFGR, SWS) == 0b01 ||
current_pll_src == RCC_CLOCK_MUX_SRC_HSI) {
s->cr |= (R_CR_HSION_MASK | R_CR_HSIRDY_MASK);
clock_update_hz(s->hsi16_rc, HSI_FRQ);
if (s->cier & R_CIER_HSIRDYIE_MASK) {
s->cifr |= R_CIFR_HSIRDYF_MASK;
}
} else {
val = FIELD_EX32(s->cr, CR, HSION);
if (val) {
clock_update_hz(s->hsi16_rc, HSI_FRQ);
s->cr |= R_CR_HSIRDY_MASK;
if (s->cier & R_CIER_HSIRDYIE_MASK) {
s->cifr |= R_CIFR_HSIRDYF_MASK;
}
} else {
clock_update(s->hsi16_rc, 0);
s->cr &= ~R_CR_HSIRDY_MASK;
}
}
/* MSIPLLEN: TODO */
/*
* MSION and update MSIRDY
* Set by hardware when used directly or indirectly as system clock.
*/
if (FIELD_EX32(s->cfgr, CFGR, SWS) == 0b00 ||
current_pll_src == RCC_CLOCK_MUX_SRC_MSI) {
s->cr |= (R_CR_MSION_MASK | R_CR_MSIRDY_MASK);
if (!(previous_value & R_CR_MSION_MASK) && (s->cier & R_CIER_MSIRDYIE_MASK)) {
s->cifr |= R_CIFR_MSIRDYF_MASK;
}
rcc_update_msi(s, previous_value);
} else {
val = FIELD_EX32(s->cr, CR, MSION);
if (val) {
s->cr |= R_CR_MSIRDY_MASK;
rcc_update_msi(s, previous_value);
if (s->cier & R_CIER_MSIRDYIE_MASK) {
s->cifr |= R_CIFR_MSIRDYF_MASK;
}
} else {
s->cr &= ~R_CR_MSIRDY_MASK;
clock_update(s->msi_rc, 0);
}
}
rcc_update_irq(s);
}
static void rcc_update_cfgr_register(Stm32l4x5RccState *s)
{
uint32_t val;
/* MCOPRE */
val = FIELD_EX32(s->cfgr, CFGR, MCOPRE);
assert(val <= 0b100);
clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_MCO],
1, 1 << val);
/* MCOSEL */
val = FIELD_EX32(s->cfgr, CFGR, MCOSEL);
assert(val <= 0b111);
if (val == 0) {
clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_MCO], false);
} else {
clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_MCO], true);
clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_MCO],
val - 1);
}
/* STOPWUCK */
/* TODO */
/* PPRE2 */
val = FIELD_EX32(s->cfgr, CFGR, PPRE2);
if (val < 0b100) {
clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PCLK2],
1, 1);
} else {
clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PCLK2],
1, 1 << (val - 0b11));
}
/* PPRE1 */
val = FIELD_EX32(s->cfgr, CFGR, PPRE1);
if (val < 0b100) {
clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PCLK1],
1, 1);
} else {
clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PCLK1],
1, 1 << (val - 0b11));
}
/* HPRE */
val = FIELD_EX32(s->cfgr, CFGR, HPRE);
if (val < 0b1000) {
clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_HCLK],
1, 1);
} else {
clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_HCLK],
1, 1 << (val - 0b111));
}
/* Update SWS */
val = FIELD_EX32(s->cfgr, CFGR, SW);
clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_SYSCLK],
val);
s->cfgr &= ~R_CFGR_SWS_MASK;
s->cfgr |= val << R_CFGR_SWS_SHIFT;
}
static void rcc_update_ahb1enr(Stm32l4x5RccState *s)
{
#define AHB1ENR_SET_ENABLE(_peripheral_name) \
clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
FIELD_EX32(s->ahb1enr, AHB1ENR, _peripheral_name##EN))
/* DMA2DEN: reserved for STM32L475xx */
AHB1ENR_SET_ENABLE(TSC);
AHB1ENR_SET_ENABLE(CRC);
AHB1ENR_SET_ENABLE(FLASH);
AHB1ENR_SET_ENABLE(DMA2);
AHB1ENR_SET_ENABLE(DMA1);
