| /* | 
 |  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator | 
 |  * | 
 |  * Copyright (c) 2004-2007 Fabrice Bellard | 
 |  * Copyright (c) 2007 Jocelyn Mayer | 
 |  * Copyright (c) 2010 David Gibson, IBM Corporation. | 
 |  * Copyright (c) 2010-2024, IBM Corporation.. | 
 |  * | 
 |  * SPDX-License-Identifier: GPL-2.0-or-later | 
 |  * | 
 |  * Permission is hereby granted, free of charge, to any person obtaining a copy | 
 |  * of this software and associated documentation files (the "Software"), to deal | 
 |  * in the Software without restriction, including without limitation the rights | 
 |  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | 
 |  * copies of the Software, and to permit persons to whom the Software is | 
 |  * furnished to do so, subject to the following conditions: | 
 |  * | 
 |  * The above copyright notice and this permission notice shall be included in | 
 |  * all copies or substantial portions of the Software. | 
 |  * | 
 |  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
 |  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
 |  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | 
 |  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
 |  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | 
 |  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | 
 |  * THE SOFTWARE. | 
 |  */ | 
 |  | 
 | #include "qemu/osdep.h" | 
 | #include "qemu/datadir.h" | 
 | #include "qemu/memalign.h" | 
 | #include "qemu/guest-random.h" | 
 | #include "qapi/error.h" | 
 | #include "qapi/qapi-events-machine.h" | 
 | #include "qapi/qapi-events-qdev.h" | 
 | #include "qapi/visitor.h" | 
 | #include "system/system.h" | 
 | #include "system/hostmem.h" | 
 | #include "system/numa.h" | 
 | #include "system/tcg.h" | 
 | #include "system/qtest.h" | 
 | #include "system/reset.h" | 
 | #include "system/runstate.h" | 
 | #include "qemu/log.h" | 
 | #include "hw/fw-path-provider.h" | 
 | #include "elf.h" | 
 | #include "net/net.h" | 
 | #include "system/device_tree.h" | 
 | #include "system/cpus.h" | 
 | #include "system/hw_accel.h" | 
 | #include "kvm_ppc.h" | 
 | #include "migration/misc.h" | 
 | #include "migration/qemu-file-types.h" | 
 | #include "migration/global_state.h" | 
 | #include "migration/register.h" | 
 | #include "migration/blocker.h" | 
 | #include "mmu-hash64.h" | 
 | #include "mmu-book3s-v3.h" | 
 | #include "cpu-models.h" | 
 | #include "hw/core/cpu.h" | 
 |  | 
 | #include "hw/ppc/ppc.h" | 
 | #include "hw/loader.h" | 
 |  | 
 | #include "hw/ppc/fdt.h" | 
 | #include "hw/ppc/spapr.h" | 
 | #include "hw/ppc/spapr_nested.h" | 
 | #include "hw/ppc/spapr_vio.h" | 
 | #include "hw/ppc/vof.h" | 
 | #include "hw/qdev-properties.h" | 
 | #include "hw/pci-host/spapr.h" | 
 | #include "hw/pci/msi.h" | 
 |  | 
 | #include "hw/pci/pci.h" | 
 | #include "hw/scsi/scsi.h" | 
 | #include "hw/virtio/virtio-scsi.h" | 
 | #include "hw/virtio/vhost-scsi-common.h" | 
 |  | 
 | #include "system/ram_addr.h" | 
 | #include "system/confidential-guest-support.h" | 
 | #include "hw/usb.h" | 
 | #include "qemu/config-file.h" | 
 | #include "qemu/error-report.h" | 
 | #include "trace.h" | 
 | #include "hw/nmi.h" | 
 | #include "hw/intc/intc.h" | 
 |  | 
 | #include "hw/ppc/spapr_cpu_core.h" | 
 | #include "hw/mem/memory-device.h" | 
 | #include "hw/ppc/spapr_tpm_proxy.h" | 
 | #include "hw/ppc/spapr_nvdimm.h" | 
 | #include "hw/ppc/spapr_numa.h" | 
 |  | 
 | #include <libfdt.h> | 
 |  | 
 | /* SLOF memory layout: | 
 |  * | 
 |  * SLOF raw image loaded at 0, copies its romfs right below the flat | 
 |  * device-tree, then position SLOF itself 31M below that | 
 |  * | 
 |  * So we set FW_OVERHEAD to 40MB which should account for all of that | 
 |  * and more | 
 |  * | 
 |  * We load our kernel at 4M, leaving space for SLOF initial image | 
 |  */ | 
 | #define FDT_MAX_ADDR            0x80000000 /* FDT must stay below that */ | 
 | #define FW_MAX_SIZE             0x400000 | 
 | #define FW_FILE_NAME            "slof.bin" | 
 | #define FW_FILE_NAME_VOF        "vof.bin" | 
 | #define FW_OVERHEAD             0x2800000 | 
 | #define KERNEL_LOAD_ADDR        FW_MAX_SIZE | 
 |  | 
 | #define MIN_RMA_SLOF            (128 * MiB) | 
 |  | 
 | #define PHANDLE_INTC            0x00001111 | 
 |  | 
 | /* These two functions implement the VCPU id numbering: one to compute them | 
 |  * all and one to identify thread 0 of a VCORE. Any change to the first one | 
 |  * is likely to have an impact on the second one, so let's keep them close. | 
 |  */ | 
 | static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) | 
 | { | 
 |     MachineState *ms = MACHINE(spapr); | 
 |     unsigned int smp_threads = ms->smp.threads; | 
 |  | 
 |     assert(spapr->vsmt); | 
 |     return | 
 |         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; | 
 | } | 
 | static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, | 
 |                                       PowerPCCPU *cpu) | 
 | { | 
 |     assert(spapr->vsmt); | 
 |     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; | 
 | } | 
 |  | 
 | int spapr_max_server_number(SpaprMachineState *spapr) | 
 | { | 
 |     MachineState *ms = MACHINE(spapr); | 
 |  | 
 |     assert(spapr->vsmt); | 
 |     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads); | 
 | } | 
 |  | 
 | static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, | 
 |                                   int smt_threads) | 
 | { | 
 |     int i, ret = 0; | 
 |     g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads); | 
 |     g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2); | 
 |     int index = spapr_get_vcpu_id(cpu); | 
 |  | 
 |     if (cpu->compat_pvr) { | 
 |         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); | 
 |         if (ret < 0) { | 
 |             return ret; | 
 |         } | 
 |     } | 
 |  | 
 |     /* Build interrupt servers and gservers properties */ | 
 |     for (i = 0; i < smt_threads; i++) { | 
 |         servers_prop[i] = cpu_to_be32(index + i); | 
 |         /* Hack, direct the group queues back to cpu 0 */ | 
 |         gservers_prop[i*2] = cpu_to_be32(index + i); | 
 |         gservers_prop[i*2 + 1] = 0; | 
 |     } | 
 |     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", | 
 |                       servers_prop, sizeof(*servers_prop) * smt_threads); | 
 |     if (ret < 0) { | 
 |         return ret; | 
 |     } | 
 |     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", | 
 |                       gservers_prop, sizeof(*gservers_prop) * smt_threads * 2); | 
 |  | 
 |     return ret; | 
 | } | 
 |  | 
 | static void spapr_dt_pa_features(SpaprMachineState *spapr, | 
 |                                  PowerPCCPU *cpu, | 
 |                                  void *fdt, int offset) | 
 | { | 
 |     /* | 
 |      * SSO (SAO) ordering is supported on KVM and thread=single hosts, | 
 |      * but not MTTCG, so disable it. To advertise it, a cap would have | 
 |      * to be added, or support implemented for MTTCG. | 
 |      * | 
 |      * Copy/paste is not supported by TCG, so it is not advertised. KVM | 
 |      * can execute them but it has no accelerator drivers which are usable, | 
 |      * so there isn't much need for it anyway. | 
 |      */ | 
 |  | 
 |     /* These should be kept in sync with pnv */ | 
 |     uint8_t pa_features_206[] = { 6, 0, | 
 |         0xf6, 0x1f, 0xc7, 0x00, 0x00, 0xc0 }; | 
 |     uint8_t pa_features_207[] = { 24, 0, | 
 |         0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, | 
 |         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, | 
 |         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, | 
 |         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; | 
 |     uint8_t pa_features_300[] = { 66, 0, | 
 |         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ | 
 |         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */ | 
 |         0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */ | 
 |         /* 6: DS207 */ | 
 |         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ | 
 |         /* 16: Vector */ | 
 |         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ | 
 |         /* 18: Vec. Scalar, 20: Vec. XOR */ | 
 |         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ | 
 |         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ | 
 |         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ | 
 |         /* 32: LE atomic, 34: EBB + ext EBB */ | 
 |         0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ | 
 |         /* 40: Radix MMU */ | 
 |         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */ | 
 |         /* 42: PM, 44: PC RA, 46: SC vec'd */ | 
 |         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ | 
 |         /* 48: SIMD, 50: QP BFP, 52: String */ | 
 |         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ | 
 |         /* 54: DecFP, 56: DecI, 58: SHA */ | 
 |         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ | 
 |         /* 60: NM atomic, 62: RNG */ | 
 |         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ | 
 |     }; | 
 |     /* 3.1 removes SAO, HTM support */ | 
 |     uint8_t pa_features_31[] = { 74, 0, | 
 |         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ | 
 |         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */ | 
 |         0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */ | 
 |         /* 6: DS207 */ | 
 |         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ | 
 |         /* 16: Vector */ | 
 |         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ | 
 |         /* 18: Vec. Scalar, 20: Vec. XOR */ | 
 |         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ | 
 |         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ | 
 |         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ | 
 |         /* 32: LE atomic, 34: EBB + ext EBB */ | 
 |         0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ | 
 |         /* 40: Radix MMU */ | 
 |         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */ | 
 |         /* 42: PM, 44: PC RA, 46: SC vec'd */ | 
 |         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ | 
 |         /* 48: SIMD, 50: QP BFP, 52: String */ | 
 |         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ | 
 |         /* 54: DecFP, 56: DecI, 58: SHA */ | 
 |         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ | 
 |         /* 60: NM atomic, 62: RNG, 64: DAWR1 (ISA 3.1) */ | 
 |         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ | 
 |         /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */ | 
 |         0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */ | 
 |         /* 72: [P]HASHST/[P]HASHCHK */ | 
 |         0x80, 0x00,                         /* 72 - 73 */ | 
 |     }; | 
 |     uint8_t *pa_features = NULL; | 
 |     size_t pa_size; | 
 |  | 
 |     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { | 
 |         pa_features = pa_features_206; | 
 |         pa_size = sizeof(pa_features_206); | 
 |     } | 
 |     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { | 
 |         pa_features = pa_features_207; | 
 |         pa_size = sizeof(pa_features_207); | 
 |     } | 
 |     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { | 
 |         pa_features = pa_features_300; | 
 |         pa_size = sizeof(pa_features_300); | 
 |     } | 
 |     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_10, 0, cpu->compat_pvr)) { | 
 |         pa_features = pa_features_31; | 
 |         pa_size = sizeof(pa_features_31); | 
 |     } | 
 |     if (!pa_features) { | 
 |         return; | 
 |     } | 
 |  | 
 |     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { | 
 |         /* | 
 |          * Note: we keep CI large pages off by default because a 64K capable | 
 |          * guest provisioned with large pages might otherwise try to map a qemu | 
 |          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages | 
 |          * even if that qemu runs on a 4k host. | 
 |          * We dd this bit back here if we are confident this is not an issue | 
 |          */ | 
 |         pa_features[3] |= 0x20; | 
 |     } | 
 |     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { | 
 |         pa_features[24] |= 0x80;    /* Transactional memory support */ | 
 |     } | 
 |     if (spapr->cas_pre_isa3_guest && pa_size > 40) { | 
 |         /* Workaround for broken kernels that attempt (guest) radix | 
 |          * mode when they can't handle it, if they see the radix bit set | 
 |          * in pa-features. So hide it from them. */ | 
 |         pa_features[40 + 2] &= ~0x80; /* Radix MMU */ | 
 |     } | 
 |     if (spapr_get_cap(spapr, SPAPR_CAP_DAWR1)) { | 
 |         g_assert(pa_size > 66); | 
 |         pa_features[66] |= 0x80; | 
 |     } | 
 |  | 
 |     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); | 
 | } | 
 |  | 
 | static void spapr_dt_pi_features(SpaprMachineState *spapr, | 
 |                                  PowerPCCPU *cpu, | 
 |                                  void *fdt, int offset) | 
 | { | 
 |     uint8_t pi_features[] = { 1, 0, | 
 |         0x00 }; | 
 |  | 
 |     if (kvm_enabled() && ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, | 
 |                                           0, cpu->compat_pvr)) { | 
 |         /* | 
 |          * POWER9 and later CPUs with KVM run in LPAR-per-thread mode where | 
 |          * all threads are essentially independent CPUs, and msgsndp does not | 
 |          * work (because it is physically-addressed) and therefore is | 
 |          * emulated by KVM, so disable it here to ensure XIVE will be used. | 
 |          * This is both KVM and CPU implementation-specific behaviour so a KVM | 
 |          * cap would be cleanest, but for now this works. If KVM ever permits | 
 |          * native msgsndp execution by guests, a cap could be added at that | 
 |          * time. | 
 |          */ | 
 |         pi_features[2] |= 0x08; /* 4: No msgsndp */ | 
 |     } | 
 |  | 
 |     _FDT((fdt_setprop(fdt, offset, "ibm,pi-features", pi_features, | 
 |                       sizeof(pi_features)))); | 
 | } | 
 |  | 
 | static hwaddr spapr_node0_size(MachineState *machine) | 
 | { | 
 |     if (machine->numa_state->num_nodes) { | 
 |         int i; | 
 |         for (i = 0; i < machine->numa_state->num_nodes; ++i) { | 
 |             if (machine->numa_state->nodes[i].node_mem) { | 
 |                 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem), | 
 |                            machine->ram_size); | 
 |             } | 
 |         } | 
 |     } | 
 |     return machine->ram_size; | 
 | } | 
 |  | 
 | static void add_str(GString *s, const gchar *s1) | 
 | { | 
 |     g_string_append_len(s, s1, strlen(s1) + 1); | 
 | } | 
 |  | 
 | static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid, | 
 |                                 hwaddr start, hwaddr size) | 
 | { | 
 |     char mem_name[32]; | 
 |     uint64_t mem_reg_property[2]; | 
 |     int off; | 
 |  | 
 |     mem_reg_property[0] = cpu_to_be64(start); | 
 |     mem_reg_property[1] = cpu_to_be64(size); | 
 |  | 
 |     sprintf(mem_name, "memory@%" HWADDR_PRIx, start); | 
 |     off = fdt_add_subnode(fdt, 0, mem_name); | 
 |     _FDT(off); | 
 |     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); | 
 |     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, | 
 |                       sizeof(mem_reg_property)))); | 
 |     spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid); | 
 |     return off; | 
 | } | 
 |  | 
 | static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) | 
 | { | 
 |     MemoryDeviceInfoList *info; | 
 |  | 
 |     for (info = list; info; info = info->next) { | 
 |         MemoryDeviceInfo *value = info->value; | 
 |  | 
 |         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { | 
 |             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; | 
 |  | 
 |             if (addr >= pcdimm_info->addr && | 
 |                 addr < (pcdimm_info->addr + pcdimm_info->size)) { | 
 |                 return pcdimm_info->node; | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     return -1; | 
 | } | 
 |  | 
 | struct sPAPRDrconfCellV2 { | 
 |      uint32_t seq_lmbs; | 
 |      uint64_t base_addr; | 
 |      uint32_t drc_index; | 
 |      uint32_t aa_index; | 
 |      uint32_t flags; | 
 | } QEMU_PACKED; | 
 |  | 
 | typedef struct DrconfCellQueue { | 
 |     struct sPAPRDrconfCellV2 cell; | 
 |     QSIMPLEQ_ENTRY(DrconfCellQueue) entry; | 
 | } DrconfCellQueue; | 
 |  | 
 | static DrconfCellQueue * | 
 | spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, | 
 |                       uint32_t drc_index, uint32_t aa_index, | 
 |                       uint32_t flags) | 
 | { | 
 |     DrconfCellQueue *elem; | 
 |  | 
 |     elem = g_malloc0(sizeof(*elem)); | 
 |     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); | 
 |     elem->cell.base_addr = cpu_to_be64(base_addr); | 
 |     elem->cell.drc_index = cpu_to_be32(drc_index); | 
 |     elem->cell.aa_index = cpu_to_be32(aa_index); | 
 |     elem->cell.flags = cpu_to_be32(flags); | 
 |  | 
 |     return elem; | 
 | } | 
 |  | 
 | static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt, | 
 |                                       int offset, MemoryDeviceInfoList *dimms) | 
 | { | 
 |     MachineState *machine = MACHINE(spapr); | 
 |     uint8_t *int_buf, *cur_index; | 
 |     int ret; | 
 |     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; | 
 |     uint64_t addr, cur_addr, size; | 
 |     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); | 
 |     uint64_t mem_end = machine->device_memory->base + | 
 |                        memory_region_size(&machine->device_memory->mr); | 
 |     uint32_t node, buf_len, nr_entries = 0; | 
 |     SpaprDrc *drc; | 
 |     DrconfCellQueue *elem, *next; | 
 |     MemoryDeviceInfoList *info; | 
 |     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue | 
 |         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); | 
 |  | 
 |     /* Entry to cover RAM and the gap area */ | 
 |     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, | 
 |                                  SPAPR_LMB_FLAGS_RESERVED | | 
 |                                  SPAPR_LMB_FLAGS_DRC_INVALID); | 
 |     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); | 
 |     nr_entries++; | 
 |  | 
 |     cur_addr = machine->device_memory->base; | 
 |     for (info = dimms; info; info = info->next) { | 
 |         PCDIMMDeviceInfo *di = info->value->u.dimm.data; | 
 |  | 
 |         addr = di->addr; | 
 |         size = di->size; | 
 |         node = di->node; | 
 |  | 
 |         /* | 
 |          * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The | 
 |          * area is marked hotpluggable in the next iteration for the bigger | 
 |          * chunk including the NVDIMM occupied area. | 
 |          */ | 
 |         if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM) | 
 |             continue; | 
 |  | 
 |         /* Entry for hot-pluggable area */ | 
 |         if (cur_addr < addr) { | 
 |             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); | 
 |             g_assert(drc); | 
 |             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, | 
 |                                          cur_addr, spapr_drc_index(drc), -1, 0); | 
 |             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); | 
 |             nr_entries++; | 
 |         } | 
 |  | 
 |         /* Entry for DIMM */ | 
 |         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); | 
 |         g_assert(drc); | 
 |         elem = spapr_get_drconf_cell(size / lmb_size, addr, | 
 |                                      spapr_drc_index(drc), node, | 
 |                                      (SPAPR_LMB_FLAGS_ASSIGNED | | 
 |                                       SPAPR_LMB_FLAGS_HOTREMOVABLE)); | 
 |         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); | 
 |         nr_entries++; | 
 |         cur_addr = addr + size; | 
 |     } | 
 |  | 
 |     /* Entry for remaining hotpluggable area */ | 
 |     if (cur_addr < mem_end) { | 
 |         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); | 
 |         g_assert(drc); | 
 |         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, | 
 |                                      cur_addr, spapr_drc_index(drc), -1, 0); | 
 |         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); | 
 |         nr_entries++; | 
 |     } | 
 |  | 
 |     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); | 
 |     int_buf = cur_index = g_malloc0(buf_len); | 
 |     *(uint32_t *)int_buf = cpu_to_be32(nr_entries); | 
 |     cur_index += sizeof(nr_entries); | 
 |  | 
 |     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { | 
 |         memcpy(cur_index, &elem->cell, sizeof(elem->cell)); | 
 |         cur_index += sizeof(elem->cell); | 
 |         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); | 
 |         g_free(elem); | 
 |     } | 
 |  | 
 |     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); | 
 |     g_free(int_buf); | 
 |     if (ret < 0) { | 
 |         return -1; | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt, | 
 |                                    int offset, MemoryDeviceInfoList *dimms) | 
 | { | 
 |     MachineState *machine = MACHINE(spapr); | 
 |     int i, ret; | 
 |     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; | 
 |     uint32_t device_lmb_start = machine->device_memory->base / lmb_size; | 
 |     uint32_t nr_lmbs = (machine->device_memory->base + | 
 |                        memory_region_size(&machine->device_memory->mr)) / | 
 |                        lmb_size; | 
 |     uint32_t *int_buf, *cur_index, buf_len; | 
 |  | 
 |     /* | 
 |      * Allocate enough buffer size to fit in ibm,dynamic-memory | 
 |      */ | 
 |     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); | 
 |     cur_index = int_buf = g_malloc0(buf_len); | 
 |     int_buf[0] = cpu_to_be32(nr_lmbs); | 
 |     cur_index++; | 
 |     for (i = 0; i < nr_lmbs; i++) { | 
 |         uint64_t addr = i * lmb_size; | 
 |         uint32_t *dynamic_memory = cur_index; | 
 |  | 
 |         if (i >= device_lmb_start) { | 
 |             SpaprDrc *drc; | 
 |  | 
 |             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); | 
 |             g_assert(drc); | 
 |  | 
 |             dynamic_memory[0] = cpu_to_be32(addr >> 32); | 
 |             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); | 
 |             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); | 
 |             dynamic_memory[3] = cpu_to_be32(0); /* reserved */ | 
 |             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); | 
 |             if (memory_region_present(get_system_memory(), addr)) { | 
 |                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); | 
 |             } else { | 
 |                 dynamic_memory[5] = cpu_to_be32(0); | 
 |             } | 
 |         } else { | 
 |             /* | 
 |              * LMB information for RMA, boot time RAM and gap b/n RAM and | 
 |              * device memory region -- all these are marked as reserved | 
 |              * and as having no valid DRC. | 
 |              */ | 
 |             dynamic_memory[0] = cpu_to_be32(addr >> 32); | 
 |             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); | 
 |             dynamic_memory[2] = cpu_to_be32(0); | 
 |             dynamic_memory[3] = cpu_to_be32(0); /* reserved */ | 
 |             dynamic_memory[4] = cpu_to_be32(-1); | 
 |             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | | 
 |                                             SPAPR_LMB_FLAGS_DRC_INVALID); | 
 |         } | 
 |  | 
 |         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; | 
 |     } | 
 |     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); | 
 |     g_free(int_buf); | 
