| /* |
| * PowerPC memory access emulation helpers for QEMU. |
| * |
| * Copyright (c) 2003-2007 Jocelyn Mayer |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "cpu.h" |
| #include "exec/exec-all.h" |
| #include "qemu/host-utils.h" |
| #include "qemu/main-loop.h" |
| #include "exec/helper-proto.h" |
| #include "helper_regs.h" |
| #include "exec/cpu_ldst.h" |
| #include "internal.h" |
| #include "qemu/atomic128.h" |
| |
| /* #define DEBUG_OP */ |
| |
| static inline bool needs_byteswap(const CPUPPCState *env) |
| { |
| #if TARGET_BIG_ENDIAN |
| return FIELD_EX64(env->msr, MSR, LE); |
| #else |
| return !FIELD_EX64(env->msr, MSR, LE); |
| #endif |
| } |
| |
| /*****************************************************************************/ |
| /* Memory load and stores */ |
| |
| static inline target_ulong addr_add(CPUPPCState *env, target_ulong addr, |
| target_long arg) |
| { |
| #if defined(TARGET_PPC64) |
| if (!msr_is_64bit(env, env->msr)) { |
| return (uint32_t)(addr + arg); |
| } else |
| #endif |
| { |
| return addr + arg; |
| } |
| } |
| |
| static void *probe_contiguous(CPUPPCState *env, target_ulong addr, uint32_t nb, |
| MMUAccessType access_type, int mmu_idx, |
| uintptr_t raddr) |
| { |
| void *host1, *host2; |
| uint32_t nb_pg1, nb_pg2; |
| |
| nb_pg1 = -(addr | TARGET_PAGE_MASK); |
| if (likely(nb <= nb_pg1)) { |
| /* The entire operation is on a single page. */ |
| return probe_access(env, addr, nb, access_type, mmu_idx, raddr); |
| } |
| |
| /* The operation spans two pages. */ |
| nb_pg2 = nb - nb_pg1; |
| host1 = probe_access(env, addr, nb_pg1, access_type, mmu_idx, raddr); |
| addr = addr_add(env, addr, nb_pg1); |
| host2 = probe_access(env, addr, nb_pg2, access_type, mmu_idx, raddr); |
| |
| /* If the two host pages are contiguous, optimize. */ |
| if (host2 == host1 + nb_pg1) { |
| return host1; |
| } |
| return NULL; |
| } |
| |
| void helper_lmw(CPUPPCState *env, target_ulong addr, uint32_t reg) |
| { |
| uintptr_t raddr = GETPC(); |
| int mmu_idx = cpu_mmu_index(env, false); |
| void *host = probe_contiguous(env, addr, (32 - reg) * 4, |
| MMU_DATA_LOAD, mmu_idx, raddr); |
| |
| if (likely(host)) { |
| /* Fast path -- the entire operation is in RAM at host. */ |
| for (; reg < 32; reg++) { |
| env->gpr[reg] = (uint32_t)ldl_be_p(host); |
| host += 4; |
| } |
| } else { |
| /* Slow path -- at least some of the operation requires i/o. */ |
| for (; reg < 32; reg++) { |
| env->gpr[reg] = cpu_ldl_mmuidx_ra(env, addr, mmu_idx, raddr); |
| addr = addr_add(env, addr, 4); |
| } |
| } |
| } |
| |
| void helper_stmw(CPUPPCState *env, target_ulong addr, uint32_t reg) |
| { |
| uintptr_t raddr = GETPC(); |
| int mmu_idx = cpu_mmu_index(env, false); |
| void *host = probe_contiguous(env, addr, (32 - reg) * 4, |
| MMU_DATA_STORE, mmu_idx, raddr); |
| |
| if (likely(host)) { |