#undef AHB1ENR_SET_ENABLE
}
static void rcc_update_ahb2enr(Stm32l4x5RccState *s)
{
#define AHB2ENR_SET_ENABLE(_peripheral_name) \
clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
FIELD_EX32(s->ahb2enr, AHB2ENR, _peripheral_name##EN))
AHB2ENR_SET_ENABLE(RNG);
/* HASHEN: reserved for STM32L475xx */
AHB2ENR_SET_ENABLE(AES);
/* DCMIEN: reserved for STM32L475xx */
AHB2ENR_SET_ENABLE(ADC);
AHB2ENR_SET_ENABLE(OTGFS);
/* GPIOIEN: reserved for STM32L475xx */
AHB2ENR_SET_ENABLE(GPIOA);
AHB2ENR_SET_ENABLE(GPIOB);
AHB2ENR_SET_ENABLE(GPIOC);
AHB2ENR_SET_ENABLE(GPIOD);
AHB2ENR_SET_ENABLE(GPIOE);
AHB2ENR_SET_ENABLE(GPIOF);
AHB2ENR_SET_ENABLE(GPIOG);
AHB2ENR_SET_ENABLE(GPIOH);
#undef AHB2ENR_SET_ENABLE
}
static void rcc_update_ahb3enr(Stm32l4x5RccState *s)
{
#define AHB3ENR_SET_ENABLE(_peripheral_name) \
clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
FIELD_EX32(s->ahb3enr, AHB3ENR, _peripheral_name##EN))
AHB3ENR_SET_ENABLE(QSPI);
AHB3ENR_SET_ENABLE(FMC);
#undef AHB3ENR_SET_ENABLE
}
static void rcc_update_apb1enr(Stm32l4x5RccState *s)
{
#define APB1ENR1_SET_ENABLE(_peripheral_name) \
clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
FIELD_EX32(s->apb1enr1, APB1ENR1, _peripheral_name##EN))
#define APB1ENR2_SET_ENABLE(_peripheral_name) \
clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
FIELD_EX32(s->apb1enr2, APB1ENR2, _peripheral_name##EN))
/* APB1ENR1 */
APB1ENR1_SET_ENABLE(LPTIM1);
APB1ENR1_SET_ENABLE(OPAMP);
APB1ENR1_SET_ENABLE(DAC1);
APB1ENR1_SET_ENABLE(PWR);
/* CAN2: reserved for STM32L4x5 */
APB1ENR1_SET_ENABLE(CAN1);
/* CRSEN: reserved for STM32L4x5 */
APB1ENR1_SET_ENABLE(I2C3);
APB1ENR1_SET_ENABLE(I2C2);
APB1ENR1_SET_ENABLE(I2C1);
APB1ENR1_SET_ENABLE(UART5);
APB1ENR1_SET_ENABLE(UART4);
APB1ENR1_SET_ENABLE(USART3);
APB1ENR1_SET_ENABLE(USART2);
APB1ENR1_SET_ENABLE(SPI3);
APB1ENR1_SET_ENABLE(SPI2);
APB1ENR1_SET_ENABLE(WWDG);
/* RTCAPB: reserved for STM32L4x5 */
APB1ENR1_SET_ENABLE(LCD);
APB1ENR1_SET_ENABLE(TIM7);
APB1ENR1_SET_ENABLE(TIM6);
APB1ENR1_SET_ENABLE(TIM5);
APB1ENR1_SET_ENABLE(TIM4);
APB1ENR1_SET_ENABLE(TIM3);
APB1ENR1_SET_ENABLE(TIM2);
/* APB1ENR2 */
APB1ENR2_SET_ENABLE(LPTIM2);
APB1ENR2_SET_ENABLE(SWPMI1);
/* I2C4EN: reserved for STM32L4x5 */
APB1ENR2_SET_ENABLE(LPUART1);
#undef APB1ENR1_SET_ENABLE
#undef APB1ENR2_SET_ENABLE
}
static void rcc_update_apb2enr(Stm32l4x5RccState *s)
{
#define APB2ENR_SET_ENABLE(_peripheral_name) \
clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
FIELD_EX32(s->apb2enr, APB2ENR, _peripheral_name##EN))
APB2ENR_SET_ENABLE(DFSDM1);
APB2ENR_SET_ENABLE(SAI2);
APB2ENR_SET_ENABLE(SAI1);
APB2ENR_SET_ENABLE(TIM17);
APB2ENR_SET_ENABLE(TIM16);
APB2ENR_SET_ENABLE(TIM15);
APB2ENR_SET_ENABLE(USART1);
APB2ENR_SET_ENABLE(TIM8);
APB2ENR_SET_ENABLE(SPI1);
APB2ENR_SET_ENABLE(TIM1);
APB2ENR_SET_ENABLE(SDMMC1);
APB2ENR_SET_ENABLE(FW);
APB2ENR_SET_ENABLE(SYSCFG);
#undef APB2ENR_SET_ENABLE
}
/*
* The 3 PLLs share the same register layout
* so we can use the same function for all of them
* Note: no frequency bounds checking is done here.
