| /* |
| * Virtio MEM device |
| * |
| * Copyright (C) 2020 Red Hat, Inc. |
| * |
| * Authors: |
| * David Hildenbrand <david@redhat.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2. |
| * See the COPYING file in the top-level directory. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/iov.h" |
| #include "qemu/cutils.h" |
| #include "qemu/error-report.h" |
| #include "qemu/units.h" |
| #include "sysemu/numa.h" |
| #include "sysemu/sysemu.h" |
| #include "sysemu/reset.h" |
| #include "sysemu/runstate.h" |
| #include "hw/virtio/virtio.h" |
| #include "hw/virtio/virtio-bus.h" |
| #include "hw/virtio/virtio-mem.h" |
| #include "qapi/error.h" |
| #include "qapi/visitor.h" |
| #include "exec/ram_addr.h" |
| #include "migration/misc.h" |
| #include "hw/boards.h" |
| #include "hw/qdev-properties.h" |
| #include CONFIG_DEVICES |
| #include "trace.h" |
| |
| static const VMStateDescription vmstate_virtio_mem_device_early; |
| |
| /* |
| * We only had legacy x86 guests that did not support |
| * VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE. Other targets don't have legacy guests. |
| */ |
| #if defined(TARGET_X86_64) || defined(TARGET_I386) |
| #define VIRTIO_MEM_HAS_LEGACY_GUESTS |
| #endif |
| |
| /* |
| * Let's not allow blocks smaller than 1 MiB, for example, to keep the tracking |
| * bitmap small. |
| */ |
| #define VIRTIO_MEM_MIN_BLOCK_SIZE ((uint32_t)(1 * MiB)) |
| |
| static uint32_t virtio_mem_default_thp_size(void) |
| { |
| uint32_t default_thp_size = VIRTIO_MEM_MIN_BLOCK_SIZE; |
| |
| #if defined(__x86_64__) || defined(__arm__) || defined(__powerpc64__) |
| default_thp_size = 2 * MiB; |
| #elif defined(__aarch64__) |
| if (qemu_real_host_page_size() == 4 * KiB) { |
| default_thp_size = 2 * MiB; |
| } else if (qemu_real_host_page_size() == 16 * KiB) { |
| default_thp_size = 32 * MiB; |
| } else if (qemu_real_host_page_size() == 64 * KiB) { |
| default_thp_size = 512 * MiB; |
| } |
| #endif |
| |
| return default_thp_size; |
| } |
| |
| /* |
| * The minimum memslot size depends on this setting ("sane default"), the |
| * device block size, and the memory backend page size. The last (or single) |
| * memslot might be smaller than this constant. |
| */ |
| #define VIRTIO_MEM_MIN_MEMSLOT_SIZE (1 * GiB) |
| |
| /* |
| * We want to have a reasonable default block size such that |
| * 1. We avoid splitting THPs when unplugging memory, which degrades |
| * performance. |
| * 2. We avoid placing THPs for plugged blocks that also cover unplugged |
| * blocks. |
| * |
| * The actual THP size might differ between Linux kernels, so we try to probe |
| * it. In the future (if we ever run into issues regarding 2.), we might want |
| * to disable THP in case we fail to properly probe the THP size, or if the |
| * block size is configured smaller than the THP size. |
| */ |
| static uint32_t thp_size; |
| |
| #define HPAGE_PMD_SIZE_PATH "/sys/kernel/mm/transparent_hugepage/hpage_pmd_size" |
| static uint32_t virtio_mem_thp_size(void) |
| { |
| gchar *content = NULL; |
| const char *endptr; |
| uint64_t tmp; |
| |
| if (thp_size) { |
| return thp_size; |
| } |
| |
| /* |
| * Try to probe the actual THP size, fallback to (sane but eventually |
| * incorrect) default sizes. |
| */ |
| if (g_file_get_contents(HPAGE_PMD_SIZE_PATH, &content, NULL, NULL) && |
| !qemu_strtou64(content, &endptr, 0, &tmp) && |
| (!endptr || *endptr == '\n')) { |
| /* Sanity-check the value and fallback to something reasonable. */ |
| if (!tmp || !is_power_of_2(tmp)) { |
| warn_report("Read unsupported THP size: %" PRIx64, tmp); |
| } else { |
| thp_size = tmp; |
| } |
| } |
| |
| if (!thp_size) { |
| thp_size = virtio_mem_default_thp_size(); |
| warn_report("Could not detect THP size, falling back to %" PRIx64 |
| " MiB.", thp_size / MiB); |
| } |
| |
| g_free(content); |
| return thp_size; |
| } |
| |
| static uint64_t virtio_mem_default_block_size(RAMBlock *rb) |
| { |
| const uint64_t page_size = qemu_ram_pagesize(rb); |
| |
| /* We can have hugetlbfs with a page size smaller than the THP size. */ |
| if (page_size == qemu_real_host_page_size()) { |
| return MAX(page_size, virtio_mem_thp_size()); |
| } |
| return MAX(page_size, VIRTIO_MEM_MIN_BLOCK_SIZE); |
| } |
| |
| #if defined(VIRTIO_MEM_HAS_LEGACY_GUESTS) |
| static bool virtio_mem_has_shared_zeropage(RAMBlock *rb) |
| { |
| /* |
| * We only have a guaranteed shared zeropage on ordinary MAP_PRIVATE |
| * anonymous RAM. In any other case, reading unplugged *can* populate a |
| * fresh page, consuming actual memory. |
| */ |
| return !qemu_ram_is_shared(rb) && qemu_ram_get_fd(rb) < 0 && |
| qemu_ram_pagesize(rb) == qemu_real_host_page_size(); |
| } |
| #endif /* VIRTIO_MEM_HAS_LEGACY_GUESTS */ |
| |
| /* |
| * Size the usable region bigger than the requested size if possible. Esp. |
| * Linux guests will only add (aligned) memory blocks in case they fully |
| * fit into the usable region, but plug+online only a subset of the pages. |
| * The memory block size corresponds mostly to the section size. |
| * |
| * This allows e.g., to add 20MB with a section size of 128MB on x86_64, and |
| * a section size of 512MB on arm64 (as long as the start address is properly |
| * aligned, similar to ordinary DIMMs). |
| * |
| * We can change this at any time and maybe even make it configurable if |
| * necessary (as the section size can change). But it's more likely that the |
| * section size will rather get smaller and not bigger over time. |
| */ |
| #if defined(TARGET_X86_64) || defined(TARGET_I386) |
| #define VIRTIO_MEM_USABLE_EXTENT (2 * (128 * MiB)) |
| #elif defined(TARGET_ARM) |
| #define VIRTIO_MEM_USABLE_EXTENT (2 * (512 * MiB)) |
| #else |
| #error VIRTIO_MEM_USABLE_EXTENT not defined |
| #endif |
| |
| static bool virtio_mem_is_busy(void) |
| { |
| /* |
| * Postcopy cannot handle concurrent discards and we don't want to migrate |
| * pages on-demand with stale content when plugging new blocks. |
| * |
| * For precopy, we don't want unplugged blocks in our migration stream, and |
| * when plugging new blocks, the page content might differ between source |
| * and destination (observable by the guest when not initializing pages |
| * after plugging them) until we're running on the destination (as we didn't |
| * migrate these blocks when they were unplugged). |
| */ |
| return migration_in_incoming_postcopy() || !migration_is_idle(); |
| } |
| |
| typedef int (*virtio_mem_range_cb)(VirtIOMEM *vmem, void *arg, |
| uint64_t offset, uint64_t size); |
| |
| static int virtio_mem_for_each_unplugged_range(VirtIOMEM *vmem, void *arg, |
| virtio_mem_range_cb cb) |
| { |
| unsigned long first_zero_bit, last_zero_bit; |
| uint64_t offset, size; |
| int ret = 0; |
| |
| first_zero_bit = find_first_zero_bit(vmem->bitmap, vmem->bitmap_size); |
| while (first_zero_bit < vmem->bitmap_size) { |
| offset = first_zero_bit * vmem->block_size; |
| last_zero_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size, |
| first_zero_bit + 1) - 1; |
| size = (last_zero_bit - first_zero_bit + 1) * vmem->block_size; |
| |
| ret = cb(vmem, arg, offset, size); |
| if (ret) { |
| break; |
| } |
| first_zero_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size, |
| last_zero_bit + 2); |
| } |
| return ret; |
| } |
| |
| static int virtio_mem_for_each_plugged_range(VirtIOMEM *vmem, void *arg, |
| virtio_mem_range_cb cb) |
| { |
| unsigned long first_bit, last_bit; |
| uint64_t offset, size; |
| int ret = 0; |
| |
| first_bit = find_first_bit(vmem->bitmap, vmem->bitmap_size); |
| while (first_bit < vmem->bitmap_size) { |
