| /* |
| * QEMU System Emulator |
| * |
| * Copyright (c) 2003-2008 Fabrice Bellard |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| /* Needed early for CONFIG_BSD etc. */ |
| #include "config-host.h" |
| |
| #include "monitor/monitor.h" |
| #include "qapi/qmp/qerror.h" |
| #include "qemu/error-report.h" |
| #include "sysemu/sysemu.h" |
| #include "exec/gdbstub.h" |
| #include "sysemu/dma.h" |
| #include "sysemu/kvm.h" |
| #include "qmp-commands.h" |
| |
| #include "qemu/thread.h" |
| #include "sysemu/cpus.h" |
| #include "sysemu/qtest.h" |
| #include "qemu/main-loop.h" |
| #include "qemu/bitmap.h" |
| #include "qemu/seqlock.h" |
| #include "qapi-event.h" |
| #include "hw/nmi.h" |
| #include "sysemu/replay.h" |
| |
| #ifndef _WIN32 |
| #include "qemu/compatfd.h" |
| #endif |
| |
| #ifdef CONFIG_LINUX |
| |
| #include <sys/prctl.h> |
| |
| #ifndef PR_MCE_KILL |
| #define PR_MCE_KILL 33 |
| #endif |
| |
| #ifndef PR_MCE_KILL_SET |
| #define PR_MCE_KILL_SET 1 |
| #endif |
| |
| #ifndef PR_MCE_KILL_EARLY |
| #define PR_MCE_KILL_EARLY 1 |
| #endif |
| |
| #endif /* CONFIG_LINUX */ |
| |
| static CPUState *next_cpu; |
| int64_t max_delay; |
| int64_t max_advance; |
| |
| /* vcpu throttling controls */ |
| static QEMUTimer *throttle_timer; |
| static unsigned int throttle_percentage; |
| |
| #define CPU_THROTTLE_PCT_MIN 1 |
| #define CPU_THROTTLE_PCT_MAX 99 |
| #define CPU_THROTTLE_TIMESLICE_NS 10000000 |
| |
| bool cpu_is_stopped(CPUState *cpu) |
| { |
| return cpu->stopped || !runstate_is_running(); |
| } |
| |
| static bool cpu_thread_is_idle(CPUState *cpu) |
| { |
| if (cpu->stop || cpu->queued_work_first) { |
| return false; |
| } |
| if (cpu_is_stopped(cpu)) { |
| return true; |
| } |
| if (!cpu->halted || cpu_has_work(cpu) || |
| kvm_halt_in_kernel()) { |
| return false; |
| } |
| return true; |
| } |
| |
| static bool all_cpu_threads_idle(void) |
| { |
| CPUState *cpu; |
| |
| CPU_FOREACH(cpu) { |
| if (!cpu_thread_is_idle(cpu)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /***********************************************************/ |
| /* guest cycle counter */ |
| |
| /* Protected by TimersState seqlock */ |
| |
| static bool icount_sleep = true; |
| static int64_t vm_clock_warp_start = -1; |
| /* Conversion factor from emulated instructions to virtual clock ticks. */ |
| static int icount_time_shift; |
| /* Arbitrarily pick 1MIPS as the minimum allowable speed. */ |
| #define MAX_ICOUNT_SHIFT 10 |
| |
| static QEMUTimer *icount_rt_timer; |
| static QEMUTimer *icount_vm_timer; |
| static QEMUTimer *icount_warp_timer; |
| |
| typedef struct TimersState { |
| /* Protected by BQL. */ |
| int64_t cpu_ticks_prev; |
| int64_t cpu_ticks_offset; |
| |
| /* cpu_clock_offset can be read out of BQL, so protect it with |
| * this lock. |
| */ |
| QemuSeqLock vm_clock_seqlock; |
| int64_t cpu_clock_offset; |
| int32_t cpu_ticks_enabled; |
| int64_t dummy; |
| |
| /* Compensate for varying guest execution speed. */ |
| int64_t qemu_icount_bias; |
| /* Only written by TCG thread */ |
| int64_t qemu_icount; |
| } TimersState; |
| |
| static TimersState timers_state; |
| |
| int64_t cpu_get_icount_raw(void) |
| { |
| int64_t icount; |
| CPUState *cpu = current_cpu; |
| |
| icount = timers_state.qemu_icount; |
| if (cpu) { |
| if (!cpu->can_do_io) { |
| fprintf(stderr, "Bad icount read\n"); |
| exit(1); |
| } |
| icount -= (cpu->icount_decr.u16.low + cpu->icount_extra); |
| } |
| return icount; |
| } |
| |
| /* Return the virtual CPU time, based on the instruction counter. */ |
| static int64_t cpu_get_icount_locked(void) |
| { |
| int64_t icount = cpu_get_icount_raw(); |
| return timers_state.qemu_icount_bias + cpu_icount_to_ns(icount); |
| } |
| |
| int64_t cpu_get_icount(void) |
| { |
| int64_t icount; |
| unsigned start; |
| |
| do { |
| start = seqlock_read_begin(&timers_state.vm_clock_seqlock); |
| icount = cpu_get_icount_locked(); |
| } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start)); |
| |
| return icount; |
| } |
| |
| int64_t cpu_icount_to_ns(int64_t icount) |
| { |
| return icount << icount_time_shift; |
| } |
| |
| /* return the host CPU cycle counter and handle stop/restart */ |
| /* Caller must hold the BQL */ |
| int64_t cpu_get_ticks(void) |
| { |
| int64_t ticks; |
| |
| if (use_icount) { |
| return cpu_get_icount(); |
| } |
| |
| ticks = timers_state.cpu_ticks_offset; |
| if (timers_state.cpu_ticks_enabled) { |
| ticks += cpu_get_host_ticks(); |
| } |
| |
| if (timers_state.cpu_ticks_prev > ticks) { |
| /* Note: non increasing ticks may happen if the host uses |
| software suspend */ |
| timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks; |
| ticks = timers_state.cpu_ticks_prev; |
| } |
| |
| timers_state.cpu_ticks_prev = ticks; |
| return ticks; |
| } |
| |
| static int64_t cpu_get_clock_locked(void) |
| { |
| int64_t ticks; |
| |
| ticks = timers_state.cpu_clock_offset; |
| if (timers_state.cpu_ticks_enabled) { |
| ticks += get_clock(); |
| } |
| |
| return ticks; |
| } |
| |
| /* return the host CPU monotonic timer and handle stop/restart */ |
| int64_t cpu_get_clock(void) |
| { |
| int64_t ti; |
| unsigned start; |
| |
| do { |
| start = seqlock_read_begin(&timers_state.vm_clock_seqlock); |
| ti = cpu_get_clock_locked(); |
| } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start)); |
| |
| return ti; |
| } |
| |
| /* enable cpu_get_ticks() |
| * Caller must hold BQL which server as mutex for vm_clock_seqlock. |
| */ |