 |     if (ret < 0) { | 
 |         return -1; | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Adds ibm,dynamic-reconfiguration-memory node. | 
 |  * Refer to docs/specs/ppc-spapr-hotplug.rst for the documentation | 
 |  * of this device tree node. | 
 |  */ | 
 | static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr, | 
 |                                                    void *fdt) | 
 | { | 
 |     MachineState *machine = MACHINE(spapr); | 
 |     int ret, offset; | 
 |     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; | 
 |     uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32), | 
 |                                 cpu_to_be32(lmb_size & 0xffffffff)}; | 
 |     MemoryDeviceInfoList *dimms = NULL; | 
 |  | 
 |     /* Don't create the node if there is no device memory. */ | 
 |     if (!machine->device_memory) { | 
 |         return 0; | 
 |     } | 
 |  | 
 |     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); | 
 |  | 
 |     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, | 
 |                     sizeof(prop_lmb_size)); | 
 |     if (ret < 0) { | 
 |         return ret; | 
 |     } | 
 |  | 
 |     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); | 
 |     if (ret < 0) { | 
 |         return ret; | 
 |     } | 
 |  | 
 |     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); | 
 |     if (ret < 0) { | 
 |         return ret; | 
 |     } | 
 |  | 
 |     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ | 
 |     dimms = qmp_memory_device_list(); | 
 |     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { | 
 |         ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms); | 
 |     } else { | 
 |         ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms); | 
 |     } | 
 |     qapi_free_MemoryDeviceInfoList(dimms); | 
 |  | 
 |     if (ret < 0) { | 
 |         return ret; | 
 |     } | 
 |  | 
 |     ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset); | 
 |  | 
 |     return ret; | 
 | } | 
 |  | 
 | static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt) | 
 | { | 
 |     MachineState *machine = MACHINE(spapr); | 
 |     hwaddr mem_start, node_size; | 
 |     int i, nb_nodes = machine->numa_state->num_nodes; | 
 |     NodeInfo *nodes = machine->numa_state->nodes; | 
 |  | 
 |     for (i = 0, mem_start = 0; i < nb_nodes; ++i) { | 
 |         if (!nodes[i].node_mem) { | 
 |             continue; | 
 |         } | 
 |         if (mem_start >= machine->ram_size) { | 
 |             node_size = 0; | 
 |         } else { | 
 |             node_size = nodes[i].node_mem; | 
 |             if (node_size > machine->ram_size - mem_start) { | 
 |                 node_size = machine->ram_size - mem_start; | 
 |             } | 
 |         } | 
 |         if (!mem_start) { | 
 |             /* spapr_machine_init() checks for rma_size <= node0_size | 
 |              * already */ | 
 |             spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size); | 
 |             mem_start += spapr->rma_size; | 
 |             node_size -= spapr->rma_size; | 
 |         } | 
 |         for ( ; node_size; ) { | 
 |             hwaddr sizetmp = pow2floor(node_size); | 
 |  | 
 |             /* mem_start != 0 here */ | 
 |             if (ctzl(mem_start) < ctzl(sizetmp)) { | 
 |                 sizetmp = 1ULL << ctzl(mem_start); | 
 |             } | 
 |  | 
 |             spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp); | 
 |             node_size -= sizetmp; | 
 |             mem_start += sizetmp; | 
 |         } | 
 |     } | 
 |  | 
 |     /* Generate ibm,dynamic-reconfiguration-memory node if required */ | 
 |     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) { | 
 |         int ret; | 
 |  | 
 |         ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt); | 
 |         if (ret) { | 
 |             return ret; | 
 |         } | 
 |     } | 
 |  | 
 |     return 0; | 
 | } | 
 |  | 
 | static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset, | 
 |                          SpaprMachineState *spapr) | 
 | { | 
 |     MachineState *ms = MACHINE(spapr); | 
 |     PowerPCCPU *cpu = POWERPC_CPU(cs); | 
 |     CPUPPCState *env = &cpu->env; | 
 |     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); | 
 |     int index = spapr_get_vcpu_id(cpu); | 
 |     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), | 
 |                        0xffffffff, 0xffffffff}; | 
 |     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() | 
 |         : SPAPR_TIMEBASE_FREQ; | 
 |     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; | 
 |     uint32_t page_sizes_prop[64]; | 
 |     size_t page_sizes_prop_size; | 
 |     unsigned int smp_threads = ms->smp.threads; | 
 |     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores; | 
 |     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; | 
 |     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); | 
 |     SpaprDrc *drc; | 
 |     int drc_index; | 
 |     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; | 
 |     int i; | 
 |  | 
 |     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, env->core_index); | 
 |     if (drc) { | 
 |         drc_index = spapr_drc_index(drc); | 
 |         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); | 
 |     } | 
 |  | 
 |     _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); | 
 |     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); | 
 |  | 
 |     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); | 
 |     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", | 
 |                            env->dcache_line_size))); | 
 |     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", | 
 |                            env->dcache_line_size))); | 
 |     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", | 
 |                            env->icache_line_size))); | 
 |     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", | 
 |                            env->icache_line_size))); | 
 |  | 
 |     if (pcc->l1_dcache_size) { | 
 |         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", | 
 |                                pcc->l1_dcache_size))); | 
 |     } else { | 
 |         warn_report("Unknown L1 dcache size for cpu"); | 
 |     } | 
 |     if (pcc->l1_icache_size) { | 
 |         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", | 
 |                                pcc->l1_icache_size))); | 
 |     } else { | 
 |         warn_report("Unknown L1 icache size for cpu"); | 
 |     } | 
 |  | 
 |     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); | 
 |     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); | 
 |     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); | 
 |     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); | 
 |     _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); | 
 |     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); | 
 |  | 
 |     if (ppc_has_spr(cpu, SPR_PURR)) { | 
 |         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); | 
 |     } | 
 |     if (ppc_has_spr(cpu, SPR_PURR)) { | 
 |         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); | 
 |     } | 
 |  | 
 |     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { | 
 |         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", | 
 |                           segs, sizeof(segs)))); | 
 |     } | 
 |  | 
 |     /* Advertise VSX (vector extensions) if available | 
 |      *   1               == VMX / Altivec available | 
 |      *   2               == VSX available | 
 |      * | 
 |      * Only CPUs for which we create core types in spapr_cpu_core.c | 
 |      * are possible, and all of those have VMX */ | 
 |     if (env->insns_flags & PPC_ALTIVEC) { | 
 |         if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { | 
 |             _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); | 
 |         } else { | 
 |             _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); | 
 |         } | 
 |     } | 
 |  | 
 |     /* Advertise DFP (Decimal Floating Point) if available | 
 |      *   0 / no property == no DFP | 
 |      *   1               == DFP available */ | 
 |     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { | 
 |         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); | 
 |     } | 
 |  | 
 |     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, | 
 |                                                       sizeof(page_sizes_prop)); | 
 |     if (page_sizes_prop_size) { | 
 |         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", | 
 |                           page_sizes_prop, page_sizes_prop_size))); | 
 |     } | 
 |  | 
 |     spapr_dt_pa_features(spapr, cpu, fdt, offset); | 
 |  | 
 |     spapr_dt_pi_features(spapr, cpu, fdt, offset); | 
 |  | 
 |     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", | 
 |                            cs->cpu_index / vcpus_per_socket))); | 
 |  | 
 |     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", | 
 |                       pft_size_prop, sizeof(pft_size_prop)))); | 
 |  | 
 |     if (ms->numa_state->num_nodes > 1) { | 
 |         _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu)); | 
 |     } | 
 |  | 
 |     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); | 
 |  | 
 |     if (pcc->radix_page_info) { | 
 |         for (i = 0; i < pcc->radix_page_info->count; i++) { | 
 |             radix_AP_encodings[i] = | 
 |                 cpu_to_be32(pcc->radix_page_info->entries[i]); | 
 |         } | 
 |         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", | 
 |                           radix_AP_encodings, | 
 |                           pcc->radix_page_info->count * | 
 |                           sizeof(radix_AP_encodings[0])))); | 
 |     } | 
 |  | 
 |     /* | 
 |      * We set this property to let the guest know that it can use the large | 
 |      * decrementer and its width in bits. | 
 |      */ | 
 |     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) | 
 |         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", | 
 |                               pcc->lrg_decr_bits))); | 
 | } | 
 |  | 
 | static void spapr_dt_one_cpu(void *fdt, SpaprMachineState *spapr, CPUState *cs, | 
 |                              int cpus_offset) | 
 | { | 
 |     PowerPCCPU *cpu = POWERPC_CPU(cs); | 
 |     int index = spapr_get_vcpu_id(cpu); | 
 |     DeviceClass *dc = DEVICE_GET_CLASS(cs); | 
 |     g_autofree char *nodename = NULL; | 
 |     int offset; | 
 |  | 
 |     if (!spapr_is_thread0_in_vcore(spapr, cpu)) { | 
 |         return; | 
 |     } | 
 |  | 
 |     nodename = g_strdup_printf("%s@%x", dc->fw_name, index); | 
 |     offset = fdt_add_subnode(fdt, cpus_offset, nodename); | 
 |     _FDT(offset); | 
 |     spapr_dt_cpu(cs, fdt, offset, spapr); | 
 | } | 
 |  | 
 |  | 
 | static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr) | 
 | { | 
 |     CPUState **rev; | 
 |     CPUState *cs; | 
 |     int n_cpus; | 
 |     int cpus_offset; | 
 |     int i; | 
 |  | 
 |     cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); | 
 |     _FDT(cpus_offset); | 
 |     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); | 
 |     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); | 
 |  | 
 |     /* | 
 |      * We walk the CPUs in reverse order to ensure that CPU DT nodes | 
 |      * created by fdt_add_subnode() end up in the right order in FDT | 
 |      * for the guest kernel the enumerate the CPUs correctly. | 
 |      * | 
 |      * The CPU list cannot be traversed in reverse order, so we need | 
 |      * to do extra work. | 
 |      */ | 
 |     n_cpus = 0; | 
 |     rev = NULL; | 
 |     CPU_FOREACH(cs) { | 
 |         rev = g_renew(CPUState *, rev, n_cpus + 1); | 
 |         rev[n_cpus++] = cs; | 
 |     } | 
 |  | 
 |     for (i = n_cpus - 1; i >= 0; i--) { | 
 |         spapr_dt_one_cpu(fdt, spapr, rev[i], cpus_offset); | 
 |     } | 
 |  | 
 |     g_free(rev); | 
 | } | 
 |  | 
 | static int spapr_dt_rng(void *fdt) | 
 | { | 
 |     int node; | 
 |     int ret; | 
 |  | 
 |     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); | 
 |     if (node <= 0) { | 
 |         return -1; | 
 |     } | 
 |     ret = fdt_setprop_string(fdt, node, "device_type", | 
 |                              "ibm,platform-facilities"); | 
 |     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); | 
 |     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); | 
 |  | 
 |     node = fdt_add_subnode(fdt, node, "ibm,random-v1"); | 
 |     if (node <= 0) { | 
 |         return -1; | 
 |     } | 
 |     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); | 
 |  | 
 |     return ret ? -1 : 0; | 
 | } | 
 |  | 
 | static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) | 
 | { | 
 |     MachineState *ms = MACHINE(spapr); | 
 |     int rtas; | 
 |     GString *hypertas = g_string_sized_new(256); | 
 |     GString *qemu_hypertas = g_string_sized_new(256); | 
 |     uint32_t lrdr_capacity[] = { | 
 |         0, | 
 |         0, | 
 |         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32), | 
 |         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff), | 
 |         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads), | 
 |     }; | 
 |  | 
 |     /* Do we have device memory? */ | 
 |     if (MACHINE(spapr)->device_memory) { | 
 |         uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + | 
 |             memory_region_size(&MACHINE(spapr)->device_memory->mr); | 
 |  | 
 |         lrdr_capacity[0] = cpu_to_be32(max_device_addr >> 32); | 
 |         lrdr_capacity[1] = cpu_to_be32(max_device_addr & 0xffffffff); | 
 |     } | 
 |  | 
 |     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); | 
 |  | 
 |     /* hypertas */ | 
 |     add_str(hypertas, "hcall-pft"); | 
 |     add_str(hypertas, "hcall-term"); | 
 |     add_str(hypertas, "hcall-dabr"); | 
 |     add_str(hypertas, "hcall-interrupt"); | 
 |     add_str(hypertas, "hcall-tce"); | 
 |     add_str(hypertas, "hcall-vio"); | 
 |     add_str(hypertas, "hcall-splpar"); | 
 |     add_str(hypertas, "hcall-join"); | 
 |     add_str(hypertas, "hcall-bulk"); | 
 |     add_str(hypertas, "hcall-set-mode"); | 
 |     add_str(hypertas, "hcall-sprg0"); | 
 |     add_str(hypertas, "hcall-copy"); | 
 |     add_str(hypertas, "hcall-debug"); | 
 |     add_str(hypertas, "hcall-vphn"); | 
 |     if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) { | 
 |         add_str(hypertas, "hcall-rpt-invalidate"); | 
 |     } | 
 |  | 
 |     add_str(qemu_hypertas, "hcall-memop1"); | 
 |  | 
 |     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { | 
 |         add_str(hypertas, "hcall-multi-tce"); | 
 |     } | 
 |  | 
 |     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { | 
 |         add_str(hypertas, "hcall-hpt-resize"); | 
 |     } | 
 |  | 
 |     add_str(hypertas, "hcall-watchdog"); | 
 |  | 
 |     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", | 
 |                      hypertas->str, hypertas->len)); | 
 |     g_string_free(hypertas, TRUE); | 
 |     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", | 
 |                      qemu_hypertas->str, qemu_hypertas->len)); | 
 |     g_string_free(qemu_hypertas, TRUE); | 
 |  | 
 |     spapr_numa_write_rtas_dt(spapr, fdt, rtas); | 
 |  | 
 |     /* | 
 |      * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log, | 
 |      * and 16 bytes per CPU for system reset error log plus an extra 8 bytes. | 
 |      * | 
 |      * The system reset requirements are driven by existing Linux and PowerVM | 
 |      * implementation which (contrary to PAPR) saves r3 in the error log | 
 |      * structure like machine check, so Linux expects to find the saved r3 | 
 |      * value at the address in r3 upon FWNMI-enabled sreset interrupt (and | 
 |      * does not look at the error value). | 
 |      * | 
 |      * System reset interrupts are not subject to interlock like machine | 
 |      * check, so this memory area could be corrupted if the sreset is | 
 |      * interrupted by a machine check (or vice versa) if it was shared. To | 
 |      * prevent this, system reset uses per-CPU areas for the sreset save | 
 |      * area. A system reset that interrupts a system reset handler could | 
 |      * still overwrite this area, but Linux doesn't try to recover in that | 
 |      * case anyway. | 
 |      * | 
 |      * The extra 8 bytes is required because Linux's FWNMI error log check | 
 |      * is off-by-one. | 
 |      * | 
 |      * RTAS_MIN_SIZE is required for the RTAS blob itself. | 
 |      */ | 
 |     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE + | 
 |                           RTAS_ERROR_LOG_MAX + | 
 |                           ms->smp.max_cpus * sizeof(uint64_t) * 2 + | 
 |                           sizeof(uint64_t))); | 
 |     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", | 
 |                           RTAS_ERROR_LOG_MAX)); | 
 |     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", | 
 |                           RTAS_EVENT_SCAN_RATE)); | 
 |  | 
 |     g_assert(msi_nonbroken); | 
 |     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); | 
 |  | 
 |     /* | 
 |      * According to PAPR, rtas ibm,os-term does not guarantee a return | 
 |      * back to the guest cpu. | 
 |      * | 
 |      * While an additional ibm,extended-os-term property indicates | 
 |      * that rtas call return will always occur. Set this property. | 
 |      */ | 
 |     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); | 
 |  | 
 |     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", | 
 |                      lrdr_capacity, sizeof(lrdr_capacity))); | 
 |  | 
 |     spapr_dt_rtas_tokens(fdt, rtas); | 
 | } | 
 |  | 
 | /* | 
 |  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU | 
 |  * and the XIVE features that the guest may request and thus the valid | 
 |  * values for bytes 23..26 of option vector 5: | 
 |  */ | 
 | static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, | 
 |                                           int chosen) | 
 | { | 
 |     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); | 
 |  | 
 |     char val[2 * 4] = { | 
 |         23, 0x00, /* XICS / XIVE mode */ | 
 |         24, 0x00, /* Hash/Radix, filled in below. */ | 
 |         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ | 
 |         26, 0x40, /* Radix options: GTSE == yes. */ | 
 |     }; | 
 |  | 
 |     if (spapr->irq->xics && spapr->irq->xive) { | 
 |         val[1] = SPAPR_OV5_XIVE_BOTH; | 
 |     } else if (spapr->irq->xive) { | 
 |         val[1] = SPAPR_OV5_XIVE_EXPLOIT; | 
 |     } else { | 
 |         assert(spapr->irq->xics); | 
 |         val[1] = SPAPR_OV5_XIVE_LEGACY; | 
 |     } | 
 |  | 
 |     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, | 
 |                           first_ppc_cpu->compat_pvr)) { | 
 |         /* | 
 |          * If we're in a pre POWER9 compat mode then the guest should | 
 |          * do hash and use the legacy interrupt mode | 
 |          */ | 
 |         val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */ | 
 |         val[3] = 0x00; /* Hash */ | 
 |         spapr_check_mmu_mode(false); | 
 |     } else if (kvm_enabled()) { | 
 |         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { | 
 |             val[3] = 0x80; /* OV5_MMU_BOTH */ | 
 |         } else if (kvmppc_has_cap_mmu_radix()) { | 
 |             val[3] = 0x40; /* OV5_MMU_RADIX_300 */ | 
 |         } else { | 
 |             val[3] = 0x00; /* Hash */ | 
 |         } | 
 |     } else { | 
 |         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ | 
 |         val[3] = 0xC0; | 
 |     } | 
 |     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", | 
 |                      val, sizeof(val))); | 
 | } | 
 |  | 
 | static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset) | 
 | { | 
 |     MachineState *machine = MACHINE(spapr); | 
 |     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); | 
 |     int chosen; | 
 |  | 
 |     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); | 
 |  | 
 |     if (reset) { | 
 |         const char *boot_device = spapr->boot_device; | 
 |         g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); | 
 |         size_t cb = 0; | 
 |         g_autofree char *bootlist = get_boot_devices_list(&cb); | 
 |  | 
 |         if (machine->kernel_cmdline && machine->kernel_cmdline[0]) { | 
 |             _FDT(fdt_setprop_string(fdt, chosen, "bootargs", | 
 |                                     machine->kernel_cmdline)); | 
 |         } | 
 |  | 
 |         if (spapr->initrd_size) { | 
 |             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", | 
 |                                   spapr->initrd_base)); | 
 |             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", | 
 |                                   spapr->initrd_base + spapr->initrd_size)); | 
 |         } | 
 |  | 
 |         if (spapr->kernel_size) { | 
 |             uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr), | 
 |                                   cpu_to_be64(spapr->kernel_size) }; | 
 |  | 
 |             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", | 
 |                          &kprop, sizeof(kprop))); | 
 |             if (spapr->kernel_le) { | 
 |                 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); | 
 |             } | 
 |         } | 
 |         if (machine->boot_config.has_menu && machine->boot_config.menu) { | 
 |             _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true))); | 
 |         } | 
 |         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); | 
 |         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); | 
 |         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); | 
 |  | 
 |         if (cb && bootlist) { | 
 |             int i; | 
 |  | 
 |             for (i = 0; i < cb; i++) { | 
 |                 if (bootlist[i] == '\n') { | 
 |                     bootlist[i] = ' '; | 
 |                 } | 
 |             } | 
 |             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); | 
 |         } | 
 |  | 
 |         if (boot_device && strlen(boot_device)) { | 
 |             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); | 
 |         } | 
 |  | 
 |         if (spapr->want_stdout_path && stdout_path) { | 
 |             /* | 
 |              * "linux,stdout-path" and "stdout" properties are | 
 |              * deprecated by linux kernel. New platforms should only | 
 |              * use the "stdout-path" property. Set the new property | 
 |              * and continue using older property to remain compatible | 
 |              * with the existing firmware. | 
 |              */ | 
 |             _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); | 
 |             _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); | 
 |         } | 
 |  | 
 |         /* | 
 |          * We can deal with BAR reallocation just fine, advertise it | 
 |          * to the guest | 
 |          */ | 
 |         if (smc->linux_pci_probe) { | 
 |             _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0)); | 
 |         } | 
 |  | 
 |         spapr_dt_ov5_platform_support(spapr, fdt, chosen); | 
 |     } | 
 |  | 
 |     _FDT(fdt_setprop(fdt, chosen, "rng-seed", spapr->fdt_rng_seed, 32)); | 
 |  | 
 |     _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5")); | 
 | } | 
 |  | 
 | static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) | 
 | { | 
 |     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR | 
 |      * KVM to work under pHyp with some guest co-operation */ | 
 |     int hypervisor; | 
 |     uint8_t hypercall[16]; | 
 |  | 
 |     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); | 
 |     /* indicate KVM hypercall interface */ | 
 |     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); | 
 |     if (kvmppc_has_cap_fixup_hcalls()) { | 
 |         /* | 