| offset = first_bit * vmem->block_size; |
| last_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size, |
| first_bit + 1) - 1; |
| size = (last_bit - first_bit + 1) * vmem->block_size; |
| |
| ret = cb(vmem, arg, offset, size); |
| if (ret) { |
| break; |
| } |
| first_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size, |
| last_bit + 2); |
| } |
| return ret; |
| } |
| |
| /* |
| * Adjust the memory section to cover the intersection with the given range. |
| * |
| * Returns false if the intersection is empty, otherwise returns true. |
| */ |
| static bool virtio_mem_intersect_memory_section(MemoryRegionSection *s, |
| uint64_t offset, uint64_t size) |
| { |
| uint64_t start = MAX(s->offset_within_region, offset); |
| uint64_t end = MIN(s->offset_within_region + int128_get64(s->size), |
| offset + size); |
| |
| if (end <= start) { |
| return false; |
| } |
| |
| s->offset_within_address_space += start - s->offset_within_region; |
| s->offset_within_region = start; |
| s->size = int128_make64(end - start); |
| return true; |
| } |
| |
| typedef int (*virtio_mem_section_cb)(MemoryRegionSection *s, void *arg); |
| |
| static int virtio_mem_for_each_plugged_section(const VirtIOMEM *vmem, |
| MemoryRegionSection *s, |
| void *arg, |
| virtio_mem_section_cb cb) |
| { |
| unsigned long first_bit, last_bit; |
| uint64_t offset, size; |
| int ret = 0; |
| |
| first_bit = s->offset_within_region / vmem->block_size; |
| first_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size, first_bit); |
| while (first_bit < vmem->bitmap_size) { |
| MemoryRegionSection tmp = *s; |
| |
| offset = first_bit * vmem->block_size; |
| last_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size, |
| first_bit + 1) - 1; |
| size = (last_bit - first_bit + 1) * vmem->block_size; |
| |
| if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) { |
| break; |
| } |
| ret = cb(&tmp, arg); |
| if (ret) { |
| break; |
| } |
| first_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size, |
| last_bit + 2); |
| } |
| return ret; |
| } |
| |
| static int virtio_mem_for_each_unplugged_section(const VirtIOMEM *vmem, |
| MemoryRegionSection *s, |
| void *arg, |
| virtio_mem_section_cb cb) |
| { |
| unsigned long first_bit, last_bit; |
| uint64_t offset, size; |
| int ret = 0; |
| |
| first_bit = s->offset_within_region / vmem->block_size; |
| first_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size, first_bit); |
| while (first_bit < vmem->bitmap_size) { |
| MemoryRegionSection tmp = *s; |
| |
| offset = first_bit * vmem->block_size; |
| last_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size, |
| first_bit + 1) - 1; |
| size = (last_bit - first_bit + 1) * vmem->block_size; |
| |
| if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) { |
| break; |
| } |
| ret = cb(&tmp, arg); |
| if (ret) { |
| break; |
| } |
| first_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size, |
| last_bit + 2); |
| } |
| return ret; |
| } |
| |
| static int virtio_mem_notify_populate_cb(MemoryRegionSection *s, void *arg) |
| { |
| RamDiscardListener *rdl = arg; |
| |
| return rdl->notify_populate(rdl, s); |
| } |
| |
| static int virtio_mem_notify_discard_cb(MemoryRegionSection *s, void *arg) |
| { |
| RamDiscardListener *rdl = arg; |
| |
| rdl->notify_discard(rdl, s); |
| return 0; |
| } |
| |
| static void virtio_mem_notify_unplug(VirtIOMEM *vmem, uint64_t offset, |
| uint64_t size) |
| { |
| RamDiscardListener *rdl; |
| |
| QLIST_FOREACH(rdl, &vmem->rdl_list, next) { |
| MemoryRegionSection tmp = *rdl->section; |
| |
| if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) { |
| continue; |
| } |
| rdl->notify_discard(rdl, &tmp); |
| } |
| } |
| |
| static int virtio_mem_notify_plug(VirtIOMEM *vmem, uint64_t offset, |
| uint64_t size) |
| { |
| RamDiscardListener *rdl, *rdl2; |
| int ret = 0; |
| |
| QLIST_FOREACH(rdl, &vmem->rdl_list, next) { |
| MemoryRegionSection tmp = *rdl->section; |
| |
| if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) { |
| continue; |
| } |
| ret = rdl->notify_populate(rdl, &tmp); |
| if (ret) { |
| break; |
| } |
| } |
| |
| if (ret) { |
| /* Notify all already-notified listeners. */ |
| QLIST_FOREACH(rdl2, &vmem->rdl_list, next) { |
| MemoryRegionSection tmp = *rdl2->section; |
| |
| if (rdl2 == rdl) { |
| break; |
| } |
| if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) { |
| continue; |
| } |
| rdl2->notify_discard(rdl2, &tmp); |
| } |
| } |
| return ret; |
| } |
| |
| static void virtio_mem_notify_unplug_all(VirtIOMEM *vmem) |
| { |
| RamDiscardListener *rdl; |
| |
| if (!vmem->size) { |
| return; |
| } |
| |
| QLIST_FOREACH(rdl, &vmem->rdl_list, next) { |
| if (rdl->double_discard_supported) { |
| rdl->notify_discard(rdl, rdl->section); |
| } else { |
| virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl, |
| virtio_mem_notify_discard_cb); |
| } |
| } |
| } |
| |
| static bool virtio_mem_is_range_plugged(const VirtIOMEM *vmem, |
| uint64_t start_gpa, uint64_t size) |
| { |
| const unsigned long first_bit = (start_gpa - vmem->addr) / vmem->block_size; |
| const unsigned long last_bit = first_bit + (size / vmem->block_size) - 1; |
| unsigned long found_bit; |
| |
| /* We fake a shorter bitmap to avoid searching too far. */ |
| found_bit = find_next_zero_bit(vmem->bitmap, last_bit + 1, first_bit); |
| return found_bit > last_bit; |
| } |
| |
| static bool virtio_mem_is_range_unplugged(const VirtIOMEM *vmem, |
| uint64_t start_gpa, uint64_t size) |
| { |
| const unsigned long first_bit = (start_gpa - vmem->addr) / vmem->block_size; |
| const unsigned long last_bit = first_bit + (size / vmem->block_size) - 1; |
| unsigned long found_bit; |
| |
| /* We fake a shorter bitmap to avoid searching too far. */ |
| found_bit = find_next_bit(vmem->bitmap, last_bit + 1, first_bit); |
| return found_bit > last_bit; |
| } |
| |
| static void virtio_mem_set_range_plugged(VirtIOMEM *vmem, uint64_t start_gpa, |
| uint64_t size) |
| { |
| const unsigned long bit = (start_gpa - vmem->addr) / vmem->block_size; |
| const unsigned long nbits = size / vmem->block_size; |
| |
| bitmap_set(vmem->bitmap, bit, nbits); |
| } |
| |
| static void virtio_mem_set_range_unplugged(VirtIOMEM *vmem, uint64_t start_gpa, |
| uint64_t size) |
| { |
| const unsigned long bit = (start_gpa - vmem->addr) / vmem->block_size; |
| const unsigned long nbits = size / vmem->block_size; |
| |
| bitmap_clear(vmem->bitmap, bit, nbits); |
| } |
| |
| static void virtio_mem_send_response(VirtIOMEM *vmem, VirtQueueElement *elem, |
| struct virtio_mem_resp *resp) |
| { |
| VirtIODevice *vdev = VIRTIO_DEVICE(vmem); |
| VirtQueue *vq = vmem->vq; |
| |
| trace_virtio_mem_send_response(le16_to_cpu(resp->type)); |
| iov_from_buf(elem->in_sg, elem->in_num, 0, resp, sizeof(*resp)); |
| |
| virtqueue_push(vq, elem, sizeof(*resp)); |
| virtio_notify(vdev, vq); |
| } |
| |
| static void virtio_mem_send_response_simple(VirtIOMEM *vmem, |
| VirtQueueElement *elem, |
| uint16_t type) |
| { |
| struct virtio_mem_resp resp = { |
| .type = cpu_to_le16(type), |
| }; |
| |
| virtio_mem_send_response(vmem, elem, &resp); |
| } |
| |
| static bool virtio_mem_valid_range(const VirtIOMEM *vmem, uint64_t gpa, |
| uint64_t size) |
| { |
| if (!QEMU_IS_ALIGNED(gpa, vmem->block_size)) { |
| return false; |
| } |
| if (gpa + size < gpa || !size) { |
| return false; |
| } |
| if (gpa < vmem->addr || gpa >= vmem->addr + vmem->usable_region_size) { |
| return false; |
| } |
| if (gpa + size > vmem->addr + vmem->usable_region_size) { |
| return false; |
| } |
| return true; |
| } |
| |