| /* Fast path -- the entire operation is in RAM at host. */ |
| for (; reg < 32; reg++) { |
| stl_be_p(host, env->gpr[reg]); |
| host += 4; |
| } |
| } else { |
| /* Slow path -- at least some of the operation requires i/o. */ |
| for (; reg < 32; reg++) { |
| cpu_stl_mmuidx_ra(env, addr, env->gpr[reg], mmu_idx, raddr); |
| addr = addr_add(env, addr, 4); |
| } |
| } |
| } |
| |
| static void do_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb, |
| uint32_t reg, uintptr_t raddr) |
| { |
| int mmu_idx; |
| void *host; |
| uint32_t val; |
| |
| if (unlikely(nb == 0)) { |
| return; |
| } |
| |
| mmu_idx = cpu_mmu_index(env, false); |
| host = probe_contiguous(env, addr, nb, MMU_DATA_LOAD, mmu_idx, raddr); |
| |
| if (likely(host)) { |
| /* Fast path -- the entire operation is in RAM at host. */ |
| for (; nb > 3; nb -= 4) { |
| env->gpr[reg] = (uint32_t)ldl_be_p(host); |
| reg = (reg + 1) % 32; |
| host += 4; |
| } |
| switch (nb) { |
| default: |
| return; |
| case 1: |
| val = ldub_p(host) << 24; |
| break; |
| case 2: |
| val = lduw_be_p(host) << 16; |
| break; |
| case 3: |
| val = (lduw_be_p(host) << 16) | (ldub_p(host + 2) << 8); |
| break; |
| } |
| } else { |
| /* Slow path -- at least some of the operation requires i/o. */ |
| for (; nb > 3; nb -= 4) { |
| env->gpr[reg] = cpu_ldl_mmuidx_ra(env, addr, mmu_idx, raddr); |
| reg = (reg + 1) % 32; |
| addr = addr_add(env, addr, 4); |
| } |
| switch (nb) { |
| default: |
| return; |
| case 1: |
| val = cpu_ldub_mmuidx_ra(env, addr, mmu_idx, raddr) << 24; |
| break; |
| case 2: |
| val = cpu_lduw_mmuidx_ra(env, addr, mmu_idx, raddr) << 16; |
| break; |
| case 3: |
| val = cpu_lduw_mmuidx_ra(env, addr, mmu_idx, raddr) << 16; |
| addr = addr_add(env, addr, 2); |
| val |= cpu_ldub_mmuidx_ra(env, addr, mmu_idx, raddr) << 8; |
| break; |
| } |
| } |
| env->gpr[reg] = val; |
| } |
| |
| void helper_lsw(CPUPPCState *env, target_ulong addr, |
| uint32_t nb, uint32_t reg) |
| { |
| do_lsw(env, addr, nb, reg, GETPC()); |
| } |
| |
| /* |
| * PPC32 specification says we must generate an exception if rA is in |
| * the range of registers to be loaded. In an other hand, IBM says |
| * this is valid, but rA won't be loaded. For now, I'll follow the |
| * spec... |
| */ |
| void helper_lswx(CPUPPCState *env, target_ulong addr, uint32_t reg, |
| uint32_t ra, uint32_t rb) |
| { |
| if (likely(xer_bc != 0)) { |
| int num_used_regs = DIV_ROUND_UP(xer_bc, 4); |
| if (unlikely((ra != 0 && lsw_reg_in_range(reg, num_used_regs, ra)) || |
| lsw_reg_in_range(reg, num_used_regs, rb))) { |
| raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_INVAL | |
| POWERPC_EXCP_INVAL_LSWX, GETPC()); |
| } else { |
| do_lsw(env, addr, xer_bc, reg, GETPC()); |
| } |
| } |
| } |
| |
| void helper_stsw(CPUPPCState *env, target_ulong addr, uint32_t nb, |
| uint32_t reg) |
| { |
