| /* |
| * Copyright (c) 2007, Neocleus Corporation. |
| * Copyright (c) 2007, Intel Corporation. |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2. See |
| * the COPYING file in the top-level directory. |
| * |
| * Alex Novik <alex@neocleus.com> |
| * Allen Kay <allen.m.kay@intel.com> |
| * Guy Zana <guy@neocleus.com> |
| * |
| * This file implements direct PCI assignment to a HVM guest |
| */ |
| |
| /* |
| * Interrupt Disable policy: |
| * |
| * INTx interrupt: |
| * Initialize(register_real_device) |
| * Map INTx(xc_physdev_map_pirq): |
| * <fail> |
| * - Set real Interrupt Disable bit to '1'. |
| * - Set machine_irq and assigned_device->machine_irq to '0'. |
| * * Don't bind INTx. |
| * |
| * Bind INTx(xc_domain_bind_pt_pci_irq): |
| * <fail> |
| * - Set real Interrupt Disable bit to '1'. |
| * - Unmap INTx. |
| * - Decrement xen_pt_mapped_machine_irq[machine_irq] |
| * - Set assigned_device->machine_irq to '0'. |
| * |
| * Write to Interrupt Disable bit by guest software(xen_pt_cmd_reg_write) |
| * Write '0' |
| * - Set real bit to '0' if assigned_device->machine_irq isn't '0'. |
| * |
| * Write '1' |
| * - Set real bit to '1'. |
| * |
| * MSI interrupt: |
| * Initialize MSI register(xen_pt_msi_setup, xen_pt_msi_update) |
| * Bind MSI(xc_domain_update_msi_irq) |
| * <fail> |
| * - Unmap MSI. |
| * - Set dev->msi->pirq to '-1'. |
| * |
| * MSI-X interrupt: |
| * Initialize MSI-X register(xen_pt_msix_update_one) |
| * Bind MSI-X(xc_domain_update_msi_irq) |
| * <fail> |
| * - Unmap MSI-X. |
| * - Set entry->pirq to '-1'. |
| */ |
| |
| #include <sys/ioctl.h> |
| |
| #include "pci.h" |
| #include "xen.h" |
| #include "xen_backend.h" |
| #include "xen_pt.h" |
| #include "range.h" |
| #include "exec-memory.h" |
| |
| #define XEN_PT_NR_IRQS (256) |
| static uint8_t xen_pt_mapped_machine_irq[XEN_PT_NR_IRQS] = {0}; |
| |
| void xen_pt_log(const PCIDevice *d, const char *f, ...) |
| { |
| va_list ap; |
| |
| va_start(ap, f); |
| if (d) { |
| fprintf(stderr, "[%02x:%02x.%d] ", pci_bus_num(d->bus), |
| PCI_SLOT(d->devfn), PCI_FUNC(d->devfn)); |
| } |
| vfprintf(stderr, f, ap); |
| va_end(ap); |
| } |
| |
| /* Config Space */ |
| |
| static int xen_pt_pci_config_access_check(PCIDevice *d, uint32_t addr, int len) |
| { |
| /* check offset range */ |
| if (addr >= 0xFF) { |
| XEN_PT_ERR(d, "Failed to access register with offset exceeding 0xFF. " |
| "(addr: 0x%02x, len: %d)\n", addr, len); |
| return -1; |
| } |
| |
| /* check read size */ |
| if ((len != 1) && (len != 2) && (len != 4)) { |
| XEN_PT_ERR(d, "Failed to access register with invalid access length. " |
| "(addr: 0x%02x, len: %d)\n", addr, len); |
| return -1; |
| } |
| |
| /* check offset alignment */ |
| if (addr & (len - 1)) { |
| XEN_PT_ERR(d, "Failed to access register with invalid access size " |
| "alignment. (addr: 0x%02x, len: %d)\n", addr, len); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| int xen_pt_bar_offset_to_index(uint32_t offset) |