 |          * Older KVM versions with older guest kernels were broken | 
 |          * with the magic page, don't allow the guest to map it. | 
 |          */ | 
 |         if (!kvmppc_get_hypercall(cpu_env(first_cpu), hypercall, | 
 |                                   sizeof(hypercall))) { | 
 |             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", | 
 |                              hypercall, sizeof(hypercall))); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space) | 
 | { | 
 |     MachineState *machine = MACHINE(spapr); | 
 |     MachineClass *mc = MACHINE_GET_CLASS(machine); | 
 |     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); | 
 |     uint32_t root_drc_type_mask = 0; | 
 |     int ret; | 
 |     void *fdt; | 
 |     SpaprPhbState *phb; | 
 |     char *buf; | 
 |  | 
 |     fdt = g_malloc0(space); | 
 |     _FDT((fdt_create_empty_tree(fdt, space))); | 
 |  | 
 |     /* Root node */ | 
 |     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); | 
 |     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); | 
 |     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); | 
 |  | 
 |     /* Guest UUID & Name*/ | 
 |     buf = qemu_uuid_unparse_strdup(&qemu_uuid); | 
 |     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); | 
 |     if (qemu_uuid_set) { | 
 |         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); | 
 |     } | 
 |     g_free(buf); | 
 |  | 
 |     if (qemu_get_vm_name()) { | 
 |         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", | 
 |                                 qemu_get_vm_name())); | 
 |     } | 
 |  | 
 |     /* Host Model & Serial Number */ | 
 |     if (spapr->host_model) { | 
 |         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); | 
 |     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { | 
 |         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); | 
 |         g_free(buf); | 
 |     } | 
 |  | 
 |     if (spapr->host_serial) { | 
 |         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); | 
 |     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { | 
 |         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); | 
 |         g_free(buf); | 
 |     } | 
 |  | 
 |     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); | 
 |     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); | 
 |  | 
 |     /* /interrupt controller */ | 
 |     spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC); | 
 |  | 
 |     ret = spapr_dt_memory(spapr, fdt); | 
 |     if (ret < 0) { | 
 |         error_report("couldn't setup memory nodes in fdt"); | 
 |         exit(1); | 
 |     } | 
 |  | 
 |     /* /vdevice */ | 
 |     spapr_dt_vdevice(spapr->vio_bus, fdt); | 
 |  | 
 |     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { | 
 |         ret = spapr_dt_rng(fdt); | 
 |         if (ret < 0) { | 
 |             error_report("could not set up rng device in the fdt"); | 
 |             exit(1); | 
 |         } | 
 |     } | 
 |  | 
 |     QLIST_FOREACH(phb, &spapr->phbs, list) { | 
 |         ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL); | 
 |         if (ret < 0) { | 
 |             error_report("couldn't setup PCI devices in fdt"); | 
 |             exit(1); | 
 |         } | 
 |     } | 
 |  | 
 |     spapr_dt_cpus(fdt, spapr); | 
 |  | 
 |     /* ibm,drc-indexes and friends */ | 
 |     root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB; | 
 |     if (smc->dr_phb_enabled) { | 
 |         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB; | 
 |     } | 
 |     if (mc->nvdimm_supported) { | 
 |         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM; | 
 |     } | 
 |     if (root_drc_type_mask) { | 
 |         _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask)); | 
 |     } | 
 |  | 
 |     if (mc->has_hotpluggable_cpus) { | 
 |         int offset = fdt_path_offset(fdt, "/cpus"); | 
 |         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU); | 
 |         if (ret < 0) { | 
 |             error_report("Couldn't set up CPU DR device tree properties"); | 
 |             exit(1); | 
 |         } | 
 |     } | 
 |  | 
 |     /* /event-sources */ | 
 |     spapr_dt_events(spapr, fdt); | 
 |  | 
 |     /* /rtas */ | 
 |     spapr_dt_rtas(spapr, fdt); | 
 |  | 
 |     /* /chosen */ | 
 |     spapr_dt_chosen(spapr, fdt, reset); | 
 |  | 
 |     /* /hypervisor */ | 
 |     if (kvm_enabled()) { | 
 |         spapr_dt_hypervisor(spapr, fdt); | 
 |     } | 
 |  | 
 |     /* Build memory reserve map */ | 
 |     if (reset) { | 
 |         if (spapr->kernel_size) { | 
 |             _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr, | 
 |                                   spapr->kernel_size))); | 
 |         } | 
 |         if (spapr->initrd_size) { | 
 |             _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, | 
 |                                   spapr->initrd_size))); | 
 |         } | 
 |     } | 
 |  | 
 |     /* NVDIMM devices */ | 
 |     if (mc->nvdimm_supported) { | 
 |         spapr_dt_persistent_memory(spapr, fdt); | 
 |     } | 
 |  | 
 |     return fdt; | 
 | } | 
 |  | 
 | static uint64_t translate_kernel_address(void *opaque, uint64_t addr) | 
 | { | 
 |     SpaprMachineState *spapr = opaque; | 
 |  | 
 |     return (addr & 0x0fffffff) + spapr->kernel_addr; | 
 | } | 
 |  | 
 | static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, | 
 |                                     PowerPCCPU *cpu) | 
 | { | 
 |     CPUPPCState *env = &cpu->env; | 
 |  | 
 |     /* The TCG path should also be holding the BQL at this point */ | 
 |     g_assert(bql_locked()); | 
 |  | 
 |     g_assert(!vhyp_cpu_in_nested(cpu)); | 
 |  | 
 |     if (FIELD_EX64(env->msr, MSR, PR)) { | 
 |         hcall_dprintf("Hypercall made with MSR[PR]=1\n"); | 
 |         env->gpr[3] = H_PRIVILEGE; | 
 |     } else { | 
 |         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); | 
 |     } | 
 | } | 
 |  | 
 | struct LPCRSyncState { | 
 |     target_ulong value; | 
 |     target_ulong mask; | 
 | }; | 
 |  | 
 | static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) | 
 | { | 
 |     struct LPCRSyncState *s = arg.host_ptr; | 
 |     PowerPCCPU *cpu = POWERPC_CPU(cs); | 
 |     CPUPPCState *env = &cpu->env; | 
 |     target_ulong lpcr; | 
 |  | 
 |     cpu_synchronize_state(cs); | 
 |     lpcr = env->spr[SPR_LPCR]; | 
 |     lpcr &= ~s->mask; | 
 |     lpcr |= s->value; | 
 |     ppc_store_lpcr(cpu, lpcr); | 
 | } | 
 |  | 
 | void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) | 
 | { | 
 |     CPUState *cs; | 
 |     struct LPCRSyncState s = { | 
 |         .value = value, | 
 |         .mask = mask | 
 |     }; | 
 |     CPU_FOREACH(cs) { | 
 |         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); | 
 |     } | 
 | } | 
 |  | 
 | /* May be used when the machine is not running */ | 
 | void spapr_init_all_lpcrs(target_ulong value, target_ulong mask) | 
 | { | 
 |     CPUState *cs; | 
 |     CPU_FOREACH(cs) { | 
 |         PowerPCCPU *cpu = POWERPC_CPU(cs); | 
 |         CPUPPCState *env = &cpu->env; | 
 |         target_ulong lpcr; | 
 |  | 
 |         lpcr = env->spr[SPR_LPCR]; | 
 |         lpcr &= ~(LPCR_HR | LPCR_UPRT); | 
 |         ppc_store_lpcr(cpu, lpcr); | 
 |     } | 
 | } | 
 |  | 
 | static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu, | 
 |                            target_ulong lpid, ppc_v3_pate_t *entry) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); | 
 |     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); | 
 |  | 
 |     if (!spapr_cpu->in_nested) { | 
 |         assert(lpid == 0); | 
 |  | 
 |         /* Copy PATE1:GR into PATE0:HR */ | 
 |         entry->dw0 = spapr->patb_entry & PATE0_HR; | 
 |         entry->dw1 = spapr->patb_entry; | 
 |         return true; | 
 |     } else { | 
 |         if (spapr_nested_api(spapr) == NESTED_API_KVM_HV) { | 
 |             return spapr_get_pate_nested_hv(spapr, cpu, lpid, entry); | 
 |         } else if (spapr_nested_api(spapr) == NESTED_API_PAPR) { | 
 |             return spapr_get_pate_nested_papr(spapr, cpu, lpid, entry); | 
 |         } else { | 
 |             g_assert_not_reached(); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | static uint64_t *hpte_get_ptr(SpaprMachineState *s, unsigned index) | 
 | { | 
 |     uint64_t *table = s->htab; | 
 |  | 
 |     return &table[2 * index]; | 
 | } | 
 |  | 
 | static bool hpte_is_valid(SpaprMachineState *s, unsigned index) | 
 | { | 
 |     return ldq_be_p(hpte_get_ptr(s, index)) & HPTE64_V_VALID; | 
 | } | 
 |  | 
 | static bool hpte_is_dirty(SpaprMachineState *s, unsigned index) | 
 | { | 
 |     return ldq_be_p(hpte_get_ptr(s, index)) & HPTE64_V_HPTE_DIRTY; | 
 | } | 
 |  | 
 | static void hpte_set_clean(SpaprMachineState *s, unsigned index) | 
 | { | 
 |     stq_be_p(hpte_get_ptr(s, index), | 
 |              ldq_be_p(hpte_get_ptr(s, index)) & ~HPTE64_V_HPTE_DIRTY); | 
 | } | 
 |  | 
 | static void hpte_set_dirty(SpaprMachineState *s, unsigned index) | 
 | { | 
 |     stq_be_p(hpte_get_ptr(s, index), | 
 |              ldq_be_p(hpte_get_ptr(s, index)) | HPTE64_V_HPTE_DIRTY); | 
 | } | 
 |  | 
 | /* | 
 |  * Get the fd to access the kernel htab, re-opening it if necessary | 
 |  */ | 
 | static int get_htab_fd(SpaprMachineState *spapr) | 
 | { | 
 |     Error *local_err = NULL; | 
 |  | 
 |     if (spapr->htab_fd >= 0) { | 
 |         return spapr->htab_fd; | 
 |     } | 
 |  | 
 |     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); | 
 |     if (spapr->htab_fd < 0) { | 
 |         error_report_err(local_err); | 
 |     } | 
 |  | 
 |     return spapr->htab_fd; | 
 | } | 
 |  | 
 | void close_htab_fd(SpaprMachineState *spapr) | 
 | { | 
 |     if (spapr->htab_fd >= 0) { | 
 |         close(spapr->htab_fd); | 
 |     } | 
 |     spapr->htab_fd = -1; | 
 | } | 
 |  | 
 | static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); | 
 |  | 
 |     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; | 
 | } | 
 |  | 
 | static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); | 
 |  | 
 |     assert(kvm_enabled()); | 
 |  | 
 |     if (!spapr->htab) { | 
 |         return 0; | 
 |     } | 
 |  | 
 |     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); | 
 | } | 
 |  | 
 | static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, | 
 |                                                 hwaddr ptex, int n) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); | 
 |     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; | 
 |  | 
 |     if (!spapr->htab) { | 
 |         /* | 
 |          * HTAB is controlled by KVM. Fetch into temporary buffer | 
 |          */ | 
 |         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); | 
 |         kvmppc_read_hptes(hptes, ptex, n); | 
 |         return hptes; | 
 |     } | 
 |  | 
 |     /* | 
 |      * HTAB is controlled by QEMU. Just point to the internally | 
 |      * accessible PTEG. | 
 |      */ | 
 |     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); | 
 | } | 
 |  | 
 | static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, | 
 |                               const ppc_hash_pte64_t *hptes, | 
 |                               hwaddr ptex, int n) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); | 
 |  | 
 |     if (!spapr->htab) { | 
 |         g_free((void *)hptes); | 
 |     } | 
 |  | 
 |     /* Nothing to do for qemu managed HPT */ | 
 | } | 
 |  | 
 | void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, | 
 |                       uint64_t pte0, uint64_t pte1) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); | 
 |     hwaddr offset = ptex * HASH_PTE_SIZE_64; | 
 |  | 
 |     if (!spapr->htab) { | 
 |         kvmppc_write_hpte(ptex, pte0, pte1); | 
 |     } else { | 
 |         if (pte0 & HPTE64_V_VALID) { | 
 |             stq_p(spapr->htab + offset + HPTE64_DW1, pte1); | 
 |             /* | 
 |              * When setting valid, we write PTE1 first. This ensures | 
 |              * proper synchronization with the reading code in | 
 |              * ppc_hash64_pteg_search() | 
 |              */ | 
 |             smp_wmb(); | 
 |             stq_p(spapr->htab + offset, pte0); | 
 |         } else { | 
 |             stq_p(spapr->htab + offset, pte0); | 
 |             /* | 
 |              * When clearing it we set PTE0 first. This ensures proper | 
 |              * synchronization with the reading code in | 
 |              * ppc_hash64_pteg_search() | 
 |              */ | 
 |             smp_wmb(); | 
 |             stq_p(spapr->htab + offset + HPTE64_DW1, pte1); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, | 
 |                              uint64_t pte1) | 
 | { | 
 |     hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C; | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); | 
 |  | 
 |     if (!spapr->htab) { | 
 |         /* There should always be a hash table when this is called */ | 
 |         error_report("spapr_hpte_set_c called with no hash table !"); | 
 |         return; | 
 |     } | 
 |  | 
 |     /* The HW performs a non-atomic byte update */ | 
 |     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); | 
 | } | 
 |  | 
 | static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, | 
 |                              uint64_t pte1) | 
 | { | 
 |     hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R; | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); | 
 |  | 
 |     if (!spapr->htab) { | 
 |         /* There should always be a hash table when this is called */ | 
 |         error_report("spapr_hpte_set_r called with no hash table !"); | 
 |         return; | 
 |     } | 
 |  | 
 |     /* The HW performs a non-atomic byte update */ | 
 |     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); | 
 | } | 
 |  | 
 | int spapr_hpt_shift_for_ramsize(uint64_t ramsize) | 
 | { | 
 |     int shift; | 
 |  | 
 |     /* We aim for a hash table of size 1/128 the size of RAM (rounded | 
 |      * up).  The PAPR recommendation is actually 1/64 of RAM size, but | 
 |      * that's much more than is needed for Linux guests */ | 
 |     shift = ctz64(pow2ceil(ramsize)) - 7; | 
 |     shift = MAX(shift, 18); /* Minimum architected size */ | 
 |     shift = MIN(shift, 46); /* Maximum architected size */ | 
 |     return shift; | 
 | } | 
 |  | 
 | void spapr_free_hpt(SpaprMachineState *spapr) | 
 | { | 
 |     qemu_vfree(spapr->htab); | 
 |     spapr->htab = NULL; | 
 |     spapr->htab_shift = 0; | 
 |     close_htab_fd(spapr); | 
 | } | 
 |  | 
 | int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp) | 
 | { | 
 |     ERRP_GUARD(); | 
 |     long rc; | 
 |  | 
 |     /* Clean up any HPT info from a previous boot */ | 
 |     spapr_free_hpt(spapr); | 
 |  | 
 |     rc = kvmppc_reset_htab(shift); | 
 |  | 
 |     if (rc == -EOPNOTSUPP) { | 
 |         error_setg(errp, "HPT not supported in nested guests"); | 
 |         return -EOPNOTSUPP; | 
 |     } | 
 |  | 
 |     if (rc < 0) { | 
 |         /* kernel-side HPT needed, but couldn't allocate one */ | 
 |         error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d", | 
 |                          shift); | 
 |         error_append_hint(errp, "Try smaller maxmem?\n"); | 
 |         return -errno; | 
 |     } else if (rc > 0) { | 
 |         /* kernel-side HPT allocated */ | 
 |         if (rc != shift) { | 
 |             error_setg(errp, | 
 |                        "Requested order %d HPT, but kernel allocated order %ld", | 
 |                        shift, rc); | 
 |             error_append_hint(errp, "Try smaller maxmem?\n"); | 
 |             return -ENOSPC; | 
 |         } | 
 |  | 
 |         spapr->htab_shift = shift; | 
 |         spapr->htab = NULL; | 
 |     } else { | 
 |         /* kernel-side HPT not needed, allocate in userspace instead */ | 
 |         size_t size = 1ULL << shift; | 
 |         int i; | 
 |  | 
 |         spapr->htab = qemu_memalign(size, size); | 
 |         memset(spapr->htab, 0, size); | 
 |         spapr->htab_shift = shift; | 
 |  | 
 |         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { | 
 |             hpte_set_dirty(spapr, i); | 
 |         } | 
 |     } | 
 |     /* We're setting up a hash table, so that means we're not radix */ | 
 |     spapr->patb_entry = 0; | 
 |     spapr_init_all_lpcrs(0, LPCR_HR | LPCR_UPRT); | 
 |     return 0; | 
 | } | 
 |  | 
 | void spapr_setup_hpt(SpaprMachineState *spapr) | 
 | { | 
 |     int hpt_shift; | 
 |  | 
 |     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { | 
 |         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); | 
 |     } else { | 
 |         uint64_t current_ram_size; | 
 |  | 
 |         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); | 
 |         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); | 
 |     } | 
 |     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); | 
 |  | 
 |     if (kvm_enabled()) { | 
 |         hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift); | 
 |  | 
 |         /* Check our RMA fits in the possible VRMA */ | 
 |         if (vrma_limit < spapr->rma_size) { | 
 |             error_report("Unable to create %" HWADDR_PRIu | 
 |                          "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB", | 
 |                          spapr->rma_size / MiB, vrma_limit / MiB); | 
 |             exit(EXIT_FAILURE); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | void spapr_check_mmu_mode(bool guest_radix) | 
 | { | 
 |     if (guest_radix) { | 
 |         if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) { | 
 |             error_report("Guest requested unavailable MMU mode (radix)."); | 
 |             exit(EXIT_FAILURE); | 
 |         } | 
 |     } else { | 
 |         if (kvm_enabled() && kvmppc_has_cap_mmu_radix() | 
 |             && !kvmppc_has_cap_mmu_hash_v3()) { | 
 |             error_report("Guest requested unavailable MMU mode (hash)."); | 
 |             exit(EXIT_FAILURE); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | static void spapr_machine_reset(MachineState *machine, ResetType type) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(machine); | 
 |     PowerPCCPU *first_ppc_cpu; | 
 |     hwaddr fdt_addr; | 
 |     void *fdt; | 
 |     int rc; | 
 |  | 
 |     if (type != RESET_TYPE_SNAPSHOT_LOAD) { | 
 |         /* | 
 |          * Record-replay snapshot load must not consume random, this was | 
 |          * already replayed from initial machine reset. | 
 |          */ | 
 |         qemu_guest_getrandom_nofail(spapr->fdt_rng_seed, 32); | 
 |     } | 
 |  | 
 |     if (machine->cgs) { | 
 |         confidential_guest_kvm_reset(machine->cgs, &error_fatal); | 
 |     } | 
 |     spapr_caps_apply(spapr); | 
 |     spapr_nested_reset(spapr); | 
 |  | 
 |     first_ppc_cpu = POWERPC_CPU(first_cpu); | 
 |     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && | 
 |         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, | 
 |                               spapr->max_compat_pvr)) { | 
 |         /* | 
 |          * If using KVM with radix mode available, VCPUs can be started | 
 |          * without a HPT because KVM will start them in radix mode. | 
 |          * Set the GR bit in PATE so that we know there is no HPT. | 
 |          */ | 
 |         spapr->patb_entry = PATE1_GR; | 
 |         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); | 
 |     } else { | 
 |         spapr_setup_hpt(spapr); | 
 |     } | 
 |  | 
 |     qemu_devices_reset(type); | 
 |  | 
 |     spapr_ovec_cleanup(spapr->ov5_cas); | 
 |     spapr->ov5_cas = spapr_ovec_new(); | 
 |  | 
 |     ppc_init_compat_all(spapr->max_compat_pvr, &error_fatal); | 
 |  | 
 |     /* | 
 |      * This is fixing some of the default configuration of the XIVE | 
 |      * devices. To be called after the reset of the machine devices. | 
 |      */ | 
 |     spapr_irq_reset(spapr, &error_fatal); | 
 |  | 
 |     /* | 
 |      * There is no CAS under qtest. Simulate one to please the code that | 
 |      * depends on spapr->ov5_cas. This is especially needed to test device | 
 |      * unplug, so we do that before resetting the DRCs. | 
 |      */ | 
 |     if (qtest_enabled()) { | 
 |         spapr_ovec_cleanup(spapr->ov5_cas); | 
 |         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); | 
 |     } | 
 |  | 
 |     spapr_nvdimm_finish_flushes(); | 
 |  | 
 |     /* DRC reset may cause a device to be unplugged. This will cause troubles | 
 |      * if this device is used by another device (eg, a running vhost backend | 
 |      * will crash QEMU if the DIMM holding the vring goes away). To avoid such | 
 |      * situations, we reset DRCs after all devices have been reset. | 
 |      */ | 
 |     spapr_drc_reset_all(spapr); | 
 |  | 
 |     spapr_clear_pending_events(spapr); | 
 |  | 
 |     /* | 
 |      * We place the device tree just below either the top of the RMA, | 
 |      * or just below 2GB, whichever is lower, so that it can be | 
 |      * processed with 32-bit real mode code if necessary | 
 |      */ | 
 |     fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE; | 
 |  | 
 |     fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE); | 
 |     if (spapr->vof) { | 
 |         spapr_vof_reset(spapr, fdt, &error_fatal); | 
 |         /* | 
 |          * Do not pack the FDT as the client may change properties. | 
 |          * VOF client does not expect the FDT so we do not load it to the VM. | 
 |          */ | 
 |     } else { | 
 |         rc = fdt_pack(fdt); | 
 |         /* Should only fail if we've built a corrupted tree */ | 
 |         assert(rc == 0); | 
 |  | 
 |         spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, | 
 |                                   0, fdt_addr, 0); | 
 |         cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); | 
 |     } | 
 |  | 
 |     g_free(spapr->fdt_blob); | 
 |     spapr->fdt_size = fdt_totalsize(fdt); | 
 |     spapr->fdt_initial_size = spapr->fdt_size; | 
 |     spapr->fdt_blob = fdt; | 
 |  | 
 |     /* Set machine->fdt for 'dumpdtb' QMP/HMP command */ | 
 |     machine->fdt = fdt; | 
 |  | 
 |     /* Set up the entry state */ | 
 |     first_ppc_cpu->env.gpr[5] = 0; | 
 |  | 
 |     spapr->fwnmi_system_reset_addr = -1; | 
 |     spapr->fwnmi_machine_check_addr = -1; | 
 |     spapr->fwnmi_machine_check_interlock = -1; | 
 |  | 
 |     /* Signal all vCPUs waiting on this condition */ | 
 |     qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond); | 
 |  | 
 |     migrate_del_blocker(&spapr->fwnmi_migration_blocker); | 
 | } | 
 |  | 
 | static void spapr_create_nvram(SpaprMachineState *spapr) | 
 | { | 
 |     DeviceState *dev = qdev_new("spapr-nvram"); | 
 |     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); | 
 |  | 
 |     if (dinfo) { | 
 |         qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo), | 
 |                                 &error_fatal); | 
 |     } | 
 |  | 
 |     qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal); | 
 |  | 
 |     spapr->nvram = (struct SpaprNvram *)dev; | 
 | } | 
 |  | 
 | static void spapr_rtc_create(SpaprMachineState *spapr) | 
 | { | 
 |     object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc, | 
 |                                        sizeof(spapr->rtc), TYPE_SPAPR_RTC, | 
 |                                        &error_fatal, NULL); | 
 |     qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal); | 
 |     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), | 
 |                               "date"); | 
 | } | 
 |  | 
 | /* Returns whether we want to use VGA or not */ | 
 | static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) | 
 | { | 
 |     vga_interface_created = true; | 
 |     switch (vga_interface_type) { | 
 |     case VGA_NONE: | 
 |         return false; | 
 |     case VGA_DEVICE: | 
 |         return true; | 
 |     case VGA_STD: | 
 |     case VGA_VIRTIO: | 
 |     case VGA_CIRRUS: | 
 |         return pci_vga_init(pci_bus) != NULL; | 
 |     default: | 
