blob: 1b111b6e85205039eefeeaa245c1a08f7938a5a9 [file] [log] [blame]
#include "cpu.h"
#include "exec/gdbstub.h"
#include "helper.h"
#include "qemu/host-utils.h"
#include "sysemu/arch_init.h"
#include "sysemu/sysemu.h"
#include "qemu/bitops.h"
#ifndef CONFIG_USER_ONLY
static inline int get_phys_addr(CPUARMState *env, uint32_t address,
int access_type, int is_user,
hwaddr *phys_ptr, int *prot,
target_ulong *page_size);
#endif
static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
{
int nregs;
/* VFP data registers are always little-endian. */
nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
if (reg < nregs) {
stfq_le_p(buf, env->vfp.regs[reg]);
return 8;
}
if (arm_feature(env, ARM_FEATURE_NEON)) {
/* Aliases for Q regs. */
nregs += 16;
if (reg < nregs) {
stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
return 16;
}
}
switch (reg - nregs) {
case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
}
return 0;
}
static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
{
int nregs;
nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
if (reg < nregs) {
env->vfp.regs[reg] = ldfq_le_p(buf);
return 8;
}
if (arm_feature(env, ARM_FEATURE_NEON)) {
nregs += 16;
if (reg < nregs) {
env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
return 16;
}
}
switch (reg - nregs) {
case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
}
return 0;
}
static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
{
switch (reg) {
case 0 ... 31:
/* 128 bit FP register */
stfq_le_p(buf, env->vfp.regs[reg * 2]);
stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
return 16;
case 32:
/* FPSR */
stl_p(buf, vfp_get_fpsr(env));
return 4;
case 33:
/* FPCR */
stl_p(buf, vfp_get_fpcr(env));
return 4;
default:
return 0;
}
}
static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
{
switch (reg) {
case 0 ... 31:
/* 128 bit FP register */
env->vfp.regs[reg * 2] = ldfq_le_p(buf);
env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
return 16;
case 32:
/* FPSR */
vfp_set_fpsr(env, ldl_p(buf));
return 4;
case 33:
/* FPCR */
vfp_set_fpcr(env, ldl_p(buf));
return 4;
default:
return 0;
}
}
static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
if (ri->type & ARM_CP_64BIT) {
return CPREG_FIELD64(env, ri);
} else {
return CPREG_FIELD32(env, ri);
}
}
static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
if (ri->type & ARM_CP_64BIT) {
CPREG_FIELD64(env, ri) = value;
} else {
CPREG_FIELD32(env, ri) = value;
}
}
static uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
{
/* Raw read of a coprocessor register (as needed for migration, etc). */
if (ri->type & ARM_CP_CONST) {
return ri->resetvalue;
} else if (ri->raw_readfn) {
return ri->raw_readfn(env, ri);
} else if (ri->readfn) {
return ri->readfn(env, ri);
} else {
return raw_read(env, ri);
}
}
static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t v)
{
/* Raw write of a coprocessor register (as needed for migration, etc).
* Note that constant registers are treated as write-ignored; the
* caller should check for success by whether a readback gives the
* value written.
*/
if (ri->type & ARM_CP_CONST) {
return;
} else if (ri->raw_writefn) {
ri->raw_writefn(env, ri, v);
} else if (ri->writefn) {
ri->writefn(env, ri, v);
} else {
raw_write(env, ri, v);
}
}
bool write_cpustate_to_list(ARMCPU *cpu)
{
/* Write the coprocessor state from cpu->env to the (index,value) list. */
int i;
bool ok = true;
for (i = 0; i < cpu->cpreg_array_len; i++) {
uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
const ARMCPRegInfo *ri;
ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
if (!ri) {
ok = false;
continue;
}
if (ri->type & ARM_CP_NO_MIGRATE) {
continue;
}
cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
}
return ok;
}
bool write_list_to_cpustate(ARMCPU *cpu)
{
int i;
bool ok = true;
for (i = 0; i < cpu->cpreg_array_len; i++) {
uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
uint64_t v = cpu->cpreg_values[i];
const ARMCPRegInfo *ri;
ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
if (!ri) {
ok = false;
continue;
}
if (ri->type & ARM_CP_NO_MIGRATE) {
continue;
}
/* Write value and confirm it reads back as written
* (to catch read-only registers and partially read-only
* registers where the incoming migration value doesn't match)
*/
write_raw_cp_reg(&cpu->env, ri, v);
if (read_raw_cp_reg(&cpu->env, ri) != v) {
ok = false;
}
}
return ok;
}
static void add_cpreg_to_list(gpointer key, gpointer opaque)
{
ARMCPU *cpu = opaque;
uint64_t regidx;
const ARMCPRegInfo *ri;
regidx = *(uint32_t *)key;
ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
if (!(ri->type & ARM_CP_NO_MIGRATE)) {
cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
/* The value array need not be initialized at this point */
cpu->cpreg_array_len++;
}
}
static void count_cpreg(gpointer key, gpointer opaque)
{
ARMCPU *cpu = opaque;
uint64_t regidx;
const ARMCPRegInfo *ri;
regidx = *(uint32_t *)key;
ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
if (!(ri->type & ARM_CP_NO_MIGRATE)) {
cpu->cpreg_array_len++;
}
}
static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
{
uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
if (aidx > bidx) {
return 1;
}
if (aidx < bidx) {
return -1;
}
return 0;
}
static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata)
{
GList **plist = udata;
*plist = g_list_prepend(*plist, key);
}
void init_cpreg_list(ARMCPU *cpu)
{
/* Initialise the cpreg_tuples[] array based on the cp_regs hash.
* Note that we require cpreg_tuples[] to be sorted by key ID.
*/
GList *keys = NULL;
int arraylen;
g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys);
keys = g_list_sort(keys, cpreg_key_compare);
cpu->cpreg_array_len = 0;
g_list_foreach(keys, count_cpreg, cpu);
arraylen = cpu->cpreg_array_len;
cpu->cpreg_indexes = g_new(uint64_t, arraylen);
cpu->cpreg_values = g_new(uint64_t, arraylen);
cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
cpu->cpreg_array_len = 0;
g_list_foreach(keys, add_cpreg_to_list, cpu);
assert(cpu->cpreg_array_len == arraylen);
g_list_free(keys);
}
static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
env->cp15.c3 = value;
tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
}
static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
if (env->cp15.c13_fcse != value) {
/* Unlike real hardware the qemu TLB uses virtual addresses,
* not modified virtual addresses, so this causes a TLB flush.
*/
tlb_flush(env, 1);
env->cp15.c13_fcse = value;
}
}
static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) {
/* For VMSA (when not using the LPAE long descriptor page table
* format) this register includes the ASID, so do a TLB flush.
* For PMSA it is purely a process ID and no action is needed.
*/
tlb_flush(env, 1);
}
env->cp15.c13_context = value;
}
static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Invalidate all (TLBIALL) */
tlb_flush(env, 1);
}
static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
tlb_flush_page(env, value & TARGET_PAGE_MASK);
}
static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Invalidate by ASID (TLBIASID) */
tlb_flush(env, value == 0);
}
static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
tlb_flush_page(env, value & TARGET_PAGE_MASK);
}
static const ARMCPRegInfo cp_reginfo[] = {
/* DBGDIDR: just RAZ. In particular this means the "debug architecture
* version" bits will read as a reserved value, which should cause
* Linux to not try to use the debug hardware.
*/
{ .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
.access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
/* MMU Domain access control / MPU write buffer control */
{ .name = "DACR", .cp = 15,
.crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
.resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, },
{ .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
.resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
{ .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1,
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_context),
.resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
/* ??? This covers not just the impdef TLB lockdown registers but also
* some v7VMSA registers relating to TEX remap, so it is overly broad.
*/
{ .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
.opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
/* MMU TLB control. Note that the wildcarding means we cover not just
* the unified TLB ops but also the dside/iside/inner-shareable variants.
*/
{ .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
.opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
.type = ARM_CP_NO_MIGRATE },
{ .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
.opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
.type = ARM_CP_NO_MIGRATE },
{ .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
.opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
.type = ARM_CP_NO_MIGRATE },
{ .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
.opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
.type = ARM_CP_NO_MIGRATE },
/* Cache maintenance ops; some of this space may be overridden later. */
{ .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
.opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
.type = ARM_CP_NOP | ARM_CP_OVERRIDE },
REGINFO_SENTINEL
};
static const ARMCPRegInfo not_v6_cp_reginfo[] = {
/* Not all pre-v6 cores implemented this WFI, so this is slightly
* over-broad.
*/
{ .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
.access = PL1_W, .type = ARM_CP_WFI },
REGINFO_SENTINEL
};
static const ARMCPRegInfo not_v7_cp_reginfo[] = {
/* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
* is UNPREDICTABLE; we choose to NOP as most implementations do).
*/
{ .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
.access = PL1_W, .type = ARM_CP_WFI },
/* L1 cache lockdown. Not architectural in v6 and earlier but in practice
* implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
* OMAPCP will override this space.
*/
{ .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
.resetvalue = 0 },
{ .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
.resetvalue = 0 },
/* v6 doesn't have the cache ID registers but Linux reads them anyway */
{ .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
.access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
.resetvalue = 0 },
REGINFO_SENTINEL
};
static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
if (env->cp15.c1_coproc != value) {
env->cp15.c1_coproc = value;
/* ??? Is this safe when called from within a TB? */
tb_flush(env);
}
}
static const ARMCPRegInfo v6_cp_reginfo[] = {
/* prefetch by MVA in v6, NOP in v7 */
{ .name = "MVA_prefetch",
.cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
.access = PL1_W, .type = ARM_CP_NOP },
{ .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
.access = PL0_W, .type = ARM_CP_NOP },
{ .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
.access = PL0_W, .type = ARM_CP_NOP },
{ .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
.access = PL0_W, .type = ARM_CP_NOP },
{ .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn),
.resetvalue = 0, },
/* Watchpoint Fault Address Register : should actually only be present
* for 1136, 1176, 11MPCore.
*/
{ .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
{ .name = "CPACR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
.resetvalue = 0, .writefn = cpacr_write },
REGINFO_SENTINEL
};
static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
/* Perfomance monitor registers user accessibility is controlled
* by PMUSERENR.
*/
if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
return CP_ACCESS_TRAP;
}
return CP_ACCESS_OK;
}
static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* only the DP, X, D and E bits are writable */
env->cp15.c9_pmcr &= ~0x39;
env->cp15.c9_pmcr |= (value & 0x39);
}
static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
value &= (1 << 31);
env->cp15.c9_pmcnten |= value;
}
static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
value &= (1 << 31);
env->cp15.c9_pmcnten &= ~value;
}
static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
env->cp15.c9_pmovsr &= ~value;
}
static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
env->cp15.c9_pmxevtyper = value & 0xff;
}
static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
env->cp15.c9_pmuserenr = value & 1;
}
static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* We have no event counters so only the C bit can be changed */
value &= (1 << 31);
env->cp15.c9_pminten |= value;
}
static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
value &= (1 << 31);
env->cp15.c9_pminten &= ~value;
}
static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
env->cp15.c12_vbar = value & ~0x1Ful;
}
static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
ARMCPU *cpu = arm_env_get_cpu(env);
return cpu->ccsidr[env->cp15.c0_cssel];
}
static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
env->cp15.c0_cssel = value & 0xf;
}
static const ARMCPRegInfo v7_cp_reginfo[] = {
/* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
* debug components
*/
{ .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
.access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
.access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
/* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
{ .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
.access = PL1_W, .type = ARM_CP_NOP },
/* Performance monitors are implementation defined in v7,
* but with an ARM recommended set of registers, which we
* follow (although we don't actually implement any counters)
*
* Performance registers fall into three categories:
* (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
* (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
* (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
* For the cases controlled by PMUSERENR we must set .access to PL0_RW
* or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
*/
{ .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
.access = PL0_RW, .resetvalue = 0,
.fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
.writefn = pmcntenset_write,
.accessfn = pmreg_access,
.raw_writefn = raw_write },
{ .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
.access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
.accessfn = pmreg_access,
.writefn = pmcntenclr_write,
.type = ARM_CP_NO_MIGRATE },
{ .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
.access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
.accessfn = pmreg_access,
.writefn = pmovsr_write,
.raw_writefn = raw_write },
/* Unimplemented so WI. */
{ .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
.access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
/* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
* We choose to RAZ/WI.