| { |
| int index = 0; |
| |
| /* check Exp ROM BAR */ |
| if (offset == PCI_ROM_ADDRESS) { |
| return PCI_ROM_SLOT; |
| } |
| |
| /* calculate BAR index */ |
| index = (offset - PCI_BASE_ADDRESS_0) >> 2; |
| if (index >= PCI_NUM_REGIONS) { |
| return -1; |
| } |
| |
| return index; |
| } |
| |
| static uint32_t xen_pt_pci_read_config(PCIDevice *d, uint32_t addr, int len) |
| { |
| XenPCIPassthroughState *s = DO_UPCAST(XenPCIPassthroughState, dev, d); |
| uint32_t val = 0; |
| XenPTRegGroup *reg_grp_entry = NULL; |
| XenPTReg *reg_entry = NULL; |
| int rc = 0; |
| int emul_len = 0; |
| uint32_t find_addr = addr; |
| |
| if (xen_pt_pci_config_access_check(d, addr, len)) { |
| goto exit; |
| } |
| |
| /* find register group entry */ |
| reg_grp_entry = xen_pt_find_reg_grp(s, addr); |
| if (reg_grp_entry) { |
| /* check 0-Hardwired register group */ |
| if (reg_grp_entry->reg_grp->grp_type == XEN_PT_GRP_TYPE_HARDWIRED) { |
| /* no need to emulate, just return 0 */ |
| val = 0; |
| goto exit; |
| } |
| } |
| |
| /* read I/O device register value */ |
| rc = xen_host_pci_get_block(&s->real_device, addr, (uint8_t *)&val, len); |
| if (rc < 0) { |
| XEN_PT_ERR(d, "pci_read_block failed. return value: %d.\n", rc); |
| memset(&val, 0xff, len); |
| } |
| |
| /* just return the I/O device register value for |
| * passthrough type register group */ |
| if (reg_grp_entry == NULL) { |
| goto exit; |
| } |
| |
| /* adjust the read value to appropriate CFC-CFF window */ |
| val <<= (addr & 3) << 3; |
| emul_len = len; |
| |
| /* loop around the guest requested size */ |
| while (emul_len > 0) { |
| /* find register entry to be emulated */ |
| reg_entry = xen_pt_find_reg(reg_grp_entry, find_addr); |
| if (reg_entry) { |
| XenPTRegInfo *reg = reg_entry->reg; |
| uint32_t real_offset = reg_grp_entry->base_offset + reg->offset; |
| uint32_t valid_mask = 0xFFFFFFFF >> ((4 - emul_len) << 3); |
| uint8_t *ptr_val = NULL; |
| |
| valid_mask <<= (find_addr - real_offset) << 3; |
| ptr_val = (uint8_t *)&val + (real_offset & 3); |
| |
| /* do emulation based on register size */ |
| switch (reg->size) { |
| case 1: |
| if (reg->u.b.read) { |
| rc = reg->u.b.read(s, reg_entry, ptr_val, valid_mask); |
| } |
| break; |
| case 2: |
| if (reg->u.w.read) { |
| rc = reg->u.w.read(s, reg_entry, |
| (uint16_t *)ptr_val, valid_mask); |
| } |
| break; |
| case 4: |
| if (reg->u.dw.read) { |
| rc = reg->u.dw.read(s, reg_entry, |
| (uint32_t *)ptr_val, valid_mask); |
| } |
| break; |
| } |
| |
| if (rc < 0) { |
| xen_shutdown_fatal_error("Internal error: Invalid read " |
| "emulation. (%s, rc: %d)\n", |
| __func__, rc); |
| return 0; |
| } |
| |
| /* calculate next address to find */ |
| emul_len -= reg->size; |
| if (emul_len > 0) { |
| find_addr = real_offset + reg->size; |
| } |
| } else { |
| /* nothing to do with passthrough type register, |
| * continue to find next byte */ |
| emul_len--; |
| find_addr++; |
| } |
| } |
| |