 |         error_setg(errp, | 
 |                    "Unsupported VGA mode, only -vga std or -vga virtio is supported"); | 
 |         return false; | 
 |     } | 
 | } | 
 |  | 
 | static int spapr_pre_load(void *opaque) | 
 | { | 
 |     int rc; | 
 |  | 
 |     rc = spapr_caps_pre_load(opaque); | 
 |     if (rc) { | 
 |         return rc; | 
 |     } | 
 |  | 
 |     return 0; | 
 | } | 
 |  | 
 | static int spapr_post_load(void *opaque, int version_id) | 
 | { | 
 |     SpaprMachineState *spapr = (SpaprMachineState *)opaque; | 
 |     int err = 0; | 
 |  | 
 |     err = spapr_caps_post_migration(spapr); | 
 |     if (err) { | 
 |         return err; | 
 |     } | 
 |  | 
 |     /* | 
 |      * In earlier versions, there was no separate qdev for the PAPR | 
 |      * RTC, so the RTC offset was stored directly in sPAPREnvironment. | 
 |      * So when migrating from those versions, poke the incoming offset | 
 |      * value into the RTC device | 
 |      */ | 
 |     if (version_id < 3) { | 
 |         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); | 
 |         if (err) { | 
 |             return err; | 
 |         } | 
 |     } | 
 |  | 
 |     if (kvm_enabled() && spapr->patb_entry) { | 
 |         PowerPCCPU *cpu = POWERPC_CPU(first_cpu); | 
 |         bool radix = !!(spapr->patb_entry & PATE1_GR); | 
 |         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); | 
 |  | 
 |         /* | 
 |          * Update LPCR:HR and UPRT as they may not be set properly in | 
 |          * the stream | 
 |          */ | 
 |         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, | 
 |                             LPCR_HR | LPCR_UPRT); | 
 |  | 
 |         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); | 
 |         if (err) { | 
 |             error_report("Process table config unsupported by the host"); | 
 |             return -EINVAL; | 
 |         } | 
 |     } | 
 |  | 
 |     err = spapr_irq_post_load(spapr, version_id); | 
 |     if (err) { | 
 |         return err; | 
 |     } | 
 |  | 
 |     return err; | 
 | } | 
 |  | 
 | static int spapr_pre_save(void *opaque) | 
 | { | 
 |     int rc; | 
 |  | 
 |     rc = spapr_caps_pre_save(opaque); | 
 |     if (rc) { | 
 |         return rc; | 
 |     } | 
 |  | 
 |     return 0; | 
 | } | 
 |  | 
 | static bool version_before_3(void *opaque, int version_id) | 
 | { | 
 |     return version_id < 3; | 
 | } | 
 |  | 
 | static bool spapr_pending_events_needed(void *opaque) | 
 | { | 
 |     SpaprMachineState *spapr = (SpaprMachineState *)opaque; | 
 |     return !QTAILQ_EMPTY(&spapr->pending_events); | 
 | } | 
 |  | 
 | static const VMStateDescription vmstate_spapr_event_entry = { | 
 |     .name = "spapr_event_log_entry", | 
 |     .version_id = 1, | 
 |     .minimum_version_id = 1, | 
 |     .fields = (const VMStateField[]) { | 
 |         VMSTATE_UINT32(summary, SpaprEventLogEntry), | 
 |         VMSTATE_UINT32(extended_length, SpaprEventLogEntry), | 
 |         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, | 
 |                                      NULL, extended_length), | 
 |         VMSTATE_END_OF_LIST() | 
 |     }, | 
 | }; | 
 |  | 
 | static const VMStateDescription vmstate_spapr_pending_events = { | 
 |     .name = "spapr_pending_events", | 
 |     .version_id = 1, | 
 |     .minimum_version_id = 1, | 
 |     .needed = spapr_pending_events_needed, | 
 |     .fields = (const VMStateField[]) { | 
 |         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, | 
 |                          vmstate_spapr_event_entry, SpaprEventLogEntry, next), | 
 |         VMSTATE_END_OF_LIST() | 
 |     }, | 
 | }; | 
 |  | 
 | static bool spapr_ov5_cas_needed(void *opaque) | 
 | { | 
 |     SpaprMachineState *spapr = opaque; | 
 |     SpaprOptionVector *ov5_mask = spapr_ovec_new(); | 
 |     bool cas_needed; | 
 |  | 
 |     /* Prior to the introduction of SpaprOptionVector, we had two option | 
 |      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. | 
 |      * Both of these options encode machine topology into the device-tree | 
 |      * in such a way that the now-booted OS should still be able to interact | 
 |      * appropriately with QEMU regardless of what options were actually | 
 |      * negotiatied on the source side. | 
 |      * | 
 |      * As such, we can avoid migrating the CAS-negotiated options if these | 
 |      * are the only options available on the current machine/platform. | 
 |      * Since these are the only options available for pseries-2.7 and | 
 |      * earlier, this allows us to maintain old->new/new->old migration | 
 |      * compatibility. | 
 |      * | 
 |      * For QEMU 2.8+, there are additional CAS-negotiatable options available | 
 |      * via default pseries-2.8 machines and explicit command-line parameters. | 
 |      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware | 
 |      * of the actual CAS-negotiated values to continue working properly. For | 
 |      * example, availability of memory unplug depends on knowing whether | 
 |      * OV5_HP_EVT was negotiated via CAS. | 
 |      * | 
 |      * Thus, for any cases where the set of available CAS-negotiatable | 
 |      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we | 
 |      * include the CAS-negotiated options in the migration stream, unless | 
 |      * if they affect boot time behaviour only. | 
 |      */ | 
 |     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); | 
 |     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); | 
 |     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); | 
 |  | 
 |     /* We need extra information if we have any bits outside the mask | 
 |      * defined above */ | 
 |     cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask); | 
 |  | 
 |     spapr_ovec_cleanup(ov5_mask); | 
 |  | 
 |     return cas_needed; | 
 | } | 
 |  | 
 | static const VMStateDescription vmstate_spapr_ov5_cas = { | 
 |     .name = "spapr_option_vector_ov5_cas", | 
 |     .version_id = 1, | 
 |     .minimum_version_id = 1, | 
 |     .needed = spapr_ov5_cas_needed, | 
 |     .fields = (const VMStateField[]) { | 
 |         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, | 
 |                                  vmstate_spapr_ovec, SpaprOptionVector), | 
 |         VMSTATE_END_OF_LIST() | 
 |     }, | 
 | }; | 
 |  | 
 | static bool spapr_patb_entry_needed(void *opaque) | 
 | { | 
 |     SpaprMachineState *spapr = opaque; | 
 |  | 
 |     return !!spapr->patb_entry; | 
 | } | 
 |  | 
 | static const VMStateDescription vmstate_spapr_patb_entry = { | 
 |     .name = "spapr_patb_entry", | 
 |     .version_id = 1, | 
 |     .minimum_version_id = 1, | 
 |     .needed = spapr_patb_entry_needed, | 
 |     .fields = (const VMStateField[]) { | 
 |         VMSTATE_UINT64(patb_entry, SpaprMachineState), | 
 |         VMSTATE_END_OF_LIST() | 
 |     }, | 
 | }; | 
 |  | 
 | static bool spapr_irq_map_needed(void *opaque) | 
 | { | 
 |     SpaprMachineState *spapr = opaque; | 
 |  | 
 |     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); | 
 | } | 
 |  | 
 | static const VMStateDescription vmstate_spapr_irq_map = { | 
 |     .name = "spapr_irq_map", | 
 |     .version_id = 1, | 
 |     .minimum_version_id = 1, | 
 |     .needed = spapr_irq_map_needed, | 
 |     .fields = (const VMStateField[]) { | 
 |         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), | 
 |         VMSTATE_END_OF_LIST() | 
 |     }, | 
 | }; | 
 |  | 
 | static bool spapr_dtb_needed(void *opaque) | 
 | { | 
 |     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); | 
 |  | 
 |     return smc->update_dt_enabled; | 
 | } | 
 |  | 
 | static int spapr_dtb_pre_load(void *opaque) | 
 | { | 
 |     SpaprMachineState *spapr = (SpaprMachineState *)opaque; | 
 |  | 
 |     g_free(spapr->fdt_blob); | 
 |     spapr->fdt_blob = NULL; | 
 |     spapr->fdt_size = 0; | 
 |  | 
 |     return 0; | 
 | } | 
 |  | 
 | static const VMStateDescription vmstate_spapr_dtb = { | 
 |     .name = "spapr_dtb", | 
 |     .version_id = 1, | 
 |     .minimum_version_id = 1, | 
 |     .needed = spapr_dtb_needed, | 
 |     .pre_load = spapr_dtb_pre_load, | 
 |     .fields = (const VMStateField[]) { | 
 |         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), | 
 |         VMSTATE_UINT32(fdt_size, SpaprMachineState), | 
 |         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, | 
 |                                      fdt_size), | 
 |         VMSTATE_END_OF_LIST() | 
 |     }, | 
 | }; | 
 |  | 
 | static bool spapr_fwnmi_needed(void *opaque) | 
 | { | 
 |     SpaprMachineState *spapr = (SpaprMachineState *)opaque; | 
 |  | 
 |     return spapr->fwnmi_machine_check_addr != -1; | 
 | } | 
 |  | 
 | static int spapr_fwnmi_pre_save(void *opaque) | 
 | { | 
 |     SpaprMachineState *spapr = (SpaprMachineState *)opaque; | 
 |  | 
 |     /* | 
 |      * Check if machine check handling is in progress and print a | 
 |      * warning message. | 
 |      */ | 
 |     if (spapr->fwnmi_machine_check_interlock != -1) { | 
 |         warn_report("A machine check is being handled during migration. The" | 
 |                 "handler may run and log hardware error on the destination"); | 
 |     } | 
 |  | 
 |     return 0; | 
 | } | 
 |  | 
 | static const VMStateDescription vmstate_spapr_fwnmi = { | 
 |     .name = "spapr_fwnmi", | 
 |     .version_id = 1, | 
 |     .minimum_version_id = 1, | 
 |     .needed = spapr_fwnmi_needed, | 
 |     .pre_save = spapr_fwnmi_pre_save, | 
 |     .fields = (const VMStateField[]) { | 
 |         VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState), | 
 |         VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState), | 
 |         VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState), | 
 |         VMSTATE_END_OF_LIST() | 
 |     }, | 
 | }; | 
 |  | 
 | static const VMStateDescription vmstate_spapr = { | 
 |     .name = "spapr", | 
 |     .version_id = 3, | 
 |     .minimum_version_id = 1, | 
 |     .pre_load = spapr_pre_load, | 
 |     .post_load = spapr_post_load, | 
 |     .pre_save = spapr_pre_save, | 
 |     .fields = (const VMStateField[]) { | 
 |         /* used to be @next_irq */ | 
 |         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), | 
 |  | 
 |         /* RTC offset */ | 
 |         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), | 
 |  | 
 |         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), | 
 |         VMSTATE_END_OF_LIST() | 
 |     }, | 
 |     .subsections = (const VMStateDescription * const []) { | 
 |         &vmstate_spapr_ov5_cas, | 
 |         &vmstate_spapr_patb_entry, | 
 |         &vmstate_spapr_pending_events, | 
 |         &vmstate_spapr_cap_htm, | 
 |         &vmstate_spapr_cap_vsx, | 
 |         &vmstate_spapr_cap_dfp, | 
 |         &vmstate_spapr_cap_cfpc, | 
 |         &vmstate_spapr_cap_sbbc, | 
 |         &vmstate_spapr_cap_ibs, | 
 |         &vmstate_spapr_cap_hpt_maxpagesize, | 
 |         &vmstate_spapr_irq_map, | 
 |         &vmstate_spapr_cap_nested_kvm_hv, | 
 |         &vmstate_spapr_dtb, | 
 |         &vmstate_spapr_cap_large_decr, | 
 |         &vmstate_spapr_cap_ccf_assist, | 
 |         &vmstate_spapr_cap_fwnmi, | 
 |         &vmstate_spapr_fwnmi, | 
 |         &vmstate_spapr_cap_rpt_invalidate, | 
 |         &vmstate_spapr_cap_ail_mode_3, | 
 |         &vmstate_spapr_cap_nested_papr, | 
 |         &vmstate_spapr_cap_dawr1, | 
 |         NULL | 
 |     } | 
 | }; | 
 |  | 
 | static int htab_save_setup(QEMUFile *f, void *opaque, Error **errp) | 
 | { | 
 |     SpaprMachineState *spapr = opaque; | 
 |  | 
 |     /* "Iteration" header */ | 
 |     if (!spapr->htab_shift) { | 
 |         qemu_put_be32(f, -1); | 
 |     } else { | 
 |         qemu_put_be32(f, spapr->htab_shift); | 
 |     } | 
 |  | 
 |     if (spapr->htab) { | 
 |         spapr->htab_save_index = 0; | 
 |         spapr->htab_first_pass = true; | 
 |     } else { | 
 |         if (spapr->htab_shift) { | 
 |             assert(kvm_enabled()); | 
 |         } | 
 |     } | 
 |  | 
 |  | 
 |     return 0; | 
 | } | 
 |  | 
 | static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, | 
 |                             int chunkstart, int n_valid, int n_invalid) | 
 | { | 
 |     qemu_put_be32(f, chunkstart); | 
 |     qemu_put_be16(f, n_valid); | 
 |     qemu_put_be16(f, n_invalid); | 
 |     qemu_put_buffer(f, (void *)hpte_get_ptr(spapr, chunkstart), | 
 |                     HASH_PTE_SIZE_64 * n_valid); | 
 | } | 
 |  | 
 | static void htab_save_end_marker(QEMUFile *f) | 
 | { | 
 |     qemu_put_be32(f, 0); | 
 |     qemu_put_be16(f, 0); | 
 |     qemu_put_be16(f, 0); | 
 | } | 
 |  | 
 | static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, | 
 |                                  int64_t max_ns) | 
 | { | 
 |     bool has_timeout = max_ns != -1; | 
 |     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; | 
 |     int index = spapr->htab_save_index; | 
 |     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); | 
 |  | 
 |     assert(spapr->htab_first_pass); | 
 |  | 
 |     do { | 
 |         int chunkstart; | 
 |  | 
 |         /* Consume invalid HPTEs */ | 
 |         while ((index < htabslots) | 
 |                && !hpte_is_valid(spapr, index)) { | 
 |             hpte_set_clean(spapr, index); | 
 |             index++; | 
 |         } | 
 |  | 
 |         /* Consume valid HPTEs */ | 
 |         chunkstart = index; | 
 |         while ((index < htabslots) && (index - chunkstart < USHRT_MAX) | 
 |                && hpte_is_valid(spapr, index)) { | 
 |             hpte_set_clean(spapr, index); | 
 |             index++; | 
 |         } | 
 |  | 
 |         if (index > chunkstart) { | 
 |             int n_valid = index - chunkstart; | 
 |  | 
 |             htab_save_chunk(f, spapr, chunkstart, n_valid, 0); | 
 |  | 
 |             if (has_timeout && | 
 |                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { | 
 |                 break; | 
 |             } | 
 |         } | 
 |     } while ((index < htabslots) && !migration_rate_exceeded(f)); | 
 |  | 
 |     if (index >= htabslots) { | 
 |         assert(index == htabslots); | 
 |         index = 0; | 
 |         spapr->htab_first_pass = false; | 
 |     } | 
 |     spapr->htab_save_index = index; | 
 | } | 
 |  | 
 | static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, | 
 |                                 int64_t max_ns) | 
 | { | 
 |     bool final = max_ns < 0; | 
 |     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; | 
 |     int examined = 0, sent = 0; | 
 |     int index = spapr->htab_save_index; | 
 |     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); | 
 |  | 
 |     assert(!spapr->htab_first_pass); | 
 |  | 
 |     do { | 
 |         int chunkstart, invalidstart; | 
 |  | 
 |         /* Consume non-dirty HPTEs */ | 
 |         while ((index < htabslots) | 
 |                && !hpte_is_dirty(spapr, index)) { | 
 |             index++; | 
 |             examined++; | 
 |         } | 
 |  | 
 |         chunkstart = index; | 
 |         /* Consume valid dirty HPTEs */ | 
 |         while ((index < htabslots) && (index - chunkstart < USHRT_MAX) | 
 |                && hpte_is_dirty(spapr, index) | 
 |                && hpte_is_valid(spapr, index)) { | 
 |             hpte_set_clean(spapr, index); | 
 |             index++; | 
 |             examined++; | 
 |         } | 
 |  | 
 |         invalidstart = index; | 
 |         /* Consume invalid dirty HPTEs */ | 
 |         while ((index < htabslots) && (index - invalidstart < USHRT_MAX) | 
 |                && hpte_is_dirty(spapr, index) | 
 |                && !hpte_is_valid(spapr, index)) { | 
 |             hpte_set_clean(spapr, index); | 
 |             index++; | 
 |             examined++; | 
 |         } | 
 |  | 
 |         if (index > chunkstart) { | 
 |             int n_valid = invalidstart - chunkstart; | 
 |             int n_invalid = index - invalidstart; | 
 |  | 
 |             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); | 
 |             sent += index - chunkstart; | 
 |  | 
 |             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { | 
 |                 break; | 
 |             } | 
 |         } | 
 |  | 
 |         if (examined >= htabslots) { | 
 |             break; | 
 |         } | 
 |  | 
 |         if (index >= htabslots) { | 
 |             assert(index == htabslots); | 
 |             index = 0; | 
 |         } | 
 |     } while ((examined < htabslots) && (!migration_rate_exceeded(f) || final)); | 
 |  | 
 |     if (index >= htabslots) { | 
 |         assert(index == htabslots); | 
 |         index = 0; | 
 |     } | 
 |  | 
 |     spapr->htab_save_index = index; | 
 |  | 
 |     return (examined >= htabslots) && (sent == 0) ? 1 : 0; | 
 | } | 
 |  | 
 | #define MAX_ITERATION_NS    5000000 /* 5 ms */ | 
 | #define MAX_KVM_BUF_SIZE    2048 | 
 |  | 
 | static int htab_save_iterate(QEMUFile *f, void *opaque) | 
 | { | 
 |     SpaprMachineState *spapr = opaque; | 
 |     int fd; | 
 |     int rc = 0; | 
 |  | 
 |     /* Iteration header */ | 
 |     if (!spapr->htab_shift) { | 
 |         qemu_put_be32(f, -1); | 
 |         return 1; | 
 |     } else { | 
 |         qemu_put_be32(f, 0); | 
 |     } | 
 |  | 
 |     if (!spapr->htab) { | 
 |         assert(kvm_enabled()); | 
 |  | 
 |         fd = get_htab_fd(spapr); | 
 |         if (fd < 0) { | 
 |             return fd; | 
 |         } | 
 |  | 
 |         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); | 
 |         if (rc < 0) { | 
 |             return rc; | 
 |         } | 
 |     } else  if (spapr->htab_first_pass) { | 
 |         htab_save_first_pass(f, spapr, MAX_ITERATION_NS); | 
 |     } else { | 
 |         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); | 
 |     } | 
 |  | 
 |     htab_save_end_marker(f); | 
 |  | 
 |     return rc; | 
 | } | 
 |  | 
 | static int htab_save_complete(QEMUFile *f, void *opaque) | 
 | { | 
 |     SpaprMachineState *spapr = opaque; | 
 |     int fd; | 
 |  | 
 |     /* Iteration header */ | 
 |     if (!spapr->htab_shift) { | 
 |         qemu_put_be32(f, -1); | 
 |         return 0; | 
 |     } else { | 
 |         qemu_put_be32(f, 0); | 
 |     } | 
 |  | 
 |     if (!spapr->htab) { | 
 |         int rc; | 
 |  | 
 |         assert(kvm_enabled()); | 
 |  | 
 |         fd = get_htab_fd(spapr); | 
 |         if (fd < 0) { | 
 |             return fd; | 
 |         } | 
 |  | 
 |         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); | 
 |         if (rc < 0) { | 
 |             return rc; | 
 |         } | 
 |     } else { | 
 |         if (spapr->htab_first_pass) { | 
 |             htab_save_first_pass(f, spapr, -1); | 
 |         } | 
 |         htab_save_later_pass(f, spapr, -1); | 
 |     } | 
 |  | 
 |     /* End marker */ | 
 |     htab_save_end_marker(f); | 
 |  | 
 |     return 0; | 
 | } | 
 |  | 
 | static int htab_load(QEMUFile *f, void *opaque, int version_id) | 
 | { | 
 |     SpaprMachineState *spapr = opaque; | 
 |     uint32_t section_hdr; | 
 |     int fd = -1; | 
 |     Error *local_err = NULL; | 
 |  | 
 |     if (version_id < 1 || version_id > 1) { | 
 |         error_report("htab_load() bad version"); | 
 |         return -EINVAL; | 
 |     } | 
 |  | 
 |     section_hdr = qemu_get_be32(f); | 
 |  | 
 |     if (section_hdr == -1) { | 
 |         spapr_free_hpt(spapr); | 
 |         return 0; | 
 |     } | 
 |  | 
 |     if (section_hdr) { | 
 |         int ret; | 
 |  | 
 |         /* First section gives the htab size */ | 
 |         ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err); | 
 |         if (ret < 0) { | 
 |             error_report_err(local_err); | 
 |             return ret; | 
 |         } | 
 |         return 0; | 
 |     } | 
 |  | 
 |     if (!spapr->htab) { | 
 |         assert(kvm_enabled()); | 
 |  | 
 |         fd = kvmppc_get_htab_fd(true, 0, &local_err); | 
 |         if (fd < 0) { | 
 |             error_report_err(local_err); | 
 |             return fd; | 
 |         } | 
 |     } | 
 |  | 
 |     while (true) { | 
 |         uint32_t index; | 
 |         uint16_t n_valid, n_invalid; | 
 |  | 
 |         index = qemu_get_be32(f); | 
 |         n_valid = qemu_get_be16(f); | 
 |         n_invalid = qemu_get_be16(f); | 
 |  | 
 |         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { | 
 |             /* End of Stream */ | 
 |             break; | 
 |         } | 
 |  | 
 |         if ((index + n_valid + n_invalid) > | 
 |             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { | 
 |             /* Bad index in stream */ | 
 |             error_report( | 
 |                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", | 
 |                 index, n_valid, n_invalid, spapr->htab_shift); | 
 |             return -EINVAL; | 
 |         } | 
 |  | 
 |         if (spapr->htab) { | 
 |             if (n_valid) { | 
 |                 qemu_get_buffer(f, (void *)hpte_get_ptr(spapr, index), | 
 |                                 HASH_PTE_SIZE_64 * n_valid); | 
 |             } | 
 |             if (n_invalid) { | 
 |                 memset(hpte_get_ptr(spapr, index + n_valid), 0, | 
 |                        HASH_PTE_SIZE_64 * n_invalid); | 
 |             } | 
 |         } else { | 
 |             int rc; | 
 |  | 
 |             assert(fd >= 0); | 
 |  | 
 |             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid, | 
 |                                         &local_err); | 
 |             if (rc < 0) { | 
 |                 error_report_err(local_err); | 
 |                 return rc; | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     if (!spapr->htab) { | 
 |         assert(fd >= 0); | 
 |         close(fd); | 
 |     } | 
 |  | 
 |     return 0; | 
 | } | 
 |  | 
 | static void htab_save_cleanup(void *opaque) | 
 | { | 
 |     SpaprMachineState *spapr = opaque; | 
 |  | 
 |     close_htab_fd(spapr); | 
 | } | 
 |  | 
 | static SaveVMHandlers savevm_htab_handlers = { | 
 |     .save_setup = htab_save_setup, | 
 |     .save_live_iterate = htab_save_iterate, | 
 |     .save_complete = htab_save_complete, | 
 |     .save_cleanup = htab_save_cleanup, | 
 |     .load_state = htab_load, | 
 | }; | 
 |  | 
 | static void spapr_boot_set(void *opaque, const char *boot_device, | 
 |                            Error **errp) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(opaque); | 
 |  | 
 |     g_free(spapr->boot_device); | 
 |     spapr->boot_device = g_strdup(boot_device); | 
 | } | 
 |  | 
 | static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) | 
 | { | 
 |     MachineState *machine = MACHINE(spapr); | 
 |     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; | 
 |     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; | 
 |     int i; | 
 |  | 
 |     g_assert(!nr_lmbs || machine->device_memory); | 
 |     for (i = 0; i < nr_lmbs; i++) { | 
 |         uint64_t addr; | 
 |  | 
 |         addr = i * lmb_size + machine->device_memory->base; | 
 |         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, | 
 |                                addr / lmb_size); | 
 |     } | 
 | } | 
 |  | 
 | /* | 
 |  * If RAM size, maxmem size and individual node mem sizes aren't aligned | 
 |  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest | 
 |  * since we can't support such unaligned sizes with DRCONF_MEMORY. | 
 |  */ | 
 | static void spapr_validate_node_memory(MachineState *machine, Error **errp) | 
 | { | 
 |     int i; | 
 |  | 
 |     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { | 
 |         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT | 
 |                    " is not aligned to %" PRIu64 " MiB", | 
 |                    machine->ram_size, | 
 |                    SPAPR_MEMORY_BLOCK_SIZE / MiB); | 
 |         return; | 
 |     } | 
 |  | 
 |     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { | 
 |         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT | 
 |                    " is not aligned to %" PRIu64 " MiB", | 