| void cpu_enable_ticks(void) |
| { |
| /* Here, the really thing protected by seqlock is cpu_clock_offset. */ |
| seqlock_write_lock(&timers_state.vm_clock_seqlock); |
| if (!timers_state.cpu_ticks_enabled) { |
| timers_state.cpu_ticks_offset -= cpu_get_host_ticks(); |
| timers_state.cpu_clock_offset -= get_clock(); |
| timers_state.cpu_ticks_enabled = 1; |
| } |
| seqlock_write_unlock(&timers_state.vm_clock_seqlock); |
| } |
| |
| /* disable cpu_get_ticks() : the clock is stopped. You must not call |
| * cpu_get_ticks() after that. |
| * Caller must hold BQL which server as mutex for vm_clock_seqlock. |
| */ |
| void cpu_disable_ticks(void) |
| { |
| /* Here, the really thing protected by seqlock is cpu_clock_offset. */ |
| seqlock_write_lock(&timers_state.vm_clock_seqlock); |
| if (timers_state.cpu_ticks_enabled) { |
| timers_state.cpu_ticks_offset += cpu_get_host_ticks(); |
| timers_state.cpu_clock_offset = cpu_get_clock_locked(); |
| timers_state.cpu_ticks_enabled = 0; |
| } |
| seqlock_write_unlock(&timers_state.vm_clock_seqlock); |
| } |
| |
| /* Correlation between real and virtual time is always going to be |
| fairly approximate, so ignore small variation. |
| When the guest is idle real and virtual time will be aligned in |
| the IO wait loop. */ |
| #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10) |
| |
| static void icount_adjust(void) |
| { |
| int64_t cur_time; |
| int64_t cur_icount; |
| int64_t delta; |
| |
| /* Protected by TimersState mutex. */ |
| static int64_t last_delta; |
| |
| /* If the VM is not running, then do nothing. */ |
| if (!runstate_is_running()) { |
| return; |
| } |
| |
| seqlock_write_lock(&timers_state.vm_clock_seqlock); |
| cur_time = cpu_get_clock_locked(); |
| cur_icount = cpu_get_icount_locked(); |
| |
| delta = cur_icount - cur_time; |
| /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */ |
| if (delta > 0 |
| && last_delta + ICOUNT_WOBBLE < delta * 2 |
| && icount_time_shift > 0) { |
| /* The guest is getting too far ahead. Slow time down. */ |
| icount_time_shift--; |
| } |
| if (delta < 0 |
| && last_delta - ICOUNT_WOBBLE > delta * 2 |
| && icount_time_shift < MAX_ICOUNT_SHIFT) { |
| /* The guest is getting too far behind. Speed time up. */ |
| icount_time_shift++; |
| } |
| last_delta = delta; |
| timers_state.qemu_icount_bias = cur_icount |
| - (timers_state.qemu_icount << icount_time_shift); |
| seqlock_write_unlock(&timers_state.vm_clock_seqlock); |
| } |
| |
| static void icount_adjust_rt(void *opaque) |
| { |
| timer_mod(icount_rt_timer, |
| qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000); |
| icount_adjust(); |
| } |
| |
| static void icount_adjust_vm(void *opaque) |
| { |
| timer_mod(icount_vm_timer, |
| qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + |
| get_ticks_per_sec() / 10); |
| icount_adjust(); |
| } |
| |
| static int64_t qemu_icount_round(int64_t count) |
| { |
| return (count + (1 << icount_time_shift) - 1) >> icount_time_shift; |
| } |
| |
| static void icount_warp_rt(void) |
| { |
| /* The icount_warp_timer is rescheduled soon after vm_clock_warp_start |
| * changes from -1 to another value, so the race here is okay. |
| */ |
| if (atomic_read(&vm_clock_warp_start) == -1) { |
| return; |
| } |
| |
| seqlock_write_lock(&timers_state.vm_clock_seqlock); |
| if (runstate_is_running()) { |
| int64_t clock = REPLAY_CLOCK(REPLAY_CLOCK_VIRTUAL_RT, |
| cpu_get_clock_locked()); |
| int64_t warp_delta; |
| |
| warp_delta = clock - vm_clock_warp_start; |
| if (use_icount == 2) { |
| /* |
| * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too |
| * far ahead of real time. |
| */ |
| int64_t cur_icount = cpu_get_icount_locked(); |
| int64_t delta = clock - cur_icount; |
| warp_delta = MIN(warp_delta, delta); |
| } |
| timers_state.qemu_icount_bias += warp_delta; |
| } |
| vm_clock_warp_start = -1; |
| seqlock_write_unlock(&timers_state.vm_clock_seqlock); |
| |
| if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) { |
| qemu_clock_notify(QEMU_CLOCK_VIRTUAL); |
| } |
| } |
| |
| static void icount_dummy_timer(void *opaque) |
| { |
| (void)opaque; |
| } |
| |
| void qtest_clock_warp(int64_t dest) |
| { |
| int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); |
| AioContext *aio_context; |
| assert(qtest_enabled()); |
| aio_context = qemu_get_aio_context(); |
| while (clock < dest) { |
| int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL); |
| int64_t warp = qemu_soonest_timeout(dest - clock, deadline); |
| |
| seqlock_write_lock(&timers_state.vm_clock_seqlock); |
| timers_state.qemu_icount_bias += warp; |
| seqlock_write_unlock(&timers_state.vm_clock_seqlock); |
| |
| qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL); |
| timerlist_run_timers(aio_context->tlg.tl[QEMU_CLOCK_VIRTUAL]); |
| clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); |
| } |
| qemu_clock_notify(QEMU_CLOCK_VIRTUAL); |
| } |
| |
| void qemu_clock_warp(QEMUClockType type) |
| { |
| int64_t clock; |
| int64_t deadline; |
| |
| /* |
| * There are too many global variables to make the "warp" behavior |
| * applicable to other clocks. But a clock argument removes the |
| * need for if statements all over the place. |
| */ |
| if (type != QEMU_CLOCK_VIRTUAL || !use_icount) { |
| return; |
| } |
| |
| /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers |
| * do not fire, so computing the deadline does not make sense. |
| */ |
| if (!runstate_is_running()) { |
| return; |
| } |
| |