| uintptr_t raddr = GETPC(); |
| int mmu_idx; |
| void *host; |
| uint32_t val; |
| |
| if (unlikely(nb == 0)) { |
| return; |
| } |
| |
| mmu_idx = cpu_mmu_index(env, false); |
| host = probe_contiguous(env, addr, nb, MMU_DATA_STORE, mmu_idx, raddr); |
| |
| if (likely(host)) { |
| /* Fast path -- the entire operation is in RAM at host. */ |
| for (; nb > 3; nb -= 4) { |
| stl_be_p(host, env->gpr[reg]); |
| reg = (reg + 1) % 32; |
| host += 4; |
| } |
| val = env->gpr[reg]; |
| switch (nb) { |
| case 1: |
| stb_p(host, val >> 24); |
| break; |
| case 2: |
| stw_be_p(host, val >> 16); |
| break; |
| case 3: |
| stw_be_p(host, val >> 16); |
| stb_p(host + 2, val >> 8); |
| break; |
| } |
| } else { |
| for (; nb > 3; nb -= 4) { |
| cpu_stl_mmuidx_ra(env, addr, env->gpr[reg], mmu_idx, raddr); |
| reg = (reg + 1) % 32; |
| addr = addr_add(env, addr, 4); |
| } |
| val = env->gpr[reg]; |
| switch (nb) { |
| case 1: |
| cpu_stb_mmuidx_ra(env, addr, val >> 24, mmu_idx, raddr); |
| break; |
| case 2: |
| cpu_stw_mmuidx_ra(env, addr, val >> 16, mmu_idx, raddr); |
| break; |
| case 3: |
| cpu_stw_mmuidx_ra(env, addr, val >> 16, mmu_idx, raddr); |
| addr = addr_add(env, addr, 2); |
| cpu_stb_mmuidx_ra(env, addr, val >> 8, mmu_idx, raddr); |
| break; |
| } |
| } |
| } |
| |
| static void dcbz_common(CPUPPCState *env, target_ulong addr, |
| uint32_t opcode, bool epid, uintptr_t retaddr) |
| { |
| target_ulong mask, dcbz_size = env->dcache_line_size; |
| uint32_t i; |
| void *haddr; |
| int mmu_idx = epid ? PPC_TLB_EPID_STORE : cpu_mmu_index(env, false); |
| |
| #if defined(TARGET_PPC64) |
| /* Check for dcbz vs dcbzl on 970 */ |
| if (env->excp_model == POWERPC_EXCP_970 && |
| !(opcode & 0x00200000) && ((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) { |
| dcbz_size = 32; |
| } |
| #endif |
| |
| /* Align address */ |
| mask = ~(dcbz_size - 1); |
| addr &= mask; |
| |
| /* Check reservation */ |
| if ((env->reserve_addr & mask) == addr) { |
| env->reserve_addr = (target_ulong)-1ULL; |
| } |
| |
| /* Try fast path translate */ |
| haddr = probe_write(env, addr, dcbz_size, mmu_idx, retaddr); |
| if (haddr) { |
| memset(haddr, 0, dcbz_size); |
| } else { |
| /* Slow path */ |
| for (i = 0; i < dcbz_size; i += 8) { |
| cpu_stq_mmuidx_ra(env, addr + i, 0, mmu_idx, retaddr); |
| } |
| } |
| } |
| |
| void helper_dcbz(CPUPPCState *env, target_ulong addr, uint32_t opcode) |
| { |
| dcbz_common(env, addr, opcode, false, GETPC()); |
| } |
| |
| void helper_dcbzep(CPUPPCState *env, target_ulong addr, uint32_t opcode) |
| { |
| dcbz_common(env, addr, opcode, true, GETPC()); |
| } |
| |
| void helper_icbi(CPUPPCState *env, target_ulong addr) |
| { |
| addr &= ~(env->dcache_line_size - 1); |
| /* |
| * Invalidate one cache line : |
| * PowerPC specification says this is to be treated like a load |