 |                    machine->ram_size, | 
 |                    SPAPR_MEMORY_BLOCK_SIZE / MiB); | 
 |         return; | 
 |     } | 
 |  | 
 |     for (i = 0; i < machine->numa_state->num_nodes; i++) { | 
 |         if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { | 
 |             error_setg(errp, | 
 |                        "Node %d memory size 0x%" PRIx64 | 
 |                        " is not aligned to %" PRIu64 " MiB", | 
 |                        i, machine->numa_state->nodes[i].node_mem, | 
 |                        SPAPR_MEMORY_BLOCK_SIZE / MiB); | 
 |             return; | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | /* find cpu slot in machine->possible_cpus by core_id */ | 
 | static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) | 
 | { | 
 |     int index = id / ms->smp.threads; | 
 |  | 
 |     if (index >= ms->possible_cpus->len) { | 
 |         return NULL; | 
 |     } | 
 |     if (idx) { | 
 |         *idx = index; | 
 |     } | 
 |     return &ms->possible_cpus->cpus[index]; | 
 | } | 
 |  | 
 | static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) | 
 | { | 
 |     MachineState *ms = MACHINE(spapr); | 
 |     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); | 
 |     Error *local_err = NULL; | 
 |     bool vsmt_user = !!spapr->vsmt; | 
 |     int kvm_smt = kvmppc_smt_threads(); | 
 |     int ret; | 
 |     unsigned int smp_threads = ms->smp.threads; | 
 |  | 
 |     if (tcg_enabled()) { | 
 |         if (smp_threads > 1 && | 
 |             !ppc_type_check_compat(ms->cpu_type, CPU_POWERPC_LOGICAL_2_07, 0, | 
 |                                    spapr->max_compat_pvr)) { | 
 |             error_setg(errp, "TCG only supports SMT on POWER8 or newer CPUs"); | 
 |             return; | 
 |         } | 
 |  | 
 |         if (smp_threads > 8) { | 
 |             error_setg(errp, "TCG cannot support more than 8 threads/core " | 
 |                        "on a pseries machine"); | 
 |             return; | 
 |         } | 
 |     } | 
 |     if (!is_power_of_2(smp_threads)) { | 
 |         error_setg(errp, "Cannot support %d threads/core on a pseries " | 
 |                    "machine because it must be a power of 2", smp_threads); | 
 |         return; | 
 |     } | 
 |  | 
 |     /* Determine the VSMT mode to use: */ | 
 |     if (vsmt_user) { | 
 |         if (spapr->vsmt < smp_threads) { | 
 |             error_setg(errp, "Cannot support VSMT mode %d" | 
 |                        " because it must be >= threads/core (%d)", | 
 |                        spapr->vsmt, smp_threads); | 
 |             return; | 
 |         } | 
 |         /* In this case, spapr->vsmt has been set by the command line */ | 
 |     } else if (!smc->smp_threads_vsmt) { | 
 |         /* | 
 |          * Default VSMT value is tricky, because we need it to be as | 
 |          * consistent as possible (for migration), but this requires | 
 |          * changing it for at least some existing cases.  We pick 8 as | 
 |          * the value that we'd get with KVM on POWER8, the | 
 |          * overwhelmingly common case in production systems. | 
 |          */ | 
 |         spapr->vsmt = MAX(8, smp_threads); | 
 |     } else { | 
 |         spapr->vsmt = smp_threads; | 
 |     } | 
 |  | 
 |     /* KVM: If necessary, set the SMT mode: */ | 
 |     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { | 
 |         ret = kvmppc_set_smt_threads(spapr->vsmt); | 
 |         if (ret) { | 
 |             /* Looks like KVM isn't able to change VSMT mode */ | 
 |             error_setg(&local_err, | 
 |                        "Failed to set KVM's VSMT mode to %d (errno %d)", | 
 |                        spapr->vsmt, ret); | 
 |             /* We can live with that if the default one is big enough | 
 |              * for the number of threads, and a submultiple of the one | 
 |              * we want.  In this case we'll waste some vcpu ids, but | 
 |              * behaviour will be correct */ | 
 |             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { | 
 |                 warn_report_err(local_err); | 
 |             } else { | 
 |                 if (!vsmt_user) { | 
 |                     error_append_hint(&local_err, | 
 |                                       "On PPC, a VM with %d threads/core" | 
 |                                       " on a host with %d threads/core" | 
 |                                       " requires the use of VSMT mode %d.\n", | 
 |                                       smp_threads, kvm_smt, spapr->vsmt); | 
 |                 } | 
 |                 kvmppc_error_append_smt_possible_hint(&local_err); | 
 |                 error_propagate(errp, local_err); | 
 |             } | 
 |         } | 
 |     } | 
 |     /* else TCG: nothing to do currently */ | 
 | } | 
 |  | 
 | static void spapr_init_cpus(SpaprMachineState *spapr) | 
 | { | 
 |     MachineState *machine = MACHINE(spapr); | 
 |     MachineClass *mc = MACHINE_GET_CLASS(machine); | 
 |     const char *type = spapr_get_cpu_core_type(machine->cpu_type); | 
 |     const CPUArchIdList *possible_cpus; | 
 |     unsigned int smp_cpus = machine->smp.cpus; | 
 |     unsigned int smp_threads = machine->smp.threads; | 
 |     unsigned int max_cpus = machine->smp.max_cpus; | 
 |     int boot_cores_nr = smp_cpus / smp_threads; | 
 |     int i; | 
 |  | 
 |     possible_cpus = mc->possible_cpu_arch_ids(machine); | 
 |     if (mc->has_hotpluggable_cpus) { | 
 |         if (smp_cpus % smp_threads) { | 
 |             error_report("smp_cpus (%u) must be multiple of threads (%u)", | 
 |                          smp_cpus, smp_threads); | 
 |             exit(1); | 
 |         } | 
 |         if (max_cpus % smp_threads) { | 
 |             error_report("max_cpus (%u) must be multiple of threads (%u)", | 
 |                          max_cpus, smp_threads); | 
 |             exit(1); | 
 |         } | 
 |     } else { | 
 |         if (max_cpus != smp_cpus) { | 
 |             error_report("This machine version does not support CPU hotplug"); | 
 |             exit(1); | 
 |         } | 
 |         boot_cores_nr = possible_cpus->len; | 
 |     } | 
 |  | 
 |     for (i = 0; i < possible_cpus->len; i++) { | 
 |         int core_id = i * smp_threads; | 
 |  | 
 |         if (mc->has_hotpluggable_cpus) { | 
 |             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, | 
 |                                    spapr_vcpu_id(spapr, core_id)); | 
 |         } | 
 |  | 
 |         if (i < boot_cores_nr) { | 
 |             Object *core  = object_new(type); | 
 |             int nr_threads = smp_threads; | 
 |  | 
 |             /* Handle the partially filled core for older machine types */ | 
 |             if ((i + 1) * smp_threads >= smp_cpus) { | 
 |                 nr_threads = smp_cpus - i * smp_threads; | 
 |             } | 
 |  | 
 |             object_property_set_int(core, "nr-threads", nr_threads, | 
 |                                     &error_fatal); | 
 |             object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id, | 
 |                                     &error_fatal); | 
 |             qdev_realize(DEVICE(core), NULL, &error_fatal); | 
 |  | 
 |             object_unref(core); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | static PCIHostState *spapr_create_default_phb(void) | 
 | { | 
 |     DeviceState *dev; | 
 |  | 
 |     dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE); | 
 |     qdev_prop_set_uint32(dev, "index", 0); | 
 |     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); | 
 |  | 
 |     return PCI_HOST_BRIDGE(dev); | 
 | } | 
 |  | 
 | static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp) | 
 | { | 
 |     MachineState *machine = MACHINE(spapr); | 
 |     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); | 
 |     hwaddr rma_size = machine->ram_size; | 
 |     hwaddr node0_size = spapr_node0_size(machine); | 
 |  | 
 |     /* RMA has to fit in the first NUMA node */ | 
 |     rma_size = MIN(rma_size, node0_size); | 
 |  | 
 |     /* | 
 |      * VRMA access is via a special 1TiB SLB mapping, so the RMA can | 
 |      * never exceed that | 
 |      */ | 
 |     rma_size = MIN(rma_size, 1 * TiB); | 
 |  | 
 |     /* | 
 |      * Clamp the RMA size based on machine type.  This is for | 
 |      * migration compatibility with older qemu versions, which limited | 
 |      * the RMA size for complicated and mostly bad reasons. | 
 |      */ | 
 |     if (smc->rma_limit) { | 
 |         rma_size = MIN(rma_size, smc->rma_limit); | 
 |     } | 
 |  | 
 |     if (rma_size < MIN_RMA_SLOF) { | 
 |         error_setg(errp, | 
 |                    "pSeries SLOF firmware requires >= %" HWADDR_PRIx | 
 |                    "ldMiB guest RMA (Real Mode Area memory)", | 
 |                    MIN_RMA_SLOF / MiB); | 
 |         return 0; | 
 |     } | 
 |  | 
 |     return rma_size; | 
 | } | 
 |  | 
 | static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr) | 
 | { | 
 |     MachineState *machine = MACHINE(spapr); | 
 |     int i; | 
 |  | 
 |     for (i = 0; i < machine->ram_slots; i++) { | 
 |         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i); | 
 |     } | 
 | } | 
 |  | 
 | /* pSeries LPAR / sPAPR hardware init */ | 
 | static void spapr_machine_init(MachineState *machine) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(machine); | 
 |     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); | 
 |     MachineClass *mc = MACHINE_GET_CLASS(machine); | 
 |     const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME; | 
 |     const char *bios_name = machine->firmware ?: bios_default; | 
 |     g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); | 
 |     const char *kernel_filename = machine->kernel_filename; | 
 |     const char *initrd_filename = machine->initrd_filename; | 
 |     PCIHostState *phb; | 
 |     bool has_vga; | 
 |     int i; | 
 |     MemoryRegion *sysmem = get_system_memory(); | 
 |     long load_limit, fw_size; | 
 |     Error *resize_hpt_err = NULL; | 
 |     NICInfo *nd; | 
 |  | 
 |     if (!filename) { | 
 |         error_report("Could not find LPAR firmware '%s'", bios_name); | 
 |         exit(1); | 
 |     } | 
 |     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); | 
 |     if (fw_size <= 0) { | 
 |         error_report("Could not load LPAR firmware '%s'", filename); | 
 |         exit(1); | 
 |     } | 
 |  | 
 |     /* | 
 |      * if Secure VM (PEF) support is configured, then initialize it | 
 |      */ | 
 |     if (machine->cgs) { | 
 |         confidential_guest_kvm_init(machine->cgs, &error_fatal); | 
 |     } | 
 |  | 
 |     msi_nonbroken = true; | 
 |  | 
 |     QLIST_INIT(&spapr->phbs); | 
 |     QTAILQ_INIT(&spapr->pending_dimm_unplugs); | 
 |  | 
 |     /* Determine capabilities to run with */ | 
 |     spapr_caps_init(spapr); | 
 |  | 
 |     kvmppc_check_papr_resize_hpt(&resize_hpt_err); | 
 |     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { | 
 |         /* | 
 |          * If the user explicitly requested a mode we should either | 
 |          * supply it, or fail completely (which we do below).  But if | 
 |          * it's not set explicitly, we reset our mode to something | 
 |          * that works | 
 |          */ | 
 |         if (resize_hpt_err) { | 
 |             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; | 
 |             error_free(resize_hpt_err); | 
 |             resize_hpt_err = NULL; | 
 |         } else { | 
 |             spapr->resize_hpt = smc->resize_hpt_default; | 
 |         } | 
 |     } | 
 |  | 
 |     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); | 
 |  | 
 |     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { | 
 |         /* | 
 |          * User requested HPT resize, but this host can't supply it.  Bail out | 
 |          */ | 
 |         error_report_err(resize_hpt_err); | 
 |         exit(1); | 
 |     } | 
 |     error_free(resize_hpt_err); | 
 |  | 
 |     spapr->rma_size = spapr_rma_size(spapr, &error_fatal); | 
 |  | 
 |     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ | 
 |     load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD; | 
 |  | 
 |     /* | 
 |      * VSMT must be set in order to be able to compute VCPU ids, ie to | 
 |      * call spapr_max_server_number() or spapr_vcpu_id(). | 
 |      */ | 
 |     spapr_set_vsmt_mode(spapr, &error_fatal); | 
 |  | 
 |     /* Set up Interrupt Controller before we create the VCPUs */ | 
 |     spapr_irq_init(spapr, &error_fatal); | 
 |  | 
 |     /* Set up containers for ibm,client-architecture-support negotiated options | 
 |      */ | 
 |     spapr->ov5 = spapr_ovec_new(); | 
 |     spapr->ov5_cas = spapr_ovec_new(); | 
 |  | 
 |     spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); | 
 |     spapr_validate_node_memory(machine, &error_fatal); | 
 |  | 
 |     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); | 
 |  | 
 |     /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */ | 
 |     if (!smc->pre_6_2_numa_affinity) { | 
 |         spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY); | 
 |     } | 
 |  | 
 |     /* advertise support for dedicated HP event source to guests */ | 
 |     if (spapr->use_hotplug_event_source) { | 
 |         spapr_ovec_set(spapr->ov5, OV5_HP_EVT); | 
 |     } | 
 |  | 
 |     /* advertise support for HPT resizing */ | 
 |     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { | 
 |         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); | 
 |     } | 
 |  | 
 |     /* advertise support for ibm,dyamic-memory-v2 */ | 
 |     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); | 
 |  | 
 |     /* advertise XIVE on POWER9 machines */ | 
 |     if (spapr->irq->xive) { | 
 |         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); | 
 |     } | 
 |  | 
 |     qemu_guest_getrandom_nofail(&spapr->hashpkey_val, | 
 |                                 sizeof(spapr->hashpkey_val)); | 
 |  | 
 |     /* init CPUs */ | 
 |     spapr_init_cpus(spapr); | 
 |  | 
 |     /* Init numa_assoc_array */ | 
 |     spapr_numa_associativity_init(spapr, machine); | 
 |  | 
 |     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && | 
 |         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, | 
 |                               spapr->max_compat_pvr)) { | 
 |         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300); | 
 |         /* KVM and TCG always allow GTSE with radix... */ | 
 |         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); | 
 |     } | 
 |     /* ... but not with hash (currently). */ | 
 |  | 
 |     if (kvm_enabled()) { | 
 |         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ | 
 |         kvmppc_enable_logical_ci_hcalls(); | 
 |         kvmppc_enable_set_mode_hcall(); | 
 |  | 
 |         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ | 
 |         kvmppc_enable_clear_ref_mod_hcalls(); | 
 |  | 
 |         /* Enable H_PAGE_INIT */ | 
 |         kvmppc_enable_h_page_init(); | 
 |     } | 
 |  | 
 |     /* map RAM */ | 
 |     memory_region_add_subregion(sysmem, 0, machine->ram); | 
 |  | 
 |     /* initialize hotplug memory address space */ | 
 |     if (machine->ram_size < machine->maxram_size) { | 
 |         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; | 
 |         hwaddr device_mem_base; | 
 |  | 
 |         /* | 
 |          * Limit the number of hotpluggable memory slots to half the number | 
 |          * slots that KVM supports, leaving the other half for PCI and other | 
 |          * devices. However ensure that number of slots doesn't drop below 32. | 
 |          */ | 
 |         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : | 
 |                            SPAPR_MAX_RAM_SLOTS; | 
 |  | 
 |         if (max_memslots < SPAPR_MAX_RAM_SLOTS) { | 
 |             max_memslots = SPAPR_MAX_RAM_SLOTS; | 
 |         } | 
 |         if (machine->ram_slots > max_memslots) { | 
 |             error_report("Specified number of memory slots %" | 
 |                          PRIu64" exceeds max supported %d", | 
 |                          machine->ram_slots, max_memslots); | 
 |             exit(1); | 
 |         } | 
 |  | 
 |         device_mem_base = ROUND_UP(machine->ram_size, SPAPR_DEVICE_MEM_ALIGN); | 
 |         machine_memory_devices_init(machine, device_mem_base, device_mem_size); | 
 |     } | 
 |  | 
 |     spapr_create_lmb_dr_connectors(spapr); | 
 |  | 
 |     if (mc->nvdimm_supported) { | 
 |         spapr_create_nvdimm_dr_connectors(spapr); | 
 |     } | 
 |  | 
 |     /* Set up RTAS event infrastructure */ | 
 |     spapr_events_init(spapr); | 
 |  | 
 |     /* Set up the RTC RTAS interfaces */ | 
 |     spapr_rtc_create(spapr); | 
 |  | 
 |     /* Set up VIO bus */ | 
 |     spapr->vio_bus = spapr_vio_bus_init(); | 
 |  | 
 |     for (i = 0; serial_hd(i); i++) { | 
 |         spapr_vty_create(spapr->vio_bus, serial_hd(i)); | 
 |     } | 
 |  | 
 |     /* We always have at least the nvram device on VIO */ | 
 |     spapr_create_nvram(spapr); | 
 |  | 
 |     /* | 
 |      * Setup hotplug / dynamic-reconfiguration connectors. top-level | 
 |      * connectors (described in root DT node's "ibm,drc-types" property) | 
 |      * are pre-initialized here. additional child connectors (such as | 
 |      * connectors for a PHBs PCI slots) are added as needed during their | 
 |      * parent's realization. | 
 |      */ | 
 |     if (smc->dr_phb_enabled) { | 
 |         for (i = 0; i < SPAPR_MAX_PHBS; i++) { | 
 |             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); | 
 |         } | 
 |     } | 
 |  | 
 |     /* Set up PCI */ | 
 |     spapr_pci_rtas_init(); | 
 |  | 
 |     phb = spapr_create_default_phb(); | 
 |  | 
 |     while ((nd = qemu_find_nic_info("spapr-vlan", true, "ibmveth"))) { | 
 |         spapr_vlan_create(spapr->vio_bus, nd); | 
 |     } | 
 |  | 
 |     pci_init_nic_devices(phb->bus, NULL); | 
 |  | 
 |     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { | 
 |         spapr_vscsi_create(spapr->vio_bus); | 
 |     } | 
 |  | 
 |     /* Graphics */ | 
 |     has_vga = spapr_vga_init(phb->bus, &error_fatal); | 
 |     if (has_vga) { | 
 |         spapr->want_stdout_path = !machine->enable_graphics; | 
 |         machine->usb |= defaults_enabled() && !machine->usb_disabled; | 
 |     } else { | 
 |         spapr->want_stdout_path = true; | 
 |     } | 
 |  | 
 |     if (machine->usb) { | 
 |         pci_create_simple(phb->bus, -1, "nec-usb-xhci"); | 
 |  | 
 |         if (has_vga) { | 
 |             USBBus *usb_bus; | 
 |  | 
 |             usb_bus = USB_BUS(object_resolve_type_unambiguous(TYPE_USB_BUS, | 
 |                                                               &error_abort)); | 
 |             usb_create_simple(usb_bus, "usb-kbd"); | 
 |             usb_create_simple(usb_bus, "usb-mouse"); | 
 |         } | 
 |     } | 
 |  | 
 |     if (kernel_filename) { | 
 |         uint64_t loaded_addr = 0; | 
 |  | 
 |         spapr->kernel_size = load_elf(kernel_filename, NULL, | 
 |                                       translate_kernel_address, spapr, | 
 |                                       NULL, &loaded_addr, NULL, NULL, | 
 |                                       ELFDATA2MSB, PPC_ELF_MACHINE, 0, 0); | 
 |         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { | 
 |             spapr->kernel_size = load_elf(kernel_filename, NULL, | 
 |                                           translate_kernel_address, spapr, | 
 |                                           NULL, &loaded_addr, NULL, NULL, | 
 |                                           ELFDATA2LSB, PPC_ELF_MACHINE, 0, 0); | 
 |             spapr->kernel_le = spapr->kernel_size > 0; | 
 |         } | 
 |         if (spapr->kernel_size < 0) { | 
 |             error_report("error loading %s: %s", kernel_filename, | 
 |                          load_elf_strerror(spapr->kernel_size)); | 
 |             exit(1); | 
 |         } | 
 |  | 
 |         if (spapr->kernel_addr != loaded_addr) { | 
 |             warn_report("spapr: kernel_addr changed from 0x%"PRIx64 | 
 |                         " to 0x%"PRIx64, | 
 |                         spapr->kernel_addr, loaded_addr); | 
 |             spapr->kernel_addr = loaded_addr; | 
 |         } | 
 |  | 
 |         /* load initrd */ | 
 |         if (initrd_filename) { | 
 |             /* Try to locate the initrd in the gap between the kernel | 
 |              * and the firmware. Add a bit of space just in case | 
 |              */ | 
 |             spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size | 
 |                                   + 0x1ffff) & ~0xffff; | 
 |             spapr->initrd_size = load_image_targphys(initrd_filename, | 
 |                                                      spapr->initrd_base, | 
 |                                                      load_limit | 
 |                                                      - spapr->initrd_base); | 
 |             if (spapr->initrd_size < 0) { | 
 |                 error_report("could not load initial ram disk '%s'", | 
 |                              initrd_filename); | 
 |                 exit(1); | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     /* FIXME: Should register things through the MachineState's qdev | 
 |      * interface, this is a legacy from the sPAPREnvironment structure | 
 |      * which predated MachineState but had a similar function */ | 
 |     vmstate_register(NULL, 0, &vmstate_spapr, spapr); | 
 |     register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1, | 
 |                          &savevm_htab_handlers, spapr); | 
 |  | 
 |     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine)); | 
 |  | 
 |     qemu_register_boot_set(spapr_boot_set, spapr); | 
 |  | 
 |     /* | 
 |      * Nothing needs to be done to resume a suspended guest because | 
 |      * suspending does not change the machine state, so no need for | 
 |      * a ->wakeup method. | 
 |      */ | 
 |     qemu_register_wakeup_support(); | 
 |  | 
 |     if (kvm_enabled()) { | 
 |         /* to stop and start vmclock */ | 
 |         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, | 
 |                                          &spapr->tb); | 
 |  | 
 |         kvmppc_spapr_enable_inkernel_multitce(); | 
 |     } | 
 |  | 
 |     qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond); | 
 |     if (spapr->vof) { | 
 |         spapr->vof->fw_size = fw_size; /* for claim() on itself */ | 
 |         spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client); | 
 |     } | 
 |  | 
 |     spapr_watchdog_init(spapr); | 
 | } | 
 |  | 
 | #define DEFAULT_KVM_TYPE "auto" | 
 | static int spapr_kvm_type(MachineState *machine, const char *vm_type) | 
 | { | 
 |     /* | 
 |      * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to | 
 |      * accommodate the 'HV' and 'PV' formats that exists in the | 
 |      * wild. The 'auto' mode is being introduced already as | 
 |      * lower-case, thus we don't need to bother checking for | 
 |      * "AUTO". | 
 |      */ | 
 |     if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) { | 
 |         return 0; | 
 |     } | 
 |  | 
 |     if (!g_ascii_strcasecmp(vm_type, "hv")) { | 
 |         return 1; | 
 |     } | 
 |  | 
 |     if (!g_ascii_strcasecmp(vm_type, "pr")) { | 
 |         return 2; | 
 |     } | 
 |  | 
 |     error_report("Unknown kvm-type specified '%s'", vm_type); | 
 |     return -1; | 
 | } | 
 |  | 
 | /* | 
 |  * Implementation of an interface to adjust firmware path | 
 |  * for the bootindex property handling. | 
 |  */ | 
 | static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, | 
 |                                    DeviceState *dev) | 
 | { | 
 | #define CAST(type, obj, name) \ | 
 |     ((type *)object_dynamic_cast(OBJECT(obj), (name))) | 
 |     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE); | 
 |     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); | 
 |     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); | 