| /* warp clock deterministically in record/replay mode */ |
| if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP)) { |
| return; |
| } |
| |
| if (icount_sleep) { |
| /* |
| * If the CPUs have been sleeping, advance QEMU_CLOCK_VIRTUAL timer now. |
| * This ensures that the deadline for the timer is computed correctly |
| * below. |
| * This also makes sure that the insn counter is synchronized before |
| * the CPU starts running, in case the CPU is woken by an event other |
| * than the earliest QEMU_CLOCK_VIRTUAL timer. |
| */ |
| icount_warp_rt(); |
| timer_del(icount_warp_timer); |
| } |
| if (!all_cpu_threads_idle()) { |
| return; |
| } |
| |
| if (qtest_enabled()) { |
| /* When testing, qtest commands advance icount. */ |
| return; |
| } |
| |
| /* We want to use the earliest deadline from ALL vm_clocks */ |
| clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); |
| deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL); |
| if (deadline < 0) { |
| static bool notified; |
| if (!icount_sleep && !notified) { |
| error_report("WARNING: icount sleep disabled and no active timers"); |
| notified = true; |
| } |
| return; |
| } |
| |
| if (deadline > 0) { |
| /* |
| * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to |
| * sleep. Otherwise, the CPU might be waiting for a future timer |
| * interrupt to wake it up, but the interrupt never comes because |
| * the vCPU isn't running any insns and thus doesn't advance the |
| * QEMU_CLOCK_VIRTUAL. |
| */ |
| if (!icount_sleep) { |
| /* |
| * We never let VCPUs sleep in no sleep icount mode. |
| * If there is a pending QEMU_CLOCK_VIRTUAL timer we just advance |
| * to the next QEMU_CLOCK_VIRTUAL event and notify it. |
| * It is useful when we want a deterministic execution time, |
| * isolated from host latencies. |
| */ |
| seqlock_write_lock(&timers_state.vm_clock_seqlock); |
| timers_state.qemu_icount_bias += deadline; |
| seqlock_write_unlock(&timers_state.vm_clock_seqlock); |
| qemu_clock_notify(QEMU_CLOCK_VIRTUAL); |
| } else { |
| /* |
| * We do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL after some |
| * "real" time, (related to the time left until the next event) has |
| * passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this. |
| * This avoids that the warps are visible externally; for example, |
| * you will not be sending network packets continuously instead of |
| * every 100ms. |
| */ |
| seqlock_write_lock(&timers_state.vm_clock_seqlock); |
| if (vm_clock_warp_start == -1 || vm_clock_warp_start > clock) { |
| vm_clock_warp_start = clock; |
| } |
| seqlock_write_unlock(&timers_state.vm_clock_seqlock); |
| timer_mod_anticipate(icount_warp_timer, clock + deadline); |
| } |
| } else if (deadline == 0) { |
| qemu_clock_notify(QEMU_CLOCK_VIRTUAL); |
| } |
| } |
| |
| static bool icount_state_needed(void *opaque) |
| { |
| return use_icount; |
| } |
| |
| /* |
| * This is a subsection for icount migration. |
| */ |
| static const VMStateDescription icount_vmstate_timers = { |
| .name = "timer/icount", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .needed = icount_state_needed, |
| .fields = (VMStateField[]) { |
| VMSTATE_INT64(qemu_icount_bias, TimersState), |
| VMSTATE_INT64(qemu_icount, TimersState), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static const VMStateDescription vmstate_timers = { |
| .name = "timer", |
| .version_id = 2, |
| .minimum_version_id = 1, |
| .fields = (VMStateField[]) { |
| VMSTATE_INT64(cpu_ticks_offset, TimersState), |
| VMSTATE_INT64(dummy, TimersState), |
| VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2), |
| VMSTATE_END_OF_LIST() |
| }, |
| .subsections = (const VMStateDescription*[]) { |
| &icount_vmstate_timers, |
| NULL |
| } |
| }; |
| |
| static void cpu_throttle_thread(void *opaque) |
| { |
| CPUState *cpu = opaque; |
| double pct; |
| double throttle_ratio; |
| long sleeptime_ns; |
| |
| if (!cpu_throttle_get_percentage()) { |
| return; |
| } |
| |
| pct = (double)cpu_throttle_get_percentage()/100; |
| throttle_ratio = pct / (1 - pct); |
| sleeptime_ns = (long)(throttle_ratio * CPU_THROTTLE_TIMESLICE_NS); |
| |
| qemu_mutex_unlock_iothread(); |
| atomic_set(&cpu->throttle_thread_scheduled, 0); |
| g_usleep(sleeptime_ns / 1000); /* Convert ns to us for usleep call */ |
| qemu_mutex_lock_iothread(); |
| } |
| |
| static void cpu_throttle_timer_tick(void *opaque) |
| { |
| CPUState *cpu; |
| double pct; |
| |
| /* Stop the timer if needed */ |
| if (!cpu_throttle_get_percentage()) { |
| return; |
| } |
| CPU_FOREACH(cpu) { |
| if (!atomic_xchg(&cpu->throttle_thread_scheduled, 1)) { |
| async_run_on_cpu(cpu, cpu_throttle_thread, cpu); |
| } |
| } |
| |
| pct = (double)cpu_throttle_get_percentage()/100; |
| timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) + |
| CPU_THROTTLE_TIMESLICE_NS / (1-pct)); |
| } |
| |
| void cpu_throttle_set(int new_throttle_pct) |
| { |
| /* Ensure throttle percentage is within valid range */ |
| new_throttle_pct = MIN(new_throttle_pct, CPU_THROTTLE_PCT_MAX); |
| new_throttle_pct = MAX(new_throttle_pct, CPU_THROTTLE_PCT_MIN); |
| |
| atomic_set(&throttle_percentage, new_throttle_pct); |
| |
| timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) + |
| CPU_THROTTLE_TIMESLICE_NS); |
| } |
| |
| void cpu_throttle_stop(void) |
| { |
| atomic_set(&throttle_percentage, 0); |
| } |
| |
| bool cpu_throttle_active(void) |
| { |
| return (cpu_throttle_get_percentage() != 0); |
| } |
| |