| /* need to shift back before returning them to pci bus emulator */ |
| val >>= ((addr & 3) << 3); |
| |
| exit: |
| XEN_PT_LOG_CONFIG(d, addr, val, len); |
| return val; |
| } |
| |
| static void xen_pt_pci_write_config(PCIDevice *d, uint32_t addr, |
| uint32_t val, int len) |
| { |
| XenPCIPassthroughState *s = DO_UPCAST(XenPCIPassthroughState, dev, d); |
| int index = 0; |
| XenPTRegGroup *reg_grp_entry = NULL; |
| int rc = 0; |
| uint32_t read_val = 0; |
| int emul_len = 0; |
| XenPTReg *reg_entry = NULL; |
| uint32_t find_addr = addr; |
| XenPTRegInfo *reg = NULL; |
| |
| if (xen_pt_pci_config_access_check(d, addr, len)) { |
| return; |
| } |
| |
| XEN_PT_LOG_CONFIG(d, addr, val, len); |
| |
| /* check unused BAR register */ |
| index = xen_pt_bar_offset_to_index(addr); |
| if ((index >= 0) && (val > 0 && val < XEN_PT_BAR_ALLF) && |
| (s->bases[index].bar_flag == XEN_PT_BAR_FLAG_UNUSED)) { |
| XEN_PT_WARN(d, "Guest attempt to set address to unused Base Address " |
| "Register. (addr: 0x%02x, len: %d)\n", addr, len); |
| } |
| |
| /* find register group entry */ |
| reg_grp_entry = xen_pt_find_reg_grp(s, addr); |
| if (reg_grp_entry) { |
| /* check 0-Hardwired register group */ |
| if (reg_grp_entry->reg_grp->grp_type == XEN_PT_GRP_TYPE_HARDWIRED) { |
| /* ignore silently */ |
| XEN_PT_WARN(d, "Access to 0-Hardwired register. " |
| "(addr: 0x%02x, len: %d)\n", addr, len); |
| return; |
| } |
| } |
| |
| rc = xen_host_pci_get_block(&s->real_device, addr, |
| (uint8_t *)&read_val, len); |
| if (rc < 0) { |
| XEN_PT_ERR(d, "pci_read_block failed. return value: %d.\n", rc); |
| memset(&read_val, 0xff, len); |
| } |
| |
| /* pass directly to the real device for passthrough type register group */ |
| if (reg_grp_entry == NULL) { |
| goto out; |
| } |
| |
| memory_region_transaction_begin(); |
| pci_default_write_config(d, addr, val, len); |
| |
| /* adjust the read and write value to appropriate CFC-CFF window */ |
| read_val <<= (addr & 3) << 3; |
| val <<= (addr & 3) << 3; |
| emul_len = len; |
| |
| /* loop around the guest requested size */ |
| while (emul_len > 0) { |
| /* find register entry to be emulated */ |
| reg_entry = xen_pt_find_reg(reg_grp_entry, find_addr); |
| if (reg_entry) { |
| reg = reg_entry->reg; |
| uint32_t real_offset = reg_grp_entry->base_offset + reg->offset; |
| uint32_t valid_mask = 0xFFFFFFFF >> ((4 - emul_len) << 3); |
| uint8_t *ptr_val = NULL; |
| |
| valid_mask <<= (find_addr - real_offset) << 3; |
| ptr_val = (uint8_t *)&val + (real_offset & 3); |
| |
| /* do emulation based on register size */ |
| switch (reg->size) { |
| case 1: |
| if (reg->u.b.write) { |
| rc = reg->u.b.write(s, reg_entry, ptr_val, |
| read_val >> ((real_offset & 3) << 3), |
| valid_mask); |
| } |
| break; |
| case 2: |
| if (reg->u.w.write) { |
| rc = reg->u.w.write(s, reg_entry, (uint16_t *)ptr_val, |
| (read_val >> ((real_offset & 3) << 3)), |
| valid_mask); |
| } |
| break; |
| case 4: |
| if (reg->u.dw.write) { |