| * (not a fetch) by the MMU. To be sure it will be so, |
| * do the load "by hand". |
| */ |
| cpu_ldl_data_ra(env, addr, GETPC()); |
| } |
| |
| void helper_icbiep(CPUPPCState *env, target_ulong addr) |
| { |
| #if !defined(CONFIG_USER_ONLY) |
| /* See comments above */ |
| addr &= ~(env->dcache_line_size - 1); |
| cpu_ldl_mmuidx_ra(env, addr, PPC_TLB_EPID_LOAD, GETPC()); |
| #endif |
| } |
| |
| /* XXX: to be tested */ |
| target_ulong helper_lscbx(CPUPPCState *env, target_ulong addr, uint32_t reg, |
| uint32_t ra, uint32_t rb) |
| { |
| int i, c, d; |
| |
| d = 24; |
| for (i = 0; i < xer_bc; i++) { |
| c = cpu_ldub_data_ra(env, addr, GETPC()); |
| addr = addr_add(env, addr, 1); |
| /* ra (if not 0) and rb are never modified */ |
| if (likely(reg != rb && (ra == 0 || reg != ra))) { |
| env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d); |
| } |
| if (unlikely(c == xer_cmp)) { |
| break; |
| } |
| if (likely(d != 0)) { |
| d -= 8; |
| } else { |
| d = 24; |
| reg++; |
| reg = reg & 0x1F; |
| } |
| } |
| return i; |
| } |
| |
| #ifdef TARGET_PPC64 |
| uint64_t helper_lq_le_parallel(CPUPPCState *env, target_ulong addr, |
| uint32_t opidx) |
| { |
| Int128 ret; |
| |
| /* We will have raised EXCP_ATOMIC from the translator. */ |
| assert(HAVE_ATOMIC128); |
| ret = cpu_atomic_ldo_le_mmu(env, addr, opidx, GETPC()); |
| env->retxh = int128_gethi(ret); |
| return int128_getlo(ret); |
| } |
| |
| uint64_t helper_lq_be_parallel(CPUPPCState *env, target_ulong addr, |
| uint32_t opidx) |
| { |
| Int128 ret; |
| |
| /* We will have raised EXCP_ATOMIC from the translator. */ |
| assert(HAVE_ATOMIC128); |
| ret = cpu_atomic_ldo_be_mmu(env, addr, opidx, GETPC()); |
| env->retxh = int128_gethi(ret); |
| return int128_getlo(ret); |
| } |
| |
| void helper_stq_le_parallel(CPUPPCState *env, target_ulong addr, |
| uint64_t lo, uint64_t hi, uint32_t opidx) |
| { |
| Int128 val; |
| |
| /* We will have raised EXCP_ATOMIC from the translator. */ |
| assert(HAVE_ATOMIC128); |
| val = int128_make128(lo, hi); |
| cpu_atomic_sto_le_mmu(env, addr, val, opidx, GETPC()); |
| } |
| |
| void helper_stq_be_parallel(CPUPPCState *env, target_ulong addr, |
| uint64_t lo, uint64_t hi, uint32_t opidx) |
| { |
| Int128 val; |
| |
| /* We will have raised EXCP_ATOMIC from the translator. */ |
| assert(HAVE_ATOMIC128); |
| val = int128_make128(lo, hi); |
| cpu_atomic_sto_be_mmu(env, addr, val, opidx, GETPC()); |
| } |
| |
| uint32_t helper_stqcx_le_parallel(CPUPPCState *env, target_ulong addr, |
| uint64_t new_lo, uint64_t new_hi, |
| uint32_t opidx) |
| { |
| bool success = false; |
| |
| /* We will have raised EXCP_ATOMIC from the translator. */ |
| assert(HAVE_CMPXCHG128); |
| |
| if (likely(addr == env->reserve_addr)) { |
| Int128 oldv, cmpv, newv; |
| |
| cmpv = int128_make128(env->reserve_val2, env->reserve_val); |