| int cpu_throttle_get_percentage(void) |
| { |
| return atomic_read(&throttle_percentage); |
| } |
| |
| void cpu_ticks_init(void) |
| { |
| seqlock_init(&timers_state.vm_clock_seqlock, NULL); |
| vmstate_register(NULL, 0, &vmstate_timers, &timers_state); |
| throttle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT, |
| cpu_throttle_timer_tick, NULL); |
| } |
| |
| void configure_icount(QemuOpts *opts, Error **errp) |
| { |
| const char *option; |
| char *rem_str = NULL; |
| |
| option = qemu_opt_get(opts, "shift"); |
| if (!option) { |
| if (qemu_opt_get(opts, "align") != NULL) { |
| error_setg(errp, "Please specify shift option when using align"); |
| } |
| return; |
| } |
| |
| icount_sleep = qemu_opt_get_bool(opts, "sleep", true); |
| if (icount_sleep) { |
| icount_warp_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT, |
| icount_dummy_timer, NULL); |
| } |
| |
| icount_align_option = qemu_opt_get_bool(opts, "align", false); |
| |
| if (icount_align_option && !icount_sleep) { |
| error_setg(errp, "align=on and sleep=no are incompatible"); |
| } |
| if (strcmp(option, "auto") != 0) { |
| errno = 0; |
| icount_time_shift = strtol(option, &rem_str, 0); |
| if (errno != 0 || *rem_str != '\0' || !strlen(option)) { |
| error_setg(errp, "icount: Invalid shift value"); |
| } |
| use_icount = 1; |
| return; |
| } else if (icount_align_option) { |
| error_setg(errp, "shift=auto and align=on are incompatible"); |
| } else if (!icount_sleep) { |
| error_setg(errp, "shift=auto and sleep=no are incompatible"); |
| } |
| |
| use_icount = 2; |
| |
| /* 125MIPS seems a reasonable initial guess at the guest speed. |
| It will be corrected fairly quickly anyway. */ |
| icount_time_shift = 3; |
| |
| /* Have both realtime and virtual time triggers for speed adjustment. |
| The realtime trigger catches emulated time passing too slowly, |
| the virtual time trigger catches emulated time passing too fast. |
| Realtime triggers occur even when idle, so use them less frequently |
| than VM triggers. */ |
| icount_rt_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL_RT, |
| icount_adjust_rt, NULL); |
| timer_mod(icount_rt_timer, |
| qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000); |
| icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, |
| icount_adjust_vm, NULL); |
| timer_mod(icount_vm_timer, |
| qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + |
| get_ticks_per_sec() / 10); |
| } |
| |
| /***********************************************************/ |
| void hw_error(const char *fmt, ...) |
| { |
| va_list ap; |
| CPUState *cpu; |
| |
| va_start(ap, fmt); |
| fprintf(stderr, "qemu: hardware error: "); |
| vfprintf(stderr, fmt, ap); |
| fprintf(stderr, "\n"); |
| CPU_FOREACH(cpu) { |
| fprintf(stderr, "CPU #%d:\n", cpu->cpu_index); |
| cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU); |
| } |
| va_end(ap); |
| abort(); |
| } |
| |
| void cpu_synchronize_all_states(void) |
| { |
| CPUState *cpu; |
| |
| CPU_FOREACH(cpu) { |
| cpu_synchronize_state(cpu); |
| } |
| } |
| |
| void cpu_synchronize_all_post_reset(void) |
| { |
| CPUState *cpu; |
| |
| CPU_FOREACH(cpu) { |
| cpu_synchronize_post_reset(cpu); |
| } |
| } |
| |
| void cpu_synchronize_all_post_init(void) |
| { |
| CPUState *cpu; |
| |
| CPU_FOREACH(cpu) { |
| cpu_synchronize_post_init(cpu); |
| } |
| } |
| |
| static int do_vm_stop(RunState state) |
| { |
| int ret = 0; |
| |
| if (runstate_is_running()) { |
| cpu_disable_ticks(); |
| pause_all_vcpus(); |
| runstate_set(state); |
| vm_state_notify(0, state); |
| qapi_event_send_stop(&error_abort); |
| } |
| |
| bdrv_drain_all(); |
| ret = bdrv_flush_all(); |
| |
| return ret; |
| } |
| |
| static bool cpu_can_run(CPUState *cpu) |
| { |
| if (cpu->stop) { |
| return false; |
| } |
| if (cpu_is_stopped(cpu)) { |
| return false; |
| } |
| return true; |
| } |
| |
| static void cpu_handle_guest_debug(CPUState *cpu) |
| { |
| gdb_set_stop_cpu(cpu); |
| qemu_system_debug_request(); |
| cpu->stopped = true; |
| } |
| |
| #ifdef CONFIG_LINUX |
| static void sigbus_reraise(void) |
| { |
| sigset_t set; |
| struct sigaction action; |
| |
| memset(&action, 0, sizeof(action)); |
| action.sa_handler = SIG_DFL; |
| if (!sigaction(SIGBUS, &action, NULL)) { |
| raise(SIGBUS); |
| sigemptyset(&set); |
| sigaddset(&set, SIGBUS); |
| sigprocmask(SIG_UNBLOCK, &set, NULL); |
| } |
| perror("Failed to re-raise SIGBUS!\n"); |
| abort(); |
| } |
| |
| static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo, |
| void *ctx) |
| { |
| if (kvm_on_sigbus(siginfo->ssi_code, |
| (void *)(intptr_t)siginfo->ssi_addr)) { |
| sigbus_reraise(); |
| } |
| } |
| |
| static void qemu_init_sigbus(void) |
| { |
| struct sigaction action; |
| |
| memset(&action, 0, sizeof(action)); |
| action.sa_flags = SA_SIGINFO; |
| action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler; |
| sigaction(SIGBUS, &action, NULL); |
| |
| prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0); |
| } |
| |
| static void qemu_kvm_eat_signals(CPUState *cpu) |
| { |
| struct timespec ts = { 0, 0 }; |
| siginfo_t siginfo; |
| sigset_t waitset; |
| sigset_t chkset; |
| int r; |
| |
| sigemptyset(&waitset); |
| sigaddset(&waitset, SIG_IPI); |
| sigaddset(&waitset, SIGBUS); |
| |
| do { |
| r = sigtimedwait(&waitset, &siginfo, &ts); |
| if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { |
| perror("sigtimedwait"); |
| exit(1); |
| } |
| |
| switch (r) { |
| case SIGBUS: |