| rc = reg->u.dw.write(s, reg_entry, (uint32_t *)ptr_val, |
| (read_val >> ((real_offset & 3) << 3)), |
| valid_mask); |
| } |
| break; |
| } |
| |
| if (rc < 0) { |
| xen_shutdown_fatal_error("Internal error: Invalid write" |
| " emulation. (%s, rc: %d)\n", |
| __func__, rc); |
| return; |
| } |
| |
| /* calculate next address to find */ |
| emul_len -= reg->size; |
| if (emul_len > 0) { |
| find_addr = real_offset + reg->size; |
| } |
| } else { |
| /* nothing to do with passthrough type register, |
| * continue to find next byte */ |
| emul_len--; |
| find_addr++; |
| } |
| } |
| |
| /* need to shift back before passing them to xen_host_pci_device */ |
| val >>= (addr & 3) << 3; |
| |
| memory_region_transaction_commit(); |
| |
| out: |
| if (!(reg && reg->no_wb)) { |
| /* unknown regs are passed through */ |
| rc = xen_host_pci_set_block(&s->real_device, addr, |
| (uint8_t *)&val, len); |
| |
| if (rc < 0) { |
| XEN_PT_ERR(d, "pci_write_block failed. return value: %d.\n", rc); |
| } |
| } |
| } |
| |
| /* register regions */ |
| |
| static uint64_t xen_pt_bar_read(void *o, target_phys_addr_t addr, |
| unsigned size) |
| { |
| PCIDevice *d = o; |
| /* if this function is called, that probably means that there is a |
| * misconfiguration of the IOMMU. */ |
| XEN_PT_ERR(d, "Should not read BAR through QEMU. @0x"TARGET_FMT_plx"\n", |
| addr); |
| return 0; |
| } |
| static void xen_pt_bar_write(void *o, target_phys_addr_t addr, uint64_t val, |
| unsigned size) |
| { |
| PCIDevice *d = o; |
| /* Same comment as xen_pt_bar_read function */ |
| XEN_PT_ERR(d, "Should not write BAR through QEMU. @0x"TARGET_FMT_plx"\n", |
| addr); |
| } |
| |
| static const MemoryRegionOps ops = { |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| .read = xen_pt_bar_read, |
| .write = xen_pt_bar_write, |
| }; |
| |
| static int xen_pt_register_regions(XenPCIPassthroughState *s) |
| { |
| int i = 0; |
| XenHostPCIDevice *d = &s->real_device; |
| |
| /* Register PIO/MMIO BARs */ |
| for (i = 0; i < PCI_ROM_SLOT; i++) { |
| XenHostPCIIORegion *r = &d->io_regions[i]; |
| uint8_t type; |
| |
| if (r->base_addr == 0 || r->size == 0) { |
| continue; |
| } |
| |
| s->bases[i].access.u = r->base_addr; |
| |
| if (r->type & XEN_HOST_PCI_REGION_TYPE_IO) { |
| type = PCI_BASE_ADDRESS_SPACE_IO; |
| } else { |
| type = PCI_BASE_ADDRESS_SPACE_MEMORY; |
| if (r->type & XEN_HOST_PCI_REGION_TYPE_PREFETCH) { |
| type |= PCI_BASE_ADDRESS_MEM_PREFETCH; |
| } |
| if (r->type & XEN_HOST_PCI_REGION_TYPE_MEM_64) { |
| type |= PCI_BASE_ADDRESS_MEM_TYPE_64; |
| } |
| } |
| |
| memory_region_init_io(&s->bar[i], &ops, &s->dev, |
| "xen-pci-pt-bar", r->size); |
| pci_register_bar(&s->dev, i, type, &s->bar[i]); |
| |
| XEN_PT_LOG(&s->dev, "IO region %i registered (size=0x%lx"PRIx64 |
| " base_addr=0x%lx"PRIx64" type: %#x)\n", |
| i, r->size, r->base_addr, type); |
| } |
| |
| /* Register expansion ROM address */ |
| if (d->rom.base_addr && d->rom.size) { |