| newv = int128_make128(new_lo, new_hi); |
| oldv = cpu_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, |
| opidx, GETPC()); |
| success = int128_eq(oldv, cmpv); |
| } |
| env->reserve_addr = -1; |
| return env->so + success * CRF_EQ_BIT; |
| } |
| |
| uint32_t helper_stqcx_be_parallel(CPUPPCState *env, target_ulong addr, |
| uint64_t new_lo, uint64_t new_hi, |
| uint32_t opidx) |
| { |
| bool success = false; |
| |
| /* We will have raised EXCP_ATOMIC from the translator. */ |
| assert(HAVE_CMPXCHG128); |
| |
| if (likely(addr == env->reserve_addr)) { |
| Int128 oldv, cmpv, newv; |
| |
| cmpv = int128_make128(env->reserve_val2, env->reserve_val); |
| newv = int128_make128(new_lo, new_hi); |
| oldv = cpu_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, |
| opidx, GETPC()); |
| success = int128_eq(oldv, cmpv); |
| } |
| env->reserve_addr = -1; |
| return env->so + success * CRF_EQ_BIT; |
| } |
| #endif |
| |
| /*****************************************************************************/ |
| /* Altivec extension helpers */ |
| #if HOST_BIG_ENDIAN |
| #define HI_IDX 0 |
| #define LO_IDX 1 |
| #else |
| #define HI_IDX 1 |
| #define LO_IDX 0 |
| #endif |
| |
| /* |
| * We use MSR_LE to determine index ordering in a vector. However, |
| * byteswapping is not simply controlled by MSR_LE. We also need to |
| * take into account endianness of the target. This is done for the |
| * little-endian PPC64 user-mode target. |
| */ |
| |
| #define LVE(name, access, swap, element) \ |
| void helper_##name(CPUPPCState *env, ppc_avr_t *r, \ |
| target_ulong addr) \ |
| { \ |
| size_t n_elems = ARRAY_SIZE(r->element); \ |
| int adjust = HI_IDX * (n_elems - 1); \ |
| int sh = sizeof(r->element[0]) >> 1; \ |
| int index = (addr & 0xf) >> sh; \ |
| if (FIELD_EX64(env->msr, MSR, LE)) { \ |
| index = n_elems - index - 1; \ |
| } \ |
| \ |
| if (needs_byteswap(env)) { \ |
| r->element[LO_IDX ? index : (adjust - index)] = \ |
| swap(access(env, addr, GETPC())); \ |
| } else { \ |
| r->element[LO_IDX ? index : (adjust - index)] = \ |
| access(env, addr, GETPC()); \ |
| } \ |
| } |
| #define I(x) (x) |
| LVE(lvebx, cpu_ldub_data_ra, I, u8) |
| LVE(lvehx, cpu_lduw_data_ra, bswap16, u16) |
| LVE(lvewx, cpu_ldl_data_ra, bswap32, u32) |
| #undef I |
| #undef LVE |
| |
| #define STVE(name, access, swap, element) \ |
| void helper_##name(CPUPPCState *env, ppc_avr_t *r, \ |
| target_ulong addr) \ |
| { \ |
| size_t n_elems = ARRAY_SIZE(r->element); \ |
| int adjust = HI_IDX * (n_elems - 1); \ |
| int sh = sizeof(r->element[0]) >> 1; \ |
| int index = (addr & 0xf) >> sh; \ |
| if (FIELD_EX64(env->msr, MSR, LE)) { \ |
| index = n_elems - index - 1; \ |
| } \ |
| \ |
| if (needs_byteswap(env)) { \ |
| access(env, addr, swap(r->element[LO_IDX ? index : \ |
| (adjust - index)]), \ |
| GETPC()); \ |
| } else { \ |