| static void virtio_mem_activate_memslot(VirtIOMEM *vmem, unsigned int idx) |
| { |
| const uint64_t memslot_offset = idx * vmem->memslot_size; |
| |
| assert(vmem->memslots); |
| |
| /* |
| * Instead of enabling/disabling memslots, we add/remove them. This should |
| * make address space updates faster, because we don't have to loop over |
| * many disabled subregions. |
| */ |
| if (memory_region_is_mapped(&vmem->memslots[idx])) { |
| return; |
| } |
| memory_region_add_subregion(vmem->mr, memslot_offset, &vmem->memslots[idx]); |
| } |
| |
| static void virtio_mem_deactivate_memslot(VirtIOMEM *vmem, unsigned int idx) |
| { |
| assert(vmem->memslots); |
| |
| if (!memory_region_is_mapped(&vmem->memslots[idx])) { |
| return; |
| } |
| memory_region_del_subregion(vmem->mr, &vmem->memslots[idx]); |
| } |
| |
| static void virtio_mem_activate_memslots_to_plug(VirtIOMEM *vmem, |
| uint64_t offset, uint64_t size) |
| { |
| const unsigned int start_idx = offset / vmem->memslot_size; |
| const unsigned int end_idx = (offset + size + vmem->memslot_size - 1) / |
| vmem->memslot_size; |
| unsigned int idx; |
| |
| if (!vmem->dynamic_memslots) { |
| return; |
| } |
| |
| /* Activate all involved memslots in a single transaction. */ |
| memory_region_transaction_begin(); |
| for (idx = start_idx; idx < end_idx; idx++) { |
| virtio_mem_activate_memslot(vmem, idx); |
| } |
| memory_region_transaction_commit(); |
| } |
| |
| static void virtio_mem_deactivate_unplugged_memslots(VirtIOMEM *vmem, |
| uint64_t offset, |
| uint64_t size) |
| { |
| const uint64_t region_size = memory_region_size(&vmem->memdev->mr); |
| const unsigned int start_idx = offset / vmem->memslot_size; |
| const unsigned int end_idx = (offset + size + vmem->memslot_size - 1) / |
| vmem->memslot_size; |
| unsigned int idx; |
| |
| if (!vmem->dynamic_memslots) { |
| return; |
| } |
| |
| /* Deactivate all memslots with unplugged blocks in a single transaction. */ |
| memory_region_transaction_begin(); |
| for (idx = start_idx; idx < end_idx; idx++) { |
| const uint64_t memslot_offset = idx * vmem->memslot_size; |
| uint64_t memslot_size = vmem->memslot_size; |
| |
| /* The size of the last memslot might be smaller. */ |
| if (idx == vmem->nb_memslots - 1) { |
| memslot_size = region_size - memslot_offset; |
| } |
| |
| /* |
| * Partially covered memslots might still have some blocks plugged and |
| * have to remain active if that's the case. |
| */ |
| if (offset > memslot_offset || |
| offset + size < memslot_offset + memslot_size) { |
| const uint64_t gpa = vmem->addr + memslot_offset; |
| |
| if (!virtio_mem_is_range_unplugged(vmem, gpa, memslot_size)) { |
| continue; |
| } |
| } |
| |
| virtio_mem_deactivate_memslot(vmem, idx); |
| } |
| memory_region_transaction_commit(); |
| } |
| |
| static int virtio_mem_set_block_state(VirtIOMEM *vmem, uint64_t start_gpa, |
| uint64_t size, bool plug) |
| { |
| const uint64_t offset = start_gpa - vmem->addr; |
| RAMBlock *rb = vmem->memdev->mr.ram_block; |
| int ret = 0; |
| |
| if (virtio_mem_is_busy()) { |
| return -EBUSY; |
| } |
| |
| if (!plug) { |
| if (ram_block_discard_range(rb, offset, size)) { |
| return -EBUSY; |
| } |
| virtio_mem_notify_unplug(vmem, offset, size); |
| virtio_mem_set_range_unplugged(vmem, start_gpa, size); |
| /* Deactivate completely unplugged memslots after updating the state. */ |
| virtio_mem_deactivate_unplugged_memslots(vmem, offset, size); |
| return 0; |
| } |
| |
| if (vmem->prealloc) { |
| void *area = memory_region_get_ram_ptr(&vmem->memdev->mr) + offset; |
| int fd = memory_region_get_fd(&vmem->memdev->mr); |
| Error *local_err = NULL; |
| |
| qemu_prealloc_mem(fd, area, size, 1, NULL, &local_err); |
| if (local_err) { |
| static bool warned; |
| |
| /* |
| * Warn only once, we don't want to fill the log with these |
| * warnings. |
| */ |
| if (!warned) { |
| warn_report_err(local_err); |
| warned = true; |
| } else { |
| error_free(local_err); |
| } |
| ret = -EBUSY; |
| } |
| } |
| |
| if (!ret) { |
| /* |
| * Activate before notifying and rollback in case of any errors. |
| * |
| * When activating a yet inactive memslot, memory notifiers will get |
| * notified about the added memory region and can register with the |
| * RamDiscardManager; this will traverse all plugged blocks and skip the |
| * blocks we are plugging here. The following notification will inform |
| * registered listeners about the blocks we're plugging. |
| */ |
| virtio_mem_activate_memslots_to_plug(vmem, offset, size); |
| ret = virtio_mem_notify_plug(vmem, offset, size); |
| if (ret) { |
| virtio_mem_deactivate_unplugged_memslots(vmem, offset, size); |
| } |
| } |
| if (ret) { |
| /* Could be preallocation or a notifier populated memory. */ |
| ram_block_discard_range(vmem->memdev->mr.ram_block, offset, size); |
| return -EBUSY; |
| } |
| |
| virtio_mem_set_range_plugged(vmem, start_gpa, size); |
| return 0; |
| } |
| |
| static int virtio_mem_state_change_request(VirtIOMEM *vmem, uint64_t gpa, |
| uint16_t nb_blocks, bool plug) |
| { |
| const uint64_t size = nb_blocks * vmem->block_size; |
| int ret; |
| |
| if (!virtio_mem_valid_range(vmem, gpa, size)) { |
| return VIRTIO_MEM_RESP_ERROR; |
| } |
| |
| if (plug && (vmem->size + size > vmem->requested_size)) { |
| return VIRTIO_MEM_RESP_NACK; |
| } |
| |
| /* test if really all blocks are in the opposite state */ |
| if ((plug && !virtio_mem_is_range_unplugged(vmem, gpa, size)) || |
| (!plug && !virtio_mem_is_range_plugged(vmem, gpa, size))) { |
| return VIRTIO_MEM_RESP_ERROR; |
| } |
| |
| ret = virtio_mem_set_block_state(vmem, gpa, size, plug); |
| if (ret) { |
| return VIRTIO_MEM_RESP_BUSY; |
| } |
| if (plug) { |
| vmem->size += size; |
| } else { |
| vmem->size -= size; |
| } |
| notifier_list_notify(&vmem->size_change_notifiers, &vmem->size); |
| return VIRTIO_MEM_RESP_ACK; |
| } |
| |
| static void virtio_mem_plug_request(VirtIOMEM *vmem, VirtQueueElement *elem, |
| struct virtio_mem_req *req) |
| { |
| const uint64_t gpa = le64_to_cpu(req->u.plug.addr); |
| const uint16_t nb_blocks = le16_to_cpu(req->u.plug.nb_blocks); |
| uint16_t type; |
| |
| trace_virtio_mem_plug_request(gpa, nb_blocks); |
| type = virtio_mem_state_change_request(vmem, gpa, nb_blocks, true); |
| virtio_mem_send_response_simple(vmem, elem, type); |
| } |
| |
| static void virtio_mem_unplug_request(VirtIOMEM *vmem, VirtQueueElement *elem, |
| struct virtio_mem_req *req) |
| { |
| const uint64_t gpa = le64_to_cpu(req->u.unplug.addr); |
| const uint16_t nb_blocks = le16_to_cpu(req->u.unplug.nb_blocks); |
| uint16_t type; |
| |
| trace_virtio_mem_unplug_request(gpa, nb_blocks); |
| type = virtio_mem_state_change_request(vmem, gpa, nb_blocks, false); |
| virtio_mem_send_response_simple(vmem, elem, type); |
| } |
| |
| static void virtio_mem_resize_usable_region(VirtIOMEM *vmem, |
| uint64_t requested_size, |
| bool can_shrink) |
| { |
| uint64_t newsize = MIN(memory_region_size(&vmem->memdev->mr), |
| requested_size + VIRTIO_MEM_USABLE_EXTENT); |
| |
| /* The usable region size always has to be multiples of the block size. */ |
| newsize = QEMU_ALIGN_UP(newsize, vmem->block_size); |
| |
| if (!requested_size) { |
| newsize = 0; |
| } |
| |
| if (newsize < vmem->usable_region_size && !can_shrink) { |
| return; |
| } |
| |
| trace_virtio_mem_resized_usable_region(vmem->usable_region_size, newsize); |
| vmem->usable_region_size = newsize; |
| } |
| |
| static int virtio_mem_unplug_all(VirtIOMEM *vmem) |
| { |
| const uint64_t region_size = memory_region_size(&vmem->memdev->mr); |
| RAMBlock *rb = vmem->memdev->mr.ram_block; |