| uint32_t bar_data = 0; |
| |
| /* Re-set BAR reported by OS, otherwise ROM can't be read. */ |
| if (xen_host_pci_get_long(d, PCI_ROM_ADDRESS, &bar_data)) { |
| return 0; |
| } |
| if ((bar_data & PCI_ROM_ADDRESS_MASK) == 0) { |
| bar_data |= d->rom.base_addr & PCI_ROM_ADDRESS_MASK; |
| xen_host_pci_set_long(d, PCI_ROM_ADDRESS, bar_data); |
| } |
| |
| s->bases[PCI_ROM_SLOT].access.maddr = d->rom.base_addr; |
| |
| memory_region_init_rom_device(&s->rom, NULL, NULL, |
| "xen-pci-pt-rom", d->rom.size); |
| pci_register_bar(&s->dev, PCI_ROM_SLOT, PCI_BASE_ADDRESS_MEM_PREFETCH, |
| &s->rom); |
| |
| XEN_PT_LOG(&s->dev, "Expansion ROM registered (size=0x%08"PRIx64 |
| " base_addr=0x%08"PRIx64")\n", |
| d->rom.size, d->rom.base_addr); |
| } |
| |
| return 0; |
| } |
| |
| static void xen_pt_unregister_regions(XenPCIPassthroughState *s) |
| { |
| XenHostPCIDevice *d = &s->real_device; |
| int i; |
| |
| for (i = 0; i < PCI_NUM_REGIONS - 1; i++) { |
| XenHostPCIIORegion *r = &d->io_regions[i]; |
| |
| if (r->base_addr == 0 || r->size == 0) { |
| continue; |
| } |
| |
| memory_region_destroy(&s->bar[i]); |
| } |
| if (d->rom.base_addr && d->rom.size) { |
| memory_region_destroy(&s->rom); |
| } |
| } |
| |
| /* region mapping */ |
| |
| static int xen_pt_bar_from_region(XenPCIPassthroughState *s, MemoryRegion *mr) |
| { |
| int i = 0; |
| |
| for (i = 0; i < PCI_NUM_REGIONS - 1; i++) { |
| if (mr == &s->bar[i]) { |
| return i; |
| } |
| } |
| if (mr == &s->rom) { |
| return PCI_ROM_SLOT; |
| } |
| return -1; |
| } |
| |
| /* |
| * This function checks if an io_region overlaps an io_region from another |
| * device. The io_region to check is provided with (addr, size and type) |
| * A callback can be provided and will be called for every region that is |
| * overlapped. |
| * The return value indicates if the region is overlappsed */ |
| struct CheckBarArgs { |
| XenPCIPassthroughState *s; |
| pcibus_t addr; |
| pcibus_t size; |
| uint8_t type; |
| bool rc; |
| }; |
| static void xen_pt_check_bar_overlap(PCIBus *bus, PCIDevice *d, void *opaque) |
| { |
| struct CheckBarArgs *arg = opaque; |
| XenPCIPassthroughState *s = arg->s; |
| uint8_t type = arg->type; |
| int i; |
| |
| if (d->devfn == s->dev.devfn) { |
| return; |
| } |
| |
| /* xxx: This ignores bridges. */ |
| for (i = 0; i < PCI_NUM_REGIONS; i++) { |
| const PCIIORegion *r = &d->io_regions[i]; |
| |
| if (!r->size) { |
| continue; |
| } |
| if ((type & PCI_BASE_ADDRESS_SPACE_IO) |
| != (r->type & PCI_BASE_ADDRESS_SPACE_IO)) { |
| continue; |
| } |
| |
| if (ranges_overlap(arg->addr, arg->size, r->addr, r->size)) { |
| XEN_PT_WARN(&s->dev, |
| "Overlapped to device [%02x:%02x.%d] Region: %i" |
| " (addr: %#"FMT_PCIBUS", len: %#"FMT_PCIBUS")\n", |
| pci_bus_num(bus), PCI_SLOT(d->devfn), |
| PCI_FUNC(d->devfn), i, r->addr, r->size); |
| arg->rc = true; |
| } |
| } |
| } |
| |
| static void xen_pt_region_update(XenPCIPassthroughState *s, |
| MemoryRegionSection *sec, bool adding) |
| { |
| PCIDevice *d = &s->dev; |
| MemoryRegion *mr = sec->mr; |
| int bar = -1; |
| int rc; |
| int op = adding ? DPCI_ADD_MAPPING : DPCI_REMOVE_MAPPING; |
| struct CheckBarArgs args = { |
| .s = s, |
| .addr = sec->offset_within_address_space, |
| .size = sec->size, |
| .rc = false, |
| }; |
| |
| bar = xen_pt_bar_from_region(s, mr); |
| if (bar == -1 && (!s->msix || &s->msix->mmio != mr)) { |
| return; |
| } |
| |
| if (s->msix && &s->msix->mmio == mr) { |
| if (adding) { |
| s->msix->mmio_base_addr = sec->offset_within_address_space; |
| rc = xen_pt_msix_update_remap(s, s->msix->bar_index); |
| } |
| return; |
| } |
| |
| args.type = d->io_regions[bar].type; |
| pci_for_each_device(d->bus, pci_bus_num(d->bus), |
| xen_pt_check_bar_overlap, &args); |
| if (args.rc) { |
| XEN_PT_WARN(d, "Region: %d (addr: %#"FMT_PCIBUS |
| ", len: %#"FMT_PCIBUS") is overlapped.\n", |
| bar, sec->offset_within_address_space, sec->size); |
| } |
| |
| if (d->io_regions[bar].type & PCI_BASE_ADDRESS_SPACE_IO) { |
| uint32_t guest_port = sec->offset_within_address_space; |
| uint32_t machine_port = s->bases[bar].access.pio_base; |
| uint32_t size = sec->size; |
| rc = xc_domain_ioport_mapping(xen_xc, xen_domid, |
| guest_port, machine_port, size, |
| op); |
| if (rc) { |
| XEN_PT_ERR(d, "%s ioport mapping failed! (rc: %i)\n", |
| adding ? "create new" : "remove old", rc); |
| } |
| } else { |
| pcibus_t guest_addr = sec->offset_within_address_space; |
| pcibus_t machine_addr = s->bases[bar].access.maddr |
| + sec->offset_within_region; |
| pcibus_t size = sec->size; |
| rc = xc_domain_memory_mapping(xen_xc, xen_domid, |
| XEN_PFN(guest_addr + XC_PAGE_SIZE - 1), |
| XEN_PFN(machine_addr + XC_PAGE_SIZE - 1), |
| XEN_PFN(size + XC_PAGE_SIZE - 1), |
| op); |
| if (rc) { |
| XEN_PT_ERR(d, "%s mem mapping failed! (rc: %i)\n", |
| adding ? "create new" : "remove old", rc); |
| } |
| } |
| } |
| |
| static void xen_pt_region_add(MemoryListener *l, MemoryRegionSection *sec) |
| { |
| XenPCIPassthroughState *s = container_of(l, XenPCIPassthroughState, |
| memory_listener); |
| |
| xen_pt_region_update(s, sec, true); |
| } |
| |
| static void xen_pt_region_del(MemoryListener *l, MemoryRegionSection *sec) |
| { |
| XenPCIPassthroughState *s = container_of(l, XenPCIPassthroughState, |
| memory_listener); |
| |
| xen_pt_region_update(s, sec, false); |
| } |
| |
| static void xen_pt_io_region_add(MemoryListener *l, MemoryRegionSection *sec) |
| { |
| XenPCIPassthroughState *s = container_of(l, XenPCIPassthroughState, |
| io_listener); |
| |
| xen_pt_region_update(s, sec, true); |
| } |
| |
| static void xen_pt_io_region_del(MemoryListener *l, MemoryRegionSection *sec) |
| { |
| XenPCIPassthroughState *s = container_of(l, XenPCIPassthroughState, |
| io_listener); |
| |
| xen_pt_region_update(s, sec, false); |
| } |
| |
| static const MemoryListener xen_pt_memory_listener = { |
| .region_add = xen_pt_region_add, |
| .region_del = xen_pt_region_del, |
