|  | /* | 
|  | * device quirks for PCI devices | 
|  | * | 
|  | * Copyright Red Hat, Inc. 2012-2015 | 
|  | * | 
|  | * Authors: | 
|  | *  Alex Williamson <alex.williamson@redhat.com> | 
|  | * | 
|  | * This work is licensed under the terms of the GNU GPL, version 2.  See | 
|  | * the COPYING file in the top-level directory. | 
|  | */ | 
|  |  | 
|  | #include "qemu/osdep.h" | 
|  | #include CONFIG_DEVICES | 
|  | #include "exec/memop.h" | 
|  | #include "qemu/units.h" | 
|  | #include "qemu/log.h" | 
|  | #include "qemu/error-report.h" | 
|  | #include "qemu/main-loop.h" | 
|  | #include "qemu/module.h" | 
|  | #include "qemu/range.h" | 
|  | #include "qapi/error.h" | 
|  | #include "qapi/visitor.h" | 
|  | #include <sys/ioctl.h> | 
|  | #include "hw/nvram/fw_cfg.h" | 
|  | #include "hw/qdev-properties.h" | 
|  | #include "pci.h" | 
|  | #include "pci-quirks.h" | 
|  | #include "trace.h" | 
|  |  | 
|  | /* | 
|  | * List of device ids/vendor ids for which to disable | 
|  | * option rom loading. This avoids the guest hangs during rom | 
|  | * execution as noticed with the BCM 57810 card for lack of a | 
|  | * more better way to handle such issues. | 
|  | * The  user can still override by specifying a romfile or | 
|  | * rombar=1. | 
|  | * Please see https://bugs.launchpad.net/qemu/+bug/1284874 | 
|  | * for an analysis of the 57810 card hang. When adding | 
|  | * a new vendor id/device id combination below, please also add | 
|  | * your card/environment details and information that could | 
|  | * help in debugging to the bug tracking this issue | 
|  | */ | 
|  | static const struct { | 
|  | uint32_t vendor; | 
|  | uint32_t device; | 
|  | } rom_denylist[] = { | 
|  | { 0x14e4, 0x168e }, /* Broadcom BCM 57810 */ | 
|  | }; | 
|  |  | 
|  | bool vfio_opt_rom_in_denylist(VFIOPCIDevice *vdev) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0 ; i < ARRAY_SIZE(rom_denylist); i++) { | 
|  | if (vfio_pci_is(vdev, rom_denylist[i].vendor, rom_denylist[i].device)) { | 
|  | trace_vfio_quirk_rom_in_denylist(vdev->vbasedev.name, | 
|  | rom_denylist[i].vendor, | 
|  | rom_denylist[i].device); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Device specific region quirks (mostly backdoors to PCI config space) | 
|  | */ | 
|  |  | 
|  | static uint64_t vfio_generic_window_quirk_address_read(void *opaque, | 
|  | hwaddr addr, | 
|  | unsigned size) | 
|  | { | 
|  | VFIOConfigWindowQuirk *window = opaque; | 
|  | VFIOPCIDevice *vdev = window->vdev; | 
|  |  | 
|  | return vfio_region_read(&vdev->bars[window->bar].region, | 
|  | addr + window->address_offset, size); | 
|  | } | 
|  |  | 
|  | static void vfio_generic_window_quirk_address_write(void *opaque, hwaddr addr, | 
|  | uint64_t data, | 
|  | unsigned size) | 
|  | { | 
|  | VFIOConfigWindowQuirk *window = opaque; | 
|  | VFIOPCIDevice *vdev = window->vdev; | 
|  | int i; | 
|  |  | 
|  | window->window_enabled = false; | 
|  |  | 
|  | vfio_region_write(&vdev->bars[window->bar].region, | 
|  | addr + window->address_offset, data, size); | 
|  |  | 
|  | for (i = 0; i < window->nr_matches; i++) { | 
|  | if ((data & ~window->matches[i].mask) == window->matches[i].match) { | 
|  | window->window_enabled = true; | 
|  | window->address_val = data & window->matches[i].mask; | 
|  | trace_vfio_quirk_generic_window_address_write(vdev->vbasedev.name, | 
|  | memory_region_name(window->addr_mem), data); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | const MemoryRegionOps vfio_generic_window_address_quirk = { | 
|  | .read = vfio_generic_window_quirk_address_read, | 
|  | .write = vfio_generic_window_quirk_address_write, | 
|  | .endianness = DEVICE_LITTLE_ENDIAN, | 
|  | }; | 
|  |  | 
|  | static uint64_t vfio_generic_window_quirk_data_read(void *opaque, | 
|  | hwaddr addr, unsigned size) | 
|  | { | 
|  | VFIOConfigWindowQuirk *window = opaque; | 
|  | VFIOPCIDevice *vdev = window->vdev; | 
|  | uint64_t data; | 
|  |  | 
|  | /* Always read data reg, discard if window enabled */ | 
|  | data = vfio_region_read(&vdev->bars[window->bar].region, | 
|  | addr + window->data_offset, size); | 
|  |  | 
|  | if (window->window_enabled) { | 
|  | data = vfio_pci_read_config(&vdev->pdev, window->address_val, size); | 
|  | trace_vfio_quirk_generic_window_data_read(vdev->vbasedev.name, | 
|  | memory_region_name(window->data_mem), data); | 
|  | } | 
|  |  | 
|  | return data; | 
|  | } | 
|  |  | 
|  | static void vfio_generic_window_quirk_data_write(void *opaque, hwaddr addr, | 
|  | uint64_t data, unsigned size) | 
|  | { | 
|  | VFIOConfigWindowQuirk *window = opaque; | 
|  | VFIOPCIDevice *vdev = window->vdev; | 
|  |  | 
|  | if (window->window_enabled) { | 
|  | vfio_pci_write_config(&vdev->pdev, window->address_val, data, size); | 
|  | trace_vfio_quirk_generic_window_data_write(vdev->vbasedev.name, | 
|  | memory_region_name(window->data_mem), data); | 
|  | return; | 
|  | } | 
|  |  | 
|  | vfio_region_write(&vdev->bars[window->bar].region, | 
|  | addr + window->data_offset, data, size); | 
|  | } | 
|  |  | 
|  | const MemoryRegionOps vfio_generic_window_data_quirk = { | 
|  | .read = vfio_generic_window_quirk_data_read, | 
|  | .write = vfio_generic_window_quirk_data_write, | 
|  | .endianness = DEVICE_LITTLE_ENDIAN, | 
|  | }; | 
|  |  | 
|  | static uint64_t vfio_generic_quirk_mirror_read(void *opaque, | 
|  | hwaddr addr, unsigned size) | 
|  | { | 
|  | VFIOConfigMirrorQuirk *mirror = opaque; | 
|  | VFIOPCIDevice *vdev = mirror->vdev; | 
|  | uint64_t data; | 
|  |  | 
|  | /* Read and discard in case the hardware cares */ | 
|  | (void)vfio_region_read(&vdev->bars[mirror->bar].region, | 
|  | addr + mirror->offset, size); | 
|  |  | 
|  | addr += mirror->config_offset; | 
|  | data = vfio_pci_read_config(&vdev->pdev, addr, size); | 
|  | trace_vfio_quirk_generic_mirror_read(vdev->vbasedev.name, | 
|  | memory_region_name(mirror->mem), | 
|  | addr, data); | 
|  | return data; | 
|  | } | 
|  |  | 
|  | static void vfio_generic_quirk_mirror_write(void *opaque, hwaddr addr, | 
|  | uint64_t data, unsigned size) | 
|  | { | 
|  | VFIOConfigMirrorQuirk *mirror = opaque; | 
|  | VFIOPCIDevice *vdev = mirror->vdev; | 
|  |  | 
|  | addr += mirror->config_offset; | 
|  | vfio_pci_write_config(&vdev->pdev, addr, data, size); | 
|  | trace_vfio_quirk_generic_mirror_write(vdev->vbasedev.name, | 
|  | memory_region_name(mirror->mem), | 
|  | addr, data); | 
|  | } | 
|  |  | 
|  | const MemoryRegionOps vfio_generic_mirror_quirk = { | 
|  | .read = vfio_generic_quirk_mirror_read, | 
|  | .write = vfio_generic_quirk_mirror_write, | 
|  | .endianness = DEVICE_LITTLE_ENDIAN, | 
|  | }; | 
|  |  | 
|  | /* Is range1 fully contained within range2?  */ | 
|  | static bool vfio_range_contained(uint64_t first1, uint64_t len1, | 
|  | uint64_t first2, uint64_t len2) { | 
|  | return (first1 >= first2 && first1 + len1 <= first2 + len2); | 
|  | } | 
|  |  | 
|  | #define PCI_VENDOR_ID_ATI               0x1002 | 
|  |  | 
|  | /* | 
|  | * Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR | 
|  | * through VGA register 0x3c3.  On newer cards, the I/O port BAR is always | 
|  | * BAR4 (older cards like the X550 used BAR1, but we don't care to support | 
|  | * those).  Note that on bare metal, a read of 0x3c3 doesn't always return the | 