| if (kvm_on_sigbus_vcpu(cpu, siginfo.si_code, siginfo.si_addr)) { |
| sigbus_reraise(); |
| } |
| break; |
| default: |
| break; |
| } |
| |
| r = sigpending(&chkset); |
| if (r == -1) { |
| perror("sigpending"); |
| exit(1); |
| } |
| } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS)); |
| } |
| |
| #else /* !CONFIG_LINUX */ |
| |
| static void qemu_init_sigbus(void) |
| { |
| } |
| |
| static void qemu_kvm_eat_signals(CPUState *cpu) |
| { |
| } |
| #endif /* !CONFIG_LINUX */ |
| |
| #ifndef _WIN32 |
| static void dummy_signal(int sig) |
| { |
| } |
| |
| static void qemu_kvm_init_cpu_signals(CPUState *cpu) |
| { |
| int r; |
| sigset_t set; |
| struct sigaction sigact; |
| |
| memset(&sigact, 0, sizeof(sigact)); |
| sigact.sa_handler = dummy_signal; |
| sigaction(SIG_IPI, &sigact, NULL); |
| |
| pthread_sigmask(SIG_BLOCK, NULL, &set); |
| sigdelset(&set, SIG_IPI); |
| sigdelset(&set, SIGBUS); |
| r = kvm_set_signal_mask(cpu, &set); |
| if (r) { |
| fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); |
| exit(1); |
| } |
| } |
| |
| #else /* _WIN32 */ |
| static void qemu_kvm_init_cpu_signals(CPUState *cpu) |
| { |
| abort(); |
| } |
| #endif /* _WIN32 */ |
| |
| static QemuMutex qemu_global_mutex; |
| static QemuCond qemu_io_proceeded_cond; |
| static unsigned iothread_requesting_mutex; |
| |
| static QemuThread io_thread; |
| |
| /* cpu creation */ |
| static QemuCond qemu_cpu_cond; |
| /* system init */ |
| static QemuCond qemu_pause_cond; |
| static QemuCond qemu_work_cond; |
| |
| void qemu_init_cpu_loop(void) |
| { |
| qemu_init_sigbus(); |
| qemu_cond_init(&qemu_cpu_cond); |
| qemu_cond_init(&qemu_pause_cond); |
| qemu_cond_init(&qemu_work_cond); |
| qemu_cond_init(&qemu_io_proceeded_cond); |
| qemu_mutex_init(&qemu_global_mutex); |
| |
| qemu_thread_get_self(&io_thread); |
| } |
| |
| void run_on_cpu(CPUState *cpu, void (*func)(void *data), void *data) |
| { |
| struct qemu_work_item wi; |
| |
| if (qemu_cpu_is_self(cpu)) { |
| func(data); |
| return; |
| } |
| |
| wi.func = func; |
| wi.data = data; |
| wi.free = false; |
| |
| qemu_mutex_lock(&cpu->work_mutex); |
| if (cpu->queued_work_first == NULL) { |
| cpu->queued_work_first = &wi; |
| } else { |
| cpu->queued_work_last->next = &wi; |
| } |
| cpu->queued_work_last = &wi; |
| wi.next = NULL; |
| wi.done = false; |
| qemu_mutex_unlock(&cpu->work_mutex); |
| |
| qemu_cpu_kick(cpu); |
| while (!atomic_mb_read(&wi.done)) { |
| CPUState *self_cpu = current_cpu; |
| |
| qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex); |
| current_cpu = self_cpu; |
| } |
| } |
| |
| void async_run_on_cpu(CPUState *cpu, void (*func)(void *data), void *data) |
| { |
| struct qemu_work_item *wi; |
| |
| if (qemu_cpu_is_self(cpu)) { |
| func(data); |
| return; |
| } |
| |
| wi = g_malloc0(sizeof(struct qemu_work_item)); |
| wi->func = func; |
| wi->data = data; |
| wi->free = true; |
| |
| qemu_mutex_lock(&cpu->work_mutex); |
| if (cpu->queued_work_first == NULL) { |
| cpu->queued_work_first = wi; |
| } else { |
| cpu->queued_work_last->next = wi; |
| } |
| cpu->queued_work_last = wi; |
| wi->next = NULL; |
| wi->done = false; |
| qemu_mutex_unlock(&cpu->work_mutex); |
| |
| qemu_cpu_kick(cpu); |
| } |
| |
| static void flush_queued_work(CPUState *cpu) |
| { |
| struct qemu_work_item *wi; |
| |
| if (cpu->queued_work_first == NULL) { |
| return; |
| } |
| |
| qemu_mutex_lock(&cpu->work_mutex); |
| while (cpu->queued_work_first != NULL) { |
| wi = cpu->queued_work_first; |
| cpu->queued_work_first = wi->next; |
| if (!cpu->queued_work_first) { |
| cpu->queued_work_last = NULL; |
| } |
| qemu_mutex_unlock(&cpu->work_mutex); |
| wi->func(wi->data); |
| qemu_mutex_lock(&cpu->work_mutex); |
| if (wi->free) { |
| g_free(wi); |
| } else { |
| atomic_mb_set(&wi->done, true); |
| } |
| } |
| qemu_mutex_unlock(&cpu->work_mutex); |
| qemu_cond_broadcast(&qemu_work_cond); |
| } |
| |
| static void qemu_wait_io_event_common(CPUState *cpu) |
| { |
| if (cpu->stop) { |
| cpu->stop = false; |
| cpu->stopped = true; |
| qemu_cond_signal(&qemu_pause_cond); |
| } |
| flush_queued_work(cpu); |
| cpu->thread_kicked = false; |
| } |
| |
| static void qemu_tcg_wait_io_event(CPUState *cpu) |
| { |
| while (all_cpu_threads_idle()) { |
| /* Start accounting real time to the virtual clock if the CPUs |
| are idle. */ |
| qemu_clock_warp(QEMU_CLOCK_VIRTUAL); |
| qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex); |
| } |
| |
| while (iothread_requesting_mutex) { |
| qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex); |
| } |
| |
| CPU_FOREACH(cpu) { |
| qemu_wait_io_event_common(cpu); |
| } |
| } |
| |
| static void qemu_kvm_wait_io_event(CPUState *cpu) |
| { |
| while (cpu_thread_is_idle(cpu)) { |
| qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex); |
| } |
| |
| qemu_kvm_eat_signals(cpu); |
| qemu_wait_io_event_common(cpu); |
| } |
| |
| static void *qemu_kvm_cpu_thread_fn(void *arg) |
| { |
| CPUState *cpu = arg; |
| int r; |
| |
| rcu_register_thread(); |
| |
| qemu_mutex_lock_iothread(); |
| qemu_thread_get_self(cpu->thread); |
| cpu->thread_id = qemu_get_thread_id(); |
| cpu->can_do_io = 1; |
| current_cpu = cpu; |
| |
| r = kvm_init_vcpu(cpu); |
| if (r < 0) { |
| fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r)); |
| exit(1); |
| } |
| |
| qemu_kvm_init_cpu_signals(cpu); |
| |
| /* signal CPU creation */ |
| cpu->created = true; |
| qemu_cond_signal(&qemu_cpu_cond); |
| |
| while (1) { |
| if (cpu_can_run(cpu)) { |