 |     PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); | 
 |  | 
 |     if (d && bus) { | 
 |         void *spapr = CAST(void, bus->parent, "spapr-vscsi"); | 
 |         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); | 
 |         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); | 
 |  | 
 |         if (spapr) { | 
 |             /* | 
 |              * Replace "channel@0/disk@0,0" with "disk@8000000000000000": | 
 |              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form | 
 |              * 0x8000 | (target << 8) | (bus << 5) | lun | 
 |              * (see the "Logical unit addressing format" table in SAM5) | 
 |              */ | 
 |             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; | 
 |             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), | 
 |                                    (uint64_t)id << 48); | 
 |         } else if (virtio) { | 
 |             /* | 
 |              * We use SRP luns of the form 01000000 | (target << 8) | lun | 
 |              * in the top 32 bits of the 64-bit LUN | 
 |              * Note: the quote above is from SLOF and it is wrong, | 
 |              * the actual binding is: | 
 |              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) | 
 |              */ | 
 |             unsigned id = 0x1000000 | (d->id << 16) | d->lun; | 
 |             if (d->lun >= 256) { | 
 |                 /* Use the LUN "flat space addressing method" */ | 
 |                 id |= 0x4000; | 
 |             } | 
 |             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), | 
 |                                    (uint64_t)id << 32); | 
 |         } else if (usb) { | 
 |             /* | 
 |              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun | 
 |              * in the top 32 bits of the 64-bit LUN | 
 |              */ | 
 |             unsigned usb_port = atoi(usb->port->path); | 
 |             unsigned id = 0x1000000 | (usb_port << 16) | d->lun; | 
 |             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), | 
 |                                    (uint64_t)id << 32); | 
 |         } | 
 |     } | 
 |  | 
 |     /* | 
 |      * SLOF probes the USB devices, and if it recognizes that the device is a | 
 |      * storage device, it changes its name to "storage" instead of "usb-host", | 
 |      * and additionally adds a child node for the SCSI LUN, so the correct | 
 |      * boot path in SLOF is something like .../storage@1/disk@xxx" instead. | 
 |      */ | 
 |     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { | 
 |         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); | 
 |         if (usb_device_is_scsi_storage(usbdev)) { | 
 |             return g_strdup_printf("storage@%s/disk", usbdev->port->path); | 
 |         } | 
 |     } | 
 |  | 
 |     if (phb) { | 
 |         /* Replace "pci" with "pci@800000020000000" */ | 
 |         return g_strdup_printf("pci@%"PRIX64, phb->buid); | 
 |     } | 
 |  | 
 |     if (vsc) { | 
 |         /* Same logic as virtio above */ | 
 |         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; | 
 |         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); | 
 |     } | 
 |  | 
 |     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { | 
 |         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ | 
 |         PCIDevice *pdev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); | 
 |         return g_strdup_printf("pci@%x", PCI_SLOT(pdev->devfn)); | 
 |     } | 
 |  | 
 |     if (pcidev) { | 
 |         return spapr_pci_fw_dev_name(pcidev); | 
 |     } | 
 |  | 
 |     return NULL; | 
 | } | 
 |  | 
 | static char *spapr_get_kvm_type(Object *obj, Error **errp) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(obj); | 
 |  | 
 |     return g_strdup(spapr->kvm_type); | 
 | } | 
 |  | 
 | static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(obj); | 
 |  | 
 |     g_free(spapr->kvm_type); | 
 |     spapr->kvm_type = g_strdup(value); | 
 | } | 
 |  | 
 | static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(obj); | 
 |  | 
 |     return spapr->use_hotplug_event_source; | 
 | } | 
 |  | 
 | static void spapr_set_modern_hotplug_events(Object *obj, bool value, | 
 |                                             Error **errp) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(obj); | 
 |  | 
 |     spapr->use_hotplug_event_source = value; | 
 | } | 
 |  | 
 | static bool spapr_get_msix_emulation(Object *obj, Error **errp) | 
 | { | 
 |     return true; | 
 | } | 
 |  | 
 | static char *spapr_get_resize_hpt(Object *obj, Error **errp) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(obj); | 
 |  | 
 |     switch (spapr->resize_hpt) { | 
 |     case SPAPR_RESIZE_HPT_DEFAULT: | 
 |         return g_strdup("default"); | 
 |     case SPAPR_RESIZE_HPT_DISABLED: | 
 |         return g_strdup("disabled"); | 
 |     case SPAPR_RESIZE_HPT_ENABLED: | 
 |         return g_strdup("enabled"); | 
 |     case SPAPR_RESIZE_HPT_REQUIRED: | 
 |         return g_strdup("required"); | 
 |     } | 
 |     g_assert_not_reached(); | 
 | } | 
 |  | 
 | static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(obj); | 
 |  | 
 |     if (strcmp(value, "default") == 0) { | 
 |         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; | 
 |     } else if (strcmp(value, "disabled") == 0) { | 
 |         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; | 
 |     } else if (strcmp(value, "enabled") == 0) { | 
 |         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; | 
 |     } else if (strcmp(value, "required") == 0) { | 
 |         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; | 
 |     } else { | 
 |         error_setg(errp, "Bad value for \"resize-hpt\" property"); | 
 |     } | 
 | } | 
 |  | 
 | static bool spapr_get_vof(Object *obj, Error **errp) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(obj); | 
 |  | 
 |     return spapr->vof != NULL; | 
 | } | 
 |  | 
 | static void spapr_set_vof(Object *obj, bool value, Error **errp) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(obj); | 
 |  | 
 |     if (spapr->vof) { | 
 |         vof_cleanup(spapr->vof); | 
 |         g_free(spapr->vof); | 
 |         spapr->vof = NULL; | 
 |     } | 
 |     if (!value) { | 
 |         return; | 
 |     } | 
 |     spapr->vof = g_malloc0(sizeof(*spapr->vof)); | 
 | } | 
 |  | 
 | static char *spapr_get_ic_mode(Object *obj, Error **errp) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(obj); | 
 |  | 
 |     if (spapr->irq == &spapr_irq_xics_legacy) { | 
 |         return g_strdup("legacy"); | 
 |     } else if (spapr->irq == &spapr_irq_xics) { | 
 |         return g_strdup("xics"); | 
 |     } else if (spapr->irq == &spapr_irq_xive) { | 
 |         return g_strdup("xive"); | 
 |     } else if (spapr->irq == &spapr_irq_dual) { | 
 |         return g_strdup("dual"); | 
 |     } | 
 |     g_assert_not_reached(); | 
 | } | 
 |  | 
 | static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(obj); | 
 |  | 
 |     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { | 
 |         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); | 
 |         return; | 
 |     } | 
 |  | 
 |     /* The legacy IRQ backend can not be set */ | 
 |     if (strcmp(value, "xics") == 0) { | 
 |         spapr->irq = &spapr_irq_xics; | 
 |     } else if (strcmp(value, "xive") == 0) { | 
 |         spapr->irq = &spapr_irq_xive; | 
 |     } else if (strcmp(value, "dual") == 0) { | 
 |         spapr->irq = &spapr_irq_dual; | 
 |     } else { | 
 |         error_setg(errp, "Bad value for \"ic-mode\" property"); | 
 |     } | 
 | } | 
 |  | 
 | static char *spapr_get_host_model(Object *obj, Error **errp) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(obj); | 
 |  | 
 |     return g_strdup(spapr->host_model); | 
 | } | 
 |  | 
 | static void spapr_set_host_model(Object *obj, const char *value, Error **errp) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(obj); | 
 |  | 
 |     g_free(spapr->host_model); | 
 |     spapr->host_model = g_strdup(value); | 
 | } | 
 |  | 
 | static char *spapr_get_host_serial(Object *obj, Error **errp) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(obj); | 
 |  | 
 |     return g_strdup(spapr->host_serial); | 
 | } | 
 |  | 
 | static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(obj); | 
 |  | 
 |     g_free(spapr->host_serial); | 
 |     spapr->host_serial = g_strdup(value); | 
 | } | 
 |  | 
 | static void spapr_instance_init(Object *obj) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(obj); | 
 |     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); | 
 |     MachineState *ms = MACHINE(spapr); | 
 |     MachineClass *mc = MACHINE_GET_CLASS(ms); | 
 |  | 
 |     /* | 
 |      * NVDIMM support went live in 5.1 without considering that, in | 
 |      * other archs, the user needs to enable NVDIMM support with the | 
 |      * 'nvdimm' machine option and the default behavior is NVDIMM | 
 |      * support disabled. It is too late to roll back to the standard | 
 |      * behavior without breaking 5.1 guests. | 
 |      */ | 
 |     if (mc->nvdimm_supported) { | 
 |         ms->nvdimms_state->is_enabled = true; | 
 |     } | 
 |  | 
 |     spapr->htab_fd = -1; | 
 |     spapr->use_hotplug_event_source = true; | 
 |     spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE); | 
 |     object_property_add_str(obj, "kvm-type", | 
 |                             spapr_get_kvm_type, spapr_set_kvm_type); | 
 |     object_property_set_description(obj, "kvm-type", | 
 |                                     "Specifies the KVM virtualization mode (auto," | 
 |                                     " hv, pr). Defaults to 'auto'. This mode will use" | 
 |                                     " any available KVM module loaded in the host," | 
 |                                     " where kvm_hv takes precedence if both kvm_hv and" | 
 |                                     " kvm_pr are loaded."); | 
 |     object_property_add_bool(obj, "modern-hotplug-events", | 
 |                             spapr_get_modern_hotplug_events, | 
 |                             spapr_set_modern_hotplug_events); | 
 |     object_property_set_description(obj, "modern-hotplug-events", | 
 |                                     "Use dedicated hotplug event mechanism in" | 
 |                                     " place of standard EPOW events when possible" | 
 |                                     " (required for memory hot-unplug support)"); | 
 |     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, | 
 |                             "Maximum permitted CPU compatibility mode"); | 
 |  | 
 |     object_property_add_str(obj, "resize-hpt", | 
 |                             spapr_get_resize_hpt, spapr_set_resize_hpt); | 
 |     object_property_set_description(obj, "resize-hpt", | 
 |                                     "Resizing of the Hash Page Table (enabled, disabled, required)"); | 
 |     object_property_add_uint32_ptr(obj, "vsmt", | 
 |                                    &spapr->vsmt, OBJ_PROP_FLAG_READWRITE); | 
 |     object_property_set_description(obj, "vsmt", | 
 |                                     "Virtual SMT: KVM behaves as if this were" | 
 |                                     " the host's SMT mode"); | 
 |  | 
 |     object_property_add_bool(obj, "vfio-no-msix-emulation", | 
 |                              spapr_get_msix_emulation, NULL); | 
 |  | 
 |     object_property_add_uint64_ptr(obj, "kernel-addr", | 
 |                                    &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE); | 
 |     object_property_set_description(obj, "kernel-addr", | 
 |                                     stringify(KERNEL_LOAD_ADDR) | 
 |                                     " for -kernel is the default"); | 
 |     spapr->kernel_addr = KERNEL_LOAD_ADDR; | 
 |  | 
 |     object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof); | 
 |     object_property_set_description(obj, "x-vof", | 
 |                                     "Enable Virtual Open Firmware (experimental)"); | 
 |  | 
 |     /* The machine class defines the default interrupt controller mode */ | 
 |     spapr->irq = smc->irq; | 
 |     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, | 
 |                             spapr_set_ic_mode); | 
 |     object_property_set_description(obj, "ic-mode", | 
 |                  "Specifies the interrupt controller mode (xics, xive, dual)"); | 
 |  | 
 |     object_property_add_str(obj, "host-model", | 
 |         spapr_get_host_model, spapr_set_host_model); | 
 |     object_property_set_description(obj, "host-model", | 
 |         "Host model to advertise in guest device tree"); | 
 |     object_property_add_str(obj, "host-serial", | 
 |         spapr_get_host_serial, spapr_set_host_serial); | 
 |     object_property_set_description(obj, "host-serial", | 
 |         "Host serial number to advertise in guest device tree"); | 
 | } | 
 |  | 
 | static void spapr_machine_finalizefn(Object *obj) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(obj); | 
 |  | 
 |     g_free(spapr->kvm_type); | 
 | } | 
 |  | 
 | void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); | 
 |     CPUPPCState *env = cpu_env(cs); | 
 |  | 
 |     cpu_synchronize_state(cs); | 
 |     /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */ | 
 |     if (spapr->fwnmi_system_reset_addr != -1) { | 
 |         uint64_t rtas_addr, addr; | 
 |  | 
 |         /* get rtas addr from fdt */ | 
 |         rtas_addr = spapr_get_rtas_addr(); | 
 |         if (!rtas_addr) { | 
 |             qemu_system_guest_panicked(NULL); | 
 |             return; | 
 |         } | 
 |  | 
 |         addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2; | 
 |         stq_be_phys(&address_space_memory, addr, env->gpr[3]); | 
 |         stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0); | 
 |         env->gpr[3] = addr; | 
 |     } | 
 |     ppc_cpu_do_system_reset(cs); | 
 |     if (spapr->fwnmi_system_reset_addr != -1) { | 
 |         env->nip = spapr->fwnmi_system_reset_addr; | 
 |     } | 
 | } | 
 |  | 
 | static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) | 
 | { | 
 |     CPUState *cs; | 
 |  | 
 |     CPU_FOREACH(cs) { | 
 |         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); | 
 |     } | 
 | } | 
 |  | 
 | int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, | 
 |                           void *fdt, int *fdt_start_offset, Error **errp) | 
 | { | 
 |     uint64_t addr; | 
 |     uint32_t node; | 
 |  | 
 |     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; | 
 |     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, | 
 |                                     &error_abort); | 
 |     *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr, | 
 |                                              SPAPR_MEMORY_BLOCK_SIZE); | 
 |     return 0; | 
 | } | 
 |  | 
 | static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, | 
 |                            bool dedicated_hp_event_source) | 
 | { | 
 |     SpaprDrc *drc; | 
 |     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; | 
 |     int i; | 
 |     uint64_t addr = addr_start; | 
 |     bool hotplugged = spapr_drc_hotplugged(dev); | 
 |  | 
 |     for (i = 0; i < nr_lmbs; i++) { | 
 |         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, | 
 |                               addr / SPAPR_MEMORY_BLOCK_SIZE); | 
 |         g_assert(drc); | 
 |  | 
 |         /* | 
 |          * memory_device_get_free_addr() provided a range of free addresses | 
 |          * that doesn't overlap with any existing mapping at pre-plug. The | 
 |          * corresponding LMB DRCs are thus assumed to be all attachable. | 
 |          */ | 
 |         spapr_drc_attach(drc, dev); | 
 |         if (!hotplugged) { | 
 |             spapr_drc_reset(drc); | 
 |         } | 
 |         addr += SPAPR_MEMORY_BLOCK_SIZE; | 
 |     } | 
 |     /* send hotplug notification to the | 
 |      * guest only in case of hotplugged memory | 
 |      */ | 
 |     if (hotplugged) { | 
 |         if (dedicated_hp_event_source) { | 
 |             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, | 
 |                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE); | 
 |             g_assert(drc); | 
 |             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, | 
 |                                                    nr_lmbs, | 
 |                                                    spapr_drc_index(drc)); | 
 |         } else { | 
 |             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, | 
 |                                            nr_lmbs); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev) | 
 | { | 
 |     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); | 
 |     PCDIMMDevice *dimm = PC_DIMM(dev); | 
 |     uint64_t size, addr; | 
 |     int64_t slot; | 
 |     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); | 
 |  | 
 |     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); | 
 |  | 
 |     pc_dimm_plug(dimm, MACHINE(ms)); | 
 |  | 
 |     if (!is_nvdimm) { | 
 |         addr = object_property_get_uint(OBJECT(dimm), | 
 |                                         PC_DIMM_ADDR_PROP, &error_abort); | 
 |         spapr_add_lmbs(dev, addr, size, | 
 |                        spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT)); | 
 |     } else { | 
 |         slot = object_property_get_int(OBJECT(dimm), | 
 |                                        PC_DIMM_SLOT_PROP, &error_abort); | 
 |         /* We should have valid slot number at this point */ | 
 |         g_assert(slot >= 0); | 
 |         spapr_add_nvdimm(dev, slot); | 
 |     } | 
 | } | 
 |  | 
 | static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, | 
 |                                   Error **errp) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); | 
 |     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); | 
 |     PCDIMMDevice *dimm = PC_DIMM(dev); | 
 |     Error *local_err = NULL; | 
 |     uint64_t size; | 
 |     Object *memdev; | 
 |     hwaddr pagesize; | 
 |  | 
 |     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); | 
 |     if (local_err) { | 
 |         error_propagate(errp, local_err); | 
 |         return; | 
 |     } | 
 |  | 
 |     if (is_nvdimm) { | 
 |         if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) { | 
 |             return; | 
 |         } | 
 |     } else if (size % SPAPR_MEMORY_BLOCK_SIZE) { | 
 |         error_setg(errp, "Hotplugged memory size must be a multiple of " | 
 |                    "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); | 
 |         return; | 
 |     } | 
 |  | 
 |     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, | 
 |                                       &error_abort); | 
 |     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); | 
 |     if (!spapr_check_pagesize(spapr, pagesize, errp)) { | 
 |         return; | 
 |     } | 
 |  | 
 |     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), errp); | 
 | } | 
 |  | 
 | struct SpaprDimmState { | 
 |     PCDIMMDevice *dimm; | 
 |     uint32_t nr_lmbs; | 
 |     QTAILQ_ENTRY(SpaprDimmState) next; | 
 | }; | 
 |  | 
 | static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, | 
 |                                                        PCDIMMDevice *dimm) | 
 | { | 
 |     SpaprDimmState *dimm_state = NULL; | 
 |  | 
 |     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { | 
 |         if (dimm_state->dimm == dimm) { | 
 |             break; | 
 |         } | 
 |     } | 
 |     return dimm_state; | 
 | } | 
 |  | 
 | static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, | 
 |                                                       uint32_t nr_lmbs, | 
 |                                                       PCDIMMDevice *dimm) | 
 | { | 
 |     SpaprDimmState *ds = NULL; | 
 |  | 
 |     /* | 
 |      * If this request is for a DIMM whose removal had failed earlier | 
 |      * (due to guest's refusal to remove the LMBs), we would have this | 
 |      * dimm already in the pending_dimm_unplugs list. In that | 
 |      * case don't add again. | 
 |      */ | 
 |     ds = spapr_pending_dimm_unplugs_find(spapr, dimm); | 
 |     if (!ds) { | 
 |         ds = g_new0(SpaprDimmState, 1); | 
 |         ds->nr_lmbs = nr_lmbs; | 
 |         ds->dimm = dimm; | 
 |         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); | 
 |     } | 
 |     return ds; | 
 | } | 
 |  | 
 | static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, | 
 |                                               SpaprDimmState *dimm_state) | 
 | { | 
 |     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); | 
 |     g_free(dimm_state); | 
 | } | 
 |  | 
 | static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, | 
 |                                                         PCDIMMDevice *dimm) | 
 | { | 
 |     SpaprDrc *drc; | 
 |     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), | 
 |                                                   &error_abort); | 
 |     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; | 
 |     uint32_t avail_lmbs = 0; | 
 |     uint64_t addr_start, addr; | 
 |     int i; | 
 |  | 
 |     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, | 
 |                                           &error_abort); | 
 |  | 
 |     addr = addr_start; | 
 |     for (i = 0; i < nr_lmbs; i++) { | 
 |         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, | 
 |                               addr / SPAPR_MEMORY_BLOCK_SIZE); | 
 |         g_assert(drc); | 
 |         if (drc->dev) { | 
 |             avail_lmbs++; | 
 |         } | 
 |         addr += SPAPR_MEMORY_BLOCK_SIZE; | 
 |     } | 
 |  | 
 |     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); | 
 | } | 
 |  | 
 | void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev) | 
 | { | 
 |     SpaprDimmState *ds; | 
 |     PCDIMMDevice *dimm; | 
 |     SpaprDrc *drc; | 
 |     uint32_t nr_lmbs; | 
 |     uint64_t size, addr_start, addr; | 
 |     int i; | 
 |  | 
 |     if (!dev) { | 
 |         return; | 
 |     } | 
 |  | 
 |     dimm = PC_DIMM(dev); | 
 |     ds = spapr_pending_dimm_unplugs_find(spapr, dimm); | 
 |  | 
 |     /* | 
 |      * 'ds == NULL' would mean that the DIMM doesn't have a pending | 
 |      * unplug state, but one of its DRC is marked as unplug_requested. | 
 |      * This is bad and weird enough to g_assert() out. | 
 |      */ | 
 |     g_assert(ds); | 
 |  | 
 |     spapr_pending_dimm_unplugs_remove(spapr, ds); | 
 |  | 
 |     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); | 
 |     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; | 
 |  | 
 |     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, | 
 |                                           &error_abort); | 
 |  | 
 |     addr = addr_start; | 
 |     for (i = 0; i < nr_lmbs; i++) { | 
 |         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, | 
 |                               addr / SPAPR_MEMORY_BLOCK_SIZE); | 
 |         g_assert(drc); | 
 |  | 
 |         drc->unplug_requested = false; | 
 |         addr += SPAPR_MEMORY_BLOCK_SIZE; | 
 |     } | 
 |  | 
 |     /* | 
 |      * Tell QAPI that something happened and the memory | 
 |      * hotunplug wasn't successful. | 
 |      */ | 
 |     qapi_event_send_device_unplug_guest_error(dev->id, | 
 |                                               dev->canonical_path); | 
 | } | 
 |  | 
 | /* Callback to be called during DRC release. */ | 
 | void spapr_lmb_release(DeviceState *dev) | 
 | { | 
 |     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); | 
 |     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); | 
 |  | 
 |     /* This information will get lost if a migration occurs | 
 |      * during the unplug process. In this case recover it. */ | 
 |     if (ds == NULL) { | 
 |         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); | 
 |         g_assert(ds); | 