*/
static void rcc_update_pllsaixcfgr(Stm32l4x5RccState *s, RccPll pll_id)
{
uint32_t reg, val;
switch (pll_id) {
case RCC_PLL_PLL:
reg = s->pllcfgr;
break;
case RCC_PLL_PLLSAI1:
reg = s->pllsai1cfgr;
break;
case RCC_PLL_PLLSAI2:
reg = s->pllsai2cfgr;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Invalid PLL ID: %u\n", __func__, pll_id);
return;
}
/* PLLPDIV */
val = FIELD_EX32(reg, PLLCFGR, PLLPDIV);
/* 1 is a reserved value */
if (val == 0) {
/* Get PLLP value */
val = FIELD_EX32(reg, PLLCFGR, PLLP);
pll_set_channel_divider(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_P,
(val ? 17 : 7));
} else if (val > 1) {
pll_set_channel_divider(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_P,
val);
}
/* PLLR */
val = FIELD_EX32(reg, PLLCFGR, PLLR);
pll_set_channel_divider(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_R,
2 * (val + 1));
/* PLLREN */
val = FIELD_EX32(reg, PLLCFGR, PLLREN);
pll_set_channel_enable(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_R, val);
/* PLLQ */
val = FIELD_EX32(reg, PLLCFGR, PLLQ);
pll_set_channel_divider(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_Q,
2 * (val + 1));
/* PLLQEN */
val = FIELD_EX32(reg, PLLCFGR, PLLQEN);
pll_set_channel_enable(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_Q, val);
/* PLLPEN */
val = FIELD_EX32(reg, PLLCFGR, PLLPEN);
pll_set_channel_enable(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_P, val);
/* PLLN */
val = FIELD_EX32(reg, PLLCFGR, PLLN);
pll_set_vco_multiplier(&s->plls[pll_id], val);
}
static void rcc_update_pllcfgr(Stm32l4x5RccState *s)
{
int val;
/* Use common layout */
rcc_update_pllsaixcfgr(s, RCC_PLL_PLL);
/* Fetch specific fields for pllcfgr */
/* PLLM */
val = FIELD_EX32(s->pllcfgr, PLLCFGR, PLLM);
clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT], 1, (val + 1));
/* PLLSRC */
val = FIELD_EX32(s->pllcfgr, PLLCFGR, PLLSRC);
if (val == 0) {
clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT], false);
} else {
clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT], val - 1);
clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT], true);
}
}
static void rcc_update_ccipr(Stm32l4x5RccState *s)
{
#define CCIPR_SET_SOURCE(_peripheral_name) \
clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
FIELD_EX32(s->ccipr, CCIPR, _peripheral_name##SEL))
CCIPR_SET_SOURCE(DFSDM1);
CCIPR_SET_SOURCE(SWPMI1);
CCIPR_SET_SOURCE(ADC);
CCIPR_SET_SOURCE(CLK48);
CCIPR_SET_SOURCE(SAI2);
CCIPR_SET_SOURCE(SAI1);
CCIPR_SET_SOURCE(LPTIM2);
CCIPR_SET_SOURCE(LPTIM1);
CCIPR_SET_SOURCE(I2C3);
CCIPR_SET_SOURCE(I2C2);
CCIPR_SET_SOURCE(I2C1);
CCIPR_SET_SOURCE(LPUART1);
CCIPR_SET_SOURCE(UART5);
CCIPR_SET_SOURCE(UART4);
CCIPR_SET_SOURCE(USART3);
CCIPR_SET_SOURCE(USART2);
CCIPR_SET_SOURCE(USART1);
#undef CCIPR_SET_SOURCE
}
static void rcc_update_bdcr(Stm32l4x5RccState *s)
{
int val;
/* LSCOSEL */
val = FIELD_EX32(s->bdcr, BDCR, LSCOSEL);
clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_LSCO], val);
val = FIELD_EX32(s->bdcr, BDCR, LSCOEN);
clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_LSCO], val);
/* BDRST */
/*
* The documentation is not clear if the RTCEN flag disables the RTC and
* the LCD common mux or if it only affects the RTC.
* As the LCDEN flag exists, we assume here that it only affects the RTC.