| .priority = 10, |
| }; |
| |
| static const MemoryListener xen_pt_io_listener = { |
| .region_add = xen_pt_io_region_add, |
| .region_del = xen_pt_io_region_del, |
| .priority = 10, |
| }; |
| |
| /* init */ |
| |
| static int xen_pt_initfn(PCIDevice *d) |
| { |
| XenPCIPassthroughState *s = DO_UPCAST(XenPCIPassthroughState, dev, d); |
| int rc = 0; |
| uint8_t machine_irq = 0; |
| int pirq = XEN_PT_UNASSIGNED_PIRQ; |
| |
| /* register real device */ |
| XEN_PT_LOG(d, "Assigning real physical device %02x:%02x.%d" |
| " to devfn %#x\n", |
| s->hostaddr.bus, s->hostaddr.slot, s->hostaddr.function, |
| s->dev.devfn); |
| |
| rc = xen_host_pci_device_get(&s->real_device, |
| s->hostaddr.domain, s->hostaddr.bus, |
| s->hostaddr.slot, s->hostaddr.function); |
| if (rc) { |
| XEN_PT_ERR(d, "Failed to \"open\" the real pci device. rc: %i\n", rc); |
| return -1; |
| } |
| |
| s->is_virtfn = s->real_device.is_virtfn; |
| if (s->is_virtfn) { |
| XEN_PT_LOG(d, "%04x:%02x:%02x.%d is a SR-IOV Virtual Function\n", |
| s->real_device.domain, bus, slot, func); |
| } |
| |
| /* Initialize virtualized PCI configuration (Extended 256 Bytes) */ |
| if (xen_host_pci_get_block(&s->real_device, 0, d->config, |
| PCI_CONFIG_SPACE_SIZE) == -1) { |
| xen_host_pci_device_put(&s->real_device); |
| return -1; |
| } |
| |
| s->memory_listener = xen_pt_memory_listener; |
| s->io_listener = xen_pt_io_listener; |
| |
| /* Handle real device's MMIO/PIO BARs */ |
| xen_pt_register_regions(s); |
| |
| /* reinitialize each config register to be emulated */ |
| if (xen_pt_config_init(s)) { |
| XEN_PT_ERR(d, "PCI Config space initialisation failed.\n"); |
| xen_host_pci_device_put(&s->real_device); |
| return -1; |
| } |
| |
| /* Bind interrupt */ |
| if (!s->dev.config[PCI_INTERRUPT_PIN]) { |
| XEN_PT_LOG(d, "no pin interrupt\n"); |
| goto out; |
| } |
| |
| machine_irq = s->real_device.irq; |
| rc = xc_physdev_map_pirq(xen_xc, xen_domid, machine_irq, &pirq); |
| |
| if (rc < 0) { |
| XEN_PT_ERR(d, "Mapping machine irq %u to pirq %i failed, (rc: %d)\n", |
| machine_irq, pirq, rc); |
| |
| /* Disable PCI intx assertion (turn on bit10 of devctl) */ |
| xen_host_pci_set_word(&s->real_device, |
| PCI_COMMAND, |
| pci_get_word(s->dev.config + PCI_COMMAND) |
| | PCI_COMMAND_INTX_DISABLE); |
| machine_irq = 0; |
| s->machine_irq = 0; |
| } else { |
| machine_irq = pirq; |
| s->machine_irq = pirq; |
| xen_pt_mapped_machine_irq[machine_irq]++; |
| } |
| |
| /* bind machine_irq to device */ |
| if (machine_irq != 0) { |
| uint8_t e_intx = xen_pt_pci_intx(s); |
| |
| rc = xc_domain_bind_pt_pci_irq(xen_xc, xen_domid, machine_irq, |
| pci_bus_num(d->bus), |
| PCI_SLOT(d->devfn), |
| e_intx); |
| if (rc < 0) { |
| XEN_PT_ERR(d, "Binding of interrupt %i failed! (rc: %d)\n", |
| e_intx, rc); |
| |
| /* Disable PCI intx assertion (turn on bit10 of devctl) */ |
| xen_host_pci_set_word(&s->real_device, PCI_COMMAND, |
| *(uint16_t *)(&s->dev.config[PCI_COMMAND]) |