 |         /* The DRC being examined by the caller at least must be counted */ | 
 |         g_assert(ds->nr_lmbs); | 
 |     } | 
 |  | 
 |     if (--ds->nr_lmbs) { | 
 |         return; | 
 |     } | 
 |  | 
 |     /* | 
 |      * Now that all the LMBs have been removed by the guest, call the | 
 |      * unplug handler chain. This can never fail. | 
 |      */ | 
 |     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); | 
 |     object_unparent(OBJECT(dev)); | 
 | } | 
 |  | 
 | static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); | 
 |     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); | 
 |  | 
 |     /* We really shouldn't get this far without anything to unplug */ | 
 |     g_assert(ds); | 
 |  | 
 |     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); | 
 |     qdev_unrealize(dev); | 
 |     spapr_pending_dimm_unplugs_remove(spapr, ds); | 
 | } | 
 |  | 
 | static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, | 
 |                                         DeviceState *dev, Error **errp) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); | 
 |     PCDIMMDevice *dimm = PC_DIMM(dev); | 
 |     uint32_t nr_lmbs; | 
 |     uint64_t size, addr_start, addr; | 
 |     int i; | 
 |     SpaprDrc *drc; | 
 |  | 
 |     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { | 
 |         error_setg(errp, "nvdimm device hot unplug is not supported yet."); | 
 |         return; | 
 |     } | 
 |  | 
 |     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); | 
 |     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; | 
 |  | 
 |     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, | 
 |                                           &error_abort); | 
 |  | 
 |     /* | 
 |      * An existing pending dimm state for this DIMM means that there is an | 
 |      * unplug operation in progress, waiting for the spapr_lmb_release | 
 |      * callback to complete the job (BQL can't cover that far). In this case, | 
 |      * bail out to avoid detaching DRCs that were already released. | 
 |      */ | 
 |     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { | 
 |         error_setg(errp, "Memory unplug already in progress for device %s", | 
 |                    dev->id); | 
 |         return; | 
 |     } | 
 |  | 
 |     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); | 
 |  | 
 |     addr = addr_start; | 
 |     for (i = 0; i < nr_lmbs; i++) { | 
 |         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, | 
 |                               addr / SPAPR_MEMORY_BLOCK_SIZE); | 
 |         g_assert(drc); | 
 |  | 
 |         spapr_drc_unplug_request(drc); | 
 |         addr += SPAPR_MEMORY_BLOCK_SIZE; | 
 |     } | 
 |  | 
 |     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, | 
 |                           addr_start / SPAPR_MEMORY_BLOCK_SIZE); | 
 |     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, | 
 |                                               nr_lmbs, spapr_drc_index(drc)); | 
 | } | 
 |  | 
 | /* Callback to be called during DRC release. */ | 
 | void spapr_core_release(DeviceState *dev) | 
 | { | 
 |     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); | 
 |  | 
 |     /* Call the unplug handler chain. This can never fail. */ | 
 |     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); | 
 |     object_unparent(OBJECT(dev)); | 
 | } | 
 |  | 
 | static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) | 
 | { | 
 |     MachineState *ms = MACHINE(hotplug_dev); | 
 |     CPUCore *cc = CPU_CORE(dev); | 
 |     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); | 
 |  | 
 |     assert(core_slot); | 
 |     core_slot->cpu = NULL; | 
 |     qdev_unrealize(dev); | 
 | } | 
 |  | 
 | static | 
 | void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, | 
 |                                Error **errp) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); | 
 |     int index; | 
 |     SpaprDrc *drc; | 
 |     CPUCore *cc = CPU_CORE(dev); | 
 |  | 
 |     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { | 
 |         error_setg(errp, "Unable to find CPU core with core-id: %d", | 
 |                    cc->core_id); | 
 |         return; | 
 |     } | 
 |     if (index == 0) { | 
 |         error_setg(errp, "Boot CPU core may not be unplugged"); | 
 |         return; | 
 |     } | 
 |  | 
 |     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, | 
 |                           spapr_vcpu_id(spapr, cc->core_id)); | 
 |     g_assert(drc); | 
 |  | 
 |     if (!spapr_drc_unplug_requested(drc)) { | 
 |         spapr_drc_unplug_request(drc); | 
 |     } | 
 |  | 
 |     /* | 
 |      * spapr_hotplug_req_remove_by_index is left unguarded, out of the | 
 |      * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ | 
 |      * pulses removing the same CPU. Otherwise, in an failed hotunplug | 
 |      * attempt (e.g. the kernel will refuse to remove the last online | 
 |      * CPU), we will never attempt it again because unplug_requested | 
 |      * will still be 'true' in that case. | 
 |      */ | 
 |     spapr_hotplug_req_remove_by_index(drc); | 
 | } | 
 |  | 
 | int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, | 
 |                            void *fdt, int *fdt_start_offset, Error **errp) | 
 | { | 
 |     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); | 
 |     CPUState *cs = CPU(core->threads[0]); | 
 |     PowerPCCPU *cpu = POWERPC_CPU(cs); | 
 |     DeviceClass *dc = DEVICE_GET_CLASS(cs); | 
 |     int id = spapr_get_vcpu_id(cpu); | 
 |     g_autofree char *nodename = NULL; | 
 |     int offset; | 
 |  | 
 |     nodename = g_strdup_printf("%s@%x", dc->fw_name, id); | 
 |     offset = fdt_add_subnode(fdt, 0, nodename); | 
 |  | 
 |     spapr_dt_cpu(cs, fdt, offset, spapr); | 
 |  | 
 |     /* | 
 |      * spapr_dt_cpu() does not fill the 'name' property in the | 
 |      * CPU node. The function is called during boot process, before | 
 |      * and after CAS, and overwriting the 'name' property written | 
 |      * by SLOF is not allowed. | 
 |      * | 
 |      * Write it manually after spapr_dt_cpu(). This makes the hotplug | 
 |      * CPUs more compatible with the coldplugged ones, which have | 
 |      * the 'name' property. Linux Kernel also relies on this | 
 |      * property to identify CPU nodes. | 
 |      */ | 
 |     _FDT((fdt_setprop_string(fdt, offset, "name", nodename))); | 
 |  | 
 |     *fdt_start_offset = offset; | 
 |     return 0; | 
 | } | 
 |  | 
 | static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); | 
 |     MachineClass *mc = MACHINE_GET_CLASS(spapr); | 
 |     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); | 
 |     CPUCore *cc = CPU_CORE(dev); | 
 |     SpaprDrc *drc; | 
 |     CPUArchId *core_slot; | 
 |     int index; | 
 |     bool hotplugged = spapr_drc_hotplugged(dev); | 
 |     int i; | 
 |  | 
 |     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); | 
 |     g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */ | 
 |  | 
 |     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, | 
 |                           spapr_vcpu_id(spapr, cc->core_id)); | 
 |  | 
 |     g_assert(drc || !mc->has_hotpluggable_cpus); | 
 |  | 
 |     if (drc) { | 
 |         /* | 
 |          * spapr_core_pre_plug() already buys us this is a brand new | 
 |          * core being plugged into a free slot. Nothing should already | 
 |          * be attached to the corresponding DRC. | 
 |          */ | 
 |         spapr_drc_attach(drc, dev); | 
 |  | 
 |         if (hotplugged) { | 
 |             /* | 
 |              * Send hotplug notification interrupt to the guest only | 
 |              * in case of hotplugged CPUs. | 
 |              */ | 
 |             spapr_hotplug_req_add_by_index(drc); | 
 |         } else { | 
 |             spapr_drc_reset(drc); | 
 |         } | 
 |     } | 
 |  | 
 |     core_slot->cpu = CPU(dev); | 
 |  | 
 |     /* | 
 |      * Set compatibility mode to match the boot CPU, which was either set | 
 |      * by the machine reset code or by CAS. This really shouldn't fail at | 
 |      * this point. | 
 |      */ | 
 |     if (hotplugged) { | 
 |         for (i = 0; i < cc->nr_threads; i++) { | 
 |             ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr, | 
 |                            &error_abort); | 
 |         } | 
 |     } | 
 |  | 
 | } | 
 |  | 
 | static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, | 
 |                                 Error **errp) | 
 | { | 
 |     MachineState *machine = MACHINE(OBJECT(hotplug_dev)); | 
 |     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); | 
 |     CPUCore *cc = CPU_CORE(dev); | 
 |     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); | 
 |     const char *type = object_get_typename(OBJECT(dev)); | 
 |     CPUArchId *core_slot; | 
 |     int index; | 
 |     unsigned int smp_threads = machine->smp.threads; | 
 |  | 
 |     if (dev->hotplugged && !mc->has_hotpluggable_cpus) { | 
 |         error_setg(errp, "CPU hotplug not supported for this machine"); | 
 |         return; | 
 |     } | 
 |  | 
 |     if (strcmp(base_core_type, type)) { | 
 |         error_setg(errp, "CPU core type should be %s", base_core_type); | 
 |         return; | 
 |     } | 
 |  | 
 |     if (cc->core_id % smp_threads) { | 
 |         error_setg(errp, "invalid core id %d", cc->core_id); | 
 |         return; | 
 |     } | 
 |  | 
 |     /* | 
 |      * In general we should have homogeneous threads-per-core, but old | 
 |      * (pre hotplug support) machine types allow the last core to have | 
 |      * reduced threads as a compatibility hack for when we allowed | 
 |      * total vcpus not a multiple of threads-per-core. | 
 |      */ | 
 |     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { | 
 |         error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads, | 
 |                    smp_threads); | 
 |         return; | 
 |     } | 
 |  | 
 |     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); | 
 |     if (!core_slot) { | 
 |         error_setg(errp, "core id %d out of range", cc->core_id); | 
 |         return; | 
 |     } | 
 |  | 
 |     if (core_slot->cpu) { | 
 |         error_setg(errp, "core %d already populated", cc->core_id); | 
 |         return; | 
 |     } | 
 |  | 
 |     numa_cpu_pre_plug(core_slot, dev, errp); | 
 | } | 
 |  | 
 | int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, | 
 |                           void *fdt, int *fdt_start_offset, Error **errp) | 
 | { | 
 |     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); | 
 |     int intc_phandle; | 
 |  | 
 |     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); | 
 |     if (intc_phandle <= 0) { | 
 |         return -1; | 
 |     } | 
 |  | 
 |     if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) { | 
 |         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); | 
 |         return -1; | 
 |     } | 
 |  | 
 |     /* generally SLOF creates these, for hotplug it's up to QEMU */ | 
 |     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); | 
 |  | 
 |     return 0; | 
 | } | 
 |  | 
 | static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, | 
 |                                Error **errp) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); | 
 |     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); | 
 |     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); | 
 |     const unsigned windows_supported = spapr_phb_windows_supported(sphb); | 
 |     SpaprDrc *drc; | 
 |  | 
 |     if (dev->hotplugged && !smc->dr_phb_enabled) { | 
 |         error_setg(errp, "PHB hotplug not supported for this machine"); | 
 |         return false; | 
 |     } | 
 |  | 
 |     if (sphb->index == (uint32_t)-1) { | 
 |         error_setg(errp, "\"index\" for PAPR PHB is mandatory"); | 
 |         return false; | 
 |     } | 
 |  | 
 |     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); | 
 |     if (drc && drc->dev) { | 
 |         error_setg(errp, "PHB %d already attached", sphb->index); | 
 |         return false; | 
 |     } | 
 |  | 
 |     /* | 
 |      * This will check that sphb->index doesn't exceed the maximum number of | 
 |      * PHBs for the current machine type. | 
 |      */ | 
 |     return | 
 |         smc->phb_placement(spapr, sphb->index, | 
 |                            &sphb->buid, &sphb->io_win_addr, | 
 |                            &sphb->mem_win_addr, &sphb->mem64_win_addr, | 
 |                            windows_supported, sphb->dma_liobn, | 
 |                            errp); | 
 | } | 
 |  | 
 | static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); | 
 |     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); | 
 |     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); | 
 |     SpaprDrc *drc; | 
 |     bool hotplugged = spapr_drc_hotplugged(dev); | 
 |  | 
 |     if (!smc->dr_phb_enabled) { | 
 |         return; | 
 |     } | 
 |  | 
 |     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); | 
 |     /* hotplug hooks should check it's enabled before getting this far */ | 
 |     assert(drc); | 
 |  | 
 |     /* spapr_phb_pre_plug() already checked the DRC is attachable */ | 
 |     spapr_drc_attach(drc, dev); | 
 |  | 
 |     if (hotplugged) { | 
 |         spapr_hotplug_req_add_by_index(drc); | 
 |     } else { | 
 |         spapr_drc_reset(drc); | 
 |     } | 
 | } | 
 |  | 
 | void spapr_phb_release(DeviceState *dev) | 
 | { | 
 |     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); | 
 |  | 
 |     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); | 
 |     object_unparent(OBJECT(dev)); | 
 | } | 
 |  | 
 | static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) | 
 | { | 
 |     qdev_unrealize(dev); | 
 | } | 
 |  | 
 | static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, | 
 |                                      DeviceState *dev, Error **errp) | 
 | { | 
 |     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); | 
 |     SpaprDrc *drc; | 
 |  | 
 |     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); | 
 |     assert(drc); | 
 |  | 
 |     if (!spapr_drc_unplug_requested(drc)) { | 
 |         spapr_drc_unplug_request(drc); | 
 |         spapr_hotplug_req_remove_by_index(drc); | 
 |     } else { | 
 |         error_setg(errp, | 
 |                    "PCI Host Bridge unplug already in progress for device %s", | 
 |                    dev->id); | 
 |     } | 
 | } | 
 |  | 
 | static | 
 | bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, | 
 |                               Error **errp) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); | 
 |  | 
 |     if (spapr->tpm_proxy != NULL) { | 
 |         error_setg(errp, "Only one TPM proxy can be specified for this machine"); | 
 |         return false; | 
 |     } | 
 |  | 
 |     return true; | 
 | } | 
 |  | 
 | static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); | 
 |     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev); | 
 |  | 
 |     /* Already checked in spapr_tpm_proxy_pre_plug() */ | 
 |     g_assert(spapr->tpm_proxy == NULL); | 
 |  | 
 |     spapr->tpm_proxy = tpm_proxy; | 
 | } | 
 |  | 
 | static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); | 
 |  | 
 |     qdev_unrealize(dev); | 
 |     object_unparent(OBJECT(dev)); | 
 |     spapr->tpm_proxy = NULL; | 
 | } | 
 |  | 
 | static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, | 
 |                                       DeviceState *dev, Error **errp) | 
 | { | 
 |     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { | 
 |         spapr_memory_plug(hotplug_dev, dev); | 
 |     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { | 
 |         spapr_core_plug(hotplug_dev, dev); | 
 |     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { | 
 |         spapr_phb_plug(hotplug_dev, dev); | 
 |     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { | 
 |         spapr_tpm_proxy_plug(hotplug_dev, dev); | 
 |     } | 
 | } | 
 |  | 
 | static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, | 
 |                                         DeviceState *dev, Error **errp) | 
 | { | 
 |     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { | 
 |         spapr_memory_unplug(hotplug_dev, dev); | 
 |     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { | 
 |         spapr_core_unplug(hotplug_dev, dev); | 
 |     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { | 
 |         spapr_phb_unplug(hotplug_dev, dev); | 
 |     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { | 
 |         spapr_tpm_proxy_unplug(hotplug_dev, dev); | 
 |     } | 
 | } | 
 |  | 
 | bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr) | 
 | { | 
 |     return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) || | 
 |         /* | 
 |          * CAS will process all pending unplug requests. | 
 |          * | 
 |          * HACK: a guest could theoretically have cleared all bits in OV5, | 
 |          * but none of the guests we care for do. | 
 |          */ | 
 |         spapr_ovec_empty(spapr->ov5_cas); | 
 | } | 
 |  | 
 | static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, | 
 |                                                 DeviceState *dev, Error **errp) | 
 | { | 
 |     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); | 
 |     MachineClass *mc = MACHINE_GET_CLASS(sms); | 
 |     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); | 
 |  | 
 |     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { | 
 |         if (spapr_memory_hot_unplug_supported(sms)) { | 
 |             spapr_memory_unplug_request(hotplug_dev, dev, errp); | 
 |         } else { | 
 |             error_setg(errp, "Memory hot unplug not supported for this guest"); | 
 |         } | 
 |     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { | 
 |         if (!mc->has_hotpluggable_cpus) { | 
 |             error_setg(errp, "CPU hot unplug not supported on this machine"); | 
 |             return; | 
 |         } | 
 |         spapr_core_unplug_request(hotplug_dev, dev, errp); | 
 |     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { | 
 |         if (!smc->dr_phb_enabled) { | 
 |             error_setg(errp, "PHB hot unplug not supported on this machine"); | 
 |             return; | 
 |         } | 
 |         spapr_phb_unplug_request(hotplug_dev, dev, errp); | 
 |     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { | 
 |         spapr_tpm_proxy_unplug(hotplug_dev, dev); | 
 |     } | 
 | } | 
 |  | 
 | static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, | 
 |                                           DeviceState *dev, Error **errp) | 
 | { | 
 |     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { | 
 |         spapr_memory_pre_plug(hotplug_dev, dev, errp); | 
 |     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { | 
 |         spapr_core_pre_plug(hotplug_dev, dev, errp); | 
 |     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { | 
 |         spapr_phb_pre_plug(hotplug_dev, dev, errp); | 
 |     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { | 
 |         spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp); | 
 |     } | 
 | } | 
 |  | 
 | static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, | 
 |                                                  DeviceState *dev) | 
 | { | 
 |     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || | 
 |         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || | 
 |         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) || | 
 |         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { | 
 |         return HOTPLUG_HANDLER(machine); | 
 |     } | 
 |     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { | 
 |         PCIDevice *pcidev = PCI_DEVICE(dev); | 
 |         PCIBus *root = pci_device_root_bus(pcidev); | 
 |         SpaprPhbState *phb = | 
 |             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent), | 
 |                                                  TYPE_SPAPR_PCI_HOST_BRIDGE); | 
 |  | 
 |         if (phb) { | 
 |             return HOTPLUG_HANDLER(phb); | 
 |         } | 
 |     } | 
 |     return NULL; | 
 | } | 
 |  | 
 | static CpuInstanceProperties | 
 | spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) | 
 | { | 
 |     CPUArchId *core_slot; | 
 |     MachineClass *mc = MACHINE_GET_CLASS(machine); | 
 |  | 
 |     /* make sure possible_cpu are initialized */ | 
 |     mc->possible_cpu_arch_ids(machine); | 
 |     /* get CPU core slot containing thread that matches cpu_index */ | 
 |     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); | 
 |     assert(core_slot); | 
 |     return core_slot->props; | 
 | } | 
 |  | 
 | static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) | 
 | { | 
 |     return idx / ms->smp.cores % ms->numa_state->num_nodes; | 
 | } | 
 |  | 
 | static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) | 
 | { | 
 |     int i; | 
 |     unsigned int smp_threads = machine->smp.threads; | 
 |     unsigned int smp_cpus = machine->smp.cpus; | 
 |     const char *core_type; | 
 |     int spapr_max_cores = machine->smp.max_cpus / smp_threads; | 
 |     MachineClass *mc = MACHINE_GET_CLASS(machine); | 
 |  | 
 |     if (!mc->has_hotpluggable_cpus) { | 
 |         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; | 
 |     } | 
 |     if (machine->possible_cpus) { | 
 |         assert(machine->possible_cpus->len == spapr_max_cores); | 
 |         return machine->possible_cpus; | 
 |     } | 
 |  | 
 |     core_type = spapr_get_cpu_core_type(machine->cpu_type); | 
 |     if (!core_type) { | 
 |         error_report("Unable to find sPAPR CPU Core definition"); | 
 |         exit(1); | 
 |     } | 
 |  | 
 |     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + | 
 |                              sizeof(CPUArchId) * spapr_max_cores); | 
 |     machine->possible_cpus->len = spapr_max_cores; | 
 |     for (i = 0; i < machine->possible_cpus->len; i++) { | 
 |         int core_id = i * smp_threads; | 
 |  | 
 |         machine->possible_cpus->cpus[i].type = core_type; | 
 |         machine->possible_cpus->cpus[i].vcpus_count = smp_threads; | 
 |         machine->possible_cpus->cpus[i].arch_id = core_id; | 
 |         machine->possible_cpus->cpus[i].props.has_core_id = true; | 
 |         machine->possible_cpus->cpus[i].props.core_id = core_id; | 
 |     } | 
 |     return machine->possible_cpus; | 
 | } | 
 |  | 
 | static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, | 
 |                                 uint64_t *buid, hwaddr *pio, | 
 |                                 hwaddr *mmio32, hwaddr *mmio64, | 
 |                                 unsigned n_dma, uint32_t *liobns, Error **errp) | 
 | { | 
 |     /* | 
 |      * New-style PHB window placement. | 
 |      * | 
 |      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window | 
 |      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO | 
 |      * windows. | 
 |      * | 
 |      * Some guest kernels can't work with MMIO windows above 1<<46 | 
 |      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB | 
 |      * | 
 |      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each | 
 |      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the | 
 |      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the | 
 |      * 1TiB 64-bit MMIO windows for each PHB. | 
 |      */ | 
 |     const uint64_t base_buid = 0x800000020000000ULL; | 
 |     int i; | 
 |  | 
 |     /* Sanity check natural alignments */ | 
 |     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); | 
 |     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); | 
 |     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); | 
 |     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); | 
 |     /* Sanity check bounds */ | 
 |     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > | 
 |                       SPAPR_PCI_MEM32_WIN_SIZE); | 
 |     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > | 