|  | * I/O port BAR address.  Originally this was coded to return the virtual BAR | 
|  | * address only if the physical register read returns the actual BAR address, | 
|  | * but users have reported greater success if we return the virtual address | 
|  | * unconditionally. | 
|  | */ | 
|  | static uint64_t vfio_ati_3c3_quirk_read(void *opaque, | 
|  | hwaddr addr, unsigned size) | 
|  | { | 
|  | VFIOPCIDevice *vdev = opaque; | 
|  | uint64_t data = vfio_pci_read_config(&vdev->pdev, | 
|  | PCI_BASE_ADDRESS_4 + 1, size); | 
|  |  | 
|  | trace_vfio_quirk_ati_3c3_read(vdev->vbasedev.name, data); | 
|  |  | 
|  | return data; | 
|  | } | 
|  |  | 
|  | static void vfio_ati_3c3_quirk_write(void *opaque, hwaddr addr, | 
|  | uint64_t data, unsigned size) | 
|  | { | 
|  | qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid access\n", __func__); | 
|  | } | 
|  |  | 
|  | static const MemoryRegionOps vfio_ati_3c3_quirk = { | 
|  | .read = vfio_ati_3c3_quirk_read, | 
|  | .write = vfio_ati_3c3_quirk_write, | 
|  | .endianness = DEVICE_LITTLE_ENDIAN, | 
|  | }; | 
|  |  | 
|  | VFIOQuirk *vfio_quirk_alloc(int nr_mem) | 
|  | { | 
|  | VFIOQuirk *quirk = g_new0(VFIOQuirk, 1); | 
|  | QLIST_INIT(&quirk->ioeventfds); | 
|  | quirk->mem = g_new0(MemoryRegion, nr_mem); | 
|  | quirk->nr_mem = nr_mem; | 
|  |  | 
|  | return quirk; | 
|  | } | 
|  |  | 
|  | static void vfio_ioeventfd_exit(VFIOPCIDevice *vdev, VFIOIOEventFD *ioeventfd) | 
|  | { | 
|  | QLIST_REMOVE(ioeventfd, next); | 
|  | memory_region_del_eventfd(ioeventfd->mr, ioeventfd->addr, ioeventfd->size, | 
|  | true, ioeventfd->data, &ioeventfd->e); | 
|  |  | 
|  | if (ioeventfd->vfio) { | 
|  | struct vfio_device_ioeventfd vfio_ioeventfd; | 
|  |  | 
|  | vfio_ioeventfd.argsz = sizeof(vfio_ioeventfd); | 
|  | vfio_ioeventfd.flags = ioeventfd->size; | 
|  | vfio_ioeventfd.data = ioeventfd->data; | 
|  | vfio_ioeventfd.offset = ioeventfd->region->fd_offset + | 
|  | ioeventfd->region_addr; | 
|  | vfio_ioeventfd.fd = -1; | 
|  |  | 
|  | if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_IOEVENTFD, &vfio_ioeventfd)) { | 
|  | error_report("Failed to remove vfio ioeventfd for %s+0x%" | 
|  | HWADDR_PRIx"[%d]:0x%"PRIx64" (%m)", | 
|  | memory_region_name(ioeventfd->mr), ioeventfd->addr, | 
|  | ioeventfd->size, ioeventfd->data); | 
|  | } | 
|  | } else { | 
|  | qemu_set_fd_handler(event_notifier_get_fd(&ioeventfd->e), | 
|  | NULL, NULL, NULL); | 
|  | } | 
|  |  | 
|  | event_notifier_cleanup(&ioeventfd->e); | 
|  | trace_vfio_ioeventfd_exit(memory_region_name(ioeventfd->mr), | 
|  | (uint64_t)ioeventfd->addr, ioeventfd->size, | 
|  | ioeventfd->data); | 
|  | g_free(ioeventfd); | 
|  | } | 
|  |  | 
|  | static void vfio_drop_dynamic_eventfds(VFIOPCIDevice *vdev, VFIOQuirk *quirk) | 
|  | { | 
|  | VFIOIOEventFD *ioeventfd, *tmp; | 
|  |  | 
|  | QLIST_FOREACH_SAFE(ioeventfd, &quirk->ioeventfds, next, tmp) { | 
|  | if (ioeventfd->dynamic) { | 
|  | vfio_ioeventfd_exit(vdev, ioeventfd); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void vfio_ioeventfd_handler(void *opaque) | 
|  | { | 
|  | VFIOIOEventFD *ioeventfd = opaque; | 
|  |  | 
|  | if (event_notifier_test_and_clear(&ioeventfd->e)) { | 
|  | vfio_region_write(ioeventfd->region, ioeventfd->region_addr, | 
|  | ioeventfd->data, ioeventfd->size); | 
|  | trace_vfio_ioeventfd_handler(memory_region_name(ioeventfd->mr), | 
|  | (uint64_t)ioeventfd->addr, ioeventfd->size, | 
|  | ioeventfd->data); | 
|  | } | 
|  | } | 
|  |  | 
|  | static VFIOIOEventFD *vfio_ioeventfd_init(VFIOPCIDevice *vdev, | 
|  | MemoryRegion *mr, hwaddr addr, | 
|  | unsigned size, uint64_t data, | 
|  | VFIORegion *region, | 
|  | hwaddr region_addr, bool dynamic) | 
|  | { | 
|  | VFIOIOEventFD *ioeventfd; | 
|  |  | 
|  | if (vdev->no_kvm_ioeventfd) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | ioeventfd = g_malloc0(sizeof(*ioeventfd)); | 
|  |  | 
|  | if (event_notifier_init(&ioeventfd->e, 0)) { | 
|  | g_free(ioeventfd); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * MemoryRegion and relative offset, plus additional ioeventfd setup | 
|  | * parameters for configuring and later tearing down KVM ioeventfd. | 
|  | */ | 
|  | ioeventfd->mr = mr; | 
|  | ioeventfd->addr = addr; | 
|  | ioeventfd->size = size; | 
|  | ioeventfd->data = data; | 
|  | ioeventfd->dynamic = dynamic; | 
|  | /* | 
|  | * VFIORegion and relative offset for implementing the userspace | 
|  | * handler.  data & size fields shared for both uses. | 
|  | */ | 
|  | ioeventfd->region = region; | 
|  | ioeventfd->region_addr = region_addr; | 
|  |  | 
|  | if (!vdev->no_vfio_ioeventfd) { | 
|  | struct vfio_device_ioeventfd vfio_ioeventfd; | 
|  |  | 
|  | vfio_ioeventfd.argsz = sizeof(vfio_ioeventfd); | 
|  | vfio_ioeventfd.flags = ioeventfd->size; | 
|  | vfio_ioeventfd.data = ioeventfd->data; | 
|  | vfio_ioeventfd.offset = ioeventfd->region->fd_offset + | 
|  | ioeventfd->region_addr; | 
|  | vfio_ioeventfd.fd = event_notifier_get_fd(&ioeventfd->e); | 
|  |  | 
|  | ioeventfd->vfio = !ioctl(vdev->vbasedev.fd, | 
|  | VFIO_DEVICE_IOEVENTFD, &vfio_ioeventfd); | 
|  | } | 
|  |  | 
|  | if (!ioeventfd->vfio) { | 
|  | qemu_set_fd_handler(event_notifier_get_fd(&ioeventfd->e), | 
|  | vfio_ioeventfd_handler, NULL, ioeventfd); | 
|  | } | 
|  |  | 
|  | memory_region_add_eventfd(ioeventfd->mr, ioeventfd->addr, ioeventfd->size, | 
|  | true, ioeventfd->data, &ioeventfd->e); | 
|  | trace_vfio_ioeventfd_init(memory_region_name(mr), (uint64_t)addr, | 
|  | size, data, ioeventfd->vfio); | 
|  |  | 
|  | return ioeventfd; | 
|  | } | 
|  |  | 
|  | static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice *vdev) | 
|  | { | 
|  | VFIOQuirk *quirk; | 
|  |  | 
|  | /* | 
|  | * As long as the BAR is >= 256 bytes it will be aligned such that the | 
|  | * lower byte is always zero.  Filter out anything else, if it exists. | 
|  | */ | 
|  | if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) || | 
|  | !vdev->bars[4].ioport || vdev->bars[4].region.size < 256) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | quirk = vfio_quirk_alloc(1); | 
|  |  | 
|  | memory_region_init_io(quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, vdev, | 
|  | "vfio-ati-3c3-quirk", 1); | 
|  | memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem, | 
|  | 3 /* offset 3 bytes from 0x3c0 */, quirk->mem); | 
|  |  | 
|  | QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks, | 
|  | quirk, next); | 
|  |  | 
|  | trace_vfio_quirk_ati_3c3_probe(vdev->vbasedev.name); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Newer ATI/AMD devices, including HD5450 and HD7850, have a mirror to PCI | 
|  | * config space through MMIO BAR2 at offset 0x4000.  Nothing seems to access | 
|  | * the MMIO space directly, but a window to this space is provided through | 
|  | * I/O port BAR4.  Offset 0x0 is the address register and offset 0x4 is the | 
|  | * data register.  When the address is programmed to a range of 0x4000-0x4fff | 
|  | * PCI configuration space is available.  Experimentation seems to indicate | 
|  | * that read-only may be provided by hardware. | 
|  | */ | 
|  | static void vfio_probe_ati_bar4_quirk(VFIOPCIDevice *vdev, int nr) | 
|  | { | 
|  | VFIOQuirk *quirk; | 
|  | VFIOConfigWindowQuirk *window; | 
|  |  | 
|  | /* This windows doesn't seem to be used except by legacy VGA code */ | 