| |
| if (vmem->size) { |
| if (virtio_mem_is_busy()) { |
| return -EBUSY; |
| } |
| if (ram_block_discard_range(rb, 0, qemu_ram_get_used_length(rb))) { |
| return -EBUSY; |
| } |
| virtio_mem_notify_unplug_all(vmem); |
| |
| bitmap_clear(vmem->bitmap, 0, vmem->bitmap_size); |
| vmem->size = 0; |
| notifier_list_notify(&vmem->size_change_notifiers, &vmem->size); |
| |
| /* Deactivate all memslots after updating the state. */ |
| virtio_mem_deactivate_unplugged_memslots(vmem, 0, region_size); |
| } |
| |
| trace_virtio_mem_unplugged_all(); |
| virtio_mem_resize_usable_region(vmem, vmem->requested_size, true); |
| return 0; |
| } |
| |
| static void virtio_mem_unplug_all_request(VirtIOMEM *vmem, |
| VirtQueueElement *elem) |
| { |
| trace_virtio_mem_unplug_all_request(); |
| if (virtio_mem_unplug_all(vmem)) { |
| virtio_mem_send_response_simple(vmem, elem, VIRTIO_MEM_RESP_BUSY); |
| } else { |
| virtio_mem_send_response_simple(vmem, elem, VIRTIO_MEM_RESP_ACK); |
| } |
| } |
| |
| static void virtio_mem_state_request(VirtIOMEM *vmem, VirtQueueElement *elem, |
| struct virtio_mem_req *req) |
| { |
| const uint16_t nb_blocks = le16_to_cpu(req->u.state.nb_blocks); |
| const uint64_t gpa = le64_to_cpu(req->u.state.addr); |
| const uint64_t size = nb_blocks * vmem->block_size; |
| struct virtio_mem_resp resp = { |
| .type = cpu_to_le16(VIRTIO_MEM_RESP_ACK), |
| }; |
| |
| trace_virtio_mem_state_request(gpa, nb_blocks); |
| if (!virtio_mem_valid_range(vmem, gpa, size)) { |
| virtio_mem_send_response_simple(vmem, elem, VIRTIO_MEM_RESP_ERROR); |
| return; |
| } |
| |
| if (virtio_mem_is_range_plugged(vmem, gpa, size)) { |
| resp.u.state.state = cpu_to_le16(VIRTIO_MEM_STATE_PLUGGED); |
| } else if (virtio_mem_is_range_unplugged(vmem, gpa, size)) { |
| resp.u.state.state = cpu_to_le16(VIRTIO_MEM_STATE_UNPLUGGED); |
| } else { |
| resp.u.state.state = cpu_to_le16(VIRTIO_MEM_STATE_MIXED); |
| } |
| trace_virtio_mem_state_response(le16_to_cpu(resp.u.state.state)); |
| virtio_mem_send_response(vmem, elem, &resp); |
| } |
| |
| static void virtio_mem_handle_request(VirtIODevice *vdev, VirtQueue *vq) |
| { |
| const int len = sizeof(struct virtio_mem_req); |
| VirtIOMEM *vmem = VIRTIO_MEM(vdev); |
| VirtQueueElement *elem; |
| struct virtio_mem_req req; |
| uint16_t type; |
| |
| while (true) { |
| elem = virtqueue_pop(vq, sizeof(VirtQueueElement)); |
| if (!elem) { |
| return; |
| } |
| |
| if (iov_to_buf(elem->out_sg, elem->out_num, 0, &req, len) < len) { |
| virtio_error(vdev, "virtio-mem protocol violation: invalid request" |
| " size: %d", len); |
| virtqueue_detach_element(vq, elem, 0); |
| g_free(elem); |
| return; |
| } |
| |
| if (iov_size(elem->in_sg, elem->in_num) < |
| sizeof(struct virtio_mem_resp)) { |
| virtio_error(vdev, "virtio-mem protocol violation: not enough space" |
| " for response: %zu", |
| iov_size(elem->in_sg, elem->in_num)); |
| virtqueue_detach_element(vq, elem, 0); |
| g_free(elem); |
| return; |
| } |
| |
| type = le16_to_cpu(req.type); |
| switch (type) { |
| case VIRTIO_MEM_REQ_PLUG: |
| virtio_mem_plug_request(vmem, elem, &req); |
| break; |
| case VIRTIO_MEM_REQ_UNPLUG: |
| virtio_mem_unplug_request(vmem, elem, &req); |
| break; |
| case VIRTIO_MEM_REQ_UNPLUG_ALL: |
| virtio_mem_unplug_all_request(vmem, elem); |
| break; |
| case VIRTIO_MEM_REQ_STATE: |
| virtio_mem_state_request(vmem, elem, &req); |
| break; |
| default: |
| virtio_error(vdev, "virtio-mem protocol violation: unknown request" |
| " type: %d", type); |
| virtqueue_detach_element(vq, elem, 0); |
| g_free(elem); |
| return; |
| } |
| |
| g_free(elem); |
| } |
| } |
| |
| static void virtio_mem_get_config(VirtIODevice *vdev, uint8_t *config_data) |
| { |
| VirtIOMEM *vmem = VIRTIO_MEM(vdev); |
| struct virtio_mem_config *config = (void *) config_data; |
| |
| config->block_size = cpu_to_le64(vmem->block_size); |
| config->node_id = cpu_to_le16(vmem->node); |
| config->requested_size = cpu_to_le64(vmem->requested_size); |
| config->plugged_size = cpu_to_le64(vmem->size); |
| config->addr = cpu_to_le64(vmem->addr); |
| config->region_size = cpu_to_le64(memory_region_size(&vmem->memdev->mr)); |
| config->usable_region_size = cpu_to_le64(vmem->usable_region_size); |
| } |
| |
| static uint64_t virtio_mem_get_features(VirtIODevice *vdev, uint64_t features, |
| Error **errp) |
| { |
| MachineState *ms = MACHINE(qdev_get_machine()); |
| VirtIOMEM *vmem = VIRTIO_MEM(vdev); |
| |
| if (ms->numa_state) { |
| #if defined(CONFIG_ACPI) |
| virtio_add_feature(&features, VIRTIO_MEM_F_ACPI_PXM); |
| #endif |
| } |
| assert(vmem->unplugged_inaccessible != ON_OFF_AUTO_AUTO); |
| if (vmem->unplugged_inaccessible == ON_OFF_AUTO_ON) { |
| virtio_add_feature(&features, VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE); |
| } |
| return features; |
| } |
| |
| static int virtio_mem_validate_features(VirtIODevice *vdev) |
| { |
| if (virtio_host_has_feature(vdev, VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE) && |
| !virtio_vdev_has_feature(vdev, VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE)) { |
| return -EFAULT; |
| } |
| return 0; |
| } |
| |
| static void virtio_mem_system_reset(void *opaque) |
| { |
| VirtIOMEM *vmem = VIRTIO_MEM(opaque); |
| |
| /* |
| * During usual resets, we will unplug all memory and shrink the usable |
| * region size. This is, however, not possible in all scenarios. Then, |
| * the guest has to deal with this manually (VIRTIO_MEM_REQ_UNPLUG_ALL). |
| */ |
| virtio_mem_unplug_all(vmem); |
| } |
| |
| static void virtio_mem_prepare_mr(VirtIOMEM *vmem) |
| { |
| const uint64_t region_size = memory_region_size(&vmem->memdev->mr); |
| |
| assert(!vmem->mr && vmem->dynamic_memslots); |
| vmem->mr = g_new0(MemoryRegion, 1); |
| memory_region_init(vmem->mr, OBJECT(vmem), "virtio-mem", |
| region_size); |
| vmem->mr->align = memory_region_get_alignment(&vmem->memdev->mr); |
| } |
| |
| static void virtio_mem_prepare_memslots(VirtIOMEM *vmem) |
| { |
| const uint64_t region_size = memory_region_size(&vmem->memdev->mr); |
| unsigned int idx; |
| |
| g_assert(!vmem->memslots && vmem->nb_memslots && vmem->dynamic_memslots); |
| vmem->memslots = g_new0(MemoryRegion, vmem->nb_memslots); |
| |
| /* Initialize our memslots, but don't map them yet. */ |
| for (idx = 0; idx < vmem->nb_memslots; idx++) { |
| const uint64_t memslot_offset = idx * vmem->memslot_size; |
| uint64_t memslot_size = vmem->memslot_size; |
| char name[20]; |
| |
| /* The size of the last memslot might be smaller. */ |
| if (idx == vmem->nb_memslots - 1) { |
| memslot_size = region_size - memslot_offset; |
| } |
| |
| snprintf(name, sizeof(name), "memslot-%u", idx); |
| memory_region_init_alias(&vmem->memslots[idx], OBJECT(vmem), name, |
| &vmem->memdev->mr, memslot_offset, |
| memslot_size); |
| /* |
| * We want to be able to atomically and efficiently activate/deactivate |
| * individual memslots without affecting adjacent memslots in memory |
| * notifiers. |
| */ |
| memory_region_set_unmergeable(&vmem->memslots[idx], true); |
| } |
| } |
| |
| static void virtio_mem_device_realize(DeviceState *dev, Error **errp) |
| { |
| MachineState *ms = MACHINE(qdev_get_machine()); |
| int nb_numa_nodes = ms->numa_state ? ms->numa_state->num_nodes : 0; |
| VirtIODevice *vdev = VIRTIO_DEVICE(dev); |
| VirtIOMEM *vmem = VIRTIO_MEM(dev); |
| uint64_t page_size; |
| RAMBlock *rb; |
| int ret; |
| |
| if (!vmem->memdev) { |
| error_setg(errp, "'%s' property is not set", VIRTIO_MEM_MEMDEV_PROP); |
| return; |
| } else if (host_memory_backend_is_mapped(vmem->memdev)) { |