 |                       SPAPR_PCI_MEM64_WIN_SIZE); | 
 |  | 
 |     if (index >= SPAPR_MAX_PHBS) { | 
 |         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", | 
 |                    SPAPR_MAX_PHBS - 1); | 
 |         return false; | 
 |     } | 
 |  | 
 |     *buid = base_buid + index; | 
 |     for (i = 0; i < n_dma; ++i) { | 
 |         liobns[i] = SPAPR_PCI_LIOBN(index, i); | 
 |     } | 
 |  | 
 |     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; | 
 |     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; | 
 |     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; | 
 |     return true; | 
 | } | 
 |  | 
 | static ICSState *spapr_ics_get(XICSFabric *dev, int irq) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(dev); | 
 |  | 
 |     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; | 
 | } | 
 |  | 
 | static void spapr_ics_resend(XICSFabric *dev) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(dev); | 
 |  | 
 |     ics_resend(spapr->ics); | 
 | } | 
 |  | 
 | static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) | 
 | { | 
 |     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); | 
 |  | 
 |     return cpu ? spapr_cpu_state(cpu)->icp : NULL; | 
 | } | 
 |  | 
 | static void spapr_pic_print_info(InterruptStatsProvider *obj, GString *buf) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(obj); | 
 |  | 
 |     spapr_irq_print_info(spapr, buf); | 
 |     g_string_append_printf(buf, "irqchip: %s\n", | 
 |                            kvm_irqchip_in_kernel() ? "in-kernel" : "emulated"); | 
 | } | 
 |  | 
 | /* | 
 |  * This is a XIVE only operation | 
 |  */ | 
 | static int spapr_match_nvt(XiveFabric *xfb, uint8_t format, | 
 |                            uint8_t nvt_blk, uint32_t nvt_idx, | 
 |                            bool crowd, bool cam_ignore, uint8_t priority, | 
 |                            uint32_t logic_serv, XiveTCTXMatch *match) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(xfb); | 
 |     XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc); | 
 |     XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); | 
 |     int count; | 
 |  | 
 |     count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, crowd, cam_ignore, | 
 |                            priority, logic_serv, match); | 
 |     if (count < 0) { | 
 |         return count; | 
 |     } | 
 |  | 
 |     /* | 
 |      * When we implement the save and restore of the thread interrupt | 
 |      * contexts in the enter/exit CPU handlers of the machine and the | 
 |      * escalations in QEMU, we should be able to handle non dispatched | 
 |      * vCPUs. | 
 |      * | 
 |      * Until this is done, the sPAPR machine should find at least one | 
 |      * matching context always. | 
 |      */ | 
 |     if (count == 0) { | 
 |         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n", | 
 |                       nvt_blk, nvt_idx); | 
 |     } | 
 |  | 
 |     return count; | 
 | } | 
 |  | 
 | int spapr_get_vcpu_id(PowerPCCPU *cpu) | 
 | { | 
 |     return cpu->vcpu_id; | 
 | } | 
 |  | 
 | bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) | 
 | { | 
 |     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); | 
 |     MachineState *ms = MACHINE(spapr); | 
 |     int vcpu_id; | 
 |  | 
 |     vcpu_id = spapr_vcpu_id(spapr, cpu_index); | 
 |  | 
 |     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { | 
 |         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); | 
 |         error_append_hint(errp, "Adjust the number of cpus to %d " | 
 |                           "or try to raise the number of threads per core\n", | 
 |                           vcpu_id * ms->smp.threads / spapr->vsmt); | 
 |         return false; | 
 |     } | 
 |  | 
 |     cpu->vcpu_id = vcpu_id; | 
 |     return true; | 
 | } | 
 |  | 
 | PowerPCCPU *spapr_find_cpu(int vcpu_id) | 
 | { | 
 |     CPUState *cs; | 
 |  | 
 |     CPU_FOREACH(cs) { | 
 |         PowerPCCPU *cpu = POWERPC_CPU(cs); | 
 |  | 
 |         if (spapr_get_vcpu_id(cpu) == vcpu_id) { | 
 |             return cpu; | 
 |         } | 
 |     } | 
 |  | 
 |     return NULL; | 
 | } | 
 |  | 
 | static bool spapr_cpu_in_nested(PowerPCCPU *cpu) | 
 | { | 
 |     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); | 
 |  | 
 |     return spapr_cpu->in_nested; | 
 | } | 
 |  | 
 | static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) | 
 | { | 
 |     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); | 
 |  | 
 |     /* These are only called by TCG, KVM maintains dispatch state */ | 
 |  | 
 |     spapr_cpu->prod = false; | 
 |     if (spapr_cpu->vpa_addr) { | 
 |         CPUState *cs = CPU(cpu); | 
 |         uint32_t dispatch; | 
 |  | 
 |         dispatch = ldl_be_phys(cs->as, | 
 |                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); | 
 |         dispatch++; | 
 |         if ((dispatch & 1) != 0) { | 
 |             qemu_log_mask(LOG_GUEST_ERROR, | 
 |                           "VPA: incorrect dispatch counter value for " | 
 |                           "dispatched partition %u, correcting.\n", dispatch); | 
 |             dispatch++; | 
 |         } | 
 |         stl_be_phys(cs->as, | 
 |                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); | 
 |     } | 
 | } | 
 |  | 
 | static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) | 
 | { | 
 |     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); | 
 |  | 
 |     if (spapr_cpu->vpa_addr) { | 
 |         CPUState *cs = CPU(cpu); | 
 |         uint32_t dispatch; | 
 |  | 
 |         dispatch = ldl_be_phys(cs->as, | 
 |                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); | 
 |         dispatch++; | 
 |         if ((dispatch & 1) != 1) { | 
 |             qemu_log_mask(LOG_GUEST_ERROR, | 
 |                           "VPA: incorrect dispatch counter value for " | 
 |                           "preempted partition %u, correcting.\n", dispatch); | 
 |             dispatch++; | 
 |         } | 
 |         stl_be_phys(cs->as, | 
 |                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); | 
 |     } | 
 | } | 
 |  | 
 | static void spapr_machine_class_init(ObjectClass *oc, const void *data) | 
 | { | 
 |     MachineClass *mc = MACHINE_CLASS(oc); | 
 |     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); | 
 |     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); | 
 |     NMIClass *nc = NMI_CLASS(oc); | 
 |     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); | 
 |     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); | 
 |     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); | 
 |     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); | 
 |     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc); | 
 |     VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc); | 
 |  | 
 |     mc->desc = "pSeries Logical Partition (PAPR compliant)"; | 
 |     mc->ignore_boot_device_suffixes = true; | 
 |  | 
 |     /* | 
 |      * We set up the default / latest behaviour here.  The class_init | 
 |      * functions for the specific versioned machine types can override | 
 |      * these details for backwards compatibility | 
 |      */ | 
 |     mc->init = spapr_machine_init; | 
 |     mc->reset = spapr_machine_reset; | 
 |     mc->block_default_type = IF_SCSI; | 
 |  | 
 |     /* | 
 |      * While KVM determines max cpus in kvm_init() using kvm_max_vcpus(), | 
 |      * In TCG the limit is restricted by the range of CPU IPIs available. | 
 |      */ | 
 |     mc->max_cpus = SPAPR_IRQ_NR_IPIS; | 
 |  | 
 |     mc->no_parallel = 1; | 
 |     mc->default_boot_order = ""; | 
 |     mc->default_ram_size = 512 * MiB; | 
 |     mc->default_ram_id = "ppc_spapr.ram"; | 
 |     mc->default_display = "std"; | 
 |     mc->kvm_type = spapr_kvm_type; | 
 |     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); | 
 |     mc->pci_allow_0_address = true; | 
 |     assert(!mc->get_hotplug_handler); | 
 |     mc->get_hotplug_handler = spapr_get_hotplug_handler; | 
 |     hc->pre_plug = spapr_machine_device_pre_plug; | 
 |     hc->plug = spapr_machine_device_plug; | 
 |     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; | 
 |     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; | 
 |     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; | 
 |     hc->unplug_request = spapr_machine_device_unplug_request; | 
 |     hc->unplug = spapr_machine_device_unplug; | 
 |  | 
 |     smc->update_dt_enabled = true; | 
 |     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0"); | 
 |     mc->has_hotpluggable_cpus = true; | 
 |     mc->nvdimm_supported = true; | 
 |     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; | 
 |     fwc->get_dev_path = spapr_get_fw_dev_path; | 
 |     nc->nmi_monitor_handler = spapr_nmi; | 
 |     smc->phb_placement = spapr_phb_placement; | 
 |     vhc->cpu_in_nested = spapr_cpu_in_nested; | 
 |     vhc->deliver_hv_excp = spapr_exit_nested; | 
 |     vhc->hypercall = emulate_spapr_hypercall; | 
 |     vhc->hpt_mask = spapr_hpt_mask; | 
 |     vhc->map_hptes = spapr_map_hptes; | 
 |     vhc->unmap_hptes = spapr_unmap_hptes; | 
 |     vhc->hpte_set_c = spapr_hpte_set_c; | 
 |     vhc->hpte_set_r = spapr_hpte_set_r; | 
 |     vhc->get_pate = spapr_get_pate; | 
 |     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; | 
 |     vhc->cpu_exec_enter = spapr_cpu_exec_enter; | 
 |     vhc->cpu_exec_exit = spapr_cpu_exec_exit; | 
 |     xic->ics_get = spapr_ics_get; | 
 |     xic->ics_resend = spapr_ics_resend; | 
 |     xic->icp_get = spapr_icp_get; | 
 |     ispc->print_info = spapr_pic_print_info; | 
 |     /* Force NUMA node memory size to be a multiple of | 
 |      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity | 
 |      * in which LMBs are represented and hot-added | 
 |      */ | 
 |     mc->numa_mem_align_shift = 28; | 
 |     mc->auto_enable_numa = true; | 
 |  | 
 |     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; | 
 |     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; | 
 |     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; | 
 |     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; | 
 |     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; | 
 |     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; | 
 |     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ | 
 |     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; | 
 |     smc->default_caps.caps[SPAPR_CAP_NESTED_PAPR] = SPAPR_CAP_OFF; | 
 |     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; | 
 |     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON; | 
 |     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON; | 
 |     smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF; | 
 |     smc->default_caps.caps[SPAPR_CAP_DAWR1] = SPAPR_CAP_ON; | 
 |  | 
 |     /* | 
 |      * This cap specifies whether the AIL 3 mode for | 
 |      * H_SET_RESOURCE is supported. The default is modified | 
 |      * by default_caps_with_cpu(). | 
 |      */ | 
 |     smc->default_caps.caps[SPAPR_CAP_AIL_MODE_3] = SPAPR_CAP_ON; | 
 |     spapr_caps_add_properties(smc); | 
 |     smc->irq = &spapr_irq_dual; | 
 |     smc->dr_phb_enabled = true; | 
 |     smc->linux_pci_probe = true; | 
 |     smc->smp_threads_vsmt = true; | 
 |     smc->nr_xirqs = SPAPR_NR_XIRQS; | 
 |     xfc->match_nvt = spapr_match_nvt; | 
 |     vmc->client_architecture_support = spapr_vof_client_architecture_support; | 
 |     vmc->quiesce = spapr_vof_quiesce; | 
 |     vmc->setprop = spapr_vof_setprop; | 
 | } | 
 |  | 
 | static const TypeInfo spapr_machine_info = { | 
 |     .name          = TYPE_SPAPR_MACHINE, | 
 |     .parent        = TYPE_MACHINE, | 
 |     .abstract      = true, | 
 |     .instance_size = sizeof(SpaprMachineState), | 
 |     .instance_init = spapr_instance_init, | 
 |     .instance_finalize = spapr_machine_finalizefn, | 
 |     .class_size    = sizeof(SpaprMachineClass), | 
 |     .class_init    = spapr_machine_class_init, | 
 |     .interfaces = (const InterfaceInfo[]) { | 
 |         { TYPE_FW_PATH_PROVIDER }, | 
 |         { TYPE_NMI }, | 
 |         { TYPE_HOTPLUG_HANDLER }, | 
 |         { TYPE_PPC_VIRTUAL_HYPERVISOR }, | 
 |         { TYPE_XICS_FABRIC }, | 
 |         { TYPE_INTERRUPT_STATS_PROVIDER }, | 
 |         { TYPE_XIVE_FABRIC }, | 
 |         { TYPE_VOF_MACHINE_IF }, | 
 |         { } | 
 |     }, | 
 | }; | 
 |  | 
 | static void spapr_machine_latest_class_options(MachineClass *mc) | 
 | { | 
 |     mc->alias = "pseries"; | 
 |     mc->is_default = true; | 
 | } | 
 |  | 
 | #define DEFINE_SPAPR_MACHINE_IMPL(latest, ...)                       \ | 
 |     static void MACHINE_VER_SYM(class_init, spapr, __VA_ARGS__)(     \ | 
 |         ObjectClass *oc,                                             \ | 
 |         const void *data)                                            \ | 
 |     {                                                                \ | 
 |         MachineClass *mc = MACHINE_CLASS(oc);                        \ | 
 |         MACHINE_VER_SYM(class_options, spapr, __VA_ARGS__)(mc);      \ | 
 |         MACHINE_VER_DEPRECATION(__VA_ARGS__);                        \ | 
 |         if (latest) {                                                \ | 
 |             spapr_machine_latest_class_options(mc);                  \ | 
 |         }                                                            \ | 
 |     }                                                                \ | 
 |     static const TypeInfo MACHINE_VER_SYM(info, spapr, __VA_ARGS__) = \ | 
 |     {                                                                \ | 
 |         .name = MACHINE_VER_TYPE_NAME("pseries", __VA_ARGS__),       \ | 
 |         .parent = TYPE_SPAPR_MACHINE,                                \ | 
 |         .class_init = MACHINE_VER_SYM(class_init, spapr, __VA_ARGS__), \ | 
 |     };                                                               \ | 
 |     static void MACHINE_VER_SYM(register, spapr, __VA_ARGS__)(void)  \ | 
 |     {                                                                \ | 
 |         MACHINE_VER_DELETION(__VA_ARGS__);                           \ | 
 |         type_register_static(&MACHINE_VER_SYM(info, spapr, __VA_ARGS__));   \ | 
 |     }                                                                \ | 
 |     type_init(MACHINE_VER_SYM(register, spapr, __VA_ARGS__)) | 
 |  | 
 | #define DEFINE_SPAPR_MACHINE_AS_LATEST(major, minor) \ | 
 |     DEFINE_SPAPR_MACHINE_IMPL(true, major, minor) | 
 | #define DEFINE_SPAPR_MACHINE(major, minor) \ | 
 |     DEFINE_SPAPR_MACHINE_IMPL(false, major, minor) | 
 |  | 
 | /* | 
 |  * pseries-10.1 | 
 |  */ | 
 | static void spapr_machine_10_1_class_options(MachineClass *mc) | 
 | { | 
 |     /* Defaults for the latest behaviour inherited from the base class */ | 
 | } | 
 |  | 
 | DEFINE_SPAPR_MACHINE_AS_LATEST(10, 1); | 
 |  | 
 | /* | 
 |  * pseries-10.0 | 
 |  */ | 
 | static void spapr_machine_10_0_class_options(MachineClass *mc) | 
 | { | 
 |     spapr_machine_10_1_class_options(mc); | 
 |     compat_props_add(mc->compat_props, hw_compat_10_0, hw_compat_10_0_len); | 
 | } | 
 |  | 
 | DEFINE_SPAPR_MACHINE(10, 0); | 
 |  | 
 | /* | 
 |  * pseries-9.2 | 
 |  */ | 
 | static void spapr_machine_9_2_class_options(MachineClass *mc) | 
 | { | 
 |     spapr_machine_10_0_class_options(mc); | 
 |     compat_props_add(mc->compat_props, hw_compat_9_2, hw_compat_9_2_len); | 
 | } | 
 |  | 
 | DEFINE_SPAPR_MACHINE(9, 2); | 
 |  | 
 | /* | 
 |  * pseries-9.1 | 
 |  */ | 
 | static void spapr_machine_9_1_class_options(MachineClass *mc) | 
 | { | 
 |     spapr_machine_9_2_class_options(mc); | 
 |     compat_props_add(mc->compat_props, hw_compat_9_1, hw_compat_9_1_len); | 
 | } | 
 |  | 
 | DEFINE_SPAPR_MACHINE(9, 1); | 
 |  | 
 | /* | 
 |  * pseries-9.0 | 
 |  */ | 
 | static void spapr_machine_9_0_class_options(MachineClass *mc) | 
 | { | 
 |     spapr_machine_9_1_class_options(mc); | 
 |     compat_props_add(mc->compat_props, hw_compat_9_0, hw_compat_9_0_len); | 
 | } | 
 |  | 
 | DEFINE_SPAPR_MACHINE(9, 0); | 
 |  | 
 | /* | 
 |  * pseries-8.2 | 
 |  */ | 
 | static void spapr_machine_8_2_class_options(MachineClass *mc) | 
 | { | 
 |     spapr_machine_9_0_class_options(mc); | 
 |     compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len); | 
 |     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2"); | 
 | } | 
 |  | 
 | DEFINE_SPAPR_MACHINE(8, 2); | 
 |  | 
 | /* | 
 |  * pseries-8.1 | 
 |  */ | 
 | static void spapr_machine_8_1_class_options(MachineClass *mc) | 
 | { | 
 |     spapr_machine_8_2_class_options(mc); | 
 |     compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len); | 
 | } | 
 |  | 
 | DEFINE_SPAPR_MACHINE(8, 1); | 
 |  | 
 | /* | 
 |  * pseries-8.0 | 
 |  */ | 
 | static void spapr_machine_8_0_class_options(MachineClass *mc) | 
 | { | 
 |     spapr_machine_8_1_class_options(mc); | 
 |     compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len); | 
 | } | 
 |  | 
 | DEFINE_SPAPR_MACHINE(8, 0); | 
 |  | 
 | /* | 
 |  * pseries-7.2 | 
 |  */ | 
 | static void spapr_machine_7_2_class_options(MachineClass *mc) | 
 | { | 
 |     spapr_machine_8_0_class_options(mc); | 
 |     compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len); | 
 | } | 
 |  | 
 | DEFINE_SPAPR_MACHINE(7, 2); | 
 |  | 
 | /* | 
 |  * pseries-7.1 | 
 |  */ | 
 | static void spapr_machine_7_1_class_options(MachineClass *mc) | 
 | { | 
 |     spapr_machine_7_2_class_options(mc); | 
 |     compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len); | 
 | } | 
 |  | 
 | DEFINE_SPAPR_MACHINE(7, 1); | 
 |  | 
 | /* | 
 |  * pseries-7.0 | 
 |  */ | 
 | static void spapr_machine_7_0_class_options(MachineClass *mc) | 
 | { | 
 |     spapr_machine_7_1_class_options(mc); | 
 |     compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len); | 
 | } | 
 |  | 
 | DEFINE_SPAPR_MACHINE(7, 0); | 
 |  | 
 | /* | 
 |  * pseries-6.2 | 
 |  */ | 
 | static void spapr_machine_6_2_class_options(MachineClass *mc) | 
 | { | 
 |     spapr_machine_7_0_class_options(mc); | 
 |     compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len); | 
 | } | 
 |  | 
 | DEFINE_SPAPR_MACHINE(6, 2); | 
 |  | 
 | /* | 
 |  * pseries-6.1 | 
 |  */ | 
 | static void spapr_machine_6_1_class_options(MachineClass *mc) | 
 | { | 
 |     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); | 
 |  | 
 |     spapr_machine_6_2_class_options(mc); | 
 |     compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len); | 
 |     smc->pre_6_2_numa_affinity = true; | 
 |     mc->smp_props.prefer_sockets = true; | 
 | } | 
 |  | 
 | DEFINE_SPAPR_MACHINE(6, 1); | 
 |  | 
 | /* | 
 |  * pseries-6.0 | 
 |  */ | 
 | static void spapr_machine_6_0_class_options(MachineClass *mc) | 
 | { | 
 |     spapr_machine_6_1_class_options(mc); | 
 |     compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len); | 
 | } | 
 |  | 
 | DEFINE_SPAPR_MACHINE(6, 0); | 
 |  | 
 | /* | 
 |  * pseries-5.2 | 
 |  */ | 
 | static void spapr_machine_5_2_class_options(MachineClass *mc) | 
 | { | 
 |     spapr_machine_6_0_class_options(mc); | 
 |     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); | 
 | } | 
 |  | 
 | DEFINE_SPAPR_MACHINE(5, 2); | 
 |  | 
 | /* | 
 |  * pseries-5.1 | 
 |  */ | 
 | static void spapr_machine_5_1_class_options(MachineClass *mc) | 
 | { | 
 |     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); | 
 |  | 
 |     spapr_machine_5_2_class_options(mc); | 
 |     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); | 
 |     smc->pre_5_2_numa_associativity = true; | 
 | } | 
 |  | 
 | DEFINE_SPAPR_MACHINE(5, 1); | 
 |  | 
 | /* | 
 |  * pseries-5.0 | 
 |  */ | 
 | static void spapr_machine_5_0_class_options(MachineClass *mc) | 
 | { | 
 |     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); | 
 |     static GlobalProperty compat[] = { | 
 |         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" }, | 
 |     }; | 
 |  | 
 |     spapr_machine_5_1_class_options(mc); | 
 |     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); | 
 |     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); | 
 |     mc->numa_mem_supported = true; | 
 |     smc->pre_5_1_assoc_refpoints = true; | 
 | } | 
 |  | 
 | DEFINE_SPAPR_MACHINE(5, 0); | 
 |  | 
 | /* | 
 |  * pseries-4.2 | 
 |  */ | 
 | static void spapr_machine_4_2_class_options(MachineClass *mc) | 
 | { | 
 |     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); | 
 |  | 
 |     spapr_machine_5_0_class_options(mc); | 
 |     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); | 
 |     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; | 
 |     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF; | 
 |     smc->rma_limit = 16 * GiB; | 
 |     mc->nvdimm_supported = false; | 
 | } | 
 |  | 
 | DEFINE_SPAPR_MACHINE(4, 2); | 
 |  | 
 | /* | 
 |  * pseries-4.1 | 
 |  */ | 
 | static void spapr_machine_4_1_class_options(MachineClass *mc) | 
 | { | 
 |     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); | 
 |     static GlobalProperty compat[] = { | 
 |         /* Only allow 4kiB and 64kiB IOMMU pagesizes */ | 
 |         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" }, | 
 |     }; | 
 |  | 
 |     spapr_machine_4_2_class_options(mc); | 
 |     smc->linux_pci_probe = false; | 
 |     smc->smp_threads_vsmt = false; | 
 |     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); | 
 |     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); | 
 | } | 
 |  | 
 | DEFINE_SPAPR_MACHINE(4, 1); | 
 |  | 
 | /* | 
 |  * pseries-4.0 | 
 |  */ | 
 | static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, | 
 |                               uint64_t *buid, hwaddr *pio, | 
 |                               hwaddr *mmio32, hwaddr *mmio64, | 
 |                               unsigned n_dma, uint32_t *liobns, Error **errp) | 
 | { | 
 |     if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, | 
 |                              liobns, errp)) { | 
 |         return false; | 
 |     } | 
 |     return true; | 
 | } | 
 | static void spapr_machine_4_0_class_options(MachineClass *mc) | 
 | { | 
 |     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); | 
 |  | 
 |     spapr_machine_4_1_class_options(mc); | 
 |     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); | 
 |     smc->phb_placement = phb_placement_4_0; | 
 |     smc->irq = &spapr_irq_xics; | 
 |     smc->pre_4_1_migration = true; | 
 | } | 
 |  | 
 | DEFINE_SPAPR_MACHINE(4, 0); | 
 |  | 
 | /* | 
 |  * pseries-3.1 | 
 |  */ | 
 | static void spapr_machine_3_1_class_options(MachineClass *mc) | 
 | { | 
 |     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); | 
 |  | 
 |     spapr_machine_4_0_class_options(mc); | 
 |     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); | 
 |  | 
 |     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); | 
 |     smc->update_dt_enabled = false; | 
 |     smc->dr_phb_enabled = false; | 
 |     smc->broken_host_serial_model = true; | 
 |     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; | 
 |     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; | 
 |     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; | 
 |     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; | 
 | } | 
 |  | 
 | DEFINE_SPAPR_MACHINE(3, 1); | 
 |  | 
 | /* | 
 |  * pseries-3.0 | 
 |  */ | 
 |  | 
 | static void spapr_machine_3_0_class_options(MachineClass *mc) | 
 | { | 
 |     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); | 
 |  | 
 |     spapr_machine_3_1_class_options(mc); | 
 |     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); | 
 |  | 
 |     smc->legacy_irq_allocation = true; | 
 |     smc->nr_xirqs = 0x400; | 
 |     smc->irq = &spapr_irq_xics_legacy; | 
 | } | 
 |  | 
 | DEFINE_SPAPR_MACHINE(3, 0); | 
 |  | 
 | static void spapr_machine_register_types(void) | 
 | { | 
 |     type_register_static(&spapr_machine_info); | 
 | } | 
 |  | 
 | type_init(spapr_machine_register_types) |