|  | if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) || | 
|  | !vdev->vga || nr != 4 || !vdev->bars[4].ioport) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | quirk = vfio_quirk_alloc(2); | 
|  | window = quirk->data = g_malloc0(sizeof(*window) + | 
|  | sizeof(VFIOConfigWindowMatch)); | 
|  | window->vdev = vdev; | 
|  | window->address_offset = 0; | 
|  | window->data_offset = 4; | 
|  | window->nr_matches = 1; | 
|  | window->matches[0].match = 0x4000; | 
|  | window->matches[0].mask = vdev->config_size - 1; | 
|  | window->bar = nr; | 
|  | window->addr_mem = &quirk->mem[0]; | 
|  | window->data_mem = &quirk->mem[1]; | 
|  |  | 
|  | memory_region_init_io(window->addr_mem, OBJECT(vdev), | 
|  | &vfio_generic_window_address_quirk, window, | 
|  | "vfio-ati-bar4-window-address-quirk", 4); | 
|  | memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, | 
|  | window->address_offset, | 
|  | window->addr_mem, 1); | 
|  |  | 
|  | memory_region_init_io(window->data_mem, OBJECT(vdev), | 
|  | &vfio_generic_window_data_quirk, window, | 
|  | "vfio-ati-bar4-window-data-quirk", 4); | 
|  | memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, | 
|  | window->data_offset, | 
|  | window->data_mem, 1); | 
|  |  | 
|  | QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); | 
|  |  | 
|  | trace_vfio_quirk_ati_bar4_probe(vdev->vbasedev.name); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Trap the BAR2 MMIO mirror to config space as well. | 
|  | */ | 
|  | static void vfio_probe_ati_bar2_quirk(VFIOPCIDevice *vdev, int nr) | 
|  | { | 
|  | VFIOQuirk *quirk; | 
|  | VFIOConfigMirrorQuirk *mirror; | 
|  |  | 
|  | /* Only enable on newer devices where BAR2 is 64bit */ | 
|  | if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) || | 
|  | !vdev->vga || nr != 2 || !vdev->bars[2].mem64) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | quirk = vfio_quirk_alloc(1); | 
|  | mirror = quirk->data = g_malloc0(sizeof(*mirror)); | 
|  | mirror->mem = quirk->mem; | 
|  | mirror->vdev = vdev; | 
|  | mirror->offset = 0x4000; | 
|  | mirror->bar = nr; | 
|  |  | 
|  | memory_region_init_io(mirror->mem, OBJECT(vdev), | 
|  | &vfio_generic_mirror_quirk, mirror, | 
|  | "vfio-ati-bar2-4000-quirk", PCI_CONFIG_SPACE_SIZE); | 
|  | memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, | 
|  | mirror->offset, mirror->mem, 1); | 
|  |  | 
|  | QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); | 
|  |  | 
|  | trace_vfio_quirk_ati_bar2_probe(vdev->vbasedev.name); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Older ATI/AMD cards like the X550 have a similar window to that above. | 
|  | * I/O port BAR1 provides a window to a mirror of PCI config space located | 
|  | * in BAR2 at offset 0xf00.  We don't care to support such older cards, but | 
|  | * note it for future reference. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Nvidia has several different methods to get to config space, the | 
|  | * nouveu project has several of these documented here: | 
|  | * https://github.com/pathscale/envytools/tree/master/hwdocs | 
|  | * | 
|  | * The first quirk is actually not documented in envytools and is found | 
|  | * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]).  This is an | 
|  | * NV46 chipset.  The backdoor uses the legacy VGA I/O ports to access | 
|  | * the mirror of PCI config space found at BAR0 offset 0x1800.  The access | 
|  | * sequence first writes 0x338 to I/O port 0x3d4.  The target offset is | 
|  | * then written to 0x3d0.  Finally 0x538 is written for a read and 0x738 | 
|  | * is written for a write to 0x3d4.  The BAR0 offset is then accessible | 
|  | * through 0x3d0.  This quirk doesn't seem to be necessary on newer cards | 
|  | * that use the I/O port BAR5 window but it doesn't hurt to leave it. | 
|  | */ | 
|  | typedef enum {NONE = 0, SELECT, WINDOW, READ, WRITE} VFIONvidia3d0State; | 
|  | static const char *nv3d0_states[] = { "NONE", "SELECT", | 
|  | "WINDOW", "READ", "WRITE" }; | 
|  |  | 
|  | typedef struct VFIONvidia3d0Quirk { | 
|  | VFIOPCIDevice *vdev; | 
|  | VFIONvidia3d0State state; | 
|  | uint32_t offset; | 
|  | } VFIONvidia3d0Quirk; | 
|  |  | 
|  | static uint64_t vfio_nvidia_3d4_quirk_read(void *opaque, | 
|  | hwaddr addr, unsigned size) | 
|  | { | 
|  | VFIONvidia3d0Quirk *quirk = opaque; | 
|  | VFIOPCIDevice *vdev = quirk->vdev; | 
|  |  | 
|  | quirk->state = NONE; | 
|  |  | 
|  | return vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], | 
|  | addr + 0x14, size); | 
|  | } | 
|  |  | 
|  | static void vfio_nvidia_3d4_quirk_write(void *opaque, hwaddr addr, | 
|  | uint64_t data, unsigned size) | 
|  | { | 
|  | VFIONvidia3d0Quirk *quirk = opaque; | 
|  | VFIOPCIDevice *vdev = quirk->vdev; | 
|  | VFIONvidia3d0State old_state = quirk->state; | 
|  |  | 
|  | quirk->state = NONE; | 
|  |  | 
|  | switch (data) { | 
|  | case 0x338: | 
|  | if (old_state == NONE) { | 
|  | quirk->state = SELECT; | 
|  | trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, | 
|  | nv3d0_states[quirk->state]); | 
|  | } | 
|  | break; | 
|  | case 0x538: | 
|  | if (old_state == WINDOW) { | 
|  | quirk->state = READ; | 
|  | trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, | 
|  | nv3d0_states[quirk->state]); | 
|  | } | 
|  | break; | 
|  | case 0x738: | 
|  | if (old_state == WINDOW) { | 
|  | quirk->state = WRITE; | 
|  | trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, | 
|  | nv3d0_states[quirk->state]); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], | 
|  | addr + 0x14, data, size); | 
|  | } | 
|  |  | 
|  | static const MemoryRegionOps vfio_nvidia_3d4_quirk = { | 
|  | .read = vfio_nvidia_3d4_quirk_read, | 
|  | .write = vfio_nvidia_3d4_quirk_write, | 
|  | .endianness = DEVICE_LITTLE_ENDIAN, | 
|  | }; | 
|  |  | 
|  | static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque, | 
|  | hwaddr addr, unsigned size) | 
|  | { | 
|  | VFIONvidia3d0Quirk *quirk = opaque; | 
|  | VFIOPCIDevice *vdev = quirk->vdev; | 
|  | VFIONvidia3d0State old_state = quirk->state; | 
|  | uint64_t data = vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], | 
|  | addr + 0x10, size); | 
|  |  | 
|  | quirk->state = NONE; | 
|  |  | 
|  | if (old_state == READ && | 
|  | (quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) { | 
|  | uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1); | 
|  |  | 
|  | data = vfio_pci_read_config(&vdev->pdev, offset, size); | 
|  | trace_vfio_quirk_nvidia_3d0_read(vdev->vbasedev.name, | 
|  | offset, size, data); | 
|  | } | 
|  |  | 
|  | return data; | 
|  | } | 
|  |  | 
|  | static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr, | 
|  | uint64_t data, unsigned size) | 
|  | { | 
|  | VFIONvidia3d0Quirk *quirk = opaque; | 
|  | VFIOPCIDevice *vdev = quirk->vdev; | 
|  | VFIONvidia3d0State old_state = quirk->state; | 
|  |  | 
|  | quirk->state = NONE; | 
|  |  | 
|  | if (old_state == SELECT) { | 
|  | quirk->offset = (uint32_t)data; | 
|  | quirk->state = WINDOW; | 
|  | trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name, | 
|  | nv3d0_states[quirk->state]); | 
|  | } else if (old_state == WRITE) { | 
|  | if ((quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) { | 
|  | uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1); | 
|  |  | 
|  | vfio_pci_write_config(&vdev->pdev, offset, data, size); | 