| r = kvm_cpu_exec(cpu); |
| if (r == EXCP_DEBUG) { |
| cpu_handle_guest_debug(cpu); |
| } |
| } |
| qemu_kvm_wait_io_event(cpu); |
| } |
| |
| return NULL; |
| } |
| |
| static void *qemu_dummy_cpu_thread_fn(void *arg) |
| { |
| #ifdef _WIN32 |
| fprintf(stderr, "qtest is not supported under Windows\n"); |
| exit(1); |
| #else |
| CPUState *cpu = arg; |
| sigset_t waitset; |
| int r; |
| |
| rcu_register_thread(); |
| |
| qemu_mutex_lock_iothread(); |
| qemu_thread_get_self(cpu->thread); |
| cpu->thread_id = qemu_get_thread_id(); |
| cpu->can_do_io = 1; |
| |
| sigemptyset(&waitset); |
| sigaddset(&waitset, SIG_IPI); |
| |
| /* signal CPU creation */ |
| cpu->created = true; |
| qemu_cond_signal(&qemu_cpu_cond); |
| |
| current_cpu = cpu; |
| while (1) { |
| current_cpu = NULL; |
| qemu_mutex_unlock_iothread(); |
| do { |
| int sig; |
| r = sigwait(&waitset, &sig); |
| } while (r == -1 && (errno == EAGAIN || errno == EINTR)); |
| if (r == -1) { |
| perror("sigwait"); |
| exit(1); |
| } |
| qemu_mutex_lock_iothread(); |
| current_cpu = cpu; |
| qemu_wait_io_event_common(cpu); |
| } |
| |
| return NULL; |
| #endif |
| } |
| |
| static void tcg_exec_all(void); |
| |
| static void *qemu_tcg_cpu_thread_fn(void *arg) |
| { |
| CPUState *cpu = arg; |
| |
| rcu_register_thread(); |
| |
| qemu_mutex_lock_iothread(); |
| qemu_thread_get_self(cpu->thread); |
| |
| CPU_FOREACH(cpu) { |
| cpu->thread_id = qemu_get_thread_id(); |
| cpu->created = true; |
| cpu->can_do_io = 1; |
| } |
| qemu_cond_signal(&qemu_cpu_cond); |
| |
| /* wait for initial kick-off after machine start */ |
| while (first_cpu->stopped) { |
| qemu_cond_wait(first_cpu->halt_cond, &qemu_global_mutex); |
| |
| /* process any pending work */ |
| CPU_FOREACH(cpu) { |
| qemu_wait_io_event_common(cpu); |
| } |
| } |
| |
| /* process any pending work */ |
| atomic_mb_set(&exit_request, 1); |
| |
| while (1) { |
| tcg_exec_all(); |
| |
| if (use_icount) { |
| int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL); |
| |
| if (deadline == 0) { |
| qemu_clock_notify(QEMU_CLOCK_VIRTUAL); |
| } |
| } |
| qemu_tcg_wait_io_event(QTAILQ_FIRST(&cpus)); |
| } |
| |
| return NULL; |
| } |
| |
| static void qemu_cpu_kick_thread(CPUState *cpu) |
| { |
| #ifndef _WIN32 |
| int err; |
| |
| if (cpu->thread_kicked) { |
| return; |
| } |
| cpu->thread_kicked = true; |
| err = pthread_kill(cpu->thread->thread, SIG_IPI); |
| if (err) { |
| fprintf(stderr, "qemu:%s: %s", __func__, strerror(err)); |
| exit(1); |
| } |
| #else /* _WIN32 */ |
| abort(); |
| #endif |
| } |
| |
| static void qemu_cpu_kick_no_halt(void) |
| { |
| CPUState *cpu; |
| /* Ensure whatever caused the exit has reached the CPU threads before |
| * writing exit_request. |
| */ |
| atomic_mb_set(&exit_request, 1); |
| cpu = atomic_mb_read(&tcg_current_cpu); |
| if (cpu) { |
| cpu_exit(cpu); |
| } |
| } |
| |
| void qemu_cpu_kick(CPUState *cpu) |
| { |
| qemu_cond_broadcast(cpu->halt_cond); |
| if (tcg_enabled()) { |
| qemu_cpu_kick_no_halt(); |
| } else { |
| qemu_cpu_kick_thread(cpu); |
| } |
| } |
| |
| void qemu_cpu_kick_self(void) |
| { |
| assert(current_cpu); |
| qemu_cpu_kick_thread(current_cpu); |
| } |
| |
| bool qemu_cpu_is_self(CPUState *cpu) |
| { |
| return qemu_thread_is_self(cpu->thread); |
| } |
| |
| bool qemu_in_vcpu_thread(void) |
| { |
| return current_cpu && qemu_cpu_is_self(current_cpu); |
| } |
| |
| static __thread bool iothread_locked = false; |
| |
| bool qemu_mutex_iothread_locked(void) |
| { |
| return iothread_locked; |
| } |
| |
| void qemu_mutex_lock_iothread(void) |
| { |
| atomic_inc(&iothread_requesting_mutex); |
| /* In the simple case there is no need to bump the VCPU thread out of |
| * TCG code execution. |
| */ |
| if (!tcg_enabled() || qemu_in_vcpu_thread() || |
| !first_cpu || !first_cpu->created) { |
| qemu_mutex_lock(&qemu_global_mutex); |
| atomic_dec(&iothread_requesting_mutex); |
| } else { |
| if (qemu_mutex_trylock(&qemu_global_mutex)) { |
| qemu_cpu_kick_no_halt(); |
| qemu_mutex_lock(&qemu_global_mutex); |
| } |
| atomic_dec(&iothread_requesting_mutex); |
| qemu_cond_broadcast(&qemu_io_proceeded_cond); |
| } |
| iothread_locked = true; |
| } |
| |
| void qemu_mutex_unlock_iothread(void) |
| { |
| iothread_locked = false; |
| qemu_mutex_unlock(&qemu_global_mutex); |
| } |
| |
| static int all_vcpus_paused(void) |
| { |
| CPUState *cpu; |
| |
| CPU_FOREACH(cpu) { |
| if (!cpu->stopped) { |
| return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| void pause_all_vcpus(void) |
| { |
| CPUState *cpu; |
| |
| qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false); |
| CPU_FOREACH(cpu) { |
| cpu->stop = true; |
| qemu_cpu_kick(cpu); |
| } |
| |
| if (qemu_in_vcpu_thread()) { |
| cpu_stop_current(); |
| if (!kvm_enabled()) { |
| CPU_FOREACH(cpu) { |
| cpu->stop = false; |
| cpu->stopped = true; |
| } |
| return; |
| } |
| } |
| |
| while (!all_vcpus_paused()) { |
| qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex); |
| CPU_FOREACH(cpu) { |
| qemu_cpu_kick(cpu); |
| } |
| } |
| } |
| |
| void cpu_resume(CPUState *cpu) |
| { |
| cpu->stop = false; |
| cpu->stopped = false; |
| qemu_cpu_kick(cpu); |
| } |
| |
| void resume_all_vcpus(void) |
| { |
| CPUState *cpu; |
| |
| qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true); |
| CPU_FOREACH(cpu) { |
| cpu_resume(cpu); |
| } |
| } |
| |
| /* For temporary buffers for forming a name */ |
| #define VCPU_THREAD_NAME_SIZE 16 |
| |
| static void qemu_tcg_init_vcpu(CPUState *cpu) |
| { |
| char thread_name[VCPU_THREAD_NAME_SIZE]; |
| static QemuCond *tcg_halt_cond; |
| static QemuThread *tcg_cpu_thread; |
| |
| /* share a single thread for all cpus with TCG */ |
| if (!tcg_cpu_thread) { |
| cpu->thread = g_malloc0(sizeof(QemuThread)); |
| cpu->halt_cond = g_malloc0(sizeof(QemuCond)); |
| qemu_cond_init(cpu->halt_cond); |
| tcg_halt_cond = cpu->halt_cond; |
| snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/TCG", |
| cpu->cpu_index); |
| qemu_thread_create(cpu->thread, thread_name, qemu_tcg_cpu_thread_fn, |
| cpu, QEMU_THREAD_JOINABLE); |
| #ifdef _WIN32 |
| cpu->hThread = qemu_thread_get_handle(cpu->thread); |
| #endif |
| while (!cpu->created) { |
| qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex); |
| } |
| tcg_cpu_thread = cpu->thread; |
| } else { |
| cpu->thread = tcg_cpu_thread; |
| cpu->halt_cond = tcg_halt_cond; |
| } |
| } |
| |
| static void qemu_kvm_start_vcpu(CPUState *cpu) |
| { |
| char thread_name[VCPU_THREAD_NAME_SIZE]; |
| |
| cpu->thread = g_malloc0(sizeof(QemuThread)); |
| cpu->halt_cond = g_malloc0(sizeof(QemuCond)); |
| qemu_cond_init(cpu->halt_cond); |
| snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/KVM", |
| cpu->cpu_index); |
| qemu_thread_create(cpu->thread, thread_name, qemu_kvm_cpu_thread_fn, |
| cpu, QEMU_THREAD_JOINABLE); |
| while (!cpu->created) { |
| qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex); |
| } |
| } |
| |
| static void qemu_dummy_start_vcpu(CPUState *cpu) |
| { |
| char thread_name[VCPU_THREAD_NAME_SIZE]; |
| |
| cpu->thread = g_malloc0(sizeof(QemuThread)); |
| cpu->halt_cond = g_malloc0(sizeof(QemuCond)); |
| qemu_cond_init(cpu->halt_cond); |
| snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/DUMMY", |
| cpu->cpu_index); |
| qemu_thread_create(cpu->thread, thread_name, qemu_dummy_cpu_thread_fn, cpu, |
| QEMU_THREAD_JOINABLE); |
| while (!cpu->created) { |
| qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex); |
| } |
| } |
| |
| void qemu_init_vcpu(CPUState *cpu) |
| { |
| cpu->nr_cores = smp_cores; |
| cpu->nr_threads = smp_threads; |
| cpu->stopped = true; |
| |
| if (!cpu->as) { |
| /* If the target cpu hasn't set up any address spaces itself, |
| * give it the default one. |
| */ |
| cpu->num_ases = 1; |
| cpu_address_space_init(cpu, &address_space_memory, 0); |
| } |
| |
| if (kvm_enabled()) { |
| qemu_kvm_start_vcpu(cpu); |
| } else if (tcg_enabled()) { |
| qemu_tcg_init_vcpu(cpu); |
| } else { |
| qemu_dummy_start_vcpu(cpu); |
| } |
| } |
| |
| void cpu_stop_current(void) |
| { |
| if (current_cpu) { |
| current_cpu->stop = false; |
| current_cpu->stopped = true; |
| cpu_exit(current_cpu); |
| qemu_cond_signal(&qemu_pause_cond); |
| } |
| } |
| |
| int vm_stop(RunState state) |
| { |
| if (qemu_in_vcpu_thread()) { |
| qemu_system_vmstop_request_prepare(); |
| qemu_system_vmstop_request(state); |
| /* |
| * FIXME: should not return to device code in case |
| * vm_stop() has been requested. |
| */ |
| cpu_stop_current(); |
| return 0; |
| } |
| |
| return do_vm_stop(state); |
| } |
| |
| /* does a state transition even if the VM is already stopped, |
| current state is forgotten forever */ |
| int vm_stop_force_state(RunState state) |
| { |
| if (runstate_is_running()) { |
| return vm_stop(state); |
| } else { |
| runstate_set(state); |
| |
| bdrv_drain_all(); |
| /* Make sure to return an error if the flush in a previous vm_stop() |
| * failed. */ |
| return bdrv_flush_all(); |
| } |
| } |
| |
| static int64_t tcg_get_icount_limit(void) |
| { |
| int64_t deadline; |
| |
| if (replay_mode != REPLAY_MODE_PLAY) { |
| deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL); |
| |
| /* Maintain prior (possibly buggy) behaviour where if no deadline |
| * was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than |
| * INT32_MAX nanoseconds ahead, we still use INT32_MAX |
| * nanoseconds. |
| */ |
| if ((deadline < 0) || (deadline > INT32_MAX)) { |
| deadline = INT32_MAX; |
| } |
| |
| return qemu_icount_round(deadline); |
| } else { |
| return replay_get_instructions(); |
| } |
| } |
| |
| static int tcg_cpu_exec(CPUState *cpu) |
| { |
| int ret; |
| #ifdef CONFIG_PROFILER |
| int64_t ti; |
| #endif |
| |
| #ifdef CONFIG_PROFILER |
| ti = profile_getclock(); |
| #endif |
| if (use_icount) { |
| int64_t count; |
| int decr; |
| timers_state.qemu_icount -= (cpu->icount_decr.u16.low |
| + cpu->icount_extra); |
| cpu->icount_decr.u16.low = 0; |
| cpu->icount_extra = 0; |
| count = tcg_get_icount_limit(); |
| timers_state.qemu_icount += count; |
| decr = (count > 0xffff) ? 0xffff : count; |
| count -= decr; |
| cpu->icount_decr.u16.low = decr; |
| cpu->icount_extra = count; |
| } |
| ret = cpu_exec(cpu); |
| #ifdef CONFIG_PROFILER |
| tcg_time += profile_getclock() - ti; |
| #endif |
| if (use_icount) { |
| /* Fold pending instructions back into the |
| instruction counter, and clear the interrupt flag. */ |
| timers_state.qemu_icount -= (cpu->icount_decr.u16.low |
| + cpu->icount_extra); |
| cpu->icount_decr.u32 = 0; |
| cpu->icount_extra = 0; |
| replay_account_executed_instructions(); |
| } |
| return ret; |
| } |
| |
| static void tcg_exec_all(void) |
| { |
| int r; |
| |
| /* Account partial waits to QEMU_CLOCK_VIRTUAL. */ |
| qemu_clock_warp(QEMU_CLOCK_VIRTUAL); |
| |
| if (next_cpu == NULL) { |
| next_cpu = first_cpu; |
| } |
| for (; next_cpu != NULL && !exit_request; next_cpu = CPU_NEXT(next_cpu)) { |
| CPUState *cpu = next_cpu; |
| |
| qemu_clock_enable(QEMU_CLOCK_VIRTUAL, |
| (cpu->singlestep_enabled & SSTEP_NOTIMER) == 0); |
| |
| if (cpu_can_run(cpu)) { |
| r = tcg_cpu_exec(cpu); |
| if (r == EXCP_DEBUG) { |
| cpu_handle_guest_debug(cpu); |
| break; |
| } |
| } else if (cpu->stop || cpu->stopped) { |
| break; |
| } |
| } |
| |
| /* Pairs with smp_wmb in qemu_cpu_kick. */ |
| atomic_mb_set(&exit_request, 0); |
| } |
| |
| void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg) |
| { |
| /* XXX: implement xxx_cpu_list for targets that still miss it */ |
| #if defined(cpu_list) |
| cpu_list(f, cpu_fprintf); |
| #endif |
| } |
| |
| CpuInfoList *qmp_query_cpus(Error **errp) |
| { |
| CpuInfoList *head = NULL, *cur_item = NULL; |
| CPUState *cpu; |
| |
| CPU_FOREACH(cpu) { |
| CpuInfoList *info; |
| #if defined(TARGET_I386) |
| X86CPU *x86_cpu = X86_CPU(cpu); |
| CPUX86State *env = &x86_cpu->env; |
| #elif defined(TARGET_PPC) |
| PowerPCCPU *ppc_cpu = POWERPC_CPU(cpu); |
| CPUPPCState *env = &ppc_cpu->env; |
| #elif defined(TARGET_SPARC) |
| SPARCCPU *sparc_cpu = SPARC_CPU(cpu); |
| CPUSPARCState *env = &sparc_cpu->env; |
| #elif defined(TARGET_MIPS) |
| MIPSCPU *mips_cpu = MIPS_CPU(cpu); |
| CPUMIPSState *env = &mips_cpu->env; |
| #elif defined(TARGET_TRICORE) |
| TriCoreCPU *tricore_cpu = TRICORE_CPU(cpu); |
| CPUTriCoreState *env = &tricore_cpu->env; |
| #endif |
| |
| cpu_synchronize_state(cpu); |
| |
| info = g_malloc0(sizeof(*info)); |
| info->value = g_malloc0(sizeof(*info->value)); |
| info->value->CPU = cpu->cpu_index; |
| info->value->current = (cpu == first_cpu); |
| info->value->halted = cpu->halted; |
| info->value->qom_path = object_get_canonical_path(OBJECT(cpu)); |
| info->value->thread_id = cpu->thread_id; |
| #if defined(TARGET_I386) |
| info->value->arch = CPU_INFO_ARCH_X86; |
| info->value->u.x86 = g_new0(CpuInfoX86, 1); |
| info->value->u.x86->pc = env->eip + env->segs[R_CS].base; |
| #elif defined(TARGET_PPC) |
| info->value->arch = CPU_INFO_ARCH_PPC; |
| info->value->u.ppc = g_new0(CpuInfoPPC, 1); |
| info->value->u.ppc->nip = env->nip; |
| #elif defined(TARGET_SPARC) |
| info->value->arch = CPU_INFO_ARCH_SPARC; |
| info->value->u.sparc = g_new0(CpuInfoSPARC, 1); |
| info->value->u.sparc->pc = env->pc; |
| info->value->u.sparc->npc = env->npc; |
| #elif defined(TARGET_MIPS) |
| info->value->arch = CPU_INFO_ARCH_MIPS; |
| info->value->u.mips = g_new0(CpuInfoMIPS, 1); |
| info->value->u.mips->PC = env->active_tc.PC; |
| #elif defined(TARGET_TRICORE) |
| info->value->arch = CPU_INFO_ARCH_TRICORE; |
| info->value->u.tricore = g_new0(CpuInfoTricore, 1); |
| info->value->u.tricore->PC = env->PC; |
| #else |
| info->value->arch = CPU_INFO_ARCH_OTHER; |
| info->value->u.other = g_new0(CpuInfoOther, 1); |
| #endif |
| |
| /* XXX: waiting for the qapi to support GSList */ |
| if (!cur_item) { |
| head = cur_item = info; |
| } else { |
| cur_item->next = info; |
| cur_item = info; |
| } |
| } |
| |
| return head; |
| } |
| |
| void qmp_memsave(int64_t addr, int64_t size, const char *filename, |
| bool has_cpu, int64_t cpu_index, Error **errp) |
| { |
| FILE *f; |
| uint32_t l; |
| CPUState *cpu; |
| uint8_t buf[1024]; |
| int64_t orig_addr = addr, orig_size = size; |
| |
| if (!has_cpu) { |
| cpu_index = 0; |
| } |
| |
| cpu = qemu_get_cpu(cpu_index); |
| if (cpu == NULL) { |
| error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index", |
| "a CPU number"); |
| return; |
| } |
| |
| f = fopen(filename, "wb"); |
| if (!f) { |
| error_setg_file_open(errp, errno, filename); |
| return; |
| } |
| |
| while (size != 0) { |
| l = sizeof(buf); |
| if (l > size) |
| l = size; |
| if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) { |
| error_setg(errp, "Invalid addr 0x%016" PRIx64 "/size %" PRId64 |
| " specified", orig_addr, orig_size); |
| goto exit; |
| } |
| if (fwrite(buf, 1, l, f) != l) { |
| error_setg(errp, QERR_IO_ERROR); |
| goto exit; |
| } |
| addr += l; |
| size -= l; |
| } |
| |
| exit: |
| fclose(f); |
| } |
| |
| void qmp_pmemsave(int64_t addr, int64_t size, const char *filename, |
| Error **errp) |
| { |
| FILE *f; |
| uint32_t l; |
| uint8_t buf[1024]; |
| |
| f = fopen(filename, "wb"); |
| if (!f) { |
| error_setg_file_open(errp, errno, filename); |
| return; |
| } |
| |
| while (size != 0) { |
| l = sizeof(buf); |
| if (l > size) |
| l = size; |
| cpu_physical_memory_read(addr, buf, l); |
| if (fwrite(buf, 1, l, f) != l) { |
| error_setg(errp, QERR_IO_ERROR); |
| goto exit; |
| } |
| addr += l; |
| size -= l; |
| } |
| |
| exit: |
| fclose(f); |
| } |
| |
| void qmp_inject_nmi(Error **errp) |
| { |
| #if defined(TARGET_I386) |
| CPUState *cs; |
| |
| CPU_FOREACH(cs) { |
| X86CPU *cpu = X86_CPU(cs); |
| |
| if (!cpu->apic_state) { |
| cpu_interrupt(cs, CPU_INTERRUPT_NMI); |
| } else { |
| apic_deliver_nmi(cpu->apic_state); |
| } |
| } |
| #else |
| nmi_monitor_handle(monitor_get_cpu_index(), errp); |
| #endif |
| } |
| |
| void dump_drift_info(FILE *f, fprintf_function cpu_fprintf) |
| { |
| if (!use_icount) { |
| return; |
| } |
| |
| cpu_fprintf(f, "Host - Guest clock %"PRIi64" ms\n", |
| (cpu_get_clock() - cpu_get_icount())/SCALE_MS); |
| if (icount_align_option) { |
| cpu_fprintf(f, "Max guest delay %"PRIi64" ms\n", -max_delay/SCALE_MS); |
| cpu_fprintf(f, "Max guest advance %"PRIi64" ms\n", max_advance/SCALE_MS); |
| } else { |
| cpu_fprintf(f, "Max guest delay NA\n"); |
| cpu_fprintf(f, "Max guest advance NA\n"); |
| } |
| } |