*/
{ .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
.access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
.accessfn = pmreg_access },
/* Unimplemented, RAZ/WI. */
{ .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
.access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
.accessfn = pmreg_access },
{ .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
.access = PL0_RW,
.fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
.accessfn = pmreg_access, .writefn = pmxevtyper_write,
.raw_writefn = raw_write },
/* Unimplemented, RAZ/WI. */
{ .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
.access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
.accessfn = pmreg_access },
{ .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
.access = PL0_R | PL1_RW,
.fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
.resetvalue = 0,
.writefn = pmuserenr_write, .raw_writefn = raw_write },
{ .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
.access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
.resetvalue = 0,
.writefn = pmintenset_write, .raw_writefn = raw_write },
{ .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
.access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
.fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
.resetvalue = 0, .writefn = pmintenclr_write, },
{ .name = "VBAR", .cp = 15, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
.access = PL1_RW, .writefn = vbar_write,
.fieldoffset = offsetof(CPUARMState, cp15.c12_vbar),
.resetvalue = 0 },
{ .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
.resetvalue = 0, },
{ .name = "CCSIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
.access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE },
{ .name = "CSSELR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
.writefn = csselr_write, .resetvalue = 0 },
/* Auxiliary ID register: this actually has an IMPDEF value but for now
* just RAZ for all cores:
*/
{ .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7,
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
REGINFO_SENTINEL
};
static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
value &= 1;
env->teecr = value;
}
static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
return CP_ACCESS_TRAP;
}
return CP_ACCESS_OK;
}
static const ARMCPRegInfo t2ee_cp_reginfo[] = {
{ .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
.resetvalue = 0,
.writefn = teecr_write },
{ .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
.access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
.accessfn = teehbr_access, .resetvalue = 0 },
REGINFO_SENTINEL
};
static const ARMCPRegInfo v6k_cp_reginfo[] = {
{ .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
.access = PL0_RW,
.fieldoffset = offsetof(CPUARMState, cp15.tpidr_el0), .resetvalue = 0 },
{ .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
.access = PL0_RW,
.fieldoffset = offsetoflow32(CPUARMState, cp15.tpidr_el0),
.resetfn = arm_cp_reset_ignore },
{ .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
.access = PL0_R|PL1_W,
.fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el0), .resetvalue = 0 },
{ .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
.access = PL0_R|PL1_W,
.fieldoffset = offsetoflow32(CPUARMState, cp15.tpidrro_el0),
.resetfn = arm_cp_reset_ignore },
{ .name = "TPIDR_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
.access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, cp15.tpidr_el1), .resetvalue = 0 },
REGINFO_SENTINEL
};
#ifndef CONFIG_USER_ONLY
static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
/* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
if (arm_current_pl(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
return CP_ACCESS_TRAP;
}
return CP_ACCESS_OK;
}
static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx)
{
/* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
if (arm_current_pl(env) == 0 &&
!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
return CP_ACCESS_TRAP;
}
return CP_ACCESS_OK;
}
static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx)
{
/* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
* EL0[PV]TEN is zero.
*/
if (arm_current_pl(env) == 0 &&
!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
return CP_ACCESS_TRAP;
}
return CP_ACCESS_OK;
}
static CPAccessResult gt_pct_access(CPUARMState *env,
const ARMCPRegInfo *ri)
{
return gt_counter_access(env, GTIMER_PHYS);
}
static CPAccessResult gt_vct_access(CPUARMState *env,
const ARMCPRegInfo *ri)
{
return gt_counter_access(env, GTIMER_VIRT);
}
static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
return gt_timer_access(env, GTIMER_PHYS);
}
static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
return gt_timer_access(env, GTIMER_VIRT);
}
static uint64_t gt_get_countervalue(CPUARMState *env)
{
return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
}
static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
{
ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
if (gt->ctl & 1) {
/* Timer enabled: calculate and set current ISTATUS, irq, and
* reset timer to when ISTATUS next has to change
*/
uint64_t count = gt_get_countervalue(&cpu->env);
/* Note that this must be unsigned 64 bit arithmetic: */
int istatus = count >= gt->cval;
uint64_t nexttick;
gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
qemu_set_irq(cpu->gt_timer_outputs[timeridx],
(istatus && !(gt->ctl & 2)));
if (istatus) {
/* Next transition is when count rolls back over to zero */
nexttick = UINT64_MAX;
} else {
/* Next transition is when we hit cval */
nexttick = gt->cval;
}
/* Note that the desired next expiry time might be beyond the
* signed-64-bit range of a QEMUTimer -- in this case we just
* set the timer for as far in the future as possible. When the
* timer expires we will reset the timer for any remaining period.
*/
if (nexttick > INT64_MAX / GTIMER_SCALE) {
nexttick = INT64_MAX / GTIMER_SCALE;
}
timer_mod(cpu->gt_timer[timeridx], nexttick);
} else {
/* Timer disabled: ISTATUS and timer output always clear */
gt->ctl &= ~4;
qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
timer_del(cpu->gt_timer[timeridx]);
}
}
static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
ARMCPU *cpu = arm_env_get_cpu(env);
int timeridx = ri->opc1 & 1;
timer_del(cpu->gt_timer[timeridx]);
}
static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
return gt_get_countervalue(env);
}
static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
int timeridx = ri->opc1 & 1;
env->cp15.c14_timer[timeridx].cval = value;
gt_recalc_timer(arm_env_get_cpu(env), timeridx);
}
static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
int timeridx = ri->crm & 1;
return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
gt_get_countervalue(env));
}
static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
int timeridx = ri->crm & 1;
env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) +
+ sextract64(value, 0, 32);
gt_recalc_timer(arm_env_get_cpu(env), timeridx);
}
static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
ARMCPU *cpu = arm_env_get_cpu(env);
int timeridx = ri->crm & 1;
uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
env->cp15.c14_timer[timeridx].ctl = value & 3;
if ((oldval ^ value) & 1) {
/* Enable toggled */
gt_recalc_timer(cpu, timeridx);
} else if ((oldval & value) & 2) {
/* IMASK toggled: don't need to recalculate,
* just set the interrupt line based on ISTATUS
*/
qemu_set_irq(cpu->gt_timer_outputs[timeridx],
(oldval & 4) && (value & 2));
}
}
void arm_gt_ptimer_cb(void *opaque)
{
ARMCPU *cpu = opaque;
gt_recalc_timer(cpu, GTIMER_PHYS);
}
void arm_gt_vtimer_cb(void *opaque)
{
ARMCPU *cpu = opaque;
gt_recalc_timer(cpu, GTIMER_VIRT);
}
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
/* Note that CNTFRQ is purely reads-as-written for the benefit
* of software; writing it doesn't actually change the timer frequency.
* Our reset value matches the fixed frequency we implement the timer at.
*/
{ .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
.access = PL1_RW | PL0_R,
.fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
.resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
.accessfn = gt_cntfrq_access,
},
/* overall control: mostly access permissions */
{ .name = "CNTKCTL", .cp = 15, .crn = 14, .crm = 1, .opc1 = 0, .opc2 = 0,
.access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
.resetvalue = 0,
},
/* per-timer control */
{ .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
.type = ARM_CP_IO, .access = PL1_RW | PL0_R,
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
.resetvalue = 0,
.accessfn = gt_ptimer_access,
.writefn = gt_ctl_write, .raw_writefn = raw_write,
},
{ .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
.type = ARM_CP_IO, .access = PL1_RW | PL0_R,
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
.resetvalue = 0,
.accessfn = gt_vtimer_access,
.writefn = gt_ctl_write, .raw_writefn = raw_write,
},
/* TimerValue views: a 32 bit downcounting view of the underlying state */
{ .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
.type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
.accessfn = gt_ptimer_access,
.readfn = gt_tval_read, .writefn = gt_tval_write,
},
{ .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
.type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
.accessfn = gt_vtimer_access,
.readfn = gt_tval_read, .writefn = gt_tval_write,
},
/* The counter itself */
{ .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
.access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
.accessfn = gt_pct_access,
.readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
},
{ .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
.access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
.accessfn = gt_vct_access,
.readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
},
/* Comparison value, indicating when the timer goes off */
{ .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
.access = PL1_RW | PL0_R,
.type = ARM_CP_64BIT | ARM_CP_IO,
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
.resetvalue = 0,
.accessfn = gt_ptimer_access,
.writefn = gt_cval_write, .raw_writefn = raw_write,
},
{ .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
.access = PL1_RW | PL0_R,
.type = ARM_CP_64BIT | ARM_CP_IO,
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
.resetvalue = 0,
.accessfn = gt_vtimer_access,
.writefn = gt_cval_write, .raw_writefn = raw_write,
},
REGINFO_SENTINEL
};
#else
/* In user-mode none of the generic timer registers are accessible,
* and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
* so instead just don't register any of them.
*/
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
REGINFO_SENTINEL
};
#endif
static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
if (arm_feature(env, ARM_FEATURE_LPAE)) {
env->cp15.c7_par = value;
} else if (arm_feature(env, ARM_FEATURE_V7)) {
env->cp15.c7_par = value & 0xfffff6ff;
} else {
env->cp15.c7_par = value & 0xfffff1ff;
}
}
#ifndef CONFIG_USER_ONLY
/* get_phys_addr() isn't present for user-mode-only targets */
/* Return true if extended addresses are enabled, ie this is an
* LPAE implementation and we are using the long-descriptor translation
* table format because the TTBCR EAE bit is set.
*/
static inline bool extended_addresses_enabled(CPUARMState *env)
{
return arm_feature(env, ARM_FEATURE_LPAE)
&& (env->cp15.c2_control & (1U << 31));
}
static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
if (ri->opc2 & 4) {
/* Other states are only available with TrustZone; in
* a non-TZ implementation these registers don't exist
* at all, which is an Uncategorized trap. This underdecoding
* is safe because the reginfo is NO_MIGRATE.
*/
return CP_ACCESS_TRAP_UNCATEGORIZED;
}
return CP_ACCESS_OK;
}
static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
hwaddr phys_addr;
target_ulong page_size;
int prot;
int ret, is_user = ri->opc2 & 2;
int access_type = ri->opc2 & 1;
ret = get_phys_addr(env, value, access_type, is_user,
&phys_addr, &prot, &page_size);
if (extended_addresses_enabled(env)) {
/* ret is a DFSR/IFSR value for the long descriptor
* translation table format, but with WnR always clear.
* Convert it to a 64-bit PAR.
*/
uint64_t par64 = (1 << 11); /* LPAE bit always set */
if (ret == 0) {
par64 |= phys_addr & ~0xfffULL;
/* We don't set the ATTR or SH fields in the PAR. */
} else {
par64 |= 1; /* F */
par64 |= (ret & 0x3f) << 1; /* FS */
/* Note that S2WLK and FSTAGE are always zero, because we don't
* implement virtualization and therefore there can't be a stage 2
* fault.
*/
}
env->cp15.c7_par = par64;
env->cp15.c7_par_hi = par64 >> 32;
} else {
/* ret is a DFSR/IFSR value for the short descriptor
* translation table format (with WnR always clear).
* Convert it to a 32-bit PAR.
*/
if (ret == 0) {
/* We do not set any attribute bits in the PAR */
if (page_size == (1 << 24)
&& arm_feature(env, ARM_FEATURE_V7)) {
env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
} else {
env->cp15.c7_par = phys_addr & 0xfffff000;
}
} else {
env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
((ret & (12 << 1)) >> 6) |
((ret & 0xf) << 1) | 1;
}
env->cp15.c7_par_hi = 0;
}
}
#endif
static const ARMCPRegInfo vapa_cp_reginfo[] = {
{ .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
.access = PL1_RW, .resetvalue = 0,
.fieldoffset = offsetof(CPUARMState, cp15.c7_par),
.writefn = par_write },
#ifndef CONFIG_USER_ONLY
{ .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
.access = PL1_W, .accessfn = ats_access,
.writefn = ats_write, .type = ARM_CP_NO_MIGRATE },
#endif
REGINFO_SENTINEL
};
/* Return basic MPU access permission bits. */
static uint32_t simple_mpu_ap_bits(uint32_t val)
{
uint32_t ret;
uint32_t mask;
int i;
ret = 0;
mask = 3;
for (i = 0; i < 16; i += 2) {
ret |= (val >> i) & mask;
mask <<= 2;
}
return ret;
}
/* Pad basic MPU access permission bits to extended format. */
static uint32_t extended_mpu_ap_bits(uint32_t val)
{
uint32_t ret;
uint32_t mask;
int i;
ret = 0;
mask = 3;
for (i = 0; i < 16; i += 2) {
ret |= (val & mask) << i;
mask <<= 2;
}
return ret;
}
static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
env->cp15.c5_data = extended_mpu_ap_bits(value);
}
static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
return simple_mpu_ap_bits(env->cp15.c5_data);
}
static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
env->cp15.c5_insn = extended_mpu_ap_bits(value);
}
static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
return simple_mpu_ap_bits(env->cp15.c5_insn);
}
static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
{ .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
.access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
.fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0,
.readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
{ .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
.access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
.fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0,
.readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
{ .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
.access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
{ .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
.access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
{ .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
.access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
{ .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
.access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
/* Protection region base and size registers */
{ .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
{ .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
{ .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
{ .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
{ .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
{ .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
{ .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
{ .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
REGINFO_SENTINEL
};
static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
int maskshift = extract32(value, 0, 3);
if (arm_feature(env, ARM_FEATURE_LPAE) && (value & (1 << 31))) {
value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
} else {
value &= 7;
}
/* Note that we always calculate c2_mask and c2_base_mask, but
* they are only used for short-descriptor tables (ie if EAE is 0);
* for long-descriptor tables the TTBCR fields are used differently
* and the c2_mask and c2_base_mask values are meaningless.
*/
env->cp15.c2_control = value;
env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift);
env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift);
}
static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
if (arm_feature(env, ARM_FEATURE_LPAE)) {
/* With LPAE the TTBCR could result in a change of ASID
* via the TTBCR.A1 bit, so do a TLB flush.