|  | trace_vfio_quirk_nvidia_3d0_write(vdev->vbasedev.name, | 
|  | offset, data, size); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI], | 
|  | addr + 0x10, data, size); | 
|  | } | 
|  |  | 
|  | static const MemoryRegionOps vfio_nvidia_3d0_quirk = { | 
|  | .read = vfio_nvidia_3d0_quirk_read, | 
|  | .write = vfio_nvidia_3d0_quirk_write, | 
|  | .endianness = DEVICE_LITTLE_ENDIAN, | 
|  | }; | 
|  |  | 
|  | static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice *vdev) | 
|  | { | 
|  | VFIOQuirk *quirk; | 
|  | VFIONvidia3d0Quirk *data; | 
|  |  | 
|  | if (vdev->no_geforce_quirks || | 
|  | !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) || | 
|  | !vdev->bars[1].region.size) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | quirk = vfio_quirk_alloc(2); | 
|  | quirk->data = data = g_malloc0(sizeof(*data)); | 
|  | data->vdev = vdev; | 
|  |  | 
|  | memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_nvidia_3d4_quirk, | 
|  | data, "vfio-nvidia-3d4-quirk", 2); | 
|  | memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem, | 
|  | 0x14 /* 0x3c0 + 0x14 */, &quirk->mem[0]); | 
|  |  | 
|  | memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_nvidia_3d0_quirk, | 
|  | data, "vfio-nvidia-3d0-quirk", 2); | 
|  | memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem, | 
|  | 0x10 /* 0x3c0 + 0x10 */, &quirk->mem[1]); | 
|  |  | 
|  | QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks, | 
|  | quirk, next); | 
|  |  | 
|  | trace_vfio_quirk_nvidia_3d0_probe(vdev->vbasedev.name); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The second quirk is documented in envytools.  The I/O port BAR5 is just | 
|  | * a set of address/data ports to the MMIO BARs.  The BAR we care about is | 
|  | * again BAR0.  This backdoor is apparently a bit newer than the one above | 
|  | * so we need to not only trap 256 bytes @0x1800, but all of PCI config | 
|  | * space, including extended space is available at the 4k @0x88000. | 
|  | */ | 
|  | typedef struct VFIONvidiaBAR5Quirk { | 
|  | uint32_t master; | 
|  | uint32_t enable; | 
|  | MemoryRegion *addr_mem; | 
|  | MemoryRegion *data_mem; | 
|  | bool enabled; | 
|  | VFIOConfigWindowQuirk window; /* last for match data */ | 
|  | } VFIONvidiaBAR5Quirk; | 
|  |  | 
|  | static void vfio_nvidia_bar5_enable(VFIONvidiaBAR5Quirk *bar5) | 
|  | { | 
|  | VFIOPCIDevice *vdev = bar5->window.vdev; | 
|  |  | 
|  | if (((bar5->master & bar5->enable) & 0x1) == bar5->enabled) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | bar5->enabled = !bar5->enabled; | 
|  | trace_vfio_quirk_nvidia_bar5_state(vdev->vbasedev.name, | 
|  | bar5->enabled ?  "Enable" : "Disable"); | 
|  | memory_region_set_enabled(bar5->addr_mem, bar5->enabled); | 
|  | memory_region_set_enabled(bar5->data_mem, bar5->enabled); | 
|  | } | 
|  |  | 
|  | static uint64_t vfio_nvidia_bar5_quirk_master_read(void *opaque, | 
|  | hwaddr addr, unsigned size) | 
|  | { | 
|  | VFIONvidiaBAR5Quirk *bar5 = opaque; | 
|  | VFIOPCIDevice *vdev = bar5->window.vdev; | 
|  |  | 
|  | return vfio_region_read(&vdev->bars[5].region, addr, size); | 
|  | } | 
|  |  | 
|  | static void vfio_nvidia_bar5_quirk_master_write(void *opaque, hwaddr addr, | 
|  | uint64_t data, unsigned size) | 
|  | { | 
|  | VFIONvidiaBAR5Quirk *bar5 = opaque; | 
|  | VFIOPCIDevice *vdev = bar5->window.vdev; | 
|  |  | 
|  | vfio_region_write(&vdev->bars[5].region, addr, data, size); | 
|  |  | 
|  | bar5->master = data; | 
|  | vfio_nvidia_bar5_enable(bar5); | 
|  | } | 
|  |  | 
|  | static const MemoryRegionOps vfio_nvidia_bar5_quirk_master = { | 
|  | .read = vfio_nvidia_bar5_quirk_master_read, | 
|  | .write = vfio_nvidia_bar5_quirk_master_write, | 
|  | .endianness = DEVICE_LITTLE_ENDIAN, | 
|  | }; | 
|  |  | 
|  | static uint64_t vfio_nvidia_bar5_quirk_enable_read(void *opaque, | 
|  | hwaddr addr, unsigned size) | 
|  | { | 
|  | VFIONvidiaBAR5Quirk *bar5 = opaque; | 
|  | VFIOPCIDevice *vdev = bar5->window.vdev; | 
|  |  | 
|  | return vfio_region_read(&vdev->bars[5].region, addr + 4, size); | 
|  | } | 
|  |  | 
|  | static void vfio_nvidia_bar5_quirk_enable_write(void *opaque, hwaddr addr, | 
|  | uint64_t data, unsigned size) | 
|  | { | 
|  | VFIONvidiaBAR5Quirk *bar5 = opaque; | 
|  | VFIOPCIDevice *vdev = bar5->window.vdev; | 
|  |  | 
|  | vfio_region_write(&vdev->bars[5].region, addr + 4, data, size); | 
|  |  | 
|  | bar5->enable = data; | 
|  | vfio_nvidia_bar5_enable(bar5); | 
|  | } | 
|  |  | 
|  | static const MemoryRegionOps vfio_nvidia_bar5_quirk_enable = { | 
|  | .read = vfio_nvidia_bar5_quirk_enable_read, | 
|  | .write = vfio_nvidia_bar5_quirk_enable_write, | 
|  | .endianness = DEVICE_LITTLE_ENDIAN, | 
|  | }; | 
|  |  | 
|  | static void vfio_probe_nvidia_bar5_quirk(VFIOPCIDevice *vdev, int nr) | 
|  | { | 
|  | VFIOQuirk *quirk; | 
|  | VFIONvidiaBAR5Quirk *bar5; | 
|  | VFIOConfigWindowQuirk *window; | 
|  |  | 
|  | if (vdev->no_geforce_quirks || | 
|  | !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) || | 
|  | !vdev->vga || nr != 5 || !vdev->bars[5].ioport) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | quirk = vfio_quirk_alloc(4); | 
|  | bar5 = quirk->data = g_malloc0(sizeof(*bar5) + | 
|  | (sizeof(VFIOConfigWindowMatch) * 2)); | 
|  | window = &bar5->window; | 
|  |  | 
|  | window->vdev = vdev; | 
|  | window->address_offset = 0x8; | 
|  | window->data_offset = 0xc; | 
|  | window->nr_matches = 2; | 
|  | window->matches[0].match = 0x1800; | 
|  | window->matches[0].mask = PCI_CONFIG_SPACE_SIZE - 1; | 
|  | window->matches[1].match = 0x88000; | 
|  | window->matches[1].mask = vdev->config_size - 1; | 
|  | window->bar = nr; | 
|  | window->addr_mem = bar5->addr_mem = &quirk->mem[0]; | 
|  | window->data_mem = bar5->data_mem = &quirk->mem[1]; | 
|  |  | 
|  | memory_region_init_io(window->addr_mem, OBJECT(vdev), | 
|  | &vfio_generic_window_address_quirk, window, | 
|  | "vfio-nvidia-bar5-window-address-quirk", 4); | 
|  | memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, | 
|  | window->address_offset, | 
|  | window->addr_mem, 1); | 
|  | memory_region_set_enabled(window->addr_mem, false); | 
|  |  | 
|  | memory_region_init_io(window->data_mem, OBJECT(vdev), | 
|  | &vfio_generic_window_data_quirk, window, | 
|  | "vfio-nvidia-bar5-window-data-quirk", 4); | 
|  | memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, | 
|  | window->data_offset, | 
|  | window->data_mem, 1); | 
|  | memory_region_set_enabled(window->data_mem, false); | 
|  |  | 
|  | memory_region_init_io(&quirk->mem[2], OBJECT(vdev), | 
|  | &vfio_nvidia_bar5_quirk_master, bar5, | 
|  | "vfio-nvidia-bar5-master-quirk", 4); | 
|  | memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, | 
|  | 0, &quirk->mem[2], 1); | 
|  |  | 
|  | memory_region_init_io(&quirk->mem[3], OBJECT(vdev), | 
|  | &vfio_nvidia_bar5_quirk_enable, bar5, | 
|  | "vfio-nvidia-bar5-enable-quirk", 4); | 
|  | memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, | 
|  | 4, &quirk->mem[3], 1); | 
|  |  | 
|  | QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); | 
|  |  | 
|  | trace_vfio_quirk_nvidia_bar5_probe(vdev->vbasedev.name); | 
|  | } | 
|  |  | 
|  | typedef struct LastDataSet { | 
|  | VFIOQuirk *quirk; | 
|  | hwaddr addr; | 
|  | uint64_t data; | 
|  | unsigned size; | 