| | PCI_COMMAND_INTX_DISABLE); |
| xen_pt_mapped_machine_irq[machine_irq]--; |
| |
| if (xen_pt_mapped_machine_irq[machine_irq] == 0) { |
| if (xc_physdev_unmap_pirq(xen_xc, xen_domid, machine_irq)) { |
| XEN_PT_ERR(d, "Unmapping of machine interrupt %i failed!" |
| " (rc: %d)\n", machine_irq, rc); |
| } |
| } |
| s->machine_irq = 0; |
| } |
| } |
| |
| out: |
| memory_listener_register(&s->memory_listener, &address_space_memory); |
| memory_listener_register(&s->io_listener, &address_space_io); |
| XEN_PT_LOG(d, "Real physical device %02x:%02x.%d registered successfuly!\n", |
| bus, slot, func); |
| |
| return 0; |
| } |
| |
| static void xen_pt_unregister_device(PCIDevice *d) |
| { |
| XenPCIPassthroughState *s = DO_UPCAST(XenPCIPassthroughState, dev, d); |
| uint8_t machine_irq = s->machine_irq; |
| uint8_t intx = xen_pt_pci_intx(s); |
| int rc; |
| |
| if (machine_irq) { |
| rc = xc_domain_unbind_pt_irq(xen_xc, xen_domid, machine_irq, |
| PT_IRQ_TYPE_PCI, |
| pci_bus_num(d->bus), |
| PCI_SLOT(s->dev.devfn), |
| intx, |
| 0 /* isa_irq */); |
| if (rc < 0) { |
| XEN_PT_ERR(d, "unbinding of interrupt INT%c failed." |
| " (machine irq: %i, rc: %d)" |
| " But bravely continuing on..\n", |
| 'a' + intx, machine_irq, rc); |
| } |
| } |
| |
| if (s->msi) { |
| xen_pt_msi_disable(s); |
| } |
| if (s->msix) { |
| xen_pt_msix_disable(s); |
| } |
| |
| if (machine_irq) { |
| xen_pt_mapped_machine_irq[machine_irq]--; |
| |
| if (xen_pt_mapped_machine_irq[machine_irq] == 0) { |
| rc = xc_physdev_unmap_pirq(xen_xc, xen_domid, machine_irq); |
| |
| if (rc < 0) { |
| XEN_PT_ERR(d, "unmapping of interrupt %i failed. (rc: %d)" |
| " But bravely continuing on..\n", |
| machine_irq, rc); |
| } |
| } |
| } |
| |
| /* delete all emulated config registers */ |
| xen_pt_config_delete(s); |
| |
| xen_pt_unregister_regions(s); |
| memory_listener_unregister(&s->memory_listener); |
| memory_listener_unregister(&s->io_listener); |
| |
| xen_host_pci_device_put(&s->real_device); |
| } |
| |
| static Property xen_pci_passthrough_properties[] = { |
| DEFINE_PROP_PCI_HOST_DEVADDR("hostaddr", XenPCIPassthroughState, hostaddr), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static void xen_pci_passthrough_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); |
| |
| k->init = xen_pt_initfn; |
| k->exit = xen_pt_unregister_device; |
| k->config_read = xen_pt_pci_read_config; |
| k->config_write = xen_pt_pci_write_config; |
| dc->desc = "Assign an host PCI device with Xen"; |
| dc->props = xen_pci_passthrough_properties; |
| }; |
| |
| static TypeInfo xen_pci_passthrough_info = { |
| .name = "xen-pci-passthrough", |
| .parent = TYPE_PCI_DEVICE, |
| .instance_size = sizeof(XenPCIPassthroughState), |
| .class_init = xen_pci_passthrough_class_init, |
| }; |
| |
| static void xen_pci_passthrough_register_types(void) |
| { |
| type_register_static(&xen_pci_passthrough_info); |
| } |
| |
| type_init(xen_pci_passthrough_register_types) |