| error_setg(errp, "'%s' property specifies a busy memdev: %s", |
| VIRTIO_MEM_MEMDEV_PROP, |
| object_get_canonical_path_component(OBJECT(vmem->memdev))); |
| return; |
| } else if (!memory_region_is_ram(&vmem->memdev->mr) || |
| memory_region_is_rom(&vmem->memdev->mr) || |
| !vmem->memdev->mr.ram_block) { |
| error_setg(errp, "'%s' property specifies an unsupported memdev", |
| VIRTIO_MEM_MEMDEV_PROP); |
| return; |
| } else if (vmem->memdev->prealloc) { |
| error_setg(errp, "'%s' property specifies a memdev with preallocation" |
| " enabled: %s. Instead, specify 'prealloc=on' for the" |
| " virtio-mem device. ", VIRTIO_MEM_MEMDEV_PROP, |
| object_get_canonical_path_component(OBJECT(vmem->memdev))); |
| return; |
| } |
| |
| if ((nb_numa_nodes && vmem->node >= nb_numa_nodes) || |
| (!nb_numa_nodes && vmem->node)) { |
| error_setg(errp, "'%s' property has value '%" PRIu32 "', which exceeds" |
| "the number of numa nodes: %d", VIRTIO_MEM_NODE_PROP, |
| vmem->node, nb_numa_nodes ? nb_numa_nodes : 1); |
| return; |
| } |
| |
| if (enable_mlock) { |
| error_setg(errp, "Incompatible with mlock"); |
| return; |
| } |
| |
| rb = vmem->memdev->mr.ram_block; |
| page_size = qemu_ram_pagesize(rb); |
| |
| #if defined(VIRTIO_MEM_HAS_LEGACY_GUESTS) |
| switch (vmem->unplugged_inaccessible) { |
| case ON_OFF_AUTO_AUTO: |
| if (virtio_mem_has_shared_zeropage(rb)) { |
| vmem->unplugged_inaccessible = ON_OFF_AUTO_OFF; |
| } else { |
| vmem->unplugged_inaccessible = ON_OFF_AUTO_ON; |
| } |
| break; |
| case ON_OFF_AUTO_OFF: |
| if (!virtio_mem_has_shared_zeropage(rb)) { |
| warn_report("'%s' property set to 'off' with a memdev that does" |
| " not support the shared zeropage.", |
| VIRTIO_MEM_UNPLUGGED_INACCESSIBLE_PROP); |
| } |
| break; |
| default: |
| break; |
| } |
| #else /* VIRTIO_MEM_HAS_LEGACY_GUESTS */ |
| vmem->unplugged_inaccessible = ON_OFF_AUTO_ON; |
| #endif /* VIRTIO_MEM_HAS_LEGACY_GUESTS */ |
| |
| if (vmem->dynamic_memslots && |
| vmem->unplugged_inaccessible != ON_OFF_AUTO_ON) { |
| error_setg(errp, "'%s' property set to 'on' requires '%s' to be 'on'", |
| VIRTIO_MEM_DYNAMIC_MEMSLOTS_PROP, |
| VIRTIO_MEM_UNPLUGGED_INACCESSIBLE_PROP); |
| return; |
| } |
| |
| /* |
| * If the block size wasn't configured by the user, use a sane default. This |
| * allows using hugetlbfs backends of any page size without manual |
| * intervention. |
| */ |
| if (!vmem->block_size) { |
| vmem->block_size = virtio_mem_default_block_size(rb); |
| } |
| |
| if (vmem->block_size < page_size) { |
| error_setg(errp, "'%s' property has to be at least the page size (0x%" |
| PRIx64 ")", VIRTIO_MEM_BLOCK_SIZE_PROP, page_size); |
| return; |
| } else if (vmem->block_size < virtio_mem_default_block_size(rb)) { |
| warn_report("'%s' property is smaller than the default block size (%" |
| PRIx64 " MiB)", VIRTIO_MEM_BLOCK_SIZE_PROP, |
| virtio_mem_default_block_size(rb) / MiB); |
| } |
| if (!QEMU_IS_ALIGNED(vmem->requested_size, vmem->block_size)) { |
| error_setg(errp, "'%s' property has to be multiples of '%s' (0x%" PRIx64 |
| ")", VIRTIO_MEM_REQUESTED_SIZE_PROP, |
| VIRTIO_MEM_BLOCK_SIZE_PROP, vmem->block_size); |
| return; |
| } else if (!QEMU_IS_ALIGNED(vmem->addr, vmem->block_size)) { |
| error_setg(errp, "'%s' property has to be multiples of '%s' (0x%" PRIx64 |
| ")", VIRTIO_MEM_ADDR_PROP, VIRTIO_MEM_BLOCK_SIZE_PROP, |
| vmem->block_size); |
| return; |
| } else if (!QEMU_IS_ALIGNED(memory_region_size(&vmem->memdev->mr), |
| vmem->block_size)) { |
| error_setg(errp, "'%s' property memdev size has to be multiples of" |
| "'%s' (0x%" PRIx64 ")", VIRTIO_MEM_MEMDEV_PROP, |
| VIRTIO_MEM_BLOCK_SIZE_PROP, vmem->block_size); |
| return; |
| } |
| |
| if (ram_block_coordinated_discard_require(true)) { |
| error_setg(errp, "Discarding RAM is disabled"); |
| return; |
| } |
| |
| /* |
| * We don't know at this point whether shared RAM is migrated using |
| * QEMU or migrated using the file content. "x-ignore-shared" will be |
| * configured after realizing the device. So in case we have an |
| * incoming migration, simply always skip the discard step. |
| * |
| * Otherwise, make sure that we start with a clean slate: either the |
| * memory backend might get reused or the shared file might still have |
| * memory allocated. |
| */ |
| if (!runstate_check(RUN_STATE_INMIGRATE)) { |
| ret = ram_block_discard_range(rb, 0, qemu_ram_get_used_length(rb)); |
| if (ret) { |
| error_setg_errno(errp, -ret, "Unexpected error discarding RAM"); |
| ram_block_coordinated_discard_require(false); |
| return; |
| } |
| } |
| |
| virtio_mem_resize_usable_region(vmem, vmem->requested_size, true); |
| |
| vmem->bitmap_size = memory_region_size(&vmem->memdev->mr) / |
| vmem->block_size; |
| vmem->bitmap = bitmap_new(vmem->bitmap_size); |
| |
| virtio_init(vdev, VIRTIO_ID_MEM, sizeof(struct virtio_mem_config)); |
| vmem->vq = virtio_add_queue(vdev, 128, virtio_mem_handle_request); |
| |
| /* |
| * With "dynamic-memslots=off" (old behavior) we always map the whole |
| * RAM memory region directly. |
| */ |
| if (vmem->dynamic_memslots) { |
| if (!vmem->mr) { |
| virtio_mem_prepare_mr(vmem); |
| } |
| if (vmem->nb_memslots <= 1) { |
| vmem->nb_memslots = 1; |
| vmem->memslot_size = memory_region_size(&vmem->memdev->mr); |
| } |
| if (!vmem->memslots) { |
| virtio_mem_prepare_memslots(vmem); |
| } |
| } else { |
| assert(!vmem->mr && !vmem->nb_memslots && !vmem->memslots); |
| } |
| |
| host_memory_backend_set_mapped(vmem->memdev, true); |
| vmstate_register_ram(&vmem->memdev->mr, DEVICE(vmem)); |
| if (vmem->early_migration) { |
| vmstate_register_any(VMSTATE_IF(vmem), |
| &vmstate_virtio_mem_device_early, vmem); |
| } |
| qemu_register_reset(virtio_mem_system_reset, vmem); |
| |
| /* |
| * Set ourselves as RamDiscardManager before the plug handler maps the |
| * memory region and exposes it via an address space. |
| */ |
| memory_region_set_ram_discard_manager(&vmem->memdev->mr, |
| RAM_DISCARD_MANAGER(vmem)); |
| } |
| |
| static void virtio_mem_device_unrealize(DeviceState *dev) |
| { |
| VirtIODevice *vdev = VIRTIO_DEVICE(dev); |
| VirtIOMEM *vmem = VIRTIO_MEM(dev); |
| |
| /* |
| * The unplug handler unmapped the memory region, it cannot be |
| * found via an address space anymore. Unset ourselves. |
| */ |
| memory_region_set_ram_discard_manager(&vmem->memdev->mr, NULL); |
| qemu_unregister_reset(virtio_mem_system_reset, vmem); |
| if (vmem->early_migration) { |
| vmstate_unregister(VMSTATE_IF(vmem), &vmstate_virtio_mem_device_early, |
| vmem); |
| } |
| vmstate_unregister_ram(&vmem->memdev->mr, DEVICE(vmem)); |
| host_memory_backend_set_mapped(vmem->memdev, false); |
| virtio_del_queue(vdev, 0); |
| virtio_cleanup(vdev); |
| g_free(vmem->bitmap); |
| ram_block_coordinated_discard_require(false); |
| } |
| |
| static int virtio_mem_discard_range_cb(VirtIOMEM *vmem, void *arg, |
| uint64_t offset, uint64_t size) |
| { |
| RAMBlock *rb = vmem->memdev->mr.ram_block; |
| |
| return ram_block_discard_range(rb, offset, size) ? -EINVAL : 0; |
| } |
| |
| static int virtio_mem_restore_unplugged(VirtIOMEM *vmem) |
| { |
| /* Make sure all memory is really discarded after migration. */ |
| return virtio_mem_for_each_unplugged_range(vmem, NULL, |
| virtio_mem_discard_range_cb); |
| } |
| |
| static int virtio_mem_activate_memslot_range_cb(VirtIOMEM *vmem, void *arg, |
| uint64_t offset, uint64_t size) |
| { |
| virtio_mem_activate_memslots_to_plug(vmem, offset, size); |
| return 0; |
| } |
| |
| static int virtio_mem_post_load_bitmap(VirtIOMEM *vmem) |
| { |
| RamDiscardListener *rdl; |