|  | int hits; | 
|  | int added; | 
|  | } LastDataSet; | 
|  |  | 
|  | #define MAX_DYN_IOEVENTFD 10 | 
|  | #define HITS_FOR_IOEVENTFD 10 | 
|  |  | 
|  | /* | 
|  | * Finally, BAR0 itself.  We want to redirect any accesses to either | 
|  | * 0x1800 or 0x88000 through the PCI config space access functions. | 
|  | */ | 
|  | static void vfio_nvidia_quirk_mirror_write(void *opaque, hwaddr addr, | 
|  | uint64_t data, unsigned size) | 
|  | { | 
|  | VFIOConfigMirrorQuirk *mirror = opaque; | 
|  | VFIOPCIDevice *vdev = mirror->vdev; | 
|  | PCIDevice *pdev = &vdev->pdev; | 
|  | LastDataSet *last = (LastDataSet *)&mirror->data; | 
|  |  | 
|  | vfio_generic_quirk_mirror_write(opaque, addr, data, size); | 
|  |  | 
|  | /* | 
|  | * Nvidia seems to acknowledge MSI interrupts by writing 0xff to the | 
|  | * MSI capability ID register.  Both the ID and next register are | 
|  | * read-only, so we allow writes covering either of those to real hw. | 
|  | */ | 
|  | if ((pdev->cap_present & QEMU_PCI_CAP_MSI) && | 
|  | vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) { | 
|  | vfio_region_write(&vdev->bars[mirror->bar].region, | 
|  | addr + mirror->offset, data, size); | 
|  | trace_vfio_quirk_nvidia_bar0_msi_ack(vdev->vbasedev.name); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Automatically add an ioeventfd to handle any repeated write with the | 
|  | * same data and size above the standard PCI config space header.  This is | 
|  | * primarily expected to accelerate the MSI-ACK behavior, such as noted | 
|  | * above.  Current hardware/drivers should trigger an ioeventfd at config | 
|  | * offset 0x704 (region offset 0x88704), with data 0x0, size 4. | 
|  | * | 
|  | * The criteria of 10 successive hits is arbitrary but reliably adds the | 
|  | * MSI-ACK region.  Note that as some writes are bypassed via the ioeventfd, | 
|  | * the remaining ones have a greater chance of being seen successively. | 
|  | * To avoid the pathological case of burning up all of QEMU's open file | 
|  | * handles, arbitrarily limit this algorithm from adding no more than 10 | 
|  | * ioeventfds, print an error if we would have added an 11th, and then | 
|  | * stop counting. | 
|  | */ | 
|  | if (!vdev->no_kvm_ioeventfd && | 
|  | addr >= PCI_STD_HEADER_SIZEOF && last->added <= MAX_DYN_IOEVENTFD) { | 
|  | if (addr != last->addr || data != last->data || size != last->size) { | 
|  | last->addr = addr; | 
|  | last->data = data; | 
|  | last->size = size; | 
|  | last->hits = 1; | 
|  | } else if (++last->hits >= HITS_FOR_IOEVENTFD) { | 
|  | if (last->added < MAX_DYN_IOEVENTFD) { | 
|  | VFIOIOEventFD *ioeventfd; | 
|  | ioeventfd = vfio_ioeventfd_init(vdev, mirror->mem, addr, size, | 
|  | data, &vdev->bars[mirror->bar].region, | 
|  | mirror->offset + addr, true); | 
|  | if (ioeventfd) { | 
|  | VFIOQuirk *quirk = last->quirk; | 
|  |  | 
|  | QLIST_INSERT_HEAD(&quirk->ioeventfds, ioeventfd, next); | 
|  | last->added++; | 
|  | } | 
|  | } else { | 
|  | last->added++; | 
|  | warn_report("NVIDIA ioeventfd queue full for %s, unable to " | 
|  | "accelerate 0x%"HWADDR_PRIx", data 0x%"PRIx64", " | 
|  | "size %u", vdev->vbasedev.name, addr, data, size); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static const MemoryRegionOps vfio_nvidia_mirror_quirk = { | 
|  | .read = vfio_generic_quirk_mirror_read, | 
|  | .write = vfio_nvidia_quirk_mirror_write, | 
|  | .endianness = DEVICE_LITTLE_ENDIAN, | 
|  | }; | 
|  |  | 
|  | static void vfio_nvidia_bar0_quirk_reset(VFIOPCIDevice *vdev, VFIOQuirk *quirk) | 
|  | { | 
|  | VFIOConfigMirrorQuirk *mirror = quirk->data; | 
|  | LastDataSet *last = (LastDataSet *)&mirror->data; | 
|  |  | 
|  | last->addr = last->data = last->size = last->hits = last->added = 0; | 
|  |  | 
|  | vfio_drop_dynamic_eventfds(vdev, quirk); | 
|  | } | 
|  |  | 
|  | static void vfio_probe_nvidia_bar0_quirk(VFIOPCIDevice *vdev, int nr) | 
|  | { | 
|  | VFIOQuirk *quirk; | 
|  | VFIOConfigMirrorQuirk *mirror; | 
|  | LastDataSet *last; | 
|  |  | 
|  | if (vdev->no_geforce_quirks || | 
|  | !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) || | 
|  | !vfio_is_vga(vdev) || nr != 0) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | quirk = vfio_quirk_alloc(1); | 
|  | quirk->reset = vfio_nvidia_bar0_quirk_reset; | 
|  | mirror = quirk->data = g_malloc0(sizeof(*mirror) + sizeof(LastDataSet)); | 
|  | mirror->mem = quirk->mem; | 
|  | mirror->vdev = vdev; | 
|  | mirror->offset = 0x88000; | 
|  | mirror->bar = nr; | 
|  | last = (LastDataSet *)&mirror->data; | 
|  | last->quirk = quirk; | 
|  |  | 
|  | memory_region_init_io(mirror->mem, OBJECT(vdev), | 
|  | &vfio_nvidia_mirror_quirk, mirror, | 
|  | "vfio-nvidia-bar0-88000-mirror-quirk", | 
|  | vdev->config_size); | 
|  | memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, | 
|  | mirror->offset, mirror->mem, 1); | 
|  |  | 
|  | QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); | 
|  |  | 
|  | /* The 0x1800 offset mirror only seems to get used by legacy VGA */ | 
|  | if (vdev->vga) { | 
|  | quirk = vfio_quirk_alloc(1); | 
|  | quirk->reset = vfio_nvidia_bar0_quirk_reset; | 
|  | mirror = quirk->data = g_malloc0(sizeof(*mirror) + sizeof(LastDataSet)); | 
|  | mirror->mem = quirk->mem; | 
|  | mirror->vdev = vdev; | 
|  | mirror->offset = 0x1800; | 
|  | mirror->bar = nr; | 
|  | last = (LastDataSet *)&mirror->data; | 
|  | last->quirk = quirk; | 
|  |  | 
|  | memory_region_init_io(mirror->mem, OBJECT(vdev), | 
|  | &vfio_nvidia_mirror_quirk, mirror, | 
|  | "vfio-nvidia-bar0-1800-mirror-quirk", | 
|  | PCI_CONFIG_SPACE_SIZE); | 
|  | memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, | 
|  | mirror->offset, mirror->mem, 1); | 
|  |  | 
|  | QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); | 
|  | } | 
|  |  | 
|  | trace_vfio_quirk_nvidia_bar0_probe(vdev->vbasedev.name); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * TODO - Some Nvidia devices provide config access to their companion HDA | 
|  | * device and even to their parent bridge via these config space mirrors. | 
|  | * Add quirks for those regions. | 
|  | */ | 
|  |  | 
|  | #define PCI_VENDOR_ID_REALTEK 0x10ec | 
|  |  | 
|  | /* | 
|  | * RTL8168 devices have a backdoor that can access the MSI-X table.  At BAR2 | 
|  | * offset 0x70 there is a dword data register, offset 0x74 is a dword address | 
|  | * register.  According to the Linux r8169 driver, the MSI-X table is addressed | 
|  | * when the "type" portion of the address register is set to 0x1.  This appears | 
|  | * to be bits 16:30.  Bit 31 is both a write indicator and some sort of | 
|  | * "address latched" indicator.  Bits 12:15 are a mask field, which we can | 
|  | * ignore because the MSI-X table should always be accessed as a dword (full | 
|  | * mask).  Bits 0:11 is offset within the type. | 
|  | * | 
|  | * Example trace: | 
|  | * | 
|  | * Read from MSI-X table offset 0 | 
|  | * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr | 
|  | * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch | 
|  | * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data | 
|  | * | 
|  | * Write 0xfee00000 to MSI-X table offset 0 | 
|  | * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data | 
|  | * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write | 