*/
val = FIELD_EX32(s->bdcr, BDCR, RTCEN);
clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_RTC], val);
/* LCD and RTC share the same clock */
val = FIELD_EX32(s->bdcr, BDCR, RTCSEL);
clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_LCD_AND_RTC_COMMON], val);
/* LSECSSON */
/* LSEDRV[1:0] */
/* LSEBYP */
/* LSEON: Update LSERDY at the same time */
val = FIELD_EX32(s->bdcr, BDCR, LSEON);
if (val) {
clock_update_hz(s->lse_crystal, LSE_FRQ);
s->bdcr |= R_BDCR_LSERDY_MASK;
if (s->cier & R_CIER_LSERDYIE_MASK) {
s->cifr |= R_CIFR_LSERDYF_MASK;
}
} else {
clock_update(s->lse_crystal, 0);
s->bdcr &= ~R_BDCR_LSERDY_MASK;
}
rcc_update_irq(s);
}
static void rcc_update_csr(Stm32l4x5RccState *s)
{
int val;
/* Reset flags: Not implemented */
/* MSISRANGE: Not implemented after reset */
/* LSION: Update LSIRDY at the same time */
val = FIELD_EX32(s->csr, CSR, LSION);
if (val) {
clock_update_hz(s->lsi_rc, LSI_FRQ);
s->csr |= R_CSR_LSIRDY_MASK;
if (s->cier & R_CIER_LSIRDYIE_MASK) {
s->cifr |= R_CIFR_LSIRDYF_MASK;
}
} else {
/*
* TODO: Handle when the LSI is set independently of LSION.
* E.g. when the LSI is set by the RTC.
* See the reference manual for more details.
*/
clock_update(s->lsi_rc, 0);
s->csr &= ~R_CSR_LSIRDY_MASK;
}
rcc_update_irq(s);
}
static void stm32l4x5_rcc_reset_hold(Object *obj)
{
Stm32l4x5RccState *s = STM32L4X5_RCC(obj);
s->cr = 0x00000063;
/*
* Factory-programmed calibration data
* From the reference manual: 0x10XX 00XX
* Value taken from a real card.
*/
s->icscr = 0x106E0082;
s->cfgr = 0x0;
s->pllcfgr = 0x00001000;
s->pllsai1cfgr = 0x00001000;
s->pllsai2cfgr = 0x00001000;
s->cier = 0x0;
s->cifr = 0x0;
s->ahb1rstr = 0x0;
s->ahb2rstr = 0x0;
s->ahb3rstr = 0x0;
s->apb1rstr1 = 0x0;
s->apb1rstr2 = 0x0;
s->apb2rstr = 0x0;
s->ahb1enr = 0x00000100;
s->ahb2enr = 0x0;
s->ahb3enr = 0x0;
s->apb1enr1 = 0x0;
s->apb1enr2 = 0x0;
s->apb2enr = 0x0;
s->ahb1smenr = 0x00011303;
s->ahb2smenr = 0x000532FF;
s->ahb3smenr = 0x00000101;
s->apb1smenr1 = 0xF2FECA3F;
s->apb1smenr2 = 0x00000025;
s->apb2smenr = 0x01677C01;
s->ccipr = 0x0;
s->bdcr = 0x0;
s->csr = 0x0C000600;
}
static uint64_t stm32l4x5_rcc_read(void *opaque, hwaddr addr,
unsigned int size)
{
Stm32l4x5RccState *s = opaque;
uint64_t retvalue = 0;
switch (addr) {
case A_CR:
retvalue = s->cr;
break;
case A_ICSCR:
retvalue = s->icscr;
break;
case A_CFGR:
retvalue = s->cfgr;
break;
case A_PLLCFGR:
retvalue = s->pllcfgr;
break;
case A_PLLSAI1CFGR:
retvalue = s->pllsai1cfgr;
break;
case A_PLLSAI2CFGR:
retvalue = s->pllsai2cfgr;
break;
case A_CIER:
retvalue = s->cier;
break;
case A_CIFR:
retvalue = s->cifr;
break;
case A_CICR:
/* CICR is write only, return the reset value = 0 */
break;
case A_AHB1RSTR:
retvalue = s->ahb1rstr;
break;
case A_AHB2RSTR:
retvalue = s->ahb2rstr;
break;
case A_AHB3RSTR:
retvalue = s->ahb3rstr;
break;
case A_APB1RSTR1:
retvalue = s->apb1rstr1;
break;
case A_APB1RSTR2:
retvalue = s->apb1rstr2;
break;
case A_APB2RSTR:
retvalue = s->apb2rstr;
break;
case A_AHB1ENR:
retvalue = s->ahb1enr;
break;
case A_AHB2ENR:
retvalue = s->ahb2enr;
break;
case A_AHB3ENR:
retvalue = s->ahb3enr;
break;
case A_APB1ENR1:
retvalue = s->apb1enr1;
break;
case A_APB1ENR2:
retvalue = s->apb1enr2;
break;
case A_APB2ENR:
retvalue = s->apb2enr;
break;
case A_AHB1SMENR:
retvalue = s->ahb1smenr;
break;
case A_AHB2SMENR:
retvalue = s->ahb2smenr;
break;
case A_AHB3SMENR:
retvalue = s->ahb3smenr;
break;
case A_APB1SMENR1:
retvalue = s->apb1smenr1;
break;
case A_APB1SMENR2:
retvalue = s->apb1smenr2;
break;
case A_APB2SMENR:
retvalue = s->apb2smenr;
break;
case A_CCIPR:
retvalue = s->ccipr;
break;
case A_BDCR:
retvalue = s->bdcr;
break;
case A_CSR:
retvalue = s->csr;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr);
break;
}
trace_stm32l4x5_rcc_read(addr, retvalue);
return retvalue;
}
static void stm32l4x5_rcc_write(void *opaque, hwaddr addr,
uint64_t val64, unsigned int size)
{
Stm32l4x5RccState *s = opaque;
uint32_t previous_value = 0;
const uint32_t value = val64;
trace_stm32l4x5_rcc_write(addr, value);
switch (addr) {
case A_CR:
previous_value = s->cr;
s->cr = (s->cr & CR_READ_SET_MASK) |
(value & (CR_READ_SET_MASK | ~CR_READ_ONLY_MASK));
rcc_update_cr_register(s, previous_value);
break;
case A_ICSCR:
s->icscr = value & ~ICSCR_READ_ONLY_MASK;
qemu_log_mask(LOG_UNIMP,
"%s: Side-effects not implemented for ICSCR\n", __func__);
break;
case A_CFGR:
s->cfgr = value & ~CFGR_READ_ONLY_MASK;
rcc_update_cfgr_register(s);
break;
case A_PLLCFGR:
s->pllcfgr = value;
rcc_update_pllcfgr(s);
break;
case A_PLLSAI1CFGR:
s->pllsai1cfgr = value;
rcc_update_pllsaixcfgr(s, RCC_PLL_PLLSAI1);
break;
case A_PLLSAI2CFGR:
s->pllsai2cfgr = value;
rcc_update_pllsaixcfgr(s, RCC_PLL_PLLSAI2);
break;
case A_CIER:
s->cier = value;
qemu_log_mask(LOG_UNIMP,
"%s: Side-effects not implemented for CIER\n", __func__);
break;
case A_CIFR:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Write attempt into read-only register (CIFR) 0x%"PRIx32"\n",
__func__, value);
break;
case A_CICR:
/* Clear interrupt flags by writing a 1 to the CICR register */
s->cifr &= ~value;
rcc_update_irq(s);
break;
/* Reset behaviors are not implemented */
case A_AHB1RSTR:
s->ahb1rstr = value;
qemu_log_mask(LOG_UNIMP,
"%s: Side-effects not implemented for AHB1RSTR\n", __func__);
break;
case A_AHB2RSTR:
s->ahb2rstr = value;
qemu_log_mask(LOG_UNIMP,
"%s: Side-effects not implemented for AHB2RSTR\n", __func__);
break;
case A_AHB3RSTR:
s->ahb3rstr = value;
qemu_log_mask(LOG_UNIMP,
"%s: Side-effects not implemented for AHB3RSTR\n", __func__);
break;
case A_APB1RSTR1:
s->apb1rstr1 = value;
qemu_log_mask(LOG_UNIMP,
"%s: Side-effects not implemented for APB1RSTR1\n", __func__);
break;
case A_APB1RSTR2:
s->apb1rstr2 = value;
qemu_log_mask(LOG_UNIMP,
"%s: Side-effects not implemented for APB1RSTR2\n", __func__);
break;
case A_APB2RSTR:
s->apb2rstr = value;
qemu_log_mask(LOG_UNIMP,
"%s: Side-effects not implemented for APB2RSTR\n", __func__);
break;
case A_AHB1ENR:
s->ahb1enr = value;
rcc_update_ahb1enr(s);
break;
case A_AHB2ENR:
s->ahb2enr = value;
rcc_update_ahb2enr(s);
break;
case A_AHB3ENR:
s->ahb3enr = value;
rcc_update_ahb3enr(s);
break;
case A_APB1ENR1:
s->apb1enr1 = value;
rcc_update_apb1enr(s);
break;
case A_APB1ENR2:
s->apb1enr2 = value;
rcc_update_apb1enr(s);
break;
case A_APB2ENR:
s->apb2enr = (s->apb2enr & APB2ENR_READ_SET_MASK) | value;
rcc_update_apb2enr(s);
break;
/* Behaviors for Sleep and Stop modes are not implemented */
case A_AHB1SMENR:
s->ahb1smenr = value;
qemu_log_mask(LOG_UNIMP,
"%s: Side-effects not implemented for AHB1SMENR\n", __func__);
break;
case A_AHB2SMENR:
s->ahb2smenr = value;
qemu_log_mask(LOG_UNIMP,
"%s: Side-effects not implemented for AHB2SMENR\n", __func__);
break;
case A_AHB3SMENR:
s->ahb3smenr = value;
qemu_log_mask(LOG_UNIMP,
"%s: Side-effects not implemented for AHB3SMENR\n", __func__);
break;
case A_APB1SMENR1:
s->apb1smenr1 = value;
qemu_log_mask(LOG_UNIMP,
"%s: Side-effects not implemented for APB1SMENR1\n", __func__);
break;
case A_APB1SMENR2:
s->apb1smenr2 = value;
qemu_log_mask(LOG_UNIMP,
"%s: Side-effects not implemented for APB1SMENR2\n", __func__);
break;
case A_APB2SMENR:
s->apb2smenr = value;
qemu_log_mask(LOG_UNIMP,
"%s: Side-effects not implemented for APB2SMENR\n", __func__);
break;
case A_CCIPR:
s->ccipr = value;
rcc_update_ccipr(s);
break;
case A_BDCR:
s->bdcr = value & ~BDCR_READ_ONLY_MASK;
rcc_update_bdcr(s);
break;
case A_CSR:
s->csr = value & ~CSR_READ_ONLY_MASK;
rcc_update_csr(s);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr);
}
}
static const MemoryRegionOps stm32l4x5_rcc_ops = {
.read = stm32l4x5_rcc_read,
.write = stm32l4x5_rcc_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.max_access_size = 4,
.min_access_size = 4,
.unaligned = false
},
.impl = {
.max_access_size = 4,
.min_access_size = 4,
.unaligned = false
},
};
static const ClockPortInitArray stm32l4x5_rcc_clocks = {
QDEV_CLOCK_IN(Stm32l4x5RccState, hsi16_rc, NULL, 0),
QDEV_CLOCK_IN(Stm32l4x5RccState, msi_rc, NULL, 0),
QDEV_CLOCK_IN(Stm32l4x5RccState, hse, NULL, 0),
QDEV_CLOCK_IN(Stm32l4x5RccState, lsi_rc, NULL, 0),
QDEV_CLOCK_IN(Stm32l4x5RccState, lse_crystal, NULL, 0),
QDEV_CLOCK_IN(Stm32l4x5RccState, sai1_extclk, NULL, 0),
QDEV_CLOCK_IN(Stm32l4x5RccState, sai2_extclk, NULL, 0),
QDEV_CLOCK_END
};
static void stm32l4x5_rcc_init(Object *obj)
{
Stm32l4x5RccState *s = STM32L4X5_RCC(obj);
size_t i;
sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->irq);
memory_region_init_io(&s->mmio, obj, &stm32l4x5_rcc_ops, s,
TYPE_STM32L4X5_RCC, 0x400);
sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio);
qdev_init_clocks(DEVICE(s), stm32l4x5_rcc_clocks);
for (i = 0; i < RCC_NUM_PLL; i++) {
object_initialize_child(obj, PLL_INIT_INFO[i].name,
&s->plls[i], TYPE_RCC_PLL);
set_pll_init_info(&s->plls[i], i);
}
for (i = 0; i < RCC_NUM_CLOCK_MUX; i++) {
char *alias;
object_initialize_child(obj, CLOCK_MUX_INIT_INFO[i].name,
&s->clock_muxes[i],
TYPE_RCC_CLOCK_MUX);
set_clock_mux_init_info(&s->clock_muxes[i], i);
if (!CLOCK_MUX_INIT_INFO[i].hidden) {
/* Expose muxes output as RCC outputs */
alias = g_strdup_printf("%s-out", CLOCK_MUX_INIT_INFO[i].name);
qdev_alias_clock(DEVICE(&s->clock_muxes[i]), "out", DEVICE(obj), alias);
g_free(alias);
}
}
s->gnd = clock_new(obj, "gnd");
}
static void connect_mux_sources(Stm32l4x5RccState *s,
RccClockMuxState *mux,
const RccClockMuxSource *clk_mapping)
{
size_t i;
Clock * const CLK_SRC_MAPPING[] = {
[RCC_CLOCK_MUX_SRC_GND] = s->gnd,
[RCC_CLOCK_MUX_SRC_HSI] = s->hsi16_rc,
[RCC_CLOCK_MUX_SRC_HSE] = s->hse,
[RCC_CLOCK_MUX_SRC_MSI] = s->msi_rc,
[RCC_CLOCK_MUX_SRC_LSI] = s->lsi_rc,
[RCC_CLOCK_MUX_SRC_LSE] = s->lse_crystal,
[RCC_CLOCK_MUX_SRC_SAI1_EXTCLK] = s->sai1_extclk,
[RCC_CLOCK_MUX_SRC_SAI2_EXTCLK] = s->sai2_extclk,
[RCC_CLOCK_MUX_SRC_PLL] =
s->plls[RCC_PLL_PLL].channels[RCC_PLL_CHANNEL_PLLCLK],
[RCC_CLOCK_MUX_SRC_PLLSAI1] =
s->plls[RCC_PLL_PLLSAI1].channels[RCC_PLLSAI1_CHANNEL_PLLSAI1CLK],
[RCC_CLOCK_MUX_SRC_PLLSAI2] =
s->plls[RCC_PLL_PLLSAI2].channels[RCC_PLLSAI2_CHANNEL_PLLSAI2CLK],
[RCC_CLOCK_MUX_SRC_PLLSAI3] =
s->plls[RCC_PLL_PLL].channels[RCC_PLL_CHANNEL_PLLSAI3CLK],
[RCC_CLOCK_MUX_SRC_PLL48M1] =
s->plls[RCC_PLL_PLL].channels[RCC_PLL_CHANNEL_PLL48M1CLK],
[RCC_CLOCK_MUX_SRC_PLL48M2] =
s->plls[RCC_PLL_PLLSAI1].channels[RCC_PLLSAI1_CHANNEL_PLL48M2CLK],
[RCC_CLOCK_MUX_SRC_PLLADC1] =
s->plls[RCC_PLL_PLLSAI1].channels[RCC_PLLSAI1_CHANNEL_PLLADC1CLK],
[RCC_CLOCK_MUX_SRC_PLLADC2] =
s->plls[RCC_PLL_PLLSAI2] .channels[RCC_PLLSAI2_CHANNEL_PLLADC2CLK],
[RCC_CLOCK_MUX_SRC_SYSCLK] = s->clock_muxes[RCC_CLOCK_MUX_SYSCLK].out,
[RCC_CLOCK_MUX_SRC_HCLK] = s->clock_muxes[RCC_CLOCK_MUX_HCLK].out,
[RCC_CLOCK_MUX_SRC_PCLK1] = s->clock_muxes[RCC_CLOCK_MUX_PCLK1].out,
[RCC_CLOCK_MUX_SRC_PCLK2] = s->clock_muxes[RCC_CLOCK_MUX_PCLK2].out,
[RCC_CLOCK_MUX_SRC_HSE_OVER_32] = s->clock_muxes[RCC_CLOCK_MUX_HSE_OVER_32].out,
[RCC_CLOCK_MUX_SRC_LCD_AND_RTC_COMMON] =
s->clock_muxes[RCC_CLOCK_MUX_LCD_AND_RTC_COMMON].out,
};
assert(ARRAY_SIZE(CLK_SRC_MAPPING) == RCC_CLOCK_MUX_SRC_NUMBER);
for (i = 0; i < RCC_NUM_CLOCK_MUX_SRC; i++) {
RccClockMuxSource mapping = clk_mapping[i];
clock_set_source(mux->srcs[i], CLK_SRC_MAPPING[mapping]);
}
}
static const VMStateDescription vmstate_stm32l4x5_rcc = {
.name = TYPE_STM32L4X5_RCC,
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(cr, Stm32l4x5RccState),
VMSTATE_UINT32(icscr, Stm32l4x5RccState),
VMSTATE_UINT32(cfgr, Stm32l4x5RccState),
VMSTATE_UINT32(pllcfgr, Stm32l4x5RccState),
VMSTATE_UINT32(pllsai1cfgr, Stm32l4x5RccState),
VMSTATE_UINT32(pllsai2cfgr, Stm32l4x5RccState),
VMSTATE_UINT32(cier, Stm32l4x5RccState),
VMSTATE_UINT32(cifr, Stm32l4x5RccState),
VMSTATE_UINT32(ahb1rstr, Stm32l4x5RccState),
VMSTATE_UINT32(ahb2rstr, Stm32l4x5RccState),
VMSTATE_UINT32(ahb3rstr, Stm32l4x5RccState),
VMSTATE_UINT32(apb1rstr1, Stm32l4x5RccState),
VMSTATE_UINT32(apb1rstr2, Stm32l4x5RccState),
VMSTATE_UINT32(apb2rstr, Stm32l4x5RccState),
VMSTATE_UINT32(ahb1enr, Stm32l4x5RccState),
VMSTATE_UINT32(ahb2enr, Stm32l4x5RccState),
VMSTATE_UINT32(ahb3enr, Stm32l4x5RccState),
VMSTATE_UINT32(apb1enr1, Stm32l4x5RccState),
VMSTATE_UINT32(apb1enr2, Stm32l4x5RccState),
VMSTATE_UINT32(apb2enr, Stm32l4x5RccState),