| int ret; |
| |
| /* |
| * We restored the bitmap and updated the requested size; activate all |
| * memslots (so listeners register) before notifying about plugged blocks. |
| */ |
| if (vmem->dynamic_memslots) { |
| /* |
| * We don't expect any active memslots at this point to deactivate: no |
| * memory was plugged on the migration destination. |
| */ |
| virtio_mem_for_each_plugged_range(vmem, NULL, |
| virtio_mem_activate_memslot_range_cb); |
| } |
| |
| /* |
| * We started out with all memory discarded and our memory region is mapped |
| * into an address space. Replay, now that we updated the bitmap. |
| */ |
| QLIST_FOREACH(rdl, &vmem->rdl_list, next) { |
| ret = virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl, |
| virtio_mem_notify_populate_cb); |
| if (ret) { |
| return ret; |
| } |
| } |
| return 0; |
| } |
| |
| static int virtio_mem_post_load(void *opaque, int version_id) |
| { |
| VirtIOMEM *vmem = VIRTIO_MEM(opaque); |
| int ret; |
| |
| if (!vmem->early_migration) { |
| ret = virtio_mem_post_load_bitmap(vmem); |
| if (ret) { |
| return ret; |
| } |
| } |
| |
| /* |
| * If shared RAM is migrated using the file content and not using QEMU, |
| * don't mess with preallocation and postcopy. |
| */ |
| if (migrate_ram_is_ignored(vmem->memdev->mr.ram_block)) { |
| return 0; |
| } |
| |
| if (vmem->prealloc && !vmem->early_migration) { |
| warn_report("Proper preallocation with migration requires a newer QEMU machine"); |
| } |
| |
| if (migration_in_incoming_postcopy()) { |
| return 0; |
| } |
| |
| return virtio_mem_restore_unplugged(vmem); |
| } |
| |
| static int virtio_mem_prealloc_range_cb(VirtIOMEM *vmem, void *arg, |
| uint64_t offset, uint64_t size) |
| { |
| void *area = memory_region_get_ram_ptr(&vmem->memdev->mr) + offset; |
| int fd = memory_region_get_fd(&vmem->memdev->mr); |
| Error *local_err = NULL; |
| |
| qemu_prealloc_mem(fd, area, size, 1, NULL, &local_err); |
| if (local_err) { |
| error_report_err(local_err); |
| return -ENOMEM; |
| } |
| return 0; |
| } |
| |
| static int virtio_mem_post_load_early(void *opaque, int version_id) |
| { |
| VirtIOMEM *vmem = VIRTIO_MEM(opaque); |
| RAMBlock *rb = vmem->memdev->mr.ram_block; |
| int ret; |
| |
| if (!vmem->prealloc) { |
| goto post_load_bitmap; |
| } |
| |
| /* |
| * If shared RAM is migrated using the file content and not using QEMU, |
| * don't mess with preallocation and postcopy. |
| */ |
| if (migrate_ram_is_ignored(rb)) { |
| goto post_load_bitmap; |
| } |
| |
| /* |
| * We restored the bitmap and verified that the basic properties |
| * match on source and destination, so we can go ahead and preallocate |
| * memory for all plugged memory blocks, before actual RAM migration starts |
| * touching this memory. |
| */ |
| ret = virtio_mem_for_each_plugged_range(vmem, NULL, |
| virtio_mem_prealloc_range_cb); |
| if (ret) { |
| return ret; |
| } |
| |
| /* |
| * This is tricky: postcopy wants to start with a clean slate. On |
| * POSTCOPY_INCOMING_ADVISE, postcopy code discards all (ordinarily |
| * preallocated) RAM such that postcopy will work as expected later. |
| * |
| * However, we run after POSTCOPY_INCOMING_ADVISE -- but before actual |
| * RAM migration. So let's discard all memory again. This looks like an |
| * expensive NOP, but actually serves a purpose: we made sure that we |
| * were able to allocate all required backend memory once. We cannot |
| * guarantee that the backend memory we will free will remain free |
| * until we need it during postcopy, but at least we can catch the |
| * obvious setup issues this way. |
| */ |
| if (migration_incoming_postcopy_advised()) { |
| if (ram_block_discard_range(rb, 0, qemu_ram_get_used_length(rb))) { |
| return -EBUSY; |
| } |
| } |
| |
| post_load_bitmap: |
| /* Finally, update any other state to be consistent with the new bitmap. */ |
| return virtio_mem_post_load_bitmap(vmem); |
| } |
| |
| typedef struct VirtIOMEMMigSanityChecks { |
| VirtIOMEM *parent; |
| uint64_t addr; |
| uint64_t region_size; |
| uint64_t block_size; |
| uint32_t node; |
| } VirtIOMEMMigSanityChecks; |
| |
| static int virtio_mem_mig_sanity_checks_pre_save(void *opaque) |
| { |
| VirtIOMEMMigSanityChecks *tmp = opaque; |
| VirtIOMEM *vmem = tmp->parent; |
| |
| tmp->addr = vmem->addr; |
| tmp->region_size = memory_region_size(&vmem->memdev->mr); |
| tmp->block_size = vmem->block_size; |
| tmp->node = vmem->node; |
| return 0; |
| } |
| |
| static int virtio_mem_mig_sanity_checks_post_load(void *opaque, int version_id) |
| { |
| VirtIOMEMMigSanityChecks *tmp = opaque; |
| VirtIOMEM *vmem = tmp->parent; |
| const uint64_t new_region_size = memory_region_size(&vmem->memdev->mr); |
| |
| if (tmp->addr != vmem->addr) { |
| error_report("Property '%s' changed from 0x%" PRIx64 " to 0x%" PRIx64, |
| VIRTIO_MEM_ADDR_PROP, tmp->addr, vmem->addr); |
| return -EINVAL; |
| } |
| /* |
| * Note: Preparation for resizable memory regions. The maximum size |
| * of the memory region must not change during migration. |
| */ |
| if (tmp->region_size != new_region_size) { |
| error_report("Property '%s' size changed from 0x%" PRIx64 " to 0x%" |
| PRIx64, VIRTIO_MEM_MEMDEV_PROP, tmp->region_size, |
| new_region_size); |
| return -EINVAL; |
| } |
| if (tmp->block_size != vmem->block_size) { |
| error_report("Property '%s' changed from 0x%" PRIx64 " to 0x%" PRIx64, |
| VIRTIO_MEM_BLOCK_SIZE_PROP, tmp->block_size, |
| vmem->block_size); |
| return -EINVAL; |
| } |
| if (tmp->node != vmem->node) { |
| error_report("Property '%s' changed from %" PRIu32 " to %" PRIu32, |
| VIRTIO_MEM_NODE_PROP, tmp->node, vmem->node); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static const VMStateDescription vmstate_virtio_mem_sanity_checks = { |
| .name = "virtio-mem-device/sanity-checks", |
| .pre_save = virtio_mem_mig_sanity_checks_pre_save, |
| .post_load = virtio_mem_mig_sanity_checks_post_load, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT64(addr, VirtIOMEMMigSanityChecks), |
| VMSTATE_UINT64(region_size, VirtIOMEMMigSanityChecks), |
| VMSTATE_UINT64(block_size, VirtIOMEMMigSanityChecks), |
| VMSTATE_UINT32(node, VirtIOMEMMigSanityChecks), |
| VMSTATE_END_OF_LIST(), |
| }, |
| }; |
| |
| static bool virtio_mem_vmstate_field_exists(void *opaque, int version_id) |
| { |
| const VirtIOMEM *vmem = VIRTIO_MEM(opaque); |
| |
| /* With early migration, these fields were already migrated. */ |
| return !vmem->early_migration; |
| } |
| |
| static const VMStateDescription vmstate_virtio_mem_device = { |
| .name = "virtio-mem-device", |
| .minimum_version_id = 1, |
| .version_id = 1, |
| .priority = MIG_PRI_VIRTIO_MEM, |
| .post_load = virtio_mem_post_load, |
| .fields = (VMStateField[]) { |
| VMSTATE_WITH_TMP_TEST(VirtIOMEM, virtio_mem_vmstate_field_exists, |
| VirtIOMEMMigSanityChecks, |
| vmstate_virtio_mem_sanity_checks), |
| VMSTATE_UINT64(usable_region_size, VirtIOMEM), |
| VMSTATE_UINT64_TEST(size, VirtIOMEM, virtio_mem_vmstate_field_exists), |
| VMSTATE_UINT64(requested_size, VirtIOMEM), |
| VMSTATE_BITMAP_TEST(bitmap, VirtIOMEM, virtio_mem_vmstate_field_exists, |
| 0, bitmap_size), |
| VMSTATE_END_OF_LIST() |
| }, |
| }; |
| |
| /* |
| * Transfer properties that are immutable while migration is active early, |
| * such that we have have this information around before migrating any RAM |
| * content. |
| * |
| * Note that virtio_mem_is_busy() makes sure these properties can no longer |
| * change on the migration source until migration completed. |
| * |
| * With QEMU compat machines, we transmit these properties later, via |