|  | * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete | 
|  | */ | 
|  | typedef struct VFIOrtl8168Quirk { | 
|  | VFIOPCIDevice *vdev; | 
|  | uint32_t addr; | 
|  | uint32_t data; | 
|  | bool enabled; | 
|  | } VFIOrtl8168Quirk; | 
|  |  | 
|  | static uint64_t vfio_rtl8168_quirk_address_read(void *opaque, | 
|  | hwaddr addr, unsigned size) | 
|  | { | 
|  | VFIOrtl8168Quirk *rtl = opaque; | 
|  | VFIOPCIDevice *vdev = rtl->vdev; | 
|  | uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x74, size); | 
|  |  | 
|  | if (rtl->enabled) { | 
|  | data = rtl->addr ^ 0x80000000U; /* latch/complete */ | 
|  | trace_vfio_quirk_rtl8168_fake_latch(vdev->vbasedev.name, data); | 
|  | } | 
|  |  | 
|  | return data; | 
|  | } | 
|  |  | 
|  | static void vfio_rtl8168_quirk_address_write(void *opaque, hwaddr addr, | 
|  | uint64_t data, unsigned size) | 
|  | { | 
|  | VFIOrtl8168Quirk *rtl = opaque; | 
|  | VFIOPCIDevice *vdev = rtl->vdev; | 
|  |  | 
|  | rtl->enabled = false; | 
|  |  | 
|  | if ((data & 0x7fff0000) == 0x10000) { /* MSI-X table */ | 
|  | rtl->enabled = true; | 
|  | rtl->addr = (uint32_t)data; | 
|  |  | 
|  | if (data & 0x80000000U) { /* Do write */ | 
|  | if (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) { | 
|  | hwaddr offset = data & 0xfff; | 
|  | uint64_t val = rtl->data; | 
|  |  | 
|  | trace_vfio_quirk_rtl8168_msix_write(vdev->vbasedev.name, | 
|  | (uint16_t)offset, val); | 
|  |  | 
|  | /* Write to the proper guest MSI-X table instead */ | 
|  | memory_region_dispatch_write(&vdev->pdev.msix_table_mmio, | 
|  | offset, val, | 
|  | size_memop(size) | MO_LE, | 
|  | MEMTXATTRS_UNSPECIFIED); | 
|  | } | 
|  | return; /* Do not write guest MSI-X data to hardware */ | 
|  | } | 
|  | } | 
|  |  | 
|  | vfio_region_write(&vdev->bars[2].region, addr + 0x74, data, size); | 
|  | } | 
|  |  | 
|  | static const MemoryRegionOps vfio_rtl_address_quirk = { | 
|  | .read = vfio_rtl8168_quirk_address_read, | 
|  | .write = vfio_rtl8168_quirk_address_write, | 
|  | .valid = { | 
|  | .min_access_size = 4, | 
|  | .max_access_size = 4, | 
|  | .unaligned = false, | 
|  | }, | 
|  | .endianness = DEVICE_LITTLE_ENDIAN, | 
|  | }; | 
|  |  | 
|  | static uint64_t vfio_rtl8168_quirk_data_read(void *opaque, | 
|  | hwaddr addr, unsigned size) | 
|  | { | 
|  | VFIOrtl8168Quirk *rtl = opaque; | 
|  | VFIOPCIDevice *vdev = rtl->vdev; | 
|  | uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x70, size); | 
|  |  | 
|  | if (rtl->enabled && (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) { | 
|  | hwaddr offset = rtl->addr & 0xfff; | 
|  | memory_region_dispatch_read(&vdev->pdev.msix_table_mmio, offset, | 
|  | &data, size_memop(size) | MO_LE, | 
|  | MEMTXATTRS_UNSPECIFIED); | 
|  | trace_vfio_quirk_rtl8168_msix_read(vdev->vbasedev.name, offset, data); | 
|  | } | 
|  |  | 
|  | return data; | 
|  | } | 
|  |  | 
|  | static void vfio_rtl8168_quirk_data_write(void *opaque, hwaddr addr, | 
|  | uint64_t data, unsigned size) | 
|  | { | 
|  | VFIOrtl8168Quirk *rtl = opaque; | 
|  | VFIOPCIDevice *vdev = rtl->vdev; | 
|  |  | 
|  | rtl->data = (uint32_t)data; | 
|  |  | 
|  | vfio_region_write(&vdev->bars[2].region, addr + 0x70, data, size); | 
|  | } | 
|  |  | 
|  | static const MemoryRegionOps vfio_rtl_data_quirk = { | 
|  | .read = vfio_rtl8168_quirk_data_read, | 
|  | .write = vfio_rtl8168_quirk_data_write, | 
|  | .valid = { | 
|  | .min_access_size = 4, | 
|  | .max_access_size = 4, | 
|  | .unaligned = false, | 
|  | }, | 
|  | .endianness = DEVICE_LITTLE_ENDIAN, | 
|  | }; | 
|  |  | 
|  | static void vfio_probe_rtl8168_bar2_quirk(VFIOPCIDevice *vdev, int nr) | 
|  | { | 
|  | VFIOQuirk *quirk; | 
|  | VFIOrtl8168Quirk *rtl; | 
|  |  | 
|  | if (!vfio_pci_is(vdev, PCI_VENDOR_ID_REALTEK, 0x8168) || nr != 2) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | quirk = vfio_quirk_alloc(2); | 
|  | quirk->data = rtl = g_malloc0(sizeof(*rtl)); | 
|  | rtl->vdev = vdev; | 
|  |  | 
|  | memory_region_init_io(&quirk->mem[0], OBJECT(vdev), | 
|  | &vfio_rtl_address_quirk, rtl, | 
|  | "vfio-rtl8168-window-address-quirk", 4); | 
|  | memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, | 
|  | 0x74, &quirk->mem[0], 1); | 
|  |  | 
|  | memory_region_init_io(&quirk->mem[1], OBJECT(vdev), | 
|  | &vfio_rtl_data_quirk, rtl, | 
|  | "vfio-rtl8168-window-data-quirk", 4); | 
|  | memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, | 
|  | 0x70, &quirk->mem[1], 1); | 
|  |  | 
|  | QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); | 
|  |  | 
|  | trace_vfio_quirk_rtl8168_probe(vdev->vbasedev.name); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Common quirk probe entry points. | 
|  | */ | 
|  | bool vfio_config_quirk_setup(VFIOPCIDevice *vdev, Error **errp) | 
|  | { | 
|  | #ifdef CONFIG_VFIO_IGD | 
|  | if (!vfio_probe_igd_config_quirk(vdev, errp)) { | 
|  | return false; | 
|  | } | 
|  | #endif | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void vfio_vga_quirk_setup(VFIOPCIDevice *vdev) | 
|  | { | 
|  | vfio_vga_probe_ati_3c3_quirk(vdev); | 
|  | vfio_vga_probe_nvidia_3d0_quirk(vdev); | 
|  | } | 
|  |  | 
|  | void vfio_vga_quirk_exit(VFIOPCIDevice *vdev) | 
|  | { | 
|  | VFIOQuirk *quirk; | 
|  | int i, j; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) { | 
|  | QLIST_FOREACH(quirk, &vdev->vga->region[i].quirks, next) { | 
|  | for (j = 0; j < quirk->nr_mem; j++) { | 
|  | memory_region_del_subregion(&vdev->vga->region[i].mem, | 
|  | &quirk->mem[j]); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void vfio_vga_quirk_finalize(VFIOPCIDevice *vdev) | 
|  | { | 
|  | int i, j; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) { | 
|  | while (!QLIST_EMPTY(&vdev->vga->region[i].quirks)) { | 
|  | VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga->region[i].quirks); | 
|  | QLIST_REMOVE(quirk, next); | 
|  | for (j = 0; j < quirk->nr_mem; j++) { | 
|  | object_unparent(OBJECT(&quirk->mem[j])); | 
|  | } | 
|  | g_free(quirk->mem); | 
|  | g_free(quirk->data); | 
|  | g_free(quirk); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void vfio_bar_quirk_setup(VFIOPCIDevice *vdev, int nr) | 
|  | { | 
|  | vfio_probe_ati_bar4_quirk(vdev, nr); | 
|  | vfio_probe_ati_bar2_quirk(vdev, nr); | 
|  | vfio_probe_nvidia_bar5_quirk(vdev, nr); | 
|  | vfio_probe_nvidia_bar0_quirk(vdev, nr); | 
|  | vfio_probe_rtl8168_bar2_quirk(vdev, nr); | 
|  | #ifdef CONFIG_VFIO_IGD | 
|  | vfio_probe_igd_bar0_quirk(vdev, nr); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void vfio_bar_quirk_exit(VFIOPCIDevice *vdev, int nr) | 
|  | { | 
|  | VFIOBAR *bar = &vdev->bars[nr]; | 
|  | VFIOQuirk *quirk; | 
|  | int i; | 
|  |  | 
|  | QLIST_FOREACH(quirk, &bar->quirks, next) { | 
|  | while (!QLIST_EMPTY(&quirk->ioeventfds)) { | 
|  | vfio_ioeventfd_exit(vdev, QLIST_FIRST(&quirk->ioeventfds)); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < quirk->nr_mem; i++) { | 
|  | memory_region_del_subregion(bar->region.mem, &quirk->mem[i]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void vfio_bar_quirk_finalize(VFIOPCIDevice *vdev, int nr) | 
|  | { | 
|  | VFIOBAR *bar = &vdev->bars[nr]; | 
|  | int i; | 
|  |  | 
|  | while (!QLIST_EMPTY(&bar->quirks)) { | 
|  | VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks); | 
|  | QLIST_REMOVE(quirk, next); | 
|  | for (i = 0; i < quirk->nr_mem; i++) { | 