| access(env, addr, r->element[LO_IDX ? index : \ |
| (adjust - index)], GETPC()); \ |
| } \ |
| } |
| #define I(x) (x) |
| STVE(stvebx, cpu_stb_data_ra, I, u8) |
| STVE(stvehx, cpu_stw_data_ra, bswap16, u16) |
| STVE(stvewx, cpu_stl_data_ra, bswap32, u32) |
| #undef I |
| #undef LVE |
| |
| #ifdef TARGET_PPC64 |
| #define GET_NB(rb) ((rb >> 56) & 0xFF) |
| |
| #define VSX_LXVL(name, lj) \ |
| void helper_##name(CPUPPCState *env, target_ulong addr, \ |
| ppc_vsr_t *xt, target_ulong rb) \ |
| { \ |
| ppc_vsr_t t; \ |
| uint64_t nb = GET_NB(rb); \ |
| int i; \ |
| \ |
| t.s128 = int128_zero(); \ |
| if (nb) { \ |
| nb = (nb >= 16) ? 16 : nb; \ |
| if (FIELD_EX64(env->msr, MSR, LE) && !lj) { \ |
| for (i = 16; i > 16 - nb; i--) { \ |
| t.VsrB(i - 1) = cpu_ldub_data_ra(env, addr, GETPC()); \ |
| addr = addr_add(env, addr, 1); \ |
| } \ |
| } else { \ |
| for (i = 0; i < nb; i++) { \ |
| t.VsrB(i) = cpu_ldub_data_ra(env, addr, GETPC()); \ |
| addr = addr_add(env, addr, 1); \ |
| } \ |
| } \ |
| } \ |
| *xt = t; \ |
| } |
| |
| VSX_LXVL(lxvl, 0) |
| VSX_LXVL(lxvll, 1) |
| #undef VSX_LXVL |
| |
| #define VSX_STXVL(name, lj) \ |
| void helper_##name(CPUPPCState *env, target_ulong addr, \ |
| ppc_vsr_t *xt, target_ulong rb) \ |
| { \ |
| target_ulong nb = GET_NB(rb); \ |
| int i; \ |
| \ |
| if (!nb) { \ |
| return; \ |
| } \ |
| \ |
| nb = (nb >= 16) ? 16 : nb; \ |
| if (FIELD_EX64(env->msr, MSR, LE) && !lj) { \ |
| for (i = 16; i > 16 - nb; i--) { \ |
| cpu_stb_data_ra(env, addr, xt->VsrB(i - 1), GETPC()); \ |
| addr = addr_add(env, addr, 1); \ |
| } \ |
| } else { \ |
| for (i = 0; i < nb; i++) { \ |
| cpu_stb_data_ra(env, addr, xt->VsrB(i), GETPC()); \ |
| addr = addr_add(env, addr, 1); \ |
| } \ |
| } \ |
| } |
| |
| VSX_STXVL(stxvl, 0) |
| VSX_STXVL(stxvll, 1) |
| #undef VSX_STXVL |
| #undef GET_NB |
| #endif /* TARGET_PPC64 */ |
| |
| #undef HI_IDX |
| #undef LO_IDX |
| |
| void helper_tbegin(CPUPPCState *env) |
| { |
| /* |
| * As a degenerate implementation, always fail tbegin. The reason |
| * given is "Nesting overflow". The "persistent" bit is set, |
| * providing a hint to the error handler to not retry. The TFIAR |
| * captures the address of the failure, which is this tbegin |
| * instruction. Instruction execution will continue with the next |
| * instruction in memory, which is precisely what we want. |
| */ |
| |
| env->spr[SPR_TEXASR] = |
| (1ULL << TEXASR_FAILURE_PERSISTENT) | |
| (1ULL << TEXASR_NESTING_OVERFLOW) | |
| (FIELD_EX64_HV(env->msr) << TEXASR_PRIVILEGE_HV) | |
| (FIELD_EX64(env->msr, MSR, PR) << TEXASR_PRIVILEGE_PR) | |
| (1ULL << TEXASR_FAILURE_SUMMARY) | |
| (1ULL << TEXASR_TFIAR_EXACT); |
| env->spr[SPR_TFIAR] = env->nip | (FIELD_EX64_HV(env->msr) << 1) | |
| FIELD_EX64(env->msr, MSR, PR); |
| env->spr[SPR_TFHAR] = env->nip + 4; |
| env->crf[0] = 0xB; /* 0b1010 = transaction failure */ |
| } |