| * vmstate_virtio_mem_device instead -- see virtio_mem_vmstate_field_exists(). |
| */ |
| static const VMStateDescription vmstate_virtio_mem_device_early = { |
| .name = "virtio-mem-device-early", |
| .minimum_version_id = 1, |
| .version_id = 1, |
| .early_setup = true, |
| .post_load = virtio_mem_post_load_early, |
| .fields = (VMStateField[]) { |
| VMSTATE_WITH_TMP(VirtIOMEM, VirtIOMEMMigSanityChecks, |
| vmstate_virtio_mem_sanity_checks), |
| VMSTATE_UINT64(size, VirtIOMEM), |
| VMSTATE_BITMAP(bitmap, VirtIOMEM, 0, bitmap_size), |
| VMSTATE_END_OF_LIST() |
| }, |
| }; |
| |
| static const VMStateDescription vmstate_virtio_mem = { |
| .name = "virtio-mem", |
| .minimum_version_id = 1, |
| .version_id = 1, |
| .fields = (VMStateField[]) { |
| VMSTATE_VIRTIO_DEVICE, |
| VMSTATE_END_OF_LIST() |
| }, |
| }; |
| |
| static void virtio_mem_fill_device_info(const VirtIOMEM *vmem, |
| VirtioMEMDeviceInfo *vi) |
| { |
| vi->memaddr = vmem->addr; |
| vi->node = vmem->node; |
| vi->requested_size = vmem->requested_size; |
| vi->size = vmem->size; |
| vi->max_size = memory_region_size(&vmem->memdev->mr); |
| vi->block_size = vmem->block_size; |
| vi->memdev = object_get_canonical_path(OBJECT(vmem->memdev)); |
| } |
| |
| static MemoryRegion *virtio_mem_get_memory_region(VirtIOMEM *vmem, Error **errp) |
| { |
| if (!vmem->memdev) { |
| error_setg(errp, "'%s' property must be set", VIRTIO_MEM_MEMDEV_PROP); |
| return NULL; |
| } else if (vmem->dynamic_memslots) { |
| if (!vmem->mr) { |
| virtio_mem_prepare_mr(vmem); |
| } |
| return vmem->mr; |
| } |
| |
| return &vmem->memdev->mr; |
| } |
| |
| static void virtio_mem_decide_memslots(VirtIOMEM *vmem, unsigned int limit) |
| { |
| uint64_t region_size, memslot_size, min_memslot_size; |
| unsigned int memslots; |
| RAMBlock *rb; |
| |
| if (!vmem->dynamic_memslots) { |
| return; |
| } |
| |
| /* We're called exactly once, before realizing the device. */ |
| assert(!vmem->nb_memslots); |
| |
| /* If realizing the device will fail, just assume a single memslot. */ |
| if (limit <= 1 || !vmem->memdev || !vmem->memdev->mr.ram_block) { |
| vmem->nb_memslots = 1; |
| return; |
| } |
| |
| rb = vmem->memdev->mr.ram_block; |
| region_size = memory_region_size(&vmem->memdev->mr); |
| |
| /* |
| * Determine the default block size now, to determine the minimum memslot |
| * size. We want the minimum slot size to be at least the device block size. |
| */ |
| if (!vmem->block_size) { |
| vmem->block_size = virtio_mem_default_block_size(rb); |
| } |
| /* If realizing the device will fail, just assume a single memslot. */ |
| if (vmem->block_size < qemu_ram_pagesize(rb) || |
| !QEMU_IS_ALIGNED(region_size, vmem->block_size)) { |
| vmem->nb_memslots = 1; |
| return; |
| } |
| |
| /* |
| * All memslots except the last one have a reasonable minimum size, and |
| * and all memslot sizes are aligned to the device block size. |
| */ |
| memslot_size = QEMU_ALIGN_UP(region_size / limit, vmem->block_size); |
| min_memslot_size = MAX(vmem->block_size, VIRTIO_MEM_MIN_MEMSLOT_SIZE); |
| memslot_size = MAX(memslot_size, min_memslot_size); |
| |
| memslots = QEMU_ALIGN_UP(region_size, memslot_size) / memslot_size; |
| if (memslots != 1) { |
| vmem->memslot_size = memslot_size; |
| } |
| vmem->nb_memslots = memslots; |
| } |
| |
| static unsigned int virtio_mem_get_memslots(VirtIOMEM *vmem) |
| { |
| if (!vmem->dynamic_memslots) { |
| /* Exactly one static RAM memory region. */ |
| return 1; |
| } |
| |
| /* We're called after instructed to make a decision. */ |
| g_assert(vmem->nb_memslots); |
| return vmem->nb_memslots; |
| } |
| |
| static void virtio_mem_add_size_change_notifier(VirtIOMEM *vmem, |
| Notifier *notifier) |
| { |
| notifier_list_add(&vmem->size_change_notifiers, notifier); |
| } |
| |
| static void virtio_mem_remove_size_change_notifier(VirtIOMEM *vmem, |
| Notifier *notifier) |
| { |
| notifier_remove(notifier); |
| } |
| |
| static void virtio_mem_get_size(Object *obj, Visitor *v, const char *name, |
| void *opaque, Error **errp) |
| { |
| const VirtIOMEM *vmem = VIRTIO_MEM(obj); |
| uint64_t value = vmem->size; |
| |
| visit_type_size(v, name, &value, errp); |
| } |
| |
| static void virtio_mem_get_requested_size(Object *obj, Visitor *v, |
| const char *name, void *opaque, |
| Error **errp) |
| { |
| const VirtIOMEM *vmem = VIRTIO_MEM(obj); |
| uint64_t value = vmem->requested_size; |
| |
| visit_type_size(v, name, &value, errp); |
| } |
| |
| static void virtio_mem_set_requested_size(Object *obj, Visitor *v, |
| const char *name, void *opaque, |
| Error **errp) |
| { |
| VirtIOMEM *vmem = VIRTIO_MEM(obj); |
| uint64_t value; |
| |
| if (!visit_type_size(v, name, &value, errp)) { |
| return; |
| } |
| |
| /* |
| * The block size and memory backend are not fixed until the device was |
| * realized. realize() will verify these properties then. |
| */ |
| if (DEVICE(obj)->realized) { |
| if (!QEMU_IS_ALIGNED(value, vmem->block_size)) { |
| error_setg(errp, "'%s' has to be multiples of '%s' (0x%" PRIx64 |
| ")", name, VIRTIO_MEM_BLOCK_SIZE_PROP, |
| vmem->block_size); |
| return; |
| } else if (value > memory_region_size(&vmem->memdev->mr)) { |
| error_setg(errp, "'%s' cannot exceed the memory backend size" |
| "(0x%" PRIx64 ")", name, |
| memory_region_size(&vmem->memdev->mr)); |
| return; |
| } |
| |
| if (value != vmem->requested_size) { |
| virtio_mem_resize_usable_region(vmem, value, false); |
| vmem->requested_size = value; |
| } |
| /* |
| * Trigger a config update so the guest gets notified. We trigger |
| * even if the size didn't change (especially helpful for debugging). |
| */ |
| virtio_notify_config(VIRTIO_DEVICE(vmem)); |
| } else { |
| vmem->requested_size = value; |
| } |
| } |
| |
| static void virtio_mem_get_block_size(Object *obj, Visitor *v, const char *name, |
| void *opaque, Error **errp) |
| { |
| const VirtIOMEM *vmem = VIRTIO_MEM(obj); |
| uint64_t value = vmem->block_size; |
| |
| /* |
| * If not configured by the user (and we're not realized yet), use the |
| * default block size we would use with the current memory backend. |
| */ |
| if (!value) { |
| if (vmem->memdev && memory_region_is_ram(&vmem->memdev->mr)) { |
| value = virtio_mem_default_block_size(vmem->memdev->mr.ram_block); |
| } else { |
| value = virtio_mem_thp_size(); |
| } |
| } |
| |
| visit_type_size(v, name, &value, errp); |
| } |
| |
| static void virtio_mem_set_block_size(Object *obj, Visitor *v, const char *name, |
| void *opaque, Error **errp) |
| { |
| VirtIOMEM *vmem = VIRTIO_MEM(obj); |
| uint64_t value; |
| |
| if (DEVICE(obj)->realized) { |
| error_setg(errp, "'%s' cannot be changed", name); |
| return; |
| } |
| |
| if (!visit_type_size(v, name, &value, errp)) { |
| return; |
| } |
| |
| if (value < VIRTIO_MEM_MIN_BLOCK_SIZE) { |
| error_setg(errp, "'%s' property has to be at least 0x%" PRIx32, name, |
| VIRTIO_MEM_MIN_BLOCK_SIZE); |
| return; |
| } else if (!is_power_of_2(value)) { |
| error_setg(errp, "'%s' property has to be a power of two", name); |
| return; |
| } |
| vmem->block_size = value; |
| } |
| |
| static void virtio_mem_instance_init(Object *obj) |
| { |
| VirtIOMEM *vmem = VIRTIO_MEM(obj); |
| |
| notifier_list_init(&vmem->size_change_notifiers); |
| QLIST_INIT(&vmem->rdl_list); |
| |
| object_property_add(obj, VIRTIO_MEM_SIZE_PROP, "size", virtio_mem_get_size, |
| NULL, NULL, NULL); |
| object_property_add(obj, VIRTIO_MEM_REQUESTED_SIZE_PROP, "size", |
| virtio_mem_get_requested_size, |
| virtio_mem_set_requested_size, NULL, NULL); |
| object_property_add(obj, VIRTIO_MEM_BLOCK_SIZE_PROP, "size", |
| virtio_mem_get_block_size, virtio_mem_set_block_size, |
| NULL, NULL); |
| } |
| |
| static void virtio_mem_instance_finalize(Object *obj) |
| { |
| VirtIOMEM *vmem = VIRTIO_MEM(obj); |
| |
| /* |
| * Note: the core already dropped the references on all memory regions |
| * (it's passed as the owner to memory_region_init_*()) and finalized |
| * these objects. We can simply free the memory. |
| */ |
| g_free(vmem->memslots); |
| vmem->memslots = NULL; |
| g_free(vmem->mr); |
| vmem->mr = NULL; |
| } |
| |
| static Property virtio_mem_properties[] = { |
| DEFINE_PROP_UINT64(VIRTIO_MEM_ADDR_PROP, VirtIOMEM, addr, 0), |
| DEFINE_PROP_UINT32(VIRTIO_MEM_NODE_PROP, VirtIOMEM, node, 0), |
| DEFINE_PROP_BOOL(VIRTIO_MEM_PREALLOC_PROP, VirtIOMEM, prealloc, false), |
| DEFINE_PROP_LINK(VIRTIO_MEM_MEMDEV_PROP, VirtIOMEM, memdev, |
| TYPE_MEMORY_BACKEND, HostMemoryBackend *), |
| #if defined(VIRTIO_MEM_HAS_LEGACY_GUESTS) |
| DEFINE_PROP_ON_OFF_AUTO(VIRTIO_MEM_UNPLUGGED_INACCESSIBLE_PROP, VirtIOMEM, |
| unplugged_inaccessible, ON_OFF_AUTO_ON), |
| #endif |
| DEFINE_PROP_BOOL(VIRTIO_MEM_EARLY_MIGRATION_PROP, VirtIOMEM, |
| early_migration, true), |
| DEFINE_PROP_BOOL(VIRTIO_MEM_DYNAMIC_MEMSLOTS_PROP, VirtIOMEM, |
| dynamic_memslots, false), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static uint64_t virtio_mem_rdm_get_min_granularity(const RamDiscardManager *rdm, |
| const MemoryRegion *mr) |
| { |
| const VirtIOMEM *vmem = VIRTIO_MEM(rdm); |
| |
| g_assert(mr == &vmem->memdev->mr); |
| return vmem->block_size; |
| } |
| |
| static bool virtio_mem_rdm_is_populated(const RamDiscardManager *rdm, |
| const MemoryRegionSection *s) |
| { |
| const VirtIOMEM *vmem = VIRTIO_MEM(rdm); |
| uint64_t start_gpa = vmem->addr + s->offset_within_region; |
| uint64_t end_gpa = start_gpa + int128_get64(s->size); |
| |
| g_assert(s->mr == &vmem->memdev->mr); |
| |
| start_gpa = QEMU_ALIGN_DOWN(start_gpa, vmem->block_size); |
| end_gpa = QEMU_ALIGN_UP(end_gpa, vmem->block_size); |
| |
| if (!virtio_mem_valid_range(vmem, start_gpa, end_gpa - start_gpa)) { |
| return false; |
| } |
| |
| return virtio_mem_is_range_plugged(vmem, start_gpa, end_gpa - start_gpa); |
| } |
| |
| struct VirtIOMEMReplayData { |
| void *fn; |
| void *opaque; |
| }; |
| |
| static int virtio_mem_rdm_replay_populated_cb(MemoryRegionSection *s, void *arg) |
| { |
| struct VirtIOMEMReplayData *data = arg; |
| |
| return ((ReplayRamPopulate)data->fn)(s, data->opaque); |
| } |
| |
| static int virtio_mem_rdm_replay_populated(const RamDiscardManager *rdm, |
| MemoryRegionSection *s, |
| ReplayRamPopulate replay_fn, |
| void *opaque) |
| { |
| const VirtIOMEM *vmem = VIRTIO_MEM(rdm); |
| struct VirtIOMEMReplayData data = { |
| .fn = replay_fn, |
| .opaque = opaque, |
| }; |
| |
| g_assert(s->mr == &vmem->memdev->mr); |
| return virtio_mem_for_each_plugged_section(vmem, s, &data, |
| virtio_mem_rdm_replay_populated_cb); |
| } |
| |
| static int virtio_mem_rdm_replay_discarded_cb(MemoryRegionSection *s, |
| void *arg) |
| { |
| struct VirtIOMEMReplayData *data = arg; |
| |
| ((ReplayRamDiscard)data->fn)(s, data->opaque); |
| return 0; |
| } |
| |
| static void virtio_mem_rdm_replay_discarded(const RamDiscardManager *rdm, |
| MemoryRegionSection *s, |
| ReplayRamDiscard replay_fn, |
| void *opaque) |
| { |
| const VirtIOMEM *vmem = VIRTIO_MEM(rdm); |
| struct VirtIOMEMReplayData data = { |
| .fn = replay_fn, |
| .opaque = opaque, |
| }; |
| |
| g_assert(s->mr == &vmem->memdev->mr); |
| virtio_mem_for_each_unplugged_section(vmem, s, &data, |
| virtio_mem_rdm_replay_discarded_cb); |
| } |
| |
| static void virtio_mem_rdm_register_listener(RamDiscardManager *rdm, |
| RamDiscardListener *rdl, |
| MemoryRegionSection *s) |
| { |
| VirtIOMEM *vmem = VIRTIO_MEM(rdm); |
| int ret; |
| |
| g_assert(s->mr == &vmem->memdev->mr); |
| rdl->section = memory_region_section_new_copy(s); |
| |
| QLIST_INSERT_HEAD(&vmem->rdl_list, rdl, next); |
| ret = virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl, |
| virtio_mem_notify_populate_cb); |
| if (ret) { |
| error_report("%s: Replaying plugged ranges failed: %s", __func__, |
| strerror(-ret)); |
| } |
| } |
| |
| static void virtio_mem_rdm_unregister_listener(RamDiscardManager *rdm, |
| RamDiscardListener *rdl) |
| { |
| VirtIOMEM *vmem = VIRTIO_MEM(rdm); |
| |
| g_assert(rdl->section->mr == &vmem->memdev->mr); |
| if (vmem->size) { |
| if (rdl->double_discard_supported) { |
| rdl->notify_discard(rdl, rdl->section); |
| } else { |
| virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl, |
| virtio_mem_notify_discard_cb); |
| } |
| } |
| |
| memory_region_section_free_copy(rdl->section); |
| rdl->section = NULL; |
| QLIST_REMOVE(rdl, next); |
| } |
| |
| static void virtio_mem_unplug_request_check(VirtIOMEM *vmem, Error **errp) |
| { |
| if (vmem->unplugged_inaccessible == ON_OFF_AUTO_OFF) { |
| /* |
| * We could allow it with a usable region size of 0, but let's just |
| * not care about that legacy setting. |
| */ |
| error_setg(errp, "virtio-mem device cannot get unplugged while" |
| " '" VIRTIO_MEM_UNPLUGGED_INACCESSIBLE_PROP "' != 'on'"); |
| return; |
| } |
| |
| if (vmem->size) { |
| error_setg(errp, "virtio-mem device cannot get unplugged while" |
| " '" VIRTIO_MEM_SIZE_PROP "' != '0'"); |
| return; |
| } |
| if (vmem->requested_size) { |
| error_setg(errp, "virtio-mem device cannot get unplugged while" |
| " '" VIRTIO_MEM_REQUESTED_SIZE_PROP "' != '0'"); |
| return; |
| } |
| } |
| |
| static void virtio_mem_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| VirtioDeviceClass *vdc = VIRTIO_DEVICE_CLASS(klass); |
| VirtIOMEMClass *vmc = VIRTIO_MEM_CLASS(klass); |
| RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_CLASS(klass); |
| |
| device_class_set_props(dc, virtio_mem_properties); |
| dc->vmsd = &vmstate_virtio_mem; |
| |
| set_bit(DEVICE_CATEGORY_MISC, dc->categories); |
| vdc->realize = virtio_mem_device_realize; |
| vdc->unrealize = virtio_mem_device_unrealize; |
| vdc->get_config = virtio_mem_get_config; |
| vdc->get_features = virtio_mem_get_features; |
| vdc->validate_features = virtio_mem_validate_features; |
| vdc->vmsd = &vmstate_virtio_mem_device; |
| |
| vmc->fill_device_info = virtio_mem_fill_device_info; |
| vmc->get_memory_region = virtio_mem_get_memory_region; |
| vmc->decide_memslots = virtio_mem_decide_memslots; |
| vmc->get_memslots = virtio_mem_get_memslots; |
| vmc->add_size_change_notifier = virtio_mem_add_size_change_notifier; |
| vmc->remove_size_change_notifier = virtio_mem_remove_size_change_notifier; |
| vmc->unplug_request_check = virtio_mem_unplug_request_check; |
| |
| rdmc->get_min_granularity = virtio_mem_rdm_get_min_granularity; |
| rdmc->is_populated = virtio_mem_rdm_is_populated; |
| rdmc->replay_populated = virtio_mem_rdm_replay_populated; |
| rdmc->replay_discarded = virtio_mem_rdm_replay_discarded; |
| rdmc->register_listener = virtio_mem_rdm_register_listener; |
| rdmc->unregister_listener = virtio_mem_rdm_unregister_listener; |
| } |
| |
| static const TypeInfo virtio_mem_info = { |
| .name = TYPE_VIRTIO_MEM, |
| .parent = TYPE_VIRTIO_DEVICE, |
| .instance_size = sizeof(VirtIOMEM), |
| .instance_init = virtio_mem_instance_init, |
| .instance_finalize = virtio_mem_instance_finalize, |
| .class_init = virtio_mem_class_init, |
| .class_size = sizeof(VirtIOMEMClass), |
| .interfaces = (InterfaceInfo[]) { |
| { TYPE_RAM_DISCARD_MANAGER }, |
| { } |
| }, |
| }; |
| |
| static void virtio_register_types(void) |
| { |
| type_register_static(&virtio_mem_info); |
| } |
| |
| type_init(virtio_register_types) |