|  | object_unparent(OBJECT(&quirk->mem[i])); | 
|  | } | 
|  | g_free(quirk->mem); | 
|  | g_free(quirk->data); | 
|  | g_free(quirk); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reset quirks | 
|  | */ | 
|  | void vfio_quirk_reset(VFIOPCIDevice *vdev) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < PCI_ROM_SLOT; i++) { | 
|  | VFIOQuirk *quirk; | 
|  | VFIOBAR *bar = &vdev->bars[i]; | 
|  |  | 
|  | QLIST_FOREACH(quirk, &bar->quirks, next) { | 
|  | if (quirk->reset) { | 
|  | quirk->reset(vdev, quirk); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * AMD Radeon PCI config reset, based on Linux: | 
|  | *   drivers/gpu/drm/radeon/ci_smc.c:ci_is_smc_running() | 
|  | *   drivers/gpu/drm/radeon/radeon_device.c:radeon_pci_config_reset | 
|  | *   drivers/gpu/drm/radeon/ci_smc.c:ci_reset_smc() | 
|  | *   drivers/gpu/drm/radeon/ci_smc.c:ci_stop_smc_clock() | 
|  | * IDs: include/drm/drm_pciids.h | 
|  | * Registers: http://cgit.freedesktop.org/~agd5f/linux/commit/?id=4e2aa447f6f0 | 
|  | * | 
|  | * Bonaire and Hawaii GPUs do not respond to a bus reset.  This is a bug in the | 
|  | * hardware that should be fixed on future ASICs.  The symptom of this is that | 
|  | * once the accerlated driver loads, Windows guests will bsod on subsequent | 
|  | * attmpts to load the driver, such as after VM reset or shutdown/restart.  To | 
|  | * work around this, we do an AMD specific PCI config reset, followed by an SMC | 
|  | * reset.  The PCI config reset only works if SMC firmware is running, so we | 
|  | * have a dependency on the state of the device as to whether this reset will | 
|  | * be effective.  There are still cases where we won't be able to kick the | 
|  | * device into working, but this greatly improves the usability overall.  The | 
|  | * config reset magic is relatively common on AMD GPUs, but the setup and SMC | 
|  | * poking is largely ASIC specific. | 
|  | */ | 
|  | static bool vfio_radeon_smc_is_running(VFIOPCIDevice *vdev) | 
|  | { | 
|  | uint32_t clk, pc_c; | 
|  |  | 
|  | /* | 
|  | * Registers 200h and 204h are index and data registers for accessing | 
|  | * indirect configuration registers within the device. | 
|  | */ | 
|  | vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4); | 
|  | clk = vfio_region_read(&vdev->bars[5].region, 0x204, 4); | 
|  | vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000370, 4); | 
|  | pc_c = vfio_region_read(&vdev->bars[5].region, 0x204, 4); | 
|  |  | 
|  | return (!(clk & 1) && (0x20100 <= pc_c)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The scope of a config reset is controlled by a mode bit in the misc register | 
|  | * and a fuse, exposed as a bit in another register.  The fuse is the default | 
|  | * (0 = GFX, 1 = whole GPU), the misc bit is a toggle, with the formula | 
|  | * scope = !(misc ^ fuse), where the resulting scope is defined the same as | 
|  | * the fuse.  A truth table therefore tells us that if misc == fuse, we need | 
|  | * to flip the value of the bit in the misc register. | 
|  | */ | 
|  | static void vfio_radeon_set_gfx_only_reset(VFIOPCIDevice *vdev) | 
|  | { | 
|  | uint32_t misc, fuse; | 
|  | bool a, b; | 
|  |  | 
|  | vfio_region_write(&vdev->bars[5].region, 0x200, 0xc00c0000, 4); | 
|  | fuse = vfio_region_read(&vdev->bars[5].region, 0x204, 4); | 
|  | b = fuse & 64; | 
|  |  | 
|  | vfio_region_write(&vdev->bars[5].region, 0x200, 0xc0000010, 4); | 
|  | misc = vfio_region_read(&vdev->bars[5].region, 0x204, 4); | 
|  | a = misc & 2; | 
|  |  | 
|  | if (a == b) { | 
|  | vfio_region_write(&vdev->bars[5].region, 0x204, misc ^ 2, 4); | 
|  | vfio_region_read(&vdev->bars[5].region, 0x204, 4); /* flush */ | 
|  | } | 
|  | } | 
|  |  | 
|  | static int vfio_radeon_reset(VFIOPCIDevice *vdev) | 
|  | { | 
|  | PCIDevice *pdev = &vdev->pdev; | 
|  | int i, ret = 0; | 
|  | uint32_t data; | 
|  |  | 
|  | /* Defer to a kernel implemented reset */ | 
|  | if (vdev->vbasedev.reset_works) { | 
|  | trace_vfio_quirk_ati_bonaire_reset_skipped(vdev->vbasedev.name); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* Enable only memory BAR access */ | 
|  | vfio_pci_write_config(pdev, PCI_COMMAND, PCI_COMMAND_MEMORY, 2); | 
|  |  | 
|  | /* Reset only works if SMC firmware is loaded and running */ | 
|  | if (!vfio_radeon_smc_is_running(vdev)) { | 
|  | ret = -EINVAL; | 
|  | trace_vfio_quirk_ati_bonaire_reset_no_smc(vdev->vbasedev.name); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Make sure only the GFX function is reset */ | 
|  | vfio_radeon_set_gfx_only_reset(vdev); | 
|  |  | 
|  | /* AMD PCI config reset */ | 
|  | vfio_pci_write_config(pdev, 0x7c, 0x39d5e86b, 4); | 
|  | usleep(100); | 
|  |  | 
|  | /* Read back the memory size to make sure we're out of reset */ | 
|  | for (i = 0; i < 100000; i++) { | 
|  | if (vfio_region_read(&vdev->bars[5].region, 0x5428, 4) != 0xffffffff) { | 
|  | goto reset_smc; | 
|  | } | 
|  | usleep(1); | 
|  | } | 
|  |  | 
|  | trace_vfio_quirk_ati_bonaire_reset_timeout(vdev->vbasedev.name); | 
|  |  | 
|  | reset_smc: | 
|  | /* Reset SMC */ | 
|  | vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000000, 4); | 
|  | data = vfio_region_read(&vdev->bars[5].region, 0x204, 4); | 
|  | data |= 1; | 
|  | vfio_region_write(&vdev->bars[5].region, 0x204, data, 4); | 
|  |  | 
|  | /* Disable SMC clock */ | 
|  | vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4); | 
|  | data = vfio_region_read(&vdev->bars[5].region, 0x204, 4); | 
|  | data |= 1; | 
|  | vfio_region_write(&vdev->bars[5].region, 0x204, data, 4); | 
|  |  | 
|  | trace_vfio_quirk_ati_bonaire_reset_done(vdev->vbasedev.name); | 
|  |  | 
|  | out: | 
|  | /* Restore PCI command register */ | 
|  | vfio_pci_write_config(pdev, PCI_COMMAND, 0, 2); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void vfio_setup_resetfn_quirk(VFIOPCIDevice *vdev) | 
|  | { | 
|  | switch (vdev->vendor_id) { | 
|  | case 0x1002: | 
|  | switch (vdev->device_id) { | 
|  | /* Bonaire */ | 
|  | case 0x6649: /* Bonaire [FirePro W5100] */ | 
|  | case 0x6650: | 
|  | case 0x6651: | 
|  | case 0x6658: /* Bonaire XTX [Radeon R7 260X] */ | 
|  | case 0x665c: /* Bonaire XT [Radeon HD 7790/8770 / R9 260 OEM] */ | 
|  | case 0x665d: /* Bonaire [Radeon R7 200 Series] */ | 
|  | /* Hawaii */ | 
|  | case 0x67A0: /* Hawaii XT GL [FirePro W9100] */ | 
|  | case 0x67A1: /* Hawaii PRO GL [FirePro W8100] */ | 
|  | case 0x67A2: | 
|  | case 0x67A8: | 
|  | case 0x67A9: | 
|  | case 0x67AA: | 
|  | case 0x67B0: /* Hawaii XT [Radeon R9 290X] */ | 
|  | case 0x67B1: /* Hawaii PRO [Radeon R9 290] */ | 
|  | case 0x67B8: | 
|  | case 0x67B9: | 
|  | case 0x67BA: | 
|  | case 0x67BE: | 
|  | vdev->resetfn = vfio_radeon_reset; | 
|  | trace_vfio_quirk_ati_bonaire_reset(vdev->vbasedev.name); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The NVIDIA GPUDirect P2P Vendor capability allows the user to specify | 
|  | * devices as a member of a clique.  Devices within the same clique ID | 
|  | * are capable of direct P2P.  It's the user's responsibility that this | 
|  | * is correct.  The spec says that this may reside at any unused config | 
|  | * offset, but reserves and recommends hypervisors place this at C8h. | 
|  | * The spec also states that the hypervisor should place this capability | 
|  | * at the end of the capability list, thus next is defined as 0h. | 