VMSTATE_UINT32(ahb1smenr, Stm32l4x5RccState),
VMSTATE_UINT32(ahb2smenr, Stm32l4x5RccState),
VMSTATE_UINT32(ahb3smenr, Stm32l4x5RccState),
VMSTATE_UINT32(apb1smenr1, Stm32l4x5RccState),
VMSTATE_UINT32(apb1smenr2, Stm32l4x5RccState),
VMSTATE_UINT32(apb2smenr, Stm32l4x5RccState),
VMSTATE_UINT32(ccipr, Stm32l4x5RccState),
VMSTATE_UINT32(bdcr, Stm32l4x5RccState),
VMSTATE_UINT32(csr, Stm32l4x5RccState),
VMSTATE_CLOCK(hsi16_rc, Stm32l4x5RccState),
VMSTATE_CLOCK(msi_rc, Stm32l4x5RccState),
VMSTATE_CLOCK(hse, Stm32l4x5RccState),
VMSTATE_CLOCK(lsi_rc, Stm32l4x5RccState),
VMSTATE_CLOCK(lse_crystal, Stm32l4x5RccState),
VMSTATE_CLOCK(sai1_extclk, Stm32l4x5RccState),
VMSTATE_CLOCK(sai2_extclk, Stm32l4x5RccState),
VMSTATE_END_OF_LIST()
}
};
static void stm32l4x5_rcc_realize(DeviceState *dev, Error **errp)
{
Stm32l4x5RccState *s = STM32L4X5_RCC(dev);
size_t i;
if (s->hse_frequency < 4000000ULL ||
s->hse_frequency > 48000000ULL) {
error_setg(errp,
"HSE frequency is outside of the allowed [4-48]Mhz range: %" PRIx64 "",
s->hse_frequency);
return;
}
for (i = 0; i < RCC_NUM_PLL; i++) {
RccPllState *pll = &s->plls[i];
clock_set_source(pll->in, s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT].out);
if (!qdev_realize(DEVICE(pll), NULL, errp)) {
return;
}
}
for (i = 0; i < RCC_NUM_CLOCK_MUX; i++) {
RccClockMuxState *clock_mux = &s->clock_muxes[i];
connect_mux_sources(s, clock_mux, CLOCK_MUX_INIT_INFO[i].src_mapping);
if (!qdev_realize(DEVICE(clock_mux), NULL, errp)) {
return;
}
}
/*
* Start clocks after everything is connected
* to propagate the frequencies along the tree.
*/
clock_update_hz(s->msi_rc, MSI_DEFAULT_FRQ);
clock_update_hz(s->sai1_extclk, s->sai1_extclk_frequency);
clock_update_hz(s->sai2_extclk, s->sai2_extclk_frequency);
clock_update(s->gnd, 0);
}
static Property stm32l4x5_rcc_properties[] = {
DEFINE_PROP_UINT64("hse_frequency", Stm32l4x5RccState,
hse_frequency, HSE_DEFAULT_FRQ),
DEFINE_PROP_UINT64("sai1_extclk_frequency", Stm32l4x5RccState,
sai1_extclk_frequency, 0),
DEFINE_PROP_UINT64("sai2_extclk_frequency", Stm32l4x5RccState,
sai2_extclk_frequency, 0),
DEFINE_PROP_END_OF_LIST(),
};
static void stm32l4x5_rcc_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
ResettableClass *rc = RESETTABLE_CLASS(klass);
assert(ARRAY_SIZE(CLOCK_MUX_INIT_INFO) == RCC_NUM_CLOCK_MUX);
rc->phases.hold = stm32l4x5_rcc_reset_hold;
device_class_set_props(dc, stm32l4x5_rcc_properties);
dc->realize = stm32l4x5_rcc_realize;
dc->vmsd = &vmstate_stm32l4x5_rcc;
}
static const TypeInfo stm32l4x5_rcc_types[] = {
{
.name = TYPE_STM32L4X5_RCC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(Stm32l4x5RccState),
.instance_init = stm32l4x5_rcc_init,
.class_init = stm32l4x5_rcc_class_init,
}, {
.name = TYPE_RCC_CLOCK_MUX,
.parent = TYPE_DEVICE,
.instance_size = sizeof(RccClockMuxState),
.instance_init = clock_mux_init,
.class_init = clock_mux_class_init,
}, {
.name = TYPE_RCC_PLL,
.parent = TYPE_DEVICE,
.instance_size = sizeof(RccPllState),
.instance_init = pll_init,
.class_init = pll_class_init,
}
};
DEFINE_TYPES(stm32l4x5_rcc_types)