*/
tlb_flush(env, 1);
}
vmsa_ttbcr_raw_write(env, ri, value);
}
static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
env->cp15.c2_base_mask = 0xffffc000u;
env->cp15.c2_control = 0;
env->cp15.c2_mask = 0;
}
static const ARMCPRegInfo vmsa_cp_reginfo[] = {
{ .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
.access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
{ .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
.access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
{ .name = "TTBR0", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
.access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, },
{ .name = "TTBR1", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
.access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, cp15.c2_base1), .resetvalue = 0, },
{ .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
.access = PL1_RW, .writefn = vmsa_ttbcr_write,
.resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
.fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
{ .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data),
.resetvalue = 0, },
REGINFO_SENTINEL
};
static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
env->cp15.c15_ticonfig = value & 0xe7;
/* The OS_TYPE bit in this register changes the reported CPUID! */
env->cp15.c0_cpuid = (value & (1 << 5)) ?
ARM_CPUID_TI915T : ARM_CPUID_TI925T;
}
static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
env->cp15.c15_threadid = value & 0xffff;
}
static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Wait-for-interrupt (deprecated) */
cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
}
static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* On OMAP there are registers indicating the max/min index of dcache lines
* containing a dirty line; cache flush operations have to reset these.
*/
env->cp15.c15_i_max = 0x000;
env->cp15.c15_i_min = 0xff0;
}
static const ARMCPRegInfo omap_cp_reginfo[] = {
{ .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
.opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
.fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
{ .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
.access = PL1_RW, .type = ARM_CP_NOP },
{ .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
.access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
.writefn = omap_ticonfig_write },
{ .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
.access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
{ .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
.access = PL1_RW, .resetvalue = 0xff0,
.fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
{ .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
.access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
.writefn = omap_threadid_write },
{ .name = "TI925T_STATUS", .cp = 15, .crn = 15,
.crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
.type = ARM_CP_NO_MIGRATE,
.readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
/* TODO: Peripheral port remap register:
* On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
* base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
* when MMU is off.
*/
{ .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
.opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
.type = ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE,
.writefn = omap_cachemaint_write },
{ .name = "C9", .cp = 15, .crn = 9,
.crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
.type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
REGINFO_SENTINEL
};
static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
value &= 0x3fff;
if (env->cp15.c15_cpar != value) {
/* Changes cp0 to cp13 behavior, so needs a TB flush. */
tb_flush(env);
env->cp15.c15_cpar = value;
}
}
static const ARMCPRegInfo xscale_cp_reginfo[] = {
{ .name = "XSCALE_CPAR",
.cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
.writefn = xscale_cpar_write, },
{ .name = "XSCALE_AUXCR",
.cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
.resetvalue = 0, },
REGINFO_SENTINEL
};
static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
/* RAZ/WI the whole crn=15 space, when we don't have a more specific
* implementation of this implementation-defined space.
* Ideally this should eventually disappear in favour of actually
* implementing the correct behaviour for all cores.
*/
{ .name = "C15_IMPDEF", .cp = 15, .crn = 15,
.crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
.access = PL1_RW,
.type = ARM_CP_CONST | ARM_CP_NO_MIGRATE | ARM_CP_OVERRIDE,
.resetvalue = 0 },
REGINFO_SENTINEL
};
static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
/* Cache status: RAZ because we have no cache so it's always clean */
{ .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
.access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
.resetvalue = 0 },
REGINFO_SENTINEL
};
static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
/* We never have a a block transfer operation in progress */
{ .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
.access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
.resetvalue = 0 },
/* The cache ops themselves: these all NOP for QEMU */
{ .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
.access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
{ .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
.access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
{ .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
.access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
{ .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
.access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
{ .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
.access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
{ .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
.access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
REGINFO_SENTINEL
};
static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
/* The cache test-and-clean instructions always return (1 << 30)
* to indicate that there are no dirty cache lines.
*/
{ .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
.access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
.resetvalue = (1 << 30) },
{ .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
.access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
.resetvalue = (1 << 30) },
REGINFO_SENTINEL
};
static const ARMCPRegInfo strongarm_cp_reginfo[] = {
/* Ignore ReadBuffer accesses */
{ .name = "C9_READBUFFER", .cp = 15, .crn = 9,
.crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
.access = PL1_RW, .resetvalue = 0,
.type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE },
REGINFO_SENTINEL
};
static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
CPUState *cs = CPU(arm_env_get_cpu(env));
uint32_t mpidr = cs->cpu_index;
/* We don't support setting cluster ID ([8..11])
* so these bits always RAZ.
*/
if (arm_feature(env, ARM_FEATURE_V7MP)) {
mpidr |= (1U << 31);
/* Cores which are uniprocessor (non-coherent)
* but still implement the MP extensions set
* bit 30. (For instance, A9UP.) However we do
* not currently model any of those cores.
*/
}
return mpidr;
}
static const ARMCPRegInfo mpidr_cp_reginfo[] = {
{ .name = "MPIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
.access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE },
REGINFO_SENTINEL
};
static uint64_t par64_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
return ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par;
}
static void par64_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
env->cp15.c7_par_hi = value >> 32;
env->cp15.c7_par = value;
}
static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
env->cp15.c7_par_hi = 0;
env->cp15.c7_par = 0;
}
static uint64_t ttbr064_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
return ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
}
static void ttbr064_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
env->cp15.c2_base0_hi = value >> 32;
env->cp15.c2_base0 = value;
}
static void ttbr064_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Writes to the 64 bit format TTBRs may change the ASID */
tlb_flush(env, 1);
ttbr064_raw_write(env, ri, value);
}
static void ttbr064_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
env->cp15.c2_base0_hi = 0;
env->cp15.c2_base0 = 0;
}
static uint64_t ttbr164_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
return ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
}
static void ttbr164_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
env->cp15.c2_base1_hi = value >> 32;
env->cp15.c2_base1 = value;
}
static void ttbr164_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
env->cp15.c2_base1_hi = 0;
env->cp15.c2_base1 = 0;
}
static const ARMCPRegInfo lpae_cp_reginfo[] = {
/* NOP AMAIR0/1: the override is because these clash with the rather
* broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
*/
{ .name = "AMAIR0", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
.access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
.resetvalue = 0 },
{ .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
.access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
.resetvalue = 0 },
/* 64 bit access versions of the (dummy) debug registers */
{ .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
.access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
{ .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
.access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
{ .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
.access = PL1_RW, .type = ARM_CP_64BIT,
.readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset },
{ .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
.access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr064_read,
.writefn = ttbr064_write, .raw_writefn = ttbr064_raw_write,
.resetfn = ttbr064_reset },
{ .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
.access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr164_read,
.writefn = ttbr164_write, .resetfn = ttbr164_reset },
REGINFO_SENTINEL
};
static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
return vfp_get_fpcr(env);
}
static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
vfp_set_fpcr(env, value);
}
static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
return vfp_get_fpsr(env);
}
static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
vfp_set_fpsr(env, value);
}
static const ARMCPRegInfo v8_cp_reginfo[] = {
/* Minimal set of EL0-visible registers. This will need to be expanded
* significantly for system emulation of AArch64 CPUs.
*/
{ .name = "NZCV", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
.access = PL0_RW, .type = ARM_CP_NZCV },
{ .name = "FPCR", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
.access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
{ .name = "FPSR", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
.access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
/* This claims a 32 byte cacheline size for icache and dcache, VIPT icache.
* It will eventually need to have a CPU-specified reset value.
*/
{ .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
.access = PL0_R, .type = ARM_CP_CONST,
.resetvalue = 0x80030003 },
/* Prohibit use of DC ZVA. OPTME: implement DC ZVA and allow its use.
* For system mode the DZP bit here will need to be computed, not constant.
*/
{ .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
.access = PL0_R, .type = ARM_CP_CONST,
.resetvalue = 0x10 },
REGINFO_SENTINEL
};
static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
env->cp15.c1_sys = value;
/* ??? Lots of these bits are not implemented. */
/* This may enable/disable the MMU, so do a TLB flush. */
tlb_flush(env, 1);
}
void register_cp_regs_for_features(ARMCPU *cpu)
{
/* Register all the coprocessor registers based on feature bits */
CPUARMState *env = &cpu->env;
if (arm_feature(env, ARM_FEATURE_M)) {
/* M profile has no coprocessor registers */
return;
}
define_arm_cp_regs(cpu, cp_reginfo);
if (arm_feature(env, ARM_FEATURE_V6)) {
/* The ID registers all have impdef reset values */
ARMCPRegInfo v6_idregs[] = {
{ .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1,
.opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
.resetvalue = cpu->id_pfr0 },
{ .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1,
.opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
.resetvalue = cpu->id_pfr1 },
{ .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1,
.opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
.resetvalue = cpu->id_dfr0 },
{ .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1,
.opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
.resetvalue = cpu->id_afr0 },
{ .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1,
.opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
.resetvalue = cpu->id_mmfr0 },
{ .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1,
.opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
.resetvalue = cpu->id_mmfr1 },
{ .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1,
.opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
.resetvalue = cpu->id_mmfr2 },
{ .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1,
.opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
.resetvalue = cpu->id_mmfr3 },
{ .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2,
.opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
.resetvalue = cpu->id_isar0 },
{ .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2,
.opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
.resetvalue = cpu->id_isar1 },
{ .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2,
.opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
.resetvalue = cpu->id_isar2 },
{ .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2,
.opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
.resetvalue = cpu->id_isar3 },
{ .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2,
.opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
.resetvalue = cpu->id_isar4 },
{ .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2,
.opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
.resetvalue = cpu->id_isar5 },
/* 6..7 are as yet unallocated and must RAZ */
{ .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
.opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
.resetvalue = 0 },
{ .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
.opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
.resetvalue = 0 },
REGINFO_SENTINEL
};
define_arm_cp_regs(cpu, v6_idregs);
define_arm_cp_regs(cpu, v6_cp_reginfo);
} else {
define_arm_cp_regs(cpu, not_v6_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_V6K)) {
define_arm_cp_regs(cpu, v6k_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_V7)) {
/* v7 performance monitor control register: same implementor
* field as main ID register, and we implement no event counters.
*/
ARMCPRegInfo pmcr = {
.name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
.access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
.fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
.accessfn = pmreg_access, .writefn = pmcr_write,
.raw_writefn = raw_write,
};
ARMCPRegInfo clidr = {
.name = "CLIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
};
define_one_arm_cp_reg(cpu, &pmcr);
define_one_arm_cp_reg(cpu, &clidr);
define_arm_cp_regs(cpu, v7_cp_reginfo);
} else {
define_arm_cp_regs(cpu, not_v7_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_V8)) {
define_arm_cp_regs(cpu, v8_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_MPU)) {
/* These are the MPU registers prior to PMSAv6. Any new
* PMSA core later than the ARM946 will require that we
* implement the PMSAv6 or PMSAv7 registers, which are
* completely different.
*/
assert(!arm_feature(env, ARM_FEATURE_V6));
define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
} else {
define_arm_cp_regs(cpu, vmsa_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
define_arm_cp_regs(cpu, t2ee_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_VAPA)) {
define_arm_cp_regs(cpu, vapa_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
define_arm_cp_regs(cpu, omap_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
define_arm_cp_regs(cpu, strongarm_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_XSCALE)) {
define_arm_cp_regs(cpu, xscale_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_LPAE)) {
define_arm_cp_regs(cpu, lpae_cp_reginfo);
}
/* Slightly awkwardly, the OMAP and StrongARM cores need all of
* cp15 crn=0 to be writes-ignored, whereas for other cores they should
* be read-only (ie write causes UNDEF exception).
*/
{
ARMCPRegInfo id_cp_reginfo[] = {
/* Note that the MIDR isn't a simple constant register because
* of the TI925 behaviour where writes to another register can
* cause the MIDR value to change.
*
* Unimplemented registers in the c15 0 0 0 space default to
* MIDR. Define MIDR first as this entire space, then CTR, TCMTR
* and friends override accordingly.
*/
{ .name = "MIDR",
.cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
.access = PL1_R, .resetvalue = cpu->midr,
.writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
.fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
.type = ARM_CP_OVERRIDE },
{ .name = "CTR",
.cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
{ .name = "TCMTR",
.cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "TLBTR",
.cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
/* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
{ .name = "DUMMY",
.cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "DUMMY",
.cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "DUMMY",
.cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "DUMMY",
.cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "DUMMY",
.cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
REGINFO_SENTINEL
};
ARMCPRegInfo crn0_wi_reginfo = {
.name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
.opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
.type = ARM_CP_NOP | ARM_CP_OVERRIDE
};
if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
arm_feature(env, ARM_FEATURE_STRONGARM)) {
ARMCPRegInfo *r;
/* Register the blanket "writes ignored" value first to cover the
* whole space. Then update the specific ID registers to allow write
* access, so that they ignore writes rather than causing them to
* UNDEF.
*/
define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
r->access = PL1_RW;
}
}
define_arm_cp_regs(cpu, id_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_MPIDR)) {
define_arm_cp_regs(cpu, mpidr_cp_reginfo);
}
if (arm_feature(env, ARM_FEATURE_AUXCR)) {
ARMCPRegInfo auxcr = {
.name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1,
.access = PL1_RW, .type = ARM_CP_CONST,
.resetvalue = cpu->reset_auxcr
};
define_one_arm_cp_reg(cpu, &auxcr);
}
if (arm_feature(env, ARM_FEATURE_CBAR)) {
ARMCPRegInfo cbar = {
.name = "CBAR", .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
.access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
.fieldoffset = offsetof(CPUARMState, cp15.c15_config_base_address)
};
define_one_arm_cp_reg(cpu, &cbar);
}
/* Generic registers whose values depend on the implementation */
{
ARMCPRegInfo sctlr = {
.name = "SCTLR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
.writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
.raw_writefn = raw_write,
};
if (arm_feature(env, ARM_FEATURE_XSCALE)) {
/* Normally we would always end the TB on an SCTLR write, but Linux
* arch/arm/mach-pxa/sleep.S expects two instructions following
* an MMU enable to execute from cache. Imitate this behaviour.
*/
sctlr.type |= ARM_CP_SUPPRESS_TB_END;
}
define_one_arm_cp_reg(cpu, &sctlr);
}
}
ARMCPU *cpu_arm_init(const char *cpu_model)
{
ARMCPU *cpu;
ObjectClass *oc;
oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
if (!oc) {
return NULL;
}
cpu = ARM_CPU(object_new(object_class_get_name(oc)));
/* TODO this should be set centrally, once possible */
object_property_set_bool(OBJECT(cpu), true, "realized", NULL);
return cpu;
}
void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
{
CPUState *cs = CPU(cpu);
CPUARMState *env = &cpu->env;
if (arm_feature(env, ARM_FEATURE_AARCH64)) {
gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
aarch64_fpu_gdb_set_reg,
34, "aarch64-fpu.xml", 0);
} else if (arm_feature(env, ARM_FEATURE_NEON)) {
gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
51, "arm-neon.xml", 0);
} else if (arm_feature(env, ARM_FEATURE_VFP3)) {
gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
35, "arm-vfp3.xml", 0);
} else if (arm_feature(env, ARM_FEATURE_VFP)) {
gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
19, "arm-vfp.xml", 0);
}
}
/* Sort alphabetically by type name, except for "any". */
static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
{
ObjectClass *class_a = (ObjectClass *)a;
ObjectClass *class_b = (ObjectClass *)b;
const char *name_a, *name_b;
name_a = object_class_get_name(class_a);
name_b = object_class_get_name(class_b);
if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
return 1;
} else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
return -1;
} else {
return strcmp(name_a, name_b);
}
}
static void arm_cpu_list_entry(gpointer data, gpointer user_data)
{
ObjectClass *oc = data;
CPUListState *s = user_data;
const char *typename;
char *name;
typename = object_class_get_name(oc);
name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
(*s->cpu_fprintf)(s->file, " %s\n",
name);
g_free(name);
}
void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
{
CPUListState s = {
.file = f,
.cpu_fprintf = cpu_fprintf,
};
GSList *list;
list = object_class_get_list(TYPE_ARM_CPU, false);
list = g_slist_sort(list, arm_cpu_list_compare);
(*cpu_fprintf)(f, "Available CPUs:\n");
g_slist_foreach(list, arm_cpu_list_entry, &s);
g_slist_free(list);
#ifdef CONFIG_KVM
/* The 'host' CPU type is dynamically registered only if KVM is
* enabled, so we have to special-case it here:
*/
(*cpu_fprintf)(f, " host (only available in KVM mode)\n");
#endif
}
static void arm_cpu_add_definition(gpointer data, gpointer user_data)
{
ObjectClass *oc = data;
CpuDefinitionInfoList **cpu_list = user_data;
CpuDefinitionInfoList *entry;
CpuDefinitionInfo *info;
const char *typename;
typename = object_class_get_name(oc);
info = g_malloc0(sizeof(*info));
info->name = g_strndup(typename,
strlen(typename) - strlen("-" TYPE_ARM_CPU));
entry = g_malloc0(sizeof(*entry));
entry->value = info;
entry->next = *cpu_list;
*cpu_list = entry;
}
CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
{
CpuDefinitionInfoList *cpu_list = NULL;
GSList *list;
list = object_class_get_list(TYPE_ARM_CPU, false);
g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
g_slist_free(list);
return cpu_list;
}
static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
void *opaque, int state,
int crm, int opc1, int opc2)
{
/* Private utility function for define_one_arm_cp_reg_with_opaque():
* add a single reginfo struct to the hash table.
*/
uint32_t *key = g_new(uint32_t, 1);
ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
if (r->state == ARM_CP_STATE_BOTH && state == ARM_CP_STATE_AA32) {
/* The AArch32 view of a shared register sees the lower 32 bits
* of a 64 bit backing field. It is not migratable as the AArch64
* view handles that. AArch64 also handles reset.
* We assume it is a cp15 register.
*/
r2->cp = 15;
r2->type |= ARM_CP_NO_MIGRATE;
r2->resetfn = arm_cp_reset_ignore;
#ifdef HOST_WORDS_BIGENDIAN
if (r2->fieldoffset) {
r2->fieldoffset += sizeof(uint32_t);
}
#endif
}
if (state == ARM_CP_STATE_AA64) {
/* To allow abbreviation of ARMCPRegInfo
* definitions, we treat cp == 0 as equivalent to
* the value for "standard guest-visible sysreg".
*/
if (r->cp == 0) {
r2->cp = CP_REG_ARM64_SYSREG_CP;
}
*key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
r2->opc0, opc1, opc2);
} else {
*key = ENCODE_CP_REG(r2->cp, is64, r2->crn, crm, opc1, opc2);
}
if (opaque) {
r2->opaque = opaque;
}
/* Make sure reginfo passed to helpers for wildcarded regs
* has the correct crm/opc1/opc2 for this reg, not CP_ANY:
*/
r2->crm = crm;
r2->opc1 = opc1;
r2->opc2 = opc2;
/* By convention, for wildcarded registers only the first
* entry is used for migration; the others are marked as
* NO_MIGRATE so we don't try to transfer the register
* multiple times. Special registers (ie NOP/WFI) are
* never migratable.
*/
if ((r->type & ARM_CP_SPECIAL) ||
((r->crm == CP_ANY) && crm != 0) ||
((r->opc1 == CP_ANY) && opc1 != 0) ||
((r->opc2 == CP_ANY) && opc2 != 0)) {
r2->type |= ARM_CP_NO_MIGRATE;
}
/* Overriding of an existing definition must be explicitly
* requested.
*/
if (!(r->type & ARM_CP_OVERRIDE)) {
ARMCPRegInfo *oldreg;
oldreg = g_hash_table_lookup(cpu->cp_regs, key);
if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
fprintf(stderr, "Register redefined: cp=%d %d bit "
"crn=%d crm=%d opc1=%d opc2=%d, "
"was %s, now %s\n", r2->cp, 32 + 32 * is64,
r2->crn, r2->crm, r2->opc1, r2->opc2,
oldreg->name, r2->name);
g_assert_not_reached();
}
}
g_hash_table_insert(cpu->cp_regs, key, r2);
}
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
const ARMCPRegInfo *r, void *opaque)
{
/* Define implementations of coprocessor registers.
* We store these in a hashtable because typically
* there are less than 150 registers in a space which
* is 16*16*16*8*8 = 262144 in size.
* Wildcarding is supported for the crm, opc1 and opc2 fields.
* If a register is defined twice then the second definition is
* used, so this can be used to define some generic registers and
* then override them with implementation specific variations.
* At least one of the original and the second definition should
* include ARM_CP_OVERRIDE in its type bits -- this is just a guard
* against accidental use.
*
* The state field defines whether the register is to be
* visible in the AArch32 or AArch64 execution state. If the
* state is set to ARM_CP_STATE_BOTH then we synthesise a
* reginfo structure for the AArch32 view, which sees the lower
* 32 bits of the 64 bit register.
*
* Only registers visible in AArch64 may set r->opc0; opc0 cannot
* be wildcarded. AArch64 registers are always considered to be 64
* bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
* the register, if any.
*/
int crm, opc1, opc2, state;
int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
/* 64 bit registers have only CRm and Opc1 fields */
assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
/* op0 only exists in the AArch64 encodings */
assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
/* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
/* The AArch64 pseudocode CheckSystemAccess() specifies that op1
* encodes a minimum access level for the register. We roll this
* runtime check into our general permission check code, so check
* here that the reginfo's specified permissions are strict enough
* to encompass the generic architectural permission check.
*/
if (r->state != ARM_CP_STATE_AA32) {
int mask = 0;
switch (r->opc1) {
case 0: case 1: case 2:
/* min_EL EL1 */
mask = PL1_RW;
break;
case 3:
/* min_EL EL0 */
mask = PL0_RW;
break;
case 4:
/* min_EL EL2 */
mask = PL2_RW;
break;
case 5:
/* unallocated encoding, so not possible */
assert(false);
break;
case 6:
/* min_EL EL3 */
mask = PL3_RW;
break;
case 7:
/* min_EL EL1, secure mode only (we don't check the latter) */
mask = PL1_RW;
break;
default:
/* broken reginfo with out-of-range opc1 */
assert(false);
break;
}
/* assert our permissions are not too lax (stricter is fine) */
assert((r->access & ~mask) == 0);
}
/* Check that the register definition has enough info to handle
* reads and writes if they are permitted.
*/
if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
if (r->access & PL3_R) {
assert(r->fieldoffset || r->readfn);
}
if (r->access & PL3_W) {
assert(r->fieldoffset || r->writefn);
}
}
/* Bad type field probably means missing sentinel at end of reg list */
assert(cptype_valid(r->type));
for (crm = crmmin; crm <= crmmax; crm++) {
for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
for (state = ARM_CP_STATE_AA32;
state <= ARM_CP_STATE_AA64; state++) {
if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
continue;
}
add_cpreg_to_hashtable(cpu, r, opaque, state,
crm, opc1, opc2);
}
}
}
}
}
void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
const ARMCPRegInfo *regs, void *opaque)
{
/* Define a whole list of registers */
const ARMCPRegInfo *r;
for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
}
}
const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
{
return g_hash_table_lookup(cpregs, &encoded_cp);
}
void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Helper coprocessor write function for write-ignore registers */
}
uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
{
/* Helper coprocessor write function for read-as-zero registers */
return 0;
}
void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
{
/* Helper coprocessor reset function for do-nothing-on-reset registers */
}
static int bad_mode_switch(CPUARMState *env, int mode)
{
/* Return true if it is not valid for us to switch to
* this CPU mode (ie all the UNPREDICTABLE cases in
* the ARM ARM CPSRWriteByInstr pseudocode).
*/
switch (mode) {
case ARM_CPU_MODE_USR:
case ARM_CPU_MODE_SYS:
case ARM_CPU_MODE_SVC:
case ARM_CPU_MODE_ABT:
case ARM_CPU_MODE_UND:
case ARM_CPU_MODE_IRQ:
case ARM_CPU_MODE_FIQ:
return 0;
default:
return 1;
}
}
uint32_t cpsr_read(CPUARMState *env)
{
int ZF;
ZF = (env->ZF == 0);
return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
(env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
| (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
| ((env->condexec_bits & 0xfc) << 8)
| (env->GE << 16);
}
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
{
if (mask & CPSR_NZCV) {
env->ZF = (~val) & CPSR_Z;
env->NF = val;
env->CF = (val >> 29) & 1;
env->VF = (val << 3) & 0x80000000;
}
if (mask & CPSR_Q)
env->QF = ((val & CPSR_Q) != 0);
if (mask & CPSR_T)
env->thumb = ((val & CPSR_T) != 0);
if (mask & CPSR_IT_0_1) {
env->condexec_bits &= ~3;
env->condexec_bits |= (val >> 25) & 3;
}
if (mask & CPSR_IT_2_7) {
env->condexec_bits &= 3;
env->condexec_bits |= (val >> 8) & 0xfc;
}
if (mask & CPSR_GE) {
env->GE = (val >> 16) & 0xf;
}
if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
if (bad_mode_switch(env, val & CPSR_M)) {
/* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
* We choose to ignore the attempt and leave the CPSR M field
* untouched.
*/
mask &= ~CPSR_M;
} else {
switch_mode(env, val & CPSR_M);
}
}
mask &= ~CACHED_CPSR_BITS;
env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
}
/* Sign/zero extend */
uint32_t HELPER(sxtb16)(uint32_t x)
{
uint32_t res;
res = (uint16_t)(int8_t)x;
res |= (uint32_t)(int8_t)(x >> 16) << 16;
return res;
}
uint32_t HELPER(uxtb16)(uint32_t x)
{
uint32_t res;
res = (uint16_t)(uint8_t)x;
res |= (uint32_t)(uint8_t)(x >> 16) << 16;
return res;
}
uint32_t HELPER(clz)(uint32_t x)
{
return clz32(x);
}
int32_t HELPER(sdiv)(int32_t num, int32_t den)
{
if (den == 0)
return 0;
if (num == INT_MIN && den == -1)
return INT_MIN;
return num / den;
}
uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
{
if (den == 0)
return 0;
return num / den;
}
uint32_t HELPER(rbit)(uint32_t x)
{
x = ((x & 0xff000000) >> 24)
| ((x & 0x00ff0000) >> 8)
| ((x & 0x0000ff00) << 8)
| ((x & 0x000000ff) << 24);
x = ((x & 0xf0f0f0f0) >> 4)
| ((x & 0x0f0f0f0f) << 4);
x = ((x & 0x88888888) >> 3)
| ((x & 0x44444444) >> 1)
| ((x & 0x22222222) << 1)
| ((x & 0x11111111) << 3);
return x;
}
#if defined(CONFIG_USER_ONLY)
void arm_cpu_do_interrupt(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
env->exception_index = -1;
}
int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
int mmu_idx)
{
if (rw == 2) {
env->exception_index = EXCP_PREFETCH_ABORT;
env->cp15.c6_insn = address;
} else {
env->exception_index = EXCP_DATA_ABORT;
env->cp15.c6_data = address;
}
return 1;
}
/* These should probably raise undefined insn exceptions. */
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
{
cpu_abort(env, "v7m_mrs %d\n", reg);
}
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
{
cpu_abort(env, "v7m_mrs %d\n", reg);
return 0;
}
void switch_mode(CPUARMState *env, int mode)
{
if (mode != ARM_CPU_MODE_USR)
cpu_abort(env, "Tried to switch out of user mode\n");
}
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
{
cpu_abort(env, "banked r13 write\n");
}
uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
{
cpu_abort(env, "banked r13 read\n");
return 0;
}
#else
/* Map CPU modes onto saved register banks. */
int bank_number(int mode)
{
switch (mode) {
case ARM_CPU_MODE_USR:
case ARM_CPU_MODE_SYS:
return 0;
case ARM_CPU_MODE_SVC:
return 1;
case ARM_CPU_MODE_ABT:
return 2;
case ARM_CPU_MODE_UND:
return 3;
case ARM_CPU_MODE_IRQ:
return 4;
case ARM_CPU_MODE_FIQ:
return 5;
}
hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
}
void switch_mode(CPUARMState *env, int mode)
{
int old_mode;
int i;
old_mode = env->uncached_cpsr & CPSR_M;
if (mode == old_mode)
return;
if (old_mode == ARM_CPU_MODE_FIQ) {
memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
} else if (mode == ARM_CPU_MODE_FIQ) {
memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
}
i = bank_number(old_mode);
env->banked_r13[i] = env->regs[13];
env->banked_r14[i] = env->regs[14];
env->banked_spsr[i] = env->spsr;
i = bank_number(mode);
env->regs[13] = env->banked_r13[i];
env->regs[14] = env->banked_r14[i];
env->spsr = env->banked_spsr[i];
}
static void v7m_push(CPUARMState *env, uint32_t val)
{
CPUState *cs = ENV_GET_CPU(env);
env->regs[13] -= 4;
stl_phys(cs->as, env->regs[13], val);
}
static uint32_t v7m_pop(CPUARMState *env)
{
CPUState *cs = ENV_GET_CPU(env);
uint32_t val;
val = ldl_phys(cs->as, env->regs[13]);
env->regs[13] += 4;
return val;
}
/* Switch to V7M main or process stack pointer. */
static void switch_v7m_sp(CPUARMState *env, int process)
{
uint32_t tmp;
if (env->v7m.current_sp != process) {
tmp = env->v7m.other_sp;
env->v7m.other_sp = env->regs[13];
env->regs[13] = tmp;
env->v7m.current_sp = process;
}
}
static void do_v7m_exception_exit(CPUARMState *env)
{
uint32_t type;
uint32_t xpsr;
type = env->regs[15];
if (env->v7m.exception != 0)
armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
/* Switch to the target stack. */
switch_v7m_sp(env, (type & 4) != 0);
/* Pop registers. */
env->regs[0] = v7m_pop(env);
env->regs[1] = v7m_pop(env);
env->regs[2] = v7m_pop(env);
env->regs[3] = v7m_pop(env);
env->regs[12] = v7m_pop(env);
env->regs[14] = v7m_pop(env);
env->regs[15] = v7m_pop(env);
xpsr = v7m_pop(env);
xpsr_write(env, xpsr, 0xfffffdff);
/* Undo stack alignment. */
if (xpsr & 0x200)
env->regs[13] |= 4;
/* ??? The exception return type specifies Thread/Handler mode. However
this is also implied by the xPSR value. Not sure what to do
if there is a mismatch. */
/* ??? Likewise for mismatches between the CONTROL register and the stack
pointer. */
}
/* Exception names for debug logging; note that not all of these
* precisely correspond to architectural exceptions.
*/
static const char * const excnames[] = {
[EXCP_UDEF] = "Undefined Instruction",
[EXCP_SWI] = "SVC",
[EXCP_PREFETCH_ABORT] = "Prefetch Abort",
[EXCP_DATA_ABORT] = "Data Abort",
[EXCP_IRQ] = "IRQ",
[EXCP_FIQ] = "FIQ",
[EXCP_BKPT] = "Breakpoint",
[EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
[EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
[EXCP_STREX] = "QEMU intercept of STREX",
};
static inline void arm_log_exception(int idx)
{
if (qemu_loglevel_mask(CPU_LOG_INT)) {
const char *exc = NULL;
if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
exc = excnames[idx];
}
if (!exc) {
exc = "unknown";
}
qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
}
}
void arm_v7m_cpu_do_interrupt(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
uint32_t xpsr = xpsr_read(env);
uint32_t lr;
uint32_t addr;
arm_log_exception(env->exception_index);
lr = 0xfffffff1;
if (env->v7m.current_sp)
lr |= 4;
if (env->v7m.exception == 0)
lr |= 8;
/* For exceptions we just mark as pending on the NVIC, and let that
handle it. */
/* TODO: Need to escalate if the current priority is higher than the
one we're raising. */
switch (env->exception_index) {
case EXCP_UDEF:
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
return;
case EXCP_SWI:
/* The PC already points to the next instruction. */
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
return;
case EXCP_PREFETCH_ABORT:
case EXCP_DATA_ABORT:
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
return;
case EXCP_BKPT:
if (semihosting_enabled) {
int nr;
nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
if (nr == 0xab) {
env->regs[15] += 2;
env->regs[0] = do_arm_semihosting(env);
qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
return;
}
}
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
return;
case EXCP_IRQ:
env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
break;
case EXCP_EXCEPTION_EXIT:
do_v7m_exception_exit(env);
return;
default:
cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
return; /* Never happens. Keep compiler happy. */
}
/* Align stack pointer. */
/* ??? Should only do this if Configuration Control Register
STACKALIGN bit is set. */
if (env->regs[13] & 4) {
env->regs[13] -= 4;
xpsr |= 0x200;
}
/* Switch to the handler mode. */
v7m_push(env, xpsr);
v7m_push(env, env->regs[15]);
v7m_push(env, env->regs[14]);
v7m_push(env, env->regs[12]);
v7m_push(env, env->regs[3]);
v7m_push(env, env->regs[2]);
v7m_push(env, env->regs[1]);
v7m_push(env, env->regs[0]);
switch_v7m_sp(env, 0);
/* Clear IT bits */
env->condexec_bits = 0;
env->regs[14] = lr;
addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
env->regs[15] = addr & 0xfffffffe;
env->thumb = addr & 1;
}
/* Handle a CPU exception. */
void arm_cpu_do_interrupt(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
uint32_t addr;
uint32_t mask;
int new_mode;
uint32_t offset;
assert(!IS_M(env));
arm_log_exception(env->exception_index);
/* TODO: Vectored interrupt controller. */
switch (env->exception_index) {
case EXCP_UDEF:
new_mode = ARM_CPU_MODE_UND;
addr = 0x04;
mask = CPSR_I;
if (env->thumb)
offset = 2;
else
offset = 4;
break;
case EXCP_SWI:
if (semihosting_enabled) {
/* Check for semihosting interrupt. */
if (env->thumb) {
mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
& 0xff;
} else {
mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
& 0xffffff;
}
/* Only intercept calls from privileged modes, to provide some
semblance of security. */
if (((mask == 0x123456 && !env->thumb)
|| (mask == 0xab && env->thumb))
&& (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
env->regs[0] = do_arm_semihosting(env);
qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
return;
}
}
new_mode = ARM_CPU_MODE_SVC;
addr = 0x08;
mask = CPSR_I;
/* The PC already points to the next instruction. */
offset = 0;
break;
case EXCP_BKPT:
/* See if this is a semihosting syscall. */
if (env->thumb && semihosting_enabled) {
mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
if (mask == 0xab
&& (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
env->regs[15] += 2;
env->regs[0] = do_arm_semihosting(env);
qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
return;
}
}
env->cp15.c5_insn = 2;
/* Fall through to prefetch abort. */
case EXCP_PREFETCH_ABORT:
qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
env->cp15.c5_insn, env->cp15.c6_insn);
new_mode = ARM_CPU_MODE_ABT;
addr = 0x0c;
mask = CPSR_A | CPSR_I;
offset = 4;
break;
case EXCP_DATA_ABORT:
qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
env->cp15.c5_data, env->cp15.c6_data);
new_mode = ARM_CPU_MODE_ABT;
addr = 0x10;
mask = CPSR_A | CPSR_I;
offset = 8;
break;
case EXCP_IRQ:
new_mode = ARM_CPU_MODE_IRQ;
addr = 0x18;
/* Disable IRQ and imprecise data aborts. */
mask = CPSR_A | CPSR_I;
offset = 4;
break;
case EXCP_FIQ:
new_mode = ARM_CPU_MODE_FIQ;
addr = 0x1c;
/* Disable FIQ, IRQ and imprecise data aborts. */
mask = CPSR_A | CPSR_I | CPSR_F;
offset = 4;
break;
default:
cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
return; /* Never happens. Keep compiler happy. */
}
/* High vectors. */
if (env->cp15.c1_sys & SCTLR_V) {
/* when enabled, base address cannot be remapped. */
addr += 0xffff0000;
} else {
/* ARM v7 architectures provide a vector base address register to remap
* the interrupt vector table.
* This register is only followed in non-monitor mode, and has a secure
* and un-secure copy. Since the cpu is always in a un-secure operation
* and is never in monitor mode this feature is always active.
* Note: only bits 31:5 are valid.
*/
addr += env->cp15.c12_vbar;
}
switch_mode (env, new_mode);
env->spsr = cpsr_read(env);
/* Clear IT bits. */
env->condexec_bits = 0;
/* Switch to the new mode, and to the correct instruction set. */
env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
env->uncached_cpsr |= mask;
/* this is a lie, as the was no c1_sys on V4T/V5, but who cares
* and we should just guard the thumb mode on V4 */
if (arm_feature(env, ARM_FEATURE_V4T)) {
env->thumb = (env->cp15.c1_sys & SCTLR_TE) != 0;
}
env->regs[14] = env->regs[15] + offset;
env->regs[15] = addr;
cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
}
/* Check section/page access permissions.
Returns the page protection flags, or zero if the access is not
permitted. */
static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
int access_type, int is_user)
{
int prot_ro;
if (domain_prot == 3) {
return PAGE_READ | PAGE_WRITE;
}
if (access_type == 1)
prot_ro = 0;
else
prot_ro = PAGE_READ;
switch (ap) {
case 0:
if (arm_feature(env, ARM_FEATURE_V7)) {
return 0;
}
if (access_type == 1)
return 0;
switch (env->cp15.c1_sys & (SCTLR_S | SCTLR_R)) {
case SCTLR_S:
return is_user ? 0 : PAGE_READ;
case SCTLR_R:
return PAGE_READ;
default:
return 0;
}
case 1:
return is_user ? 0 : PAGE_READ | PAGE_WRITE;
case 2:
if (is_user)
return prot_ro;
else
return PAGE_READ | PAGE_WRITE;
case 3:
return PAGE_READ | PAGE_WRITE;
case 4: /* Reserved. */
return 0;
case 5:
return is_user ? 0 : prot_ro;
case 6:
return prot_ro;
case 7:
if (!arm_feature (env, ARM_FEATURE_V6K))
return 0;
return prot_ro;
default:
abort();
}
}
static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
{
uint32_t table;
if (address & env->cp15.c2_mask)
table = env->cp15.c2_base1 & 0xffffc000;
else
table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
table |= (address >> 18) & 0x3ffc;
return table;
}
static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
int is_user, hwaddr *phys_ptr,
int *prot, target_ulong *page_size)
{
CPUState *cs = ENV_GET_CPU(env);
int code;
uint32_t table;
uint32_t desc;
int type;
int ap;
int domain;
int domain_prot;
hwaddr phys_addr;
/* Pagetable walk. */
/* Lookup l1 descriptor. */
table = get_level1_table_address(env, address);
desc = ldl_phys(cs->as, table);
type = (desc & 3);
domain = (desc >> 5) & 0x0f;
domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
if (type == 0) {
/* Section translation fault. */
code = 5;
goto do_fault;
}
if (domain_prot == 0 || domain_prot == 2) {
if (type == 2)
code = 9; /* Section domain fault. */
else
code = 11; /* Page domain fault. */
goto do_fault;
}
if (type == 2) {
/* 1Mb section. */
phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
ap = (desc >> 10) & 3;
code = 13;
*page_size = 1024 * 1024;
} else {
/* Lookup l2 entry. */
if (type == 1) {
/* Coarse pagetable. */
table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
} else {
/* Fine pagetable. */
table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
}
desc = ldl_phys(cs->as, table);
switch (desc & 3) {
case 0: /* Page translation fault. */
code = 7;
goto do_fault;
case 1: /* 64k page. */
phys_addr = (desc & 0xffff0000) | (address & 0xffff);
ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
*page_size = 0x10000;
break;
case 2: /* 4k page. */
phys_addr = (desc & 0xfffff000) | (address & 0xfff);
ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
*page_size = 0x1000;
break;
case 3: /* 1k page. */
if (type == 1) {
if (arm_feature(env, ARM_FEATURE_XSCALE)) {
phys_addr = (desc & 0xfffff000) | (address & 0xfff);
} else {
/* Page translation fault. */
code = 7;
goto do_fault;
}
} else {
phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
}
ap = (desc >> 4) & 3;
*page_size = 0x400;
break;
default:
/* Never happens, but compiler isn't smart enough to tell. */
abort();
}
code = 15;
}
*prot = check_ap(env, ap, domain_prot, access_type, is_user);
if (!*prot) {
/* Access permission fault. */
goto do_fault;
}
*prot |= PAGE_EXEC;
*phys_ptr = phys_addr;
return 0;
do_fault:
return code | (domain << 4);
}
static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
int is_user, hwaddr *phys_ptr,
int *prot, target_ulong *page_size)
{
CPUState *cs = ENV_GET_CPU(env);
int code;
uint32_t table;
uint32_t desc;
uint32_t xn;
uint32_t pxn = 0;
int type;
int ap;
int domain = 0;
int domain_prot;
hwaddr phys_addr;
/* Pagetable walk. */
/* Lookup l1 descriptor. */
table = get_level1_table_address(env, address);
desc = ldl_phys(cs->as, table);
type = (desc & 3);
if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
/* Section translation fault, or attempt to use the encoding
* which is Reserved on implementations without PXN.
*/
code = 5;
goto do_fault;
}
if ((type == 1) || !(desc & (1 << 18))) {
/* Page or Section. */
domain = (desc >> 5) & 0x0f;
}
domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
if (domain_prot == 0 || domain_prot == 2) {
if (type != 1) {
code = 9; /* Section domain fault. */
} else {
code = 11; /* Page domain fault. */
}
goto do_fault;
}
if (type != 1) {
if (desc & (1 << 18)) {
/* Supersection. */
phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
*page_size = 0x1000000;
} else {
/* Section. */
phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
*page_size = 0x100000;
}
ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
xn = desc & (1 << 4);
pxn = desc & 1;
code = 13;
} else {
if (arm_feature(env, ARM_FEATURE_PXN)) {
pxn = (desc >> 2) & 1;
}
/* Lookup l2 entry. */
table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
desc = ldl_phys(cs->as, table);
ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
switch (desc & 3) {
case 0: /* Page translation fault. */
code = 7;
goto do_fault;
case 1: /* 64k page. */
phys_addr = (desc & 0xffff0000) | (address & 0xffff);
xn = desc & (1 << 15);
*page_size = 0x10000;
break;
case 2: case 3: /* 4k page. */
phys_addr = (desc & 0xfffff000) | (address & 0xfff);
xn = desc & 1;
*page_size = 0x1000;
break;
default:
/* Never happens, but compiler isn't smart enough to tell. */
abort();
}
code = 15;
}
if (domain_prot == 3) {
*prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
} else {
if (pxn && !is_user) {
xn = 1;
}
if (xn && access_type == 2)
goto do_fault;
/* The simplified model uses AP[0] as an access control bit. */
if ((env->cp15.c1_sys & SCTLR_AFE) && (ap & 1) == 0) {
/* Access flag fault. */
code = (code == 15) ? 6 : 3;
goto do_fault;
}
*prot = check_ap(env, ap, domain_prot, access_type, is_user);
if (!*prot) {
/* Access permission fault. */
goto do_fault;
}
if (!xn) {
*prot |= PAGE_EXEC;
}
}
*phys_ptr = phys_addr;
return 0;
do_fault:
return code | (domain << 4);
}
/* Fault type for long-descriptor MMU fault reporting; this corresponds
* to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
*/
typedef enum {
translation_fault = 1,
access_fault = 2,
permission_fault = 3,
} MMUFaultType;
static int get_phys_addr_lpae(CPUARMState *env, uint32_t address,
int access_type, int is_user,
hwaddr *phys_ptr, int *prot,
target_ulong *page_size_ptr)
{
CPUState *cs = ENV_GET_CPU(env);
/* Read an LPAE long-descriptor translation table. */
MMUFaultType fault_type = translation_fault;
uint32_t level = 1;
uint32_t epd;
uint32_t tsz;
uint64_t ttbr;
int ttbr_select;
int n;
hwaddr descaddr;
uint32_t tableattrs;
target_ulong page_size;
uint32_t attrs;
/* Determine whether this address is in the region controlled by
* TTBR0 or TTBR1 (or if it is in neither region and should fault).
* This is a Non-secure PL0/1 stage 1 translation, so controlled by
* TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
*/
uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3);
uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3);
if (t0sz && !extract32(address, 32 - t0sz, t0sz)) {
/* there is a ttbr0 region and we are in it (high bits all zero) */
ttbr_select = 0;
} else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) {
/* there is a ttbr1 region and we are in it (high bits all one) */
ttbr_select = 1;
} else if (!t0sz) {
/* ttbr0 region is "everything not in the ttbr1 region" */
ttbr_select = 0;
} else if (!t1sz) {
/* ttbr1 region is "everything not in the ttbr0 region" */
ttbr_select = 1;
} else {
/* in the gap between the two regions, this is a Translation fault */
fault_type = translation_fault;
goto do_fault;
}
/* Note that QEMU ignores shareability and cacheability attributes,
* so we don't need to do anything with the SH, ORGN, IRGN fields
* in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
* ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
* implement any ASID-like capability so we can ignore it (instead
* we will always flush the TLB any time the ASID is changed).
*/
if (ttbr_select == 0) {
ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
epd = extract32(env->cp15.c2_control, 7, 1);
tsz = t0sz;
} else {
ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
epd = extract32(env->cp15.c2_control, 23, 1);
tsz = t1sz;
}
if (epd) {
/* Translation table walk disabled => Translation fault on TLB miss */
goto do_fault;
}
/* If the region is small enough we will skip straight to a 2nd level
* lookup. This affects the number of bits of the address used in
* combination with the TTBR to find the first descriptor. ('n' here
* matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are
* from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero).
*/
if (tsz > 1) {
level = 2;
n = 14 - tsz;
} else {
n = 5 - tsz;
}
/* Clear the vaddr bits which aren't part of the within-region address,
* so that we don't have to special case things when calculating the
* first descriptor address.
*/
address &= (0xffffffffU >> tsz);
/* Now we can extract the actual base address from the TTBR */
descaddr = extract64(ttbr, 0, 40);
descaddr &= ~((1ULL << n) - 1);
tableattrs = 0;
for (;;) {
uint64_t descriptor;
descaddr |= ((address >> (9 * (4 - level))) & 0xff8);
descriptor = ldq_phys(cs->as, descaddr);
if (!(descriptor & 1) ||
(!(descriptor & 2) && (level == 3))) {
/* Invalid, or the Reserved level 3 encoding */
goto do_fault;
}
descaddr = descriptor & 0xfffffff000ULL;
if ((descriptor & 2) && (level < 3)) {
/* Table entry. The top five bits are attributes which may
* propagate down through lower levels of the table (and
* which are all arranged so that 0 means "no effect", so
* we can gather them up by ORing in the bits at each level).
*/
tableattrs |= extract64(descriptor, 59, 5);
level++;
continue;
}
/* Block entry at level 1 or 2, or page entry at level 3.
* These are basically the same thing, although the number
* of bits we pull in from the vaddr varies.
*/
page_size = (1 << (39 - (9 * level)));
descaddr |= (address & (page_size - 1));
/* Extract attributes from the descriptor and merge with table attrs */
attrs = extract64(descriptor, 2, 10)
| (extract64(descriptor, 52, 12) << 10);
attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
/* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
* means "force PL1 access only", which means forcing AP[1] to 0.
*/
if (extract32(tableattrs, 2, 1)) {
attrs &= ~(1 << 4);
}
/* Since we're always in the Non-secure state, NSTable is ignored. */
break;
}
/* Here descaddr is the final physical address, and attributes
* are all in attrs.
*/
fault_type = access_fault;
if ((attrs & (1 << 8)) == 0) {
/* Access flag */
goto do_fault;
}
fault_type = permission_fault;
if (is_user && !(attrs & (1 << 4))) {
/* Unprivileged access not enabled */
goto do_fault;
}
*prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) {
/* XN or PXN */
if (access_type == 2) {
goto do_fault;
}
*prot &= ~PAGE_EXEC;
}
if (attrs & (1 << 5)) {
/* Write access forbidden */
if (access_type == 1) {
goto do_fault;
}
*prot &= ~PAGE_WRITE;
}
*phys_ptr = descaddr;
*page_size_ptr = page_size;
return 0;
do_fault:
/* Long-descriptor format IFSR/DFSR value */
return (1 << 9) | (fault_type << 2) | level;
}
static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
int access_type, int is_user,
hwaddr *phys_ptr, int *prot)
{
int n;
uint32_t mask;
uint32_t base;
*phys_ptr = address;
for (n = 7; n >= 0; n--) {
base = env->cp15.c6_region[n];
if ((base & 1) == 0)
continue;
mask = 1 << ((base >> 1) & 0x1f);
/* Keep this shift separate from the above to avoid an
(undefined) << 32. */
mask = (mask << 1) - 1;
if (((base ^ address) & ~mask) == 0)
break;
}
if (n < 0)
return 2;
if (access_type == 2) {
mask = env->cp15.c5_insn;
} else {
mask = env->cp15.c5_data;
}
mask = (mask >> (n * 4)) & 0xf;
switch (mask) {
case 0:
return 1;
case 1:
if (is_user)
return 1;
*prot = PAGE_READ | PAGE_WRITE;
break;
case 2:
*prot = PAGE_READ;
if (!is_user)
*prot |= PAGE_WRITE;
break;
case 3:
*prot = PAGE_READ | PAGE_WRITE;
break;
case 5:
if (is_user)
return 1;
*prot = PAGE_READ;
break;
case 6:
*prot = PAGE_READ;
break;
default:
/* Bad permission. */
return 1;
}
*prot |= PAGE_EXEC;
return 0;
}
/* get_phys_addr - get the physical address for this virtual address
*
* Find the physical address corresponding to the given virtual address,
* by doing a translation table walk on MMU based systems or using the
* MPU state on MPU based systems.
*
* Returns 0 if the translation was successful. Otherwise, phys_ptr,
* prot and page_size are not filled in, and the return value provides
* information on why the translation aborted, in the format of a
* DFSR/IFSR fault register, with the following caveats:
* * we honour the short vs long DFSR format differences.
* * the WnR bit is never set (the caller must do this).
* * for MPU based systems we don't bother to return a full FSR format
* value.
*
* @env: CPUARMState
* @address: virtual address to get physical address for
* @access_type: 0 for read, 1 for write, 2 for execute
* @is_user: 0 for privileged access, 1 for user
* @phys_ptr: set to the physical address corresponding to the virtual address
* @prot: set to the permissions for the page containing phys_ptr
* @page_size: set to the size of the page containing phys_ptr
*/
static inline int get_phys_addr(CPUARMState *env, uint32_t address,
int access_type, int is_user,
hwaddr *phys_ptr, int *prot,
target_ulong *page_size)
{
/* Fast Context Switch Extension. */
if (address < 0x02000000)
address += env->cp15.c13_fcse;
if ((env->cp15.c1_sys & SCTLR_M) == 0) {
/* MMU/MPU disabled. */
*phys_ptr = address;
*prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
*page_size = TARGET_PAGE_SIZE;
return 0;
} else if (arm_feature(env, ARM_FEATURE_MPU)) {
*page_size = TARGET_PAGE_SIZE;
return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
prot);
} else if (extended_addresses_enabled(env)) {
return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr,
prot, page_size);
} else if (env->cp15.c1_sys & SCTLR_XP) {
return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
prot, page_size);
} else {
return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
prot, page_size);
}
}
int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
int access_type, int mmu_idx)
{
hwaddr phys_addr;
target_ulong page_size;
int prot;
int ret, is_user;
is_user = mmu_idx == MMU_USER_IDX;
ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
&page_size);
if (ret == 0) {
/* Map a single [sub]page. */
phys_addr &= ~(hwaddr)0x3ff;
address &= ~(uint32_t)0x3ff;
tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
return 0;
}
if (access_type == 2) {
env->cp15.c5_insn = ret;
env->cp15.c6_insn = address;
env->exception_index = EXCP_PREFETCH_ABORT;
} else {
env->cp15.c5_data = ret;
if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
env->cp15.c5_data |= (1 << 11);
env->cp15.c6_data = address;
env->exception_index = EXCP_DATA_ABORT;
}
return 1;
}
hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
{
ARMCPU *cpu = ARM_CPU(cs);
hwaddr phys_addr;
target_ulong page_size;
int prot;
int ret;
ret = get_phys_addr(&cpu->env, addr, 0, 0, &phys_addr, &prot, &page_size);
if (ret != 0) {
return -1;
}
return phys_addr;
}
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
{
if ((env->uncached_cpsr & CPSR_M) == mode) {
env->regs[13] = val;
} else {
env->banked_r13[bank_number(mode)] = val;
}
}
uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
{
if ((env->uncached_cpsr & CPSR_M) == mode) {
return env->regs[13];
} else {
return env->banked_r13[bank_number(mode)];
}
}
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
{
switch (reg) {
case 0: /* APSR */
return xpsr_read(env) & 0xf8000000;
case 1: /* IAPSR */
return xpsr_read(env) & 0xf80001ff;
case 2: /* EAPSR */
return xpsr_read(env) & 0xff00fc00;
case 3: /* xPSR */
return xpsr_read(env) & 0xff00fdff;
case 5: /* IPSR */
return xpsr_read(env) & 0x000001ff;
case 6: /* EPSR */
return xpsr_read(env) & 0x0700fc00;
case 7: /* IEPSR */
return xpsr_read(env) & 0x0700edff;
case 8: /* MSP */
return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
case 9: /* PSP */
return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
case 16: /* PRIMASK */
return (env->uncached_cpsr & CPSR_I) != 0;
case 17: /* BASEPRI */
case 18: /* BASEPRI_MAX */
return env->v7m.basepri;
case 19: /* FAULTMASK */
return (env->uncached_cpsr & CPSR_F) != 0;
case 20: /* CONTROL */
return env->v7m.control;
default:
/* ??? For debugging only. */
cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
return 0;
}
}
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
{
switch (reg) {
case 0: /* APSR */
xpsr_write(env, val, 0xf8000000);
break;
case 1: /* IAPSR */
xpsr_write(env, val, 0xf8000000);
break;
case 2: /* EAPSR */
xpsr_write(env, val, 0xfe00fc00);
break;
case 3: /* xPSR */
xpsr_write(env, val, 0xfe00fc00);
break;
case 5: /* IPSR */
/* IPSR bits are readonly. */
break;
case 6: /* EPSR */
xpsr_write(env, val, 0x0600fc00);
break;
case 7: /* IEPSR */
xpsr_write(env, val, 0x0600fc00);
break;
case 8: /* MSP */
if (env->v7m.current_sp)
env->v7m.other_sp = val;
else
env->regs[13] = val;
break;
case 9: /* PSP */
if (env->v7m.current_sp)
env->regs[13] = val;
else
env->v7m.other_sp = val;
break;
case 16: /* PRIMASK */
if (val & 1)
env->uncached_cpsr |= CPSR_I;
else
env->uncached_cpsr &= ~CPSR_I;
break;
case 17: /* BASEPRI */
env->v7m.basepri = val & 0xff;
break;
case 18: /* BASEPRI_MAX */
val &= 0xff;
if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
env->v7m.basepri = val;
break;
case 19: /* FAULTMASK */
if (val & 1)
env->uncached_cpsr |= CPSR_F;
else
env->uncached_cpsr &= ~CPSR_F;
break;
case 20: /* CONTROL */
env->v7m.control = val & 3;
switch_v7m_sp(env, (val & 2) != 0);
break;
default:
/* ??? For debugging only. */
cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
return;
}
}
#endif
/* Note that signed overflow is undefined in C. The following routines are
careful to use unsigned types where modulo arithmetic is required.
Failure to do so _will_ break on newer gcc. */
/* Signed saturating arithmetic. */
/* Perform 16-bit signed saturating addition. */
static inline uint16_t add16_sat(uint16_t a, uint16_t b)
{
uint16_t res;
res = a + b;
if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
if (a & 0x8000)
res = 0x8000;
else
res = 0x7fff;
}
return res;
}
/* Perform 8-bit signed saturating addition. */
static inline uint8_t add8_sat(uint8_t a, uint8_t b)
{
uint8_t res;
res = a + b;
if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
if (a & 0x80)
res = 0x80;
else
res = 0x7f;
}
return res;
}
/* Perform 16-bit signed saturating subtraction. */
static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
{
uint16_t res;
res = a - b;
if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
if (a & 0x8000)
res = 0x8000;
else
res = 0x7fff;
}
return res;
}
/* Perform 8-bit signed saturating subtraction. */
static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
{
uint8_t res;
res = a - b;
if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
if (a & 0x80)
res = 0x80;
else
res = 0x7f;
}
return res;
}
#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
#define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
#define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
#define PFX q
#include "op_addsub.h"
/* Unsigned saturating arithmetic. */
static inline uint16_t add16_usat(uint16_t a, uint16_t b)
{
uint16_t res;
res = a + b;
if (res < a)
res = 0xffff;
return res;
}
static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
{
if (a > b)
return a - b;
else
return 0;
}
static inline uint8_t add8_usat(uint8_t a, uint8_t b)
{
uint8_t res;
res = a + b;
if (res < a)
res = 0xff;
return res;
}
static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
{
if (a > b)
return a - b;
else
return 0;
}
#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
#define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
#define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
#define PFX uq
#include "op_addsub.h"
/* Signed modulo arithmetic. */
#define SARITH16(a, b, n, op) do { \
int32_t sum; \
sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
RESULT(sum, n, 16); \
if (sum >= 0) \
ge |= 3 << (n * 2); \
} while(0)
#define SARITH8(a, b, n, op) do { \
int32_t sum; \
sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
RESULT(sum, n, 8); \
if (sum >= 0) \
ge |= 1 << n; \
} while(0)
#define ADD16(a, b, n) SARITH16(a, b, n, +)
#define SUB16(a, b, n) SARITH16(a, b, n, -)
#define ADD8(a, b, n) SARITH8(a, b, n, +)
#define SUB8(a, b, n) SARITH8(a, b, n, -)
#define PFX s
#define ARITH_GE
#include "op_addsub.h"
/* Unsigned modulo arithmetic. */
#define ADD16(a, b, n) do { \
uint32_t sum; \
sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
RESULT(sum, n, 16); \
if ((sum >> 16) == 1) \
ge |= 3 << (n * 2); \
} while(0)
#define ADD8(a, b, n) do { \
uint32_t sum; \
sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
RESULT(sum, n, 8); \
if ((sum >> 8) == 1) \
ge |= 1 << n; \
} while(0)
#define SUB16(a, b, n) do { \
uint32_t sum; \
sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
RESULT(sum, n, 16); \
if ((sum >> 16) == 0) \
ge |= 3 << (n * 2); \
} while(0)
#define SUB8(a, b, n) do { \
uint32_t sum; \
sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
RESULT(sum, n, 8); \
if ((sum >> 8) == 0) \
ge |= 1 << n; \
} while(0)
#define PFX u
#define ARITH_GE
#include "op_addsub.h"
/* Halved signed arithmetic. */
#define ADD16(a, b, n) \
RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
#define PFX sh
#include "op_addsub.h"
/* Halved unsigned arithmetic. */
#define ADD16(a, b, n) \
RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define PFX uh
#include "op_addsub.h"
static inline uint8_t do_usad(uint8_t a, uint8_t b)
{
if (a > b)
return a - b;
else
return b - a;
}
/* Unsigned sum of absolute byte differences. */
uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
{
uint32_t sum;
sum = do_usad(a, b);
sum += do_usad(a >> 8, b >> 8);
sum += do_usad(a >> 16, b >>16);
sum += do_usad(a >> 24, b >> 24);
return sum;
}
/* For ARMv6 SEL instruction. */
uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
{
uint32_t mask;
mask = 0;
if (flags & 1)
mask |= 0xff;
if (flags & 2)
mask |= 0xff00;
if (flags & 4)
mask |= 0xff0000;
if (flags & 8)
mask |= 0xff000000;
return (a & mask) | (b & ~mask);
}
/* VFP support. We follow the convention used for VFP instructions:
Single precision routines have a "s" suffix, double precision a
"d" suffix. */
/* Convert host exception flags to vfp form. */
static inline int vfp_exceptbits_from_host(int host_bits)
{
int target_bits = 0;
if (host_bits & float_flag_invalid)
target_bits |= 1;
if (host_bits & float_flag_divbyzero)
target_bits |= 2;
if (host_bits & float_flag_overflow)
target_bits |= 4;
if (host_bits & (float_flag_underflow | float_flag_output_denormal))
target_bits |= 8;
if (host_bits & float_flag_inexact)
target_bits |= 0x10;
if (host_bits & float_flag_input_denormal)
target_bits |= 0x80;
return target_bits;
}
uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
{
int i;
uint32_t fpscr;
fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
| (env->vfp.vec_len << 16)
| (env->vfp.vec_stride << 20);
i = get_float_exception_flags(&env->vfp.fp_status);
i |= get_float_exception_flags(&env->vfp.standard_fp_status);
fpscr |= vfp_exceptbits_from_host(i);
return fpscr;
}
uint32_t vfp_get_fpscr(CPUARMState *env)
{
return HELPER(vfp_get_fpscr)(env);
}
/* Convert vfp exception flags to target form. */
static inline int vfp_exceptbits_to_host(int target_bits)
{
int host_bits = 0;
if (target_bits & 1)
host_bits |= float_flag_invalid;
if (target_bits & 2)
host_bits |= float_flag_divbyzero;
if (target_bits & 4)
host_bits |= float_flag_overflow;
if (target_bits & 8)
host_bits |= float_flag_underflow;
if (target_bits & 0x10)
host_bits |= float_flag_inexact;
if (target_bits & 0x80)
host_bits |= float_flag_input_denormal;
return host_bits;
}
void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
{
int i;
uint32_t changed;
changed = env->vfp.xregs[ARM_VFP_FPSCR];
env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
env->vfp.vec_len = (val >> 16) & 7;
env->vfp.vec_stride = (val >> 20) & 3;
changed ^= val;
if (changed & (3 << 22)) {
i = (val >> 22) & 3;
switch (i) {
case FPROUNDING_TIEEVEN:
i = float_round_nearest_even;
break;
case FPROUNDING_POSINF:
i = float_round_up;
break;
case FPROUNDING_NEGINF:
i = float_round_down;
break;
case FPROUNDING_ZERO:
i = float_round_to_zero;
break;
}
set_float_rounding_mode(i, &env->vfp.fp_status);
}
if (changed & (1 << 24)) {
set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
}
if (changed & (1 << 25))
set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
i = vfp_exceptbits_to_host(val);
set_float_exception_flags(i, &env->vfp.fp_status);
set_float_exception_flags(0, &env->vfp.standard_fp_status);
}
void vfp_set_fpscr(CPUARMState *env, uint32_t val)
{
HELPER(vfp_set_fpscr)(env, val);
}
#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
#define VFP_BINOP(name) \
float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
{ \
float_status *fpst = fpstp; \
return float32_ ## name(a, b, fpst); \
} \
float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
{ \
float_status *fpst = fpstp; \
return float64_ ## name(a, b, fpst); \
}
VFP_BINOP(add)
VFP_BINOP(sub)
VFP_BINOP(mul)
VFP_BINOP(div)
VFP_BINOP(min)
VFP_BINOP(max)
VFP_BINOP(minnum)
VFP_BINOP(maxnum)
#undef VFP_BINOP
float32 VFP_HELPER(neg, s)(float32 a)
{
return float32_chs(a);
}
float64 VFP_HELPER(neg, d)(float64 a)
{
return float64_chs(a);
}
float32 VFP_HELPER(abs, s)(float32 a)
{
return float32_abs(a);
}
float64 VFP_HELPER(abs, d)(float64 a)
{
return float64_abs(a);
}
float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
{
return float32_sqrt(a, &env->vfp.fp_status);
}
float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
{
return float64_sqrt(a, &env->vfp.fp_status);
}
/* XXX: check quiet/signaling case */
#define DO_VFP_cmp(p, type) \
void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
{ \
uint32_t flags; \
switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
case 0: flags = 0x6; break; \
case -1: flags = 0x8; break; \
case 1: flags = 0x2; break; \
default: case 2: flags = 0x3; break; \
} \
env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
| (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
} \
void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
{ \
uint32_t flags; \
switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
case 0: flags = 0x6; break; \
case -1: flags = 0x8; break; \
case 1: flags = 0x2; break; \
default: case 2: flags = 0x3; break; \
} \
env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
| (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
}
DO_VFP_cmp(s, float32)
DO_VFP_cmp(d, float64)
#undef DO_VFP_cmp
/* Integer to float and float to integer conversions */
#define CONV_ITOF(name, fsz, sign) \
float##fsz HELPER(name)(uint32_t x, void *fpstp) \
{ \
float_status *fpst = fpstp; \
return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
}
#define CONV_FTOI(name, fsz, sign, round) \
uint32_t HELPER(name)(float##fsz x, void *fpstp) \
{ \
float_status *fpst = fpstp; \
if (float##fsz##_is_any_nan(x)) { \
float_raise(float_flag_invalid, fpst); \
return 0; \
} \
return float##fsz##_to_##sign##int32##round(x, fpst); \
}
#define FLOAT_CONVS(name, p, fsz, sign) \
CONV_ITOF(vfp_##name##to##p, fsz, sign) \
CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
FLOAT_CONVS(si, s, 32, )
FLOAT_CONVS(si, d, 64, )
FLOAT_CONVS(ui, s, 32, u)
FLOAT_CONVS(ui, d, 64, u)
#undef CONV_ITOF
#undef CONV_FTOI
#undef FLOAT_CONVS
/* floating point conversion */
float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
{
float64 r = float32_to_float64(x, &env->vfp.fp_status);
/* ARM requires that S<->D conversion of any kind of NaN generates
* a quiet NaN by forcing the most significant frac bit to 1.
*/
return float64_maybe_silence_nan(r);
}
float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
{
float32 r = float64_to_float32(x, &env->vfp.fp_status);
/* ARM requires that S<->D conversion of any kind of NaN generates
* a quiet NaN by forcing the most significant frac bit to 1.
*/
return float32_maybe_silence_nan(r);
}
/* VFP3 fixed point conversion. */
#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
void *fpstp) \
{ \
float_status *fpst = fpstp; \
float##fsz tmp; \
tmp = itype##_to_##float##fsz(x, fpst); \
return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
}
/* Notice that we want only input-denormal exception flags from the
* scalbn operation: the other possible flags (overflow+inexact if
* we overflow to infinity, output-denormal) aren't correct for the
* complete scale-and-convert operation.
*/
#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
uint32_t shift, \
void *fpstp) \
{ \
float_status *fpst = fpstp; \
int old_exc_flags = get_float_exception_flags(fpst); \
float##fsz tmp; \
if (float##fsz##_is_any_nan(x)) { \
float_raise(float_flag_invalid, fpst); \
return 0; \
} \
tmp = float##fsz##_scalbn(x, shift, fpst); \
old_exc_flags |= get_float_exception_flags(fpst) \
& float_flag_input_denormal; \
set_float_exception_flags(old_exc_flags, fpst); \
return float##fsz##_to_##itype##round(tmp, fpst); \
}
#define VFP_CONV_FIX(name, p, fsz, isz, itype) \
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
VFP_CONV_FIX(sh, d, 64, 64, int16)
VFP_CONV_FIX(sl, d, 64, 64, int32)
VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
VFP_CONV_FIX(uh, d, 64, 64, uint16)
VFP_CONV_FIX(ul, d, 64, 64, uint32)
VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
VFP_CONV_FIX(sh, s, 32, 32, int16)
VFP_CONV_FIX(sl, s, 32, 32, int32)
VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
VFP_CONV_FIX(uh, s, 32, 32, uint16)
VFP_CONV_FIX(ul, s, 32, 32, uint32)
VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
#undef VFP_CONV_FIX
#undef VFP_CONV_FIX_FLOAT
#undef VFP_CONV_FLOAT_FIX_ROUND
/* Set the current fp rounding mode and return the old one.
* The argument is a softfloat float_round_ value.
*/
uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
{
float_status *fp_status = &env->vfp.fp_status;
uint32_t prev_rmode = get_float_rounding_mode(fp_status);
set_float_rounding_mode(rmode, fp_status);
return prev_rmode;
}
/* Set the current fp rounding mode in the standard fp status and return
* the old one. This is for NEON instructions that need to change the
* rounding mode but wish to use the standard FPSCR values for everything
* else. Always set the rounding mode back to the correct value after
* modifying it.
* The argument is a softfloat float_round_ value.
*/
uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
{
float_status *fp_status = &env->vfp.standard_fp_status;
uint32_t prev_rmode = get_float_rounding_mode(fp_status);
set_float_rounding_mode(rmode, fp_status);
return prev_rmode;
}
/* Half precision conversions. */
static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
{
int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
float32 r = float16_to_float32(make_float16(a), ieee, s);
if (ieee) {
return float32_maybe_silence_nan(r);
}
return r;
}
static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
{
int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
float16 r = float32_to_float16(a, ieee, s);
if (ieee) {
r = float16_maybe_silence_nan(r);
}
return float16_val(r);
}
float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
{
return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
}
uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
{
return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
}
float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
{
return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
}
uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
{
return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
}
float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
{
int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
if (ieee) {
return float64_maybe_silence_nan(r);
}
return r;
}
uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
{
int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
if (ieee) {
r = float16_maybe_silence_nan(r);
}
return float16_val(r);
}
#define float32_two make_float32(0x40000000)
#define float32_three make_float32(0x40400000)
#define float32_one_point_five make_float32(0x3fc00000)
float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
{
float_status *s = &env->vfp.standard_fp_status;
if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
(float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
if (!(float32_is_zero(a) || float32_is_zero(b))) {
float_raise(float_flag_input_denormal, s);
}
return float32_two;
}
return float32_sub(float32_two, float32_mul(a, b, s), s);
}
float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
{
float_status *s = &env->vfp.standard_fp_status;
float32 product;
if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
(float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
if (!(float32_is_zero(a) || float32_is_zero(b))) {
float_raise(float_flag_input_denormal, s);
}
return float32_one_point_five;
}
product = float32_mul(a, b, s);
return float32_div(float32_sub(float32_three, product, s), float32_two, s);
}
/* NEON helpers. */
/* Constants 256 and 512 are used in some helpers; we avoid relying on
* int->float conversions at run-time. */
#define float64_256 make_float64(0x4070000000000000LL)
#define float64_512 make_float64(0x4080000000000000LL)
/* The algorithm that must be used to calculate the estimate
* is specified by the ARM ARM.
*/
static float64 recip_estimate(float64 a, CPUARMState *env)
{
/* These calculations mustn't set any fp exception flags,
* so we use a local copy of the fp_status.
*/
float_status dummy_status = env->vfp.standard_fp_status;
float_status *s = &dummy_status;
/* q = (int)(a * 512.0) */
float64 q = float64_mul(float64_512, a, s);
int64_t q_int = float64_to_int64_round_to_zero(q, s);
/* r = 1.0 / (((double)q + 0.5) / 512.0) */
q = int64_to_float64(q_int, s);
q = float64_add(q, float64_half, s);
q = float64_div(q, float64_512, s);
q = float64_div(float64_one, q, s);
/* s = (int)(256.0 * r + 0.5) */
q = float64_mul(q, float64_256, s);
q = float64_add(q, float64_half, s);
q_int = float64_to_int64_round_to_zero(q, s);
/* return (double)s / 256.0 */
return float64_div(int64_to_float64(q_int, s), float64_256, s);
}
float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
{
float_status *s = &env->vfp.standard_fp_status;
float64 f64;
uint32_t val32 = float32_val(a);
int result_exp;
int a_exp = (val32 & 0x7f800000) >> 23;
int sign = val32 & 0x80000000;
if (float32_is_any_nan(a)) {
if (float32_is_signaling_nan(a)) {
float_raise(float_flag_invalid, s);
}
return float32_default_nan;
} else if (float32_is_infinity(a)) {
return float32_set_sign(float32_zero, float32_is_neg(a));
} else if (float32_is_zero_or_denormal(a)) {
if (!float32_is_zero(a)) {
float_raise(float_flag_input_denormal, s);
}
float_raise(float_flag_divbyzero, s);
return float32_set_sign(float32_infinity, float32_is_neg(a));
} else if (a_exp >= 253) {
float_raise(float_flag_underflow, s);
return float32_set_sign(float32_zero, float32_is_neg(a));
}
f64 = make_float64((0x3feULL << 52)
| ((int64_t)(val32 & 0x7fffff) << 29));
result_exp = 253 - a_exp;
f64 = recip_estimate(f64, env);
val32 = sign
| ((result_exp & 0xff) << 23)
| ((float64_val(f64) >> 29) & 0x7fffff);
return make_float32(val32);
}
/* The algorithm that must be used to calculate the estimate
* is specified by the ARM ARM.
*/
static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
{
/* These calculations mustn't set any fp exception flags,
* so we use a local copy of the fp_status.
*/
float_status dummy_status = env->vfp.standard_fp_status;
float_status *s = &dummy_status;
float64 q;
int64_t q_int;
if (float64_lt(a, float64_half, s)) {
/* range 0.25 <= a < 0.5 */
/* a in units of 1/512 rounded down */
/* q0 = (int)(a * 512.0); */
q = float64_mul(float64_512, a, s);
q_int = float64_to_int64_round_to_zero(q, s);
/* reciprocal root r */
/* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
q = int64_to_float64(q_int, s);
q = float64_add(q, float64_half, s);
q = float64_div(q, float64_512, s);
q = float64_sqrt(q, s);
q = float64_div(float64_one, q, s);
} else {
/* range 0.5 <= a < 1.0 */
/* a in units of 1/256 rounded down */
/* q1 = (int)(a * 256.0); */
q = float64_mul(float64_256, a, s);
int64_t q_int = float64_to_int64_round_to_zero(q, s);
/* reciprocal root r */
/* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
q = int64_to_float64(q_int, s);
q = float64_add(q, float64_half, s);
q = float64_div(q, float64_256, s);
q = float64_sqrt(q, s);
q = float64_div(float64_one, q, s);
}
/* r in units of 1/256 rounded to nearest */
/* s = (int)(256.0 * r + 0.5); */
q = float64_mul(q, float64_256,s );
q = float64_add(q, float64_half, s);
q_int = float64_to_int64_round_to_zero(q, s);
/* return (double)s / 256.0;*/
return float64_div(int64_to_float64(q_int, s), float64_256, s);
}
float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
{
float_status *s = &env->vfp.standard_fp_status;
int result_exp;
float64 f64;
uint32_t val;
uint64_t val64;
val = float32_val(a);
if (float32_is_any_nan(a)) {
if (float32_is_signaling_nan(a)) {
float_raise(float_flag_invalid, s);
}
return float32_default_nan;
} else if (float32_is_zero_or_denormal(a)) {
if (!float32_is_zero(a)) {
float_raise(float_flag_input_denormal, s);
}
float_raise(float_flag_divbyzero, s);
return float32_set_sign(float32_infinity, float32_is_neg(a));
} else if (float32_is_neg(a)) {
float_raise(float_flag_invalid, s);
return float32_default_nan;
} else if (float32_is_infinity(a)) {
return float32_zero;
}
/* Normalize to a double-precision value between 0.25 and 1.0,
* preserving the parity of the exponent. */
if ((val & 0x800000) == 0) {
f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
| (0x3feULL << 52)
| ((uint64_t)(val & 0x7fffff) << 29));
} else {
f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
| (0x3fdULL << 52)
| ((uint64_t)(val & 0x7fffff) << 29));
}
result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
f64 = recip_sqrt_estimate(f64, env);
val64 = float64_val(f64);
val = ((result_exp & 0xff) << 23)
| ((val64 >> 29) & 0x7fffff);
return make_float32(val);
}
uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
{
float64 f64;
if ((a & 0x80000000) == 0) {
return 0xffffffff;
}
f64 = make_float64((0x3feULL << 52)
| ((int64_t)(a & 0x7fffffff) << 21));
f64 = recip_estimate (f64, env);
return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
}
uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
{
float64 f64;
if ((a & 0xc0000000) == 0) {
return 0xffffffff;
}
if (a & 0x80000000) {
f64 = make_float64((0x3feULL << 52)
| ((uint64_t)(a & 0x7fffffff) << 21));
} else { /* bits 31-30 == '01' */
f64 = make_float64((0x3fdULL << 52)
| ((uint64_t)(a & 0x3fffffff) << 22));
}
f64 = recip_sqrt_estimate(f64, env);
return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
}
/* VFPv4 fused multiply-accumulate */
float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
{
float_status *fpst = fpstp;
return float32_muladd(a, b, c, 0, fpst);
}
float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
{
float_status *fpst = fpstp;
return float64_muladd(a, b, c, 0, fpst);
}
/* ARMv8 round to integral */
float32 HELPER(rints_exact)(float32 x, void *fp_status)
{
return float32_round_to_int(x, fp_status);
}
float64 HELPER(rintd_exact)(float64 x, void *fp_status)
{
return float64_round_to_int(x, fp_status);
}
float32 HELPER(rints)(float32 x, void *fp_status)
{
int old_flags = get_float_exception_flags(fp_status), new_flags;
float32 ret;
ret = float32_round_to_int(x, fp_status);
/* Suppress any inexact exceptions the conversion produced */
if (!(old_flags & float_flag_inexact)) {
new_flags = get_float_exception_flags(fp_status);
set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
}
return ret;
}
float64 HELPER(rintd)(float64 x, void *fp_status)
{
int old_flags = get_float_exception_flags(fp_status), new_flags;
float64 ret;
ret = float64_round_to_int(x, fp_status);
new_flags = get_float_exception_flags(fp_status);
/* Suppress any inexact exceptions the conversion produced */
if (!(old_flags & float_flag_inexact)) {
new_flags = get_float_exception_flags(fp_status);
set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
}
return ret;
}
/* Convert ARM rounding mode to softfloat */
int arm_rmode_to_sf(int rmode)
{
switch (rmode) {
case FPROUNDING_TIEAWAY:
rmode = float_round_ties_away;
break;
case FPROUNDING_ODD:
/* FIXME: add support for TIEAWAY and ODD */
qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
rmode);
case FPROUNDING_TIEEVEN:
default:
rmode = float_round_nearest_even;
break;
case FPROUNDING_POSINF:
rmode = float_round_up;
break;
case FPROUNDING_NEGINF:
rmode = float_round_down;
break;
case FPROUNDING_ZERO:
rmode = float_round_to_zero;
break;
}
return rmode;
}