|  | * | 
|  | * +----------------+----------------+----------------+----------------+ | 
|  | * | sig 7:0 ('P')  |  vndr len (8h) |    next (0h)   |   cap id (9h)  | | 
|  | * +----------------+----------------+----------------+----------------+ | 
|  | * | rsvd 15:7(0h),id 6:3,ver 2:0(0h)|          sig 23:8 ('P2')        | | 
|  | * +---------------------------------+---------------------------------+ | 
|  | * | 
|  | * https://lists.gnu.org/archive/html/qemu-devel/2017-08/pdfUda5iEpgOS.pdf | 
|  | * | 
|  | * Specification for Turning and later GPU architectures: | 
|  | * https://lists.gnu.org/archive/html/qemu-devel/2023-06/pdf142OR4O4c2.pdf | 
|  | */ | 
|  | static void get_nv_gpudirect_clique_id(Object *obj, Visitor *v, | 
|  | const char *name, void *opaque, | 
|  | Error **errp) | 
|  | { | 
|  | const Property *prop = opaque; | 
|  | uint8_t *ptr = object_field_prop_ptr(obj, prop); | 
|  |  | 
|  | visit_type_uint8(v, name, ptr, errp); | 
|  | } | 
|  |  | 
|  | static void set_nv_gpudirect_clique_id(Object *obj, Visitor *v, | 
|  | const char *name, void *opaque, | 
|  | Error **errp) | 
|  | { | 
|  | const Property *prop = opaque; | 
|  | uint8_t value, *ptr = object_field_prop_ptr(obj, prop); | 
|  |  | 
|  | if (!visit_type_uint8(v, name, &value, errp)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (value & ~0xF) { | 
|  | error_setg(errp, "Property %s: valid range 0-15", name); | 
|  | return; | 
|  | } | 
|  |  | 
|  | *ptr = value; | 
|  | } | 
|  |  | 
|  | const PropertyInfo qdev_prop_nv_gpudirect_clique = { | 
|  | .type = "uint8", | 
|  | .description = "NVIDIA GPUDirect Clique ID (0 - 15)", | 
|  | .get = get_nv_gpudirect_clique_id, | 
|  | .set = set_nv_gpudirect_clique_id, | 
|  | }; | 
|  |  | 
|  | static bool is_valid_std_cap_offset(uint8_t pos) | 
|  | { | 
|  | return (pos >= PCI_STD_HEADER_SIZEOF && | 
|  | pos <= (PCI_CFG_SPACE_SIZE - PCI_CAP_SIZEOF)); | 
|  | } | 
|  |  | 
|  | static bool vfio_add_nv_gpudirect_cap(VFIOPCIDevice *vdev, Error **errp) | 
|  | { | 
|  | ERRP_GUARD(); | 
|  | PCIDevice *pdev = &vdev->pdev; | 
|  | int ret, pos; | 
|  | bool c8_conflict = false, d4_conflict = false; | 
|  | uint8_t tmp; | 
|  |  | 
|  | if (vdev->nv_gpudirect_clique == 0xFF) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID)) { | 
|  | error_setg(errp, "NVIDIA GPUDirect Clique ID: invalid device vendor"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (pci_get_byte(pdev->config + PCI_CLASS_DEVICE + 1) != | 
|  | PCI_BASE_CLASS_DISPLAY) { | 
|  | error_setg(errp, "NVIDIA GPUDirect Clique ID: unsupported PCI class"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Per the updated specification above, it's recommended to use offset | 
|  | * D4h for Turing and later GPU architectures due to a conflict of the | 
|  | * MSI-X capability at C8h.  We don't know how to determine the GPU | 
|  | * architecture, instead we walk the capability chain to mark conflicts | 
|  | * and choose one or error based on the result. | 
|  | * | 
|  | * NB. Cap list head in pdev->config is already cleared, read from device. | 
|  | */ | 
|  | ret = pread(vdev->vbasedev.fd, &tmp, 1, | 
|  | vdev->config_offset + PCI_CAPABILITY_LIST); | 
|  | if (ret != 1 || !is_valid_std_cap_offset(tmp)) { | 
|  | error_setg(errp, "NVIDIA GPUDirect Clique ID: error getting cap list"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | do { | 
|  | if (tmp == 0xC8) { | 
|  | c8_conflict = true; | 
|  | } else if (tmp == 0xD4) { | 
|  | d4_conflict = true; | 
|  | } | 
|  | tmp = pdev->config[tmp + PCI_CAP_LIST_NEXT]; | 
|  | } while (is_valid_std_cap_offset(tmp)); | 
|  |  | 
|  | if (!c8_conflict) { | 
|  | pos = 0xC8; | 
|  | } else if (!d4_conflict) { | 
|  | pos = 0xD4; | 
|  | } else { | 
|  | error_setg(errp, "NVIDIA GPUDirect Clique ID: invalid config space"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ret = pci_add_capability(pdev, PCI_CAP_ID_VNDR, pos, 8, errp); | 
|  | if (ret < 0) { | 
|  | error_prepend(errp, "Failed to add NVIDIA GPUDirect cap: "); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | memset(vdev->emulated_config_bits + pos, 0xFF, 8); | 
|  | pos += PCI_CAP_FLAGS; | 
|  | pci_set_byte(pdev->config + pos++, 8); | 
|  | pci_set_byte(pdev->config + pos++, 'P'); | 
|  | pci_set_byte(pdev->config + pos++, '2'); | 
|  | pci_set_byte(pdev->config + pos++, 'P'); | 
|  | pci_set_byte(pdev->config + pos++, vdev->nv_gpudirect_clique << 3); | 
|  | pci_set_byte(pdev->config + pos, 0); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The VMD endpoint provides a real PCIe domain to the guest and the guest | 
|  | * kernel performs enumeration of the VMD sub-device domain. Guest transactions | 
|  | * to VMD sub-devices go through MMU translation from guest addresses to | 
|  | * physical addresses. When MMIO goes to an endpoint after being translated to | 
|  | * physical addresses, the bridge rejects the transaction because the window | 
|  | * has been programmed with guest addresses. | 
|  | * | 
|  | * VMD can use the Host Physical Address in order to correctly program the | 
|  | * bridge windows in its PCIe domain. VMD device 28C0 has HPA shadow registers | 
|  | * located at offset 0x2000 in MEMBAR2 (BAR 4). This quirk provides the HPA | 
|  | * shadow registers in a vendor-specific capability register for devices | 
|  | * without native support. The position of 0xE8-0xFF is in the reserved range | 
|  | * of the VMD device capability space following the Power Management | 
|  | * Capability. | 
|  | */ | 
|  | #define VMD_SHADOW_CAP_VER 1 | 
|  | #define VMD_SHADOW_CAP_LEN 24 | 
|  | static bool vfio_add_vmd_shadow_cap(VFIOPCIDevice *vdev, Error **errp) | 
|  | { | 
|  | ERRP_GUARD(); | 
|  | uint8_t membar_phys[16]; | 
|  | int ret, pos = 0xE8; | 
|  |  | 
|  | if (!(vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, 0x201D) || | 
|  | vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, 0x467F) || | 
|  | vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, 0x4C3D) || | 
|  | vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, 0x9A0B))) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | ret = pread(vdev->vbasedev.fd, membar_phys, 16, | 
|  | vdev->config_offset + PCI_BASE_ADDRESS_2); | 
|  | if (ret != 16) { | 
|  | error_report("VMD %s cannot read MEMBARs (%d)", | 
|  | vdev->vbasedev.name, ret); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ret = pci_add_capability(&vdev->pdev, PCI_CAP_ID_VNDR, pos, | 
|  | VMD_SHADOW_CAP_LEN, errp); | 
|  | if (ret < 0) { | 
|  | error_prepend(errp, "Failed to add VMD MEMBAR Shadow cap: "); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | memset(vdev->emulated_config_bits + pos, 0xFF, VMD_SHADOW_CAP_LEN); | 
|  | pos += PCI_CAP_FLAGS; | 
|  | pci_set_byte(vdev->pdev.config + pos++, VMD_SHADOW_CAP_LEN); | 
|  | pci_set_byte(vdev->pdev.config + pos++, VMD_SHADOW_CAP_VER); | 
|  | pci_set_long(vdev->pdev.config + pos, 0x53484457); /* SHDW */ | 
|  | memcpy(vdev->pdev.config + pos + 4, membar_phys, 16); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool vfio_add_virt_caps(VFIOPCIDevice *vdev, Error **errp) | 
|  | { | 
|  | if (!vfio_add_nv_gpudirect_cap(vdev, errp)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!vfio_add_vmd_shadow_cap(vdev, errp)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } |