| #include "cpu.h" |
| #include "exec/gdbstub.h" |
| #include "helper.h" |
| #include "qemu/host-utils.h" |
| #include "sysemu/arch_init.h" |
| #include "sysemu/sysemu.h" |
| #include "qemu/bitops.h" |
| |
| #ifndef CONFIG_USER_ONLY |
| static inline int get_phys_addr(CPUARMState *env, uint32_t address, |
| int access_type, int is_user, |
| hwaddr *phys_ptr, int *prot, |
| target_ulong *page_size); |
| #endif |
| |
| static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
| { |
| int nregs; |
| |
| /* VFP data registers are always little-endian. */ |
| nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; |
| if (reg < nregs) { |
| stfq_le_p(buf, env->vfp.regs[reg]); |
| return 8; |
| } |
| if (arm_feature(env, ARM_FEATURE_NEON)) { |
| /* Aliases for Q regs. */ |
| nregs += 16; |
| if (reg < nregs) { |
| stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); |
| stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); |
| return 16; |
| } |
| } |
| switch (reg - nregs) { |
| case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; |
| case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; |
| case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; |
| } |
| return 0; |
| } |
| |
| static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) |
| { |
| int nregs; |
| |
| nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; |
| if (reg < nregs) { |
| env->vfp.regs[reg] = ldfq_le_p(buf); |
| return 8; |
| } |
| if (arm_feature(env, ARM_FEATURE_NEON)) { |
| nregs += 16; |
| if (reg < nregs) { |
| env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); |
| env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); |
| return 16; |
| } |
| } |
| switch (reg - nregs) { |
| case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; |
| case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; |
| case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; |
| } |
| return 0; |
| } |
| |
| static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
| { |
| switch (reg) { |
| case 0 ... 31: |
| /* 128 bit FP register */ |
| stfq_le_p(buf, env->vfp.regs[reg * 2]); |
| stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]); |
| return 16; |
| case 32: |
| /* FPSR */ |
| stl_p(buf, vfp_get_fpsr(env)); |
| return 4; |
| case 33: |
| /* FPCR */ |
| stl_p(buf, vfp_get_fpcr(env)); |
| return 4; |
| default: |
| return 0; |
| } |
| } |
| |
| static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) |
| { |
| switch (reg) { |
| case 0 ... 31: |
| /* 128 bit FP register */ |
| env->vfp.regs[reg * 2] = ldfq_le_p(buf); |
| env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8); |
| return 16; |
| case 32: |
| /* FPSR */ |
| vfp_set_fpsr(env, ldl_p(buf)); |
| return 4; |
| case 33: |
| /* FPCR */ |
| vfp_set_fpcr(env, ldl_p(buf)); |
| return 4; |
| default: |
| return 0; |
| } |
| } |
| |
| static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| if (ri->type & ARM_CP_64BIT) { |
| return CPREG_FIELD64(env, ri); |
| } else { |
| return CPREG_FIELD32(env, ri); |
| } |
| } |
| |
| static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| if (ri->type & ARM_CP_64BIT) { |
| CPREG_FIELD64(env, ri) = value; |
| } else { |
| CPREG_FIELD32(env, ri) = value; |
| } |
| } |
| |
| static uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| /* Raw read of a coprocessor register (as needed for migration, etc). */ |
| if (ri->type & ARM_CP_CONST) { |
| return ri->resetvalue; |
| } else if (ri->raw_readfn) { |
| return ri->raw_readfn(env, ri); |
| } else if (ri->readfn) { |
| return ri->readfn(env, ri); |
| } else { |
| return raw_read(env, ri); |
| } |
| } |
| |
| static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t v) |
| { |
| /* Raw write of a coprocessor register (as needed for migration, etc). |
| * Note that constant registers are treated as write-ignored; the |
| * caller should check for success by whether a readback gives the |
| * value written. |
| */ |
| if (ri->type & ARM_CP_CONST) { |
| return; |
| } else if (ri->raw_writefn) { |
| ri->raw_writefn(env, ri, v); |
| } else if (ri->writefn) { |
| ri->writefn(env, ri, v); |
| } else { |
| raw_write(env, ri, v); |
| } |
| } |
| |
| bool write_cpustate_to_list(ARMCPU *cpu) |
| { |
| /* Write the coprocessor state from cpu->env to the (index,value) list. */ |
| int i; |
| bool ok = true; |
| |
| for (i = 0; i < cpu->cpreg_array_len; i++) { |
| uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); |
| const ARMCPRegInfo *ri; |
| |
| ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
| if (!ri) { |
| ok = false; |
| continue; |
| } |
| if (ri->type & ARM_CP_NO_MIGRATE) { |
| continue; |
| } |
| cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); |
| } |
| return ok; |
| } |
| |
| bool write_list_to_cpustate(ARMCPU *cpu) |
| { |
| int i; |
| bool ok = true; |
| |
| for (i = 0; i < cpu->cpreg_array_len; i++) { |
| uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); |
| uint64_t v = cpu->cpreg_values[i]; |
| const ARMCPRegInfo *ri; |
| |
| ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
| if (!ri) { |
| ok = false; |
| continue; |
| } |
| if (ri->type & ARM_CP_NO_MIGRATE) { |
| continue; |
| } |
| /* Write value and confirm it reads back as written |
| * (to catch read-only registers and partially read-only |
| * registers where the incoming migration value doesn't match) |
| */ |
| write_raw_cp_reg(&cpu->env, ri, v); |
| if (read_raw_cp_reg(&cpu->env, ri) != v) { |
| ok = false; |
| } |
| } |
| return ok; |
| } |
| |
| static void add_cpreg_to_list(gpointer key, gpointer opaque) |
| { |
| ARMCPU *cpu = opaque; |
| uint64_t regidx; |
| const ARMCPRegInfo *ri; |
| |
| regidx = *(uint32_t *)key; |
| ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
| |
| if (!(ri->type & ARM_CP_NO_MIGRATE)) { |
| cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); |
| /* The value array need not be initialized at this point */ |
| cpu->cpreg_array_len++; |
| } |
| } |
| |
| static void count_cpreg(gpointer key, gpointer opaque) |
| { |
| ARMCPU *cpu = opaque; |
| uint64_t regidx; |
| const ARMCPRegInfo *ri; |
| |
| regidx = *(uint32_t *)key; |
| ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
| |
| if (!(ri->type & ARM_CP_NO_MIGRATE)) { |
| cpu->cpreg_array_len++; |
| } |
| } |
| |
| static gint cpreg_key_compare(gconstpointer a, gconstpointer b) |
| { |
| uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); |
| uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); |
| |
| if (aidx > bidx) { |
| return 1; |
| } |
| if (aidx < bidx) { |
| return -1; |
| } |
| return 0; |
| } |
| |
| static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata) |
| { |
| GList **plist = udata; |
| |
| *plist = g_list_prepend(*plist, key); |
| } |
| |
| void init_cpreg_list(ARMCPU *cpu) |
| { |
| /* Initialise the cpreg_tuples[] array based on the cp_regs hash. |
| * Note that we require cpreg_tuples[] to be sorted by key ID. |
| */ |
| GList *keys = NULL; |
| int arraylen; |
| |
| g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys); |
| |
| keys = g_list_sort(keys, cpreg_key_compare); |
| |
| cpu->cpreg_array_len = 0; |
| |
| g_list_foreach(keys, count_cpreg, cpu); |
| |
| arraylen = cpu->cpreg_array_len; |
| cpu->cpreg_indexes = g_new(uint64_t, arraylen); |
| cpu->cpreg_values = g_new(uint64_t, arraylen); |
| cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); |
| cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); |
| cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; |
| cpu->cpreg_array_len = 0; |
| |
| g_list_foreach(keys, add_cpreg_to_list, cpu); |
| |
| assert(cpu->cpreg_array_len == arraylen); |
| |
| g_list_free(keys); |
| } |
| |
| static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
| { |
| env->cp15.c3 = value; |
| tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */ |
| } |
| |
| static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
| { |
| if (env->cp15.c13_fcse != value) { |
| /* Unlike real hardware the qemu TLB uses virtual addresses, |
| * not modified virtual addresses, so this causes a TLB flush. |
| */ |
| tlb_flush(env, 1); |
| env->cp15.c13_fcse = value; |
| } |
| } |
| |
| static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) { |
| /* For VMSA (when not using the LPAE long descriptor page table |
| * format) this register includes the ASID, so do a TLB flush. |
| * For PMSA it is purely a process ID and no action is needed. |
| */ |
| tlb_flush(env, 1); |
| } |
| env->cp15.c13_context = value; |
| } |
| |
| static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Invalidate all (TLBIALL) */ |
| tlb_flush(env, 1); |
| } |
| |
| static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ |
| tlb_flush_page(env, value & TARGET_PAGE_MASK); |
| } |
| |
| static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Invalidate by ASID (TLBIASID) */ |
| tlb_flush(env, value == 0); |
| } |
| |
| static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ |
| tlb_flush_page(env, value & TARGET_PAGE_MASK); |
| } |
| |
| static const ARMCPRegInfo cp_reginfo[] = { |
| /* DBGDIDR: just RAZ. In particular this means the "debug architecture |
| * version" bits will read as a reserved value, which should cause |
| * Linux to not try to use the debug hardware. |
| */ |
| { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| /* MMU Domain access control / MPU write buffer control */ |
| { .name = "DACR", .cp = 15, |
| .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, |
| .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3), |
| .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, }, |
| { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse), |
| .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, |
| { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1, |
| .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_context), |
| .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, |
| /* ??? This covers not just the impdef TLB lockdown registers but also |
| * some v7VMSA registers relating to TEX remap, so it is overly broad. |
| */ |
| { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY, |
| .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, |
| /* MMU TLB control. Note that the wildcarding means we cover not just |
| * the unified TLB ops but also the dside/iside/inner-shareable variants. |
| */ |
| { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, |
| .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, |
| .type = ARM_CP_NO_MIGRATE }, |
| { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, |
| .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, |
| .type = ARM_CP_NO_MIGRATE }, |
| { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, |
| .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, |
| .type = ARM_CP_NO_MIGRATE }, |
| { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, |
| .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, |
| .type = ARM_CP_NO_MIGRATE }, |
| /* Cache maintenance ops; some of this space may be overridden later. */ |
| { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, |
| .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, |
| .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo not_v6_cp_reginfo[] = { |
| /* Not all pre-v6 cores implemented this WFI, so this is slightly |
| * over-broad. |
| */ |
| { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, |
| .access = PL1_W, .type = ARM_CP_WFI }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo not_v7_cp_reginfo[] = { |
| /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which |
| * is UNPREDICTABLE; we choose to NOP as most implementations do). |
| */ |
| { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, |
| .access = PL1_W, .type = ARM_CP_WFI }, |
| /* L1 cache lockdown. Not architectural in v6 and earlier but in practice |
| * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and |
| * OMAPCP will override this space. |
| */ |
| { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), |
| .resetvalue = 0 }, |
| { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, |
| .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), |
| .resetvalue = 0 }, |
| /* v6 doesn't have the cache ID registers but Linux reads them anyway */ |
| { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, |
| .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
| .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| |
| static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| if (env->cp15.c1_coproc != value) { |
| env->cp15.c1_coproc = value; |
| /* ??? Is this safe when called from within a TB? */ |
| tb_flush(env); |
| } |
| } |
| |
| static const ARMCPRegInfo v6_cp_reginfo[] = { |
| /* prefetch by MVA in v6, NOP in v7 */ |
| { .name = "MVA_prefetch", |
| .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, |
| .access = PL1_W, .type = ARM_CP_NOP }, |
| { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, |
| .access = PL0_W, .type = ARM_CP_NOP }, |
| { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, |
| .access = PL0_W, .type = ARM_CP_NOP }, |
| { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, |
| .access = PL0_W, .type = ARM_CP_NOP }, |
| { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, |
| .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn), |
| .resetvalue = 0, }, |
| /* Watchpoint Fault Address Register : should actually only be present |
| * for 1136, 1176, 11MPCore. |
| */ |
| { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, |
| .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, |
| { .name = "CPACR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, |
| .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc), |
| .resetvalue = 0, .writefn = cpacr_write }, |
| REGINFO_SENTINEL |
| }; |
| |
| static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| /* Perfomance monitor registers user accessibility is controlled |
| * by PMUSERENR. |
| */ |
| if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { |
| return CP_ACCESS_TRAP; |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* only the DP, X, D and E bits are writable */ |
| env->cp15.c9_pmcr &= ~0x39; |
| env->cp15.c9_pmcr |= (value & 0x39); |
| } |
| |
| static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| value &= (1 << 31); |
| env->cp15.c9_pmcnten |= value; |
| } |
| |
| static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| value &= (1 << 31); |
| env->cp15.c9_pmcnten &= ~value; |
| } |
| |
| static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| env->cp15.c9_pmovsr &= ~value; |
| } |
| |
| static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| env->cp15.c9_pmxevtyper = value & 0xff; |
| } |
| |
| static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| env->cp15.c9_pmuserenr = value & 1; |
| } |
| |
| static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* We have no event counters so only the C bit can be changed */ |
| value &= (1 << 31); |
| env->cp15.c9_pminten |= value; |
| } |
| |
| static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| value &= (1 << 31); |
| env->cp15.c9_pminten &= ~value; |
| } |
| |
| static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| env->cp15.c12_vbar = value & ~0x1Ful; |
| } |
| |
| static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| return cpu->ccsidr[env->cp15.c0_cssel]; |
| } |
| |
| static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| env->cp15.c0_cssel = value & 0xf; |
| } |
| |
| static const ARMCPRegInfo v7_cp_reginfo[] = { |
| /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped |
| * debug components |
| */ |
| { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ |
| { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, |
| .access = PL1_W, .type = ARM_CP_NOP }, |
| /* Performance monitors are implementation defined in v7, |
| * but with an ARM recommended set of registers, which we |
| * follow (although we don't actually implement any counters) |
| * |
| * Performance registers fall into three categories: |
| * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) |
| * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) |
| * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) |
| * For the cases controlled by PMUSERENR we must set .access to PL0_RW |
| * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. |
| */ |
| { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, |
| .access = PL0_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), |
| .writefn = pmcntenset_write, |
| .accessfn = pmreg_access, |
| .raw_writefn = raw_write }, |
| { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, |
| .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), |
| .accessfn = pmreg_access, |
| .writefn = pmcntenclr_write, |
| .type = ARM_CP_NO_MIGRATE }, |
| { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, |
| .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), |
| .accessfn = pmreg_access, |
| .writefn = pmovsr_write, |
| .raw_writefn = raw_write }, |
| /* Unimplemented so WI. */ |
| { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, |
| .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP }, |
| /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE. |
| * We choose to RAZ/WI. |
| */ |
| { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, |
| .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, |
| .accessfn = pmreg_access }, |
| /* Unimplemented, RAZ/WI. */ |
| { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, |
| .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, |
| .accessfn = pmreg_access }, |
| { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, |
| .access = PL0_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper), |
| .accessfn = pmreg_access, .writefn = pmxevtyper_write, |
| .raw_writefn = raw_write }, |
| /* Unimplemented, RAZ/WI. */ |
| { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, |
| .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, |
| .accessfn = pmreg_access }, |
| { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, |
| .access = PL0_R | PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), |
| .resetvalue = 0, |
| .writefn = pmuserenr_write, .raw_writefn = raw_write }, |
| { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
| .resetvalue = 0, |
| .writefn = pmintenset_write, .raw_writefn = raw_write }, |
| { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, |
| .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, |
| .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
| .resetvalue = 0, .writefn = pmintenclr_write, }, |
| { .name = "VBAR", .cp = 15, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, .writefn = vbar_write, |
| .fieldoffset = offsetof(CPUARMState, cp15.c12_vbar), |
| .resetvalue = 0 }, |
| { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr), |
| .resetvalue = 0, }, |
| { .name = "CCSIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, |
| .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE }, |
| { .name = "CSSELR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, |
| .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel), |
| .writefn = csselr_write, .resetvalue = 0 }, |
| /* Auxiliary ID register: this actually has an IMPDEF value but for now |
| * just RAZ for all cores: |
| */ |
| { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| |
| static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| value &= 1; |
| env->teecr = value; |
| } |
| |
| static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| if (arm_current_pl(env) == 0 && (env->teecr & 1)) { |
| return CP_ACCESS_TRAP; |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| static const ARMCPRegInfo t2ee_cp_reginfo[] = { |
| { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, |
| .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), |
| .resetvalue = 0, |
| .writefn = teecr_write }, |
| { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, |
| .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), |
| .accessfn = teehbr_access, .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo v6k_cp_reginfo[] = { |
| { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, |
| .access = PL0_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el0), .resetvalue = 0 }, |
| { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, |
| .access = PL0_RW, |
| .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidr_el0), |
| .resetfn = arm_cp_reset_ignore }, |
| { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, |
| .access = PL0_R|PL1_W, |
| .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el0), .resetvalue = 0 }, |
| { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, |
| .access = PL0_R|PL1_W, |
| .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidrro_el0), |
| .resetfn = arm_cp_reset_ignore }, |
| { .name = "TPIDR_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el1), .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| |
| #ifndef CONFIG_USER_ONLY |
| |
| static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */ |
| if (arm_current_pl(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) { |
| return CP_ACCESS_TRAP; |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx) |
| { |
| /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ |
| if (arm_current_pl(env) == 0 && |
| !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { |
| return CP_ACCESS_TRAP; |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx) |
| { |
| /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if |
| * EL0[PV]TEN is zero. |
| */ |
| if (arm_current_pl(env) == 0 && |
| !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { |
| return CP_ACCESS_TRAP; |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| static CPAccessResult gt_pct_access(CPUARMState *env, |
| const ARMCPRegInfo *ri) |
| { |
| return gt_counter_access(env, GTIMER_PHYS); |
| } |
| |
| static CPAccessResult gt_vct_access(CPUARMState *env, |
| const ARMCPRegInfo *ri) |
| { |
| return gt_counter_access(env, GTIMER_VIRT); |
| } |
| |
| static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| return gt_timer_access(env, GTIMER_PHYS); |
| } |
| |
| static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| return gt_timer_access(env, GTIMER_VIRT); |
| } |
| |
| static uint64_t gt_get_countervalue(CPUARMState *env) |
| { |
| return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; |
| } |
| |
| static void gt_recalc_timer(ARMCPU *cpu, int timeridx) |
| { |
| ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; |
| |
| if (gt->ctl & 1) { |
| /* Timer enabled: calculate and set current ISTATUS, irq, and |
| * reset timer to when ISTATUS next has to change |
| */ |
| uint64_t count = gt_get_countervalue(&cpu->env); |
| /* Note that this must be unsigned 64 bit arithmetic: */ |
| int istatus = count >= gt->cval; |
| uint64_t nexttick; |
| |
| gt->ctl = deposit32(gt->ctl, 2, 1, istatus); |
| qemu_set_irq(cpu->gt_timer_outputs[timeridx], |
| (istatus && !(gt->ctl & 2))); |
| if (istatus) { |
| /* Next transition is when count rolls back over to zero */ |
| nexttick = UINT64_MAX; |
| } else { |
| /* Next transition is when we hit cval */ |
| nexttick = gt->cval; |
| } |
| /* Note that the desired next expiry time might be beyond the |
| * signed-64-bit range of a QEMUTimer -- in this case we just |
| * set the timer for as far in the future as possible. When the |
| * timer expires we will reset the timer for any remaining period. |
| */ |
| if (nexttick > INT64_MAX / GTIMER_SCALE) { |
| nexttick = INT64_MAX / GTIMER_SCALE; |
| } |
| timer_mod(cpu->gt_timer[timeridx], nexttick); |
| } else { |
| /* Timer disabled: ISTATUS and timer output always clear */ |
| gt->ctl &= ~4; |
| qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); |
| timer_del(cpu->gt_timer[timeridx]); |
| } |
| } |
| |
| static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| int timeridx = ri->opc1 & 1; |
| |
| timer_del(cpu->gt_timer[timeridx]); |
| } |
| |
| static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| return gt_get_countervalue(env); |
| } |
| |
| static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| int timeridx = ri->opc1 & 1; |
| |
| env->cp15.c14_timer[timeridx].cval = value; |
| gt_recalc_timer(arm_env_get_cpu(env), timeridx); |
| } |
| |
| static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| int timeridx = ri->crm & 1; |
| |
| return (uint32_t)(env->cp15.c14_timer[timeridx].cval - |
| gt_get_countervalue(env)); |
| } |
| |
| static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| int timeridx = ri->crm & 1; |
| |
| env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) + |
| + sextract64(value, 0, 32); |
| gt_recalc_timer(arm_env_get_cpu(env), timeridx); |
| } |
| |
| static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| int timeridx = ri->crm & 1; |
| uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; |
| |
| env->cp15.c14_timer[timeridx].ctl = value & 3; |
| if ((oldval ^ value) & 1) { |
| /* Enable toggled */ |
| gt_recalc_timer(cpu, timeridx); |
| } else if ((oldval & value) & 2) { |
| /* IMASK toggled: don't need to recalculate, |
| * just set the interrupt line based on ISTATUS |
| */ |
| qemu_set_irq(cpu->gt_timer_outputs[timeridx], |
| (oldval & 4) && (value & 2)); |
| } |
| } |
| |
| void arm_gt_ptimer_cb(void *opaque) |
| { |
| ARMCPU *cpu = opaque; |
| |
| gt_recalc_timer(cpu, GTIMER_PHYS); |
| } |
| |
| void arm_gt_vtimer_cb(void *opaque) |
| { |
| ARMCPU *cpu = opaque; |
| |
| gt_recalc_timer(cpu, GTIMER_VIRT); |
| } |
| |
| static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
| /* Note that CNTFRQ is purely reads-as-written for the benefit |
| * of software; writing it doesn't actually change the timer frequency. |
| * Our reset value matches the fixed frequency we implement the timer at. |
| */ |
| { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW | PL0_R, |
| .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), |
| .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, |
| .accessfn = gt_cntfrq_access, |
| }, |
| /* overall control: mostly access permissions */ |
| { .name = "CNTKCTL", .cp = 15, .crn = 14, .crm = 1, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), |
| .resetvalue = 0, |
| }, |
| /* per-timer control */ |
| { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, |
| .type = ARM_CP_IO, .access = PL1_RW | PL0_R, |
| .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), |
| .resetvalue = 0, |
| .accessfn = gt_ptimer_access, |
| .writefn = gt_ctl_write, .raw_writefn = raw_write, |
| }, |
| { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, |
| .type = ARM_CP_IO, .access = PL1_RW | PL0_R, |
| .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), |
| .resetvalue = 0, |
| .accessfn = gt_vtimer_access, |
| .writefn = gt_ctl_write, .raw_writefn = raw_write, |
| }, |
| /* TimerValue views: a 32 bit downcounting view of the underlying state */ |
| { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, |
| .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R, |
| .accessfn = gt_ptimer_access, |
| .readfn = gt_tval_read, .writefn = gt_tval_write, |
| }, |
| { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, |
| .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R, |
| .accessfn = gt_vtimer_access, |
| .readfn = gt_tval_read, .writefn = gt_tval_write, |
| }, |
| /* The counter itself */ |
| { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, |
| .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO, |
| .accessfn = gt_pct_access, |
| .readfn = gt_cnt_read, .resetfn = gt_cnt_reset, |
| }, |
| { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, |
| .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO, |
| .accessfn = gt_vct_access, |
| .readfn = gt_cnt_read, .resetfn = gt_cnt_reset, |
| }, |
| /* Comparison value, indicating when the timer goes off */ |
| { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, |
| .access = PL1_RW | PL0_R, |
| .type = ARM_CP_64BIT | ARM_CP_IO, |
| .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), |
| .resetvalue = 0, |
| .accessfn = gt_ptimer_access, |
| .writefn = gt_cval_write, .raw_writefn = raw_write, |
| }, |
| { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, |
| .access = PL1_RW | PL0_R, |
| .type = ARM_CP_64BIT | ARM_CP_IO, |
| .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), |
| .resetvalue = 0, |
| .accessfn = gt_vtimer_access, |
| .writefn = gt_cval_write, .raw_writefn = raw_write, |
| }, |
| REGINFO_SENTINEL |
| }; |
| |
| #else |
| /* In user-mode none of the generic timer registers are accessible, |
| * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs, |
| * so instead just don't register any of them. |
| */ |
| static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
| REGINFO_SENTINEL |
| }; |
| |
| #endif |
| |
| static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
| { |
| if (arm_feature(env, ARM_FEATURE_LPAE)) { |
| env->cp15.c7_par = value; |
| } else if (arm_feature(env, ARM_FEATURE_V7)) { |
| env->cp15.c7_par = value & 0xfffff6ff; |
| } else { |
| env->cp15.c7_par = value & 0xfffff1ff; |
| } |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| /* get_phys_addr() isn't present for user-mode-only targets */ |
| |
| /* Return true if extended addresses are enabled, ie this is an |
| * LPAE implementation and we are using the long-descriptor translation |
| * table format because the TTBCR EAE bit is set. |
| */ |
| static inline bool extended_addresses_enabled(CPUARMState *env) |
| { |
| return arm_feature(env, ARM_FEATURE_LPAE) |
| && (env->cp15.c2_control & (1U << 31)); |
| } |
| |
| static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| if (ri->opc2 & 4) { |
| /* Other states are only available with TrustZone; in |
| * a non-TZ implementation these registers don't exist |
| * at all, which is an Uncategorized trap. This underdecoding |
| * is safe because the reginfo is NO_MIGRATE. |
| */ |
| return CP_ACCESS_TRAP_UNCATEGORIZED; |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
| { |
| hwaddr phys_addr; |
| target_ulong page_size; |
| int prot; |
| int ret, is_user = ri->opc2 & 2; |
| int access_type = ri->opc2 & 1; |
| |
| ret = get_phys_addr(env, value, access_type, is_user, |
| &phys_addr, &prot, &page_size); |
| if (extended_addresses_enabled(env)) { |
| /* ret is a DFSR/IFSR value for the long descriptor |
| * translation table format, but with WnR always clear. |
| * Convert it to a 64-bit PAR. |
| */ |
| uint64_t par64 = (1 << 11); /* LPAE bit always set */ |
| if (ret == 0) { |
| par64 |= phys_addr & ~0xfffULL; |
| /* We don't set the ATTR or SH fields in the PAR. */ |
| } else { |
| par64 |= 1; /* F */ |
| par64 |= (ret & 0x3f) << 1; /* FS */ |
| /* Note that S2WLK and FSTAGE are always zero, because we don't |
| * implement virtualization and therefore there can't be a stage 2 |
| * fault. |
| */ |
| } |
| env->cp15.c7_par = par64; |
| env->cp15.c7_par_hi = par64 >> 32; |
| } else { |
| /* ret is a DFSR/IFSR value for the short descriptor |
| * translation table format (with WnR always clear). |
| * Convert it to a 32-bit PAR. |
| */ |
| if (ret == 0) { |
| /* We do not set any attribute bits in the PAR */ |
| if (page_size == (1 << 24) |
| && arm_feature(env, ARM_FEATURE_V7)) { |
| env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1; |
| } else { |
| env->cp15.c7_par = phys_addr & 0xfffff000; |
| } |
| } else { |
| env->cp15.c7_par = ((ret & (10 << 1)) >> 5) | |
| ((ret & (12 << 1)) >> 6) | |
| ((ret & 0xf) << 1) | 1; |
| } |
| env->cp15.c7_par_hi = 0; |
| } |
| } |
| #endif |
| |
| static const ARMCPRegInfo vapa_cp_reginfo[] = { |
| { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.c7_par), |
| .writefn = par_write }, |
| #ifndef CONFIG_USER_ONLY |
| { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, |
| .access = PL1_W, .accessfn = ats_access, |
| .writefn = ats_write, .type = ARM_CP_NO_MIGRATE }, |
| #endif |
| REGINFO_SENTINEL |
| }; |
| |
| /* Return basic MPU access permission bits. */ |
| static uint32_t simple_mpu_ap_bits(uint32_t val) |
| { |
| uint32_t ret; |
| uint32_t mask; |
| int i; |
| ret = 0; |
| mask = 3; |
| for (i = 0; i < 16; i += 2) { |
| ret |= (val >> i) & mask; |
| mask <<= 2; |
| } |
| return ret; |
| } |
| |
| /* Pad basic MPU access permission bits to extended format. */ |
| static uint32_t extended_mpu_ap_bits(uint32_t val) |
| { |
| uint32_t ret; |
| uint32_t mask; |
| int i; |
| ret = 0; |
| mask = 3; |
| for (i = 0; i < 16; i += 2) { |
| ret |= (val & mask) << i; |
| mask <<= 2; |
| } |
| return ret; |
| } |
| |
| static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| env->cp15.c5_data = extended_mpu_ap_bits(value); |
| } |
| |
| static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| return simple_mpu_ap_bits(env->cp15.c5_data); |
| } |
| |
| static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| env->cp15.c5_insn = extended_mpu_ap_bits(value); |
| } |
| |
| static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| return simple_mpu_ap_bits(env->cp15.c5_insn); |
| } |
| |
| static const ARMCPRegInfo pmsav5_cp_reginfo[] = { |
| { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, |
| .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, |
| .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, |
| { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, |
| .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, |
| .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, |
| .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, |
| { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, }, |
| { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, }, |
| { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, |
| { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, |
| /* Protection region base and size registers */ |
| { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, |
| .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, |
| { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, |
| .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, |
| { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, |
| .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, |
| { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, |
| .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, |
| { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, |
| .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, |
| { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, |
| .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, |
| { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, |
| .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, |
| { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, |
| .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, |
| REGINFO_SENTINEL |
| }; |
| |
| static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| int maskshift = extract32(value, 0, 3); |
| |
| if (arm_feature(env, ARM_FEATURE_LPAE) && (value & (1 << 31))) { |
| value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); |
| } else { |
| value &= 7; |
| } |
| /* Note that we always calculate c2_mask and c2_base_mask, but |
| * they are only used for short-descriptor tables (ie if EAE is 0); |
| * for long-descriptor tables the TTBCR fields are used differently |
| * and the c2_mask and c2_base_mask values are meaningless. |
| */ |
| env->cp15.c2_control = value; |
| env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift); |
| env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift); |
| } |
| |
| static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| if (arm_feature(env, ARM_FEATURE_LPAE)) { |
| /* With LPAE the TTBCR could result in a change of ASID |
| * via the TTBCR.A1 bit, so do a TLB flush. |
| */ |
| tlb_flush(env, 1); |
| } |
| vmsa_ttbcr_raw_write(env, ri, value); |
| } |
| |
| static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| env->cp15.c2_base_mask = 0xffffc000u; |
| env->cp15.c2_control = 0; |
| env->cp15.c2_mask = 0; |
| } |
| |
| static const ARMCPRegInfo vmsa_cp_reginfo[] = { |
| { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, }, |
| { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, }, |
| { .name = "TTBR0", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, }, |
| { .name = "TTBR1", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c2_base1), .resetvalue = 0, }, |
| { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, |
| .access = PL1_RW, .writefn = vmsa_ttbcr_write, |
| .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, |
| .fieldoffset = offsetof(CPUARMState, cp15.c2_control) }, |
| { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data), |
| .resetvalue = 0, }, |
| REGINFO_SENTINEL |
| }; |
| |
| static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| env->cp15.c15_ticonfig = value & 0xe7; |
| /* The OS_TYPE bit in this register changes the reported CPUID! */ |
| env->cp15.c0_cpuid = (value & (1 << 5)) ? |
| ARM_CPUID_TI915T : ARM_CPUID_TI925T; |
| } |
| |
| static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| env->cp15.c15_threadid = value & 0xffff; |
| } |
| |
| static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Wait-for-interrupt (deprecated) */ |
| cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); |
| } |
| |
| static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* On OMAP there are registers indicating the max/min index of dcache lines |
| * containing a dirty line; cache flush operations have to reset these. |
| */ |
| env->cp15.c15_i_max = 0x000; |
| env->cp15.c15_i_min = 0xff0; |
| } |
| |
| static const ARMCPRegInfo omap_cp_reginfo[] = { |
| { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, |
| .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, |
| .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, }, |
| { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, .type = ARM_CP_NOP }, |
| { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, |
| .writefn = omap_ticonfig_write }, |
| { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, |
| { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, .resetvalue = 0xff0, |
| .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, |
| { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, |
| .writefn = omap_threadid_write }, |
| { .name = "TI925T_STATUS", .cp = 15, .crn = 15, |
| .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, |
| .type = ARM_CP_NO_MIGRATE, |
| .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, |
| /* TODO: Peripheral port remap register: |
| * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller |
| * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), |
| * when MMU is off. |
| */ |
| { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, |
| .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, |
| .type = ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE, |
| .writefn = omap_cachemaint_write }, |
| { .name = "C9", .cp = 15, .crn = 9, |
| .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, |
| .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| |
| static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| value &= 0x3fff; |
| if (env->cp15.c15_cpar != value) { |
| /* Changes cp0 to cp13 behavior, so needs a TB flush. */ |
| tb_flush(env); |
| env->cp15.c15_cpar = value; |
| } |
| } |
| |
| static const ARMCPRegInfo xscale_cp_reginfo[] = { |
| { .name = "XSCALE_CPAR", |
| .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, |
| .writefn = xscale_cpar_write, }, |
| { .name = "XSCALE_AUXCR", |
| .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), |
| .resetvalue = 0, }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { |
| /* RAZ/WI the whole crn=15 space, when we don't have a more specific |
| * implementation of this implementation-defined space. |
| * Ideally this should eventually disappear in favour of actually |
| * implementing the correct behaviour for all cores. |
| */ |
| { .name = "C15_IMPDEF", .cp = 15, .crn = 15, |
| .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, |
| .access = PL1_RW, |
| .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE | ARM_CP_OVERRIDE, |
| .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { |
| /* Cache status: RAZ because we have no cache so it's always clean */ |
| { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, |
| .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
| .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { |
| /* We never have a a block transfer operation in progress */ |
| { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, |
| .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
| .resetvalue = 0 }, |
| /* The cache ops themselves: these all NOP for QEMU */ |
| { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, |
| .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, |
| { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, |
| .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, |
| { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, |
| .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, |
| { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, |
| .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, |
| { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, |
| .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, |
| { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, |
| .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { |
| /* The cache test-and-clean instructions always return (1 << 30) |
| * to indicate that there are no dirty cache lines. |
| */ |
| { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, |
| .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
| .resetvalue = (1 << 30) }, |
| { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, |
| .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE, |
| .resetvalue = (1 << 30) }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo strongarm_cp_reginfo[] = { |
| /* Ignore ReadBuffer accesses */ |
| { .name = "C9_READBUFFER", .cp = 15, .crn = 9, |
| .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, |
| .access = PL1_RW, .resetvalue = 0, |
| .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE }, |
| REGINFO_SENTINEL |
| }; |
| |
| static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| CPUState *cs = CPU(arm_env_get_cpu(env)); |
| uint32_t mpidr = cs->cpu_index; |
| /* We don't support setting cluster ID ([8..11]) |
| * so these bits always RAZ. |
| */ |
| if (arm_feature(env, ARM_FEATURE_V7MP)) { |
| mpidr |= (1U << 31); |
| /* Cores which are uniprocessor (non-coherent) |
| * but still implement the MP extensions set |
| * bit 30. (For instance, A9UP.) However we do |
| * not currently model any of those cores. |
| */ |
| } |
| return mpidr; |
| } |
| |
| static const ARMCPRegInfo mpidr_cp_reginfo[] = { |
| { .name = "MPIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, |
| .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE }, |
| REGINFO_SENTINEL |
| }; |
| |
| static uint64_t par64_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| return ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par; |
| } |
| |
| static void par64_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| env->cp15.c7_par_hi = value >> 32; |
| env->cp15.c7_par = value; |
| } |
| |
| static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| env->cp15.c7_par_hi = 0; |
| env->cp15.c7_par = 0; |
| } |
| |
| static uint64_t ttbr064_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| return ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0; |
| } |
| |
| static void ttbr064_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| env->cp15.c2_base0_hi = value >> 32; |
| env->cp15.c2_base0 = value; |
| } |
| |
| static void ttbr064_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Writes to the 64 bit format TTBRs may change the ASID */ |
| tlb_flush(env, 1); |
| ttbr064_raw_write(env, ri, value); |
| } |
| |
| static void ttbr064_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| env->cp15.c2_base0_hi = 0; |
| env->cp15.c2_base0 = 0; |
| } |
| |
| static uint64_t ttbr164_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| return ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1; |
| } |
| |
| static void ttbr164_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| env->cp15.c2_base1_hi = value >> 32; |
| env->cp15.c2_base1 = value; |
| } |
| |
| static void ttbr164_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| env->cp15.c2_base1_hi = 0; |
| env->cp15.c2_base1 = 0; |
| } |
| |
| static const ARMCPRegInfo lpae_cp_reginfo[] = { |
| /* NOP AMAIR0/1: the override is because these clash with the rather |
| * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo. |
| */ |
| { .name = "AMAIR0", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE, |
| .resetvalue = 0 }, |
| { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, |
| .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE, |
| .resetvalue = 0 }, |
| /* 64 bit access versions of the (dummy) debug registers */ |
| { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, |
| .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, |
| { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, |
| .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, |
| { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, |
| .access = PL1_RW, .type = ARM_CP_64BIT, |
| .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset }, |
| { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, |
| .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr064_read, |
| .writefn = ttbr064_write, .raw_writefn = ttbr064_raw_write, |
| .resetfn = ttbr064_reset }, |
| { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, |
| .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr164_read, |
| .writefn = ttbr164_write, .resetfn = ttbr164_reset }, |
| REGINFO_SENTINEL |
| }; |
| |
| static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| return vfp_get_fpcr(env); |
| } |
| |
| static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| vfp_set_fpcr(env, value); |
| } |
| |
| static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| return vfp_get_fpsr(env); |
| } |
| |
| static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| vfp_set_fpsr(env, value); |
| } |
| |
| static const ARMCPRegInfo v8_cp_reginfo[] = { |
| /* Minimal set of EL0-visible registers. This will need to be expanded |
| * significantly for system emulation of AArch64 CPUs. |
| */ |
| { .name = "NZCV", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, |
| .access = PL0_RW, .type = ARM_CP_NZCV }, |
| { .name = "FPCR", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, |
| .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, |
| { .name = "FPSR", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, |
| .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, |
| /* This claims a 32 byte cacheline size for icache and dcache, VIPT icache. |
| * It will eventually need to have a CPU-specified reset value. |
| */ |
| { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, |
| .access = PL0_R, .type = ARM_CP_CONST, |
| .resetvalue = 0x80030003 }, |
| /* Prohibit use of DC ZVA. OPTME: implement DC ZVA and allow its use. |
| * For system mode the DZP bit here will need to be computed, not constant. |
| */ |
| { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, |
| .access = PL0_R, .type = ARM_CP_CONST, |
| .resetvalue = 0x10 }, |
| REGINFO_SENTINEL |
| }; |
| |
| static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| env->cp15.c1_sys = value; |
| /* ??? Lots of these bits are not implemented. */ |
| /* This may enable/disable the MMU, so do a TLB flush. */ |
| tlb_flush(env, 1); |
| } |
| |
| void register_cp_regs_for_features(ARMCPU *cpu) |
| { |
| /* Register all the coprocessor registers based on feature bits */ |
| CPUARMState *env = &cpu->env; |
| if (arm_feature(env, ARM_FEATURE_M)) { |
| /* M profile has no coprocessor registers */ |
| return; |
| } |
| |
| define_arm_cp_regs(cpu, cp_reginfo); |
| if (arm_feature(env, ARM_FEATURE_V6)) { |
| /* The ID registers all have impdef reset values */ |
| ARMCPRegInfo v6_idregs[] = { |
| { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1, |
| .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_pfr0 }, |
| { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1, |
| .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_pfr1 }, |
| { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1, |
| .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_dfr0 }, |
| { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1, |
| .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_afr0 }, |
| { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1, |
| .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_mmfr0 }, |
| { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1, |
| .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_mmfr1 }, |
| { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1, |
| .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_mmfr2 }, |
| { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1, |
| .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_mmfr3 }, |
| { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2, |
| .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_isar0 }, |
| { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2, |
| .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_isar1 }, |
| { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2, |
| .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_isar2 }, |
| { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2, |
| .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_isar3 }, |
| { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2, |
| .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_isar4 }, |
| { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2, |
| .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_isar5 }, |
| /* 6..7 are as yet unallocated and must RAZ */ |
| { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2, |
| .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2, |
| .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| define_arm_cp_regs(cpu, v6_idregs); |
| define_arm_cp_regs(cpu, v6_cp_reginfo); |
| } else { |
| define_arm_cp_regs(cpu, not_v6_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_V6K)) { |
| define_arm_cp_regs(cpu, v6k_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_V7)) { |
| /* v7 performance monitor control register: same implementor |
| * field as main ID register, and we implement no event counters. |
| */ |
| ARMCPRegInfo pmcr = { |
| .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, |
| .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000, |
| .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), |
| .accessfn = pmreg_access, .writefn = pmcr_write, |
| .raw_writefn = raw_write, |
| }; |
| ARMCPRegInfo clidr = { |
| .name = "CLIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr |
| }; |
| define_one_arm_cp_reg(cpu, &pmcr); |
| define_one_arm_cp_reg(cpu, &clidr); |
| define_arm_cp_regs(cpu, v7_cp_reginfo); |
| } else { |
| define_arm_cp_regs(cpu, not_v7_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_V8)) { |
| define_arm_cp_regs(cpu, v8_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_MPU)) { |
| /* These are the MPU registers prior to PMSAv6. Any new |
| * PMSA core later than the ARM946 will require that we |
| * implement the PMSAv6 or PMSAv7 registers, which are |
| * completely different. |
| */ |
| assert(!arm_feature(env, ARM_FEATURE_V6)); |
| define_arm_cp_regs(cpu, pmsav5_cp_reginfo); |
| } else { |
| define_arm_cp_regs(cpu, vmsa_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { |
| define_arm_cp_regs(cpu, t2ee_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { |
| define_arm_cp_regs(cpu, generic_timer_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_VAPA)) { |
| define_arm_cp_regs(cpu, vapa_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { |
| define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { |
| define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { |
| define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_OMAPCP)) { |
| define_arm_cp_regs(cpu, omap_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_STRONGARM)) { |
| define_arm_cp_regs(cpu, strongarm_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
| define_arm_cp_regs(cpu, xscale_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { |
| define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_LPAE)) { |
| define_arm_cp_regs(cpu, lpae_cp_reginfo); |
| } |
| /* Slightly awkwardly, the OMAP and StrongARM cores need all of |
| * cp15 crn=0 to be writes-ignored, whereas for other cores they should |
| * be read-only (ie write causes UNDEF exception). |
| */ |
| { |
| ARMCPRegInfo id_cp_reginfo[] = { |
| /* Note that the MIDR isn't a simple constant register because |
| * of the TI925 behaviour where writes to another register can |
| * cause the MIDR value to change. |
| * |
| * Unimplemented registers in the c15 0 0 0 space default to |
| * MIDR. Define MIDR first as this entire space, then CTR, TCMTR |
| * and friends override accordingly. |
| */ |
| { .name = "MIDR", |
| .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, |
| .access = PL1_R, .resetvalue = cpu->midr, |
| .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, |
| .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), |
| .type = ARM_CP_OVERRIDE }, |
| { .name = "CTR", |
| .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, |
| { .name = "TCMTR", |
| .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "TLBTR", |
| .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ |
| { .name = "DUMMY", |
| .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "DUMMY", |
| .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "DUMMY", |
| .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "DUMMY", |
| .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "DUMMY", |
| .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| ARMCPRegInfo crn0_wi_reginfo = { |
| .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, |
| .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, |
| .type = ARM_CP_NOP | ARM_CP_OVERRIDE |
| }; |
| if (arm_feature(env, ARM_FEATURE_OMAPCP) || |
| arm_feature(env, ARM_FEATURE_STRONGARM)) { |
| ARMCPRegInfo *r; |
| /* Register the blanket "writes ignored" value first to cover the |
| * whole space. Then update the specific ID registers to allow write |
| * access, so that they ignore writes rather than causing them to |
| * UNDEF. |
| */ |
| define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); |
| for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { |
| r->access = PL1_RW; |
| } |
| } |
| define_arm_cp_regs(cpu, id_cp_reginfo); |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_MPIDR)) { |
| define_arm_cp_regs(cpu, mpidr_cp_reginfo); |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_AUXCR)) { |
| ARMCPRegInfo auxcr = { |
| .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, |
| .access = PL1_RW, .type = ARM_CP_CONST, |
| .resetvalue = cpu->reset_auxcr |
| }; |
| define_one_arm_cp_reg(cpu, &auxcr); |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_CBAR)) { |
| ARMCPRegInfo cbar = { |
| .name = "CBAR", .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, |
| .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, |
| .fieldoffset = offsetof(CPUARMState, cp15.c15_config_base_address) |
| }; |
| define_one_arm_cp_reg(cpu, &cbar); |
| } |
| |
| /* Generic registers whose values depend on the implementation */ |
| { |
| ARMCPRegInfo sctlr = { |
| .name = "SCTLR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys), |
| .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, |
| .raw_writefn = raw_write, |
| }; |
| if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
| /* Normally we would always end the TB on an SCTLR write, but Linux |
| * arch/arm/mach-pxa/sleep.S expects two instructions following |
| * an MMU enable to execute from cache. Imitate this behaviour. |
| */ |
| sctlr.type |= ARM_CP_SUPPRESS_TB_END; |
| } |
| define_one_arm_cp_reg(cpu, &sctlr); |
| } |
| } |
| |
| ARMCPU *cpu_arm_init(const char *cpu_model) |
| { |
| ARMCPU *cpu; |
| ObjectClass *oc; |
| |
| oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model); |
| if (!oc) { |
| return NULL; |
| } |
| cpu = ARM_CPU(object_new(object_class_get_name(oc))); |
| |
| /* TODO this should be set centrally, once possible */ |
| object_property_set_bool(OBJECT(cpu), true, "realized", NULL); |
| |
| return cpu; |
| } |
| |
| void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) |
| { |
| CPUState *cs = CPU(cpu); |
| CPUARMState *env = &cpu->env; |
| |
| if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
| gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, |
| aarch64_fpu_gdb_set_reg, |
| 34, "aarch64-fpu.xml", 0); |
| } else if (arm_feature(env, ARM_FEATURE_NEON)) { |
| gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
| 51, "arm-neon.xml", 0); |
| } else if (arm_feature(env, ARM_FEATURE_VFP3)) { |
| gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
| 35, "arm-vfp3.xml", 0); |
| } else if (arm_feature(env, ARM_FEATURE_VFP)) { |
| gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
| 19, "arm-vfp.xml", 0); |
| } |
| } |
| |
| /* Sort alphabetically by type name, except for "any". */ |
| static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) |
| { |
| ObjectClass *class_a = (ObjectClass *)a; |
| ObjectClass *class_b = (ObjectClass *)b; |
| const char *name_a, *name_b; |
| |
| name_a = object_class_get_name(class_a); |
| name_b = object_class_get_name(class_b); |
| if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { |
| return 1; |
| } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { |
| return -1; |
| } else { |
| return strcmp(name_a, name_b); |
| } |
| } |
| |
| static void arm_cpu_list_entry(gpointer data, gpointer user_data) |
| { |
| ObjectClass *oc = data; |
| CPUListState *s = user_data; |
| const char *typename; |
| char *name; |
| |
| typename = object_class_get_name(oc); |
| name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); |
| (*s->cpu_fprintf)(s->file, " %s\n", |
| name); |
| g_free(name); |
| } |
| |
| void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) |
| { |
| CPUListState s = { |
| .file = f, |
| .cpu_fprintf = cpu_fprintf, |
| }; |
| GSList *list; |
| |
| list = object_class_get_list(TYPE_ARM_CPU, false); |
| list = g_slist_sort(list, arm_cpu_list_compare); |
| (*cpu_fprintf)(f, "Available CPUs:\n"); |
| g_slist_foreach(list, arm_cpu_list_entry, &s); |
| g_slist_free(list); |
| #ifdef CONFIG_KVM |
| /* The 'host' CPU type is dynamically registered only if KVM is |
| * enabled, so we have to special-case it here: |
| */ |
| (*cpu_fprintf)(f, " host (only available in KVM mode)\n"); |
| #endif |
| } |
| |
| static void arm_cpu_add_definition(gpointer data, gpointer user_data) |
| { |
| ObjectClass *oc = data; |
| CpuDefinitionInfoList **cpu_list = user_data; |
| CpuDefinitionInfoList *entry; |
| CpuDefinitionInfo *info; |
| const char *typename; |
| |
| typename = object_class_get_name(oc); |
| info = g_malloc0(sizeof(*info)); |
| info->name = g_strndup(typename, |
| strlen(typename) - strlen("-" TYPE_ARM_CPU)); |
| |
| entry = g_malloc0(sizeof(*entry)); |
| entry->value = info; |
| entry->next = *cpu_list; |
| *cpu_list = entry; |
| } |
| |
| CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) |
| { |
| CpuDefinitionInfoList *cpu_list = NULL; |
| GSList *list; |
| |
| list = object_class_get_list(TYPE_ARM_CPU, false); |
| g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); |
| g_slist_free(list); |
| |
| return cpu_list; |
| } |
| |
| static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, |
| void *opaque, int state, |
| int crm, int opc1, int opc2) |
| { |
| /* Private utility function for define_one_arm_cp_reg_with_opaque(): |
| * add a single reginfo struct to the hash table. |
| */ |
| uint32_t *key = g_new(uint32_t, 1); |
| ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); |
| int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; |
| if (r->state == ARM_CP_STATE_BOTH && state == ARM_CP_STATE_AA32) { |
| /* The AArch32 view of a shared register sees the lower 32 bits |
| * of a 64 bit backing field. It is not migratable as the AArch64 |
| * view handles that. AArch64 also handles reset. |
| * We assume it is a cp15 register. |
| */ |
| r2->cp = 15; |
| r2->type |= ARM_CP_NO_MIGRATE; |
| r2->resetfn = arm_cp_reset_ignore; |
| #ifdef HOST_WORDS_BIGENDIAN |
| if (r2->fieldoffset) { |
| r2->fieldoffset += sizeof(uint32_t); |
| } |
| #endif |
| } |
| if (state == ARM_CP_STATE_AA64) { |
| /* To allow abbreviation of ARMCPRegInfo |
| * definitions, we treat cp == 0 as equivalent to |
| * the value for "standard guest-visible sysreg". |
| */ |
| if (r->cp == 0) { |
| r2->cp = CP_REG_ARM64_SYSREG_CP; |
| } |
| *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, |
| r2->opc0, opc1, opc2); |
| } else { |
| *key = ENCODE_CP_REG(r2->cp, is64, r2->crn, crm, opc1, opc2); |
| } |
| if (opaque) { |
| r2->opaque = opaque; |
| } |
| /* Make sure reginfo passed to helpers for wildcarded regs |
| * has the correct crm/opc1/opc2 for this reg, not CP_ANY: |
| */ |
| r2->crm = crm; |
| r2->opc1 = opc1; |
| r2->opc2 = opc2; |
| /* By convention, for wildcarded registers only the first |
| * entry is used for migration; the others are marked as |
| * NO_MIGRATE so we don't try to transfer the register |
| * multiple times. Special registers (ie NOP/WFI) are |
| * never migratable. |
| */ |
| if ((r->type & ARM_CP_SPECIAL) || |
| ((r->crm == CP_ANY) && crm != 0) || |
| ((r->opc1 == CP_ANY) && opc1 != 0) || |
| ((r->opc2 == CP_ANY) && opc2 != 0)) { |
| r2->type |= ARM_CP_NO_MIGRATE; |
| } |
| |
| /* Overriding of an existing definition must be explicitly |
| * requested. |
| */ |
| if (!(r->type & ARM_CP_OVERRIDE)) { |
| ARMCPRegInfo *oldreg; |
| oldreg = g_hash_table_lookup(cpu->cp_regs, key); |
| if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { |
| fprintf(stderr, "Register redefined: cp=%d %d bit " |
| "crn=%d crm=%d opc1=%d opc2=%d, " |
| "was %s, now %s\n", r2->cp, 32 + 32 * is64, |
| r2->crn, r2->crm, r2->opc1, r2->opc2, |
| oldreg->name, r2->name); |
| g_assert_not_reached(); |
| } |
| } |
| g_hash_table_insert(cpu->cp_regs, key, r2); |
| } |
| |
| |
| void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, |
| const ARMCPRegInfo *r, void *opaque) |
| { |
| /* Define implementations of coprocessor registers. |
| * We store these in a hashtable because typically |
| * there are less than 150 registers in a space which |
| * is 16*16*16*8*8 = 262144 in size. |
| * Wildcarding is supported for the crm, opc1 and opc2 fields. |
| * If a register is defined twice then the second definition is |
| * used, so this can be used to define some generic registers and |
| * then override them with implementation specific variations. |
| * At least one of the original and the second definition should |
| * include ARM_CP_OVERRIDE in its type bits -- this is just a guard |
| * against accidental use. |
| * |
| * The state field defines whether the register is to be |
| * visible in the AArch32 or AArch64 execution state. If the |
| * state is set to ARM_CP_STATE_BOTH then we synthesise a |
| * reginfo structure for the AArch32 view, which sees the lower |
| * 32 bits of the 64 bit register. |
| * |
| * Only registers visible in AArch64 may set r->opc0; opc0 cannot |
| * be wildcarded. AArch64 registers are always considered to be 64 |
| * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of |
| * the register, if any. |
| */ |
| int crm, opc1, opc2, state; |
| int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; |
| int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; |
| int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; |
| int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; |
| int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; |
| int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; |
| /* 64 bit registers have only CRm and Opc1 fields */ |
| assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); |
| /* op0 only exists in the AArch64 encodings */ |
| assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); |
| /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ |
| assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); |
| /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 |
| * encodes a minimum access level for the register. We roll this |
| * runtime check into our general permission check code, so check |
| * here that the reginfo's specified permissions are strict enough |
| * to encompass the generic architectural permission check. |
| */ |
| if (r->state != ARM_CP_STATE_AA32) { |
| int mask = 0; |
| switch (r->opc1) { |
| case 0: case 1: case 2: |
| /* min_EL EL1 */ |
| mask = PL1_RW; |
| break; |
| case 3: |
| /* min_EL EL0 */ |
| mask = PL0_RW; |
| break; |
| case 4: |
| /* min_EL EL2 */ |
| mask = PL2_RW; |
| break; |
| case 5: |
| /* unallocated encoding, so not possible */ |
| assert(false); |
| break; |
| case 6: |
| /* min_EL EL3 */ |
| mask = PL3_RW; |
| break; |
| case 7: |
| /* min_EL EL1, secure mode only (we don't check the latter) */ |
| mask = PL1_RW; |
| break; |
| default: |
| /* broken reginfo with out-of-range opc1 */ |
| assert(false); |
| break; |
| } |
| /* assert our permissions are not too lax (stricter is fine) */ |
| assert((r->access & ~mask) == 0); |
| } |
| |
| /* Check that the register definition has enough info to handle |
| * reads and writes if they are permitted. |
| */ |
| if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { |
| if (r->access & PL3_R) { |
| assert(r->fieldoffset || r->readfn); |
| } |
| if (r->access & PL3_W) { |
| assert(r->fieldoffset || r->writefn); |
| } |
| } |
| /* Bad type field probably means missing sentinel at end of reg list */ |
| assert(cptype_valid(r->type)); |
| for (crm = crmmin; crm <= crmmax; crm++) { |
| for (opc1 = opc1min; opc1 <= opc1max; opc1++) { |
| for (opc2 = opc2min; opc2 <= opc2max; opc2++) { |
| for (state = ARM_CP_STATE_AA32; |
| state <= ARM_CP_STATE_AA64; state++) { |
| if (r->state != state && r->state != ARM_CP_STATE_BOTH) { |
| continue; |
| } |
| add_cpreg_to_hashtable(cpu, r, opaque, state, |
| crm, opc1, opc2); |
| } |
| } |
| } |
| } |
| } |
| |
| void define_arm_cp_regs_with_opaque(ARMCPU *cpu, |
| const ARMCPRegInfo *regs, void *opaque) |
| { |
| /* Define a whole list of registers */ |
| const ARMCPRegInfo *r; |
| for (r = regs; r->type != ARM_CP_SENTINEL; r++) { |
| define_one_arm_cp_reg_with_opaque(cpu, r, opaque); |
| } |
| } |
| |
| const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) |
| { |
| return g_hash_table_lookup(cpregs, &encoded_cp); |
| } |
| |
| void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Helper coprocessor write function for write-ignore registers */ |
| } |
| |
| uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| /* Helper coprocessor write function for read-as-zero registers */ |
| return 0; |
| } |
| |
| void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) |
| { |
| /* Helper coprocessor reset function for do-nothing-on-reset registers */ |
| } |
| |
| static int bad_mode_switch(CPUARMState *env, int mode) |
| { |
| /* Return true if it is not valid for us to switch to |
| * this CPU mode (ie all the UNPREDICTABLE cases in |
| * the ARM ARM CPSRWriteByInstr pseudocode). |
| */ |
| switch (mode) { |
| case ARM_CPU_MODE_USR: |
| case ARM_CPU_MODE_SYS: |
| case ARM_CPU_MODE_SVC: |
| case ARM_CPU_MODE_ABT: |
| case ARM_CPU_MODE_UND: |
| case ARM_CPU_MODE_IRQ: |
| case ARM_CPU_MODE_FIQ: |
| return 0; |
| default: |
| return 1; |
| } |
| } |
| |
| uint32_t cpsr_read(CPUARMState *env) |
| { |
| int ZF; |
| ZF = (env->ZF == 0); |
| return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | |
| (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) |
| | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) |
| | ((env->condexec_bits & 0xfc) << 8) |
| | (env->GE << 16); |
| } |
| |
| void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) |
| { |
| if (mask & CPSR_NZCV) { |
| env->ZF = (~val) & CPSR_Z; |
| env->NF = val; |
| env->CF = (val >> 29) & 1; |
| env->VF = (val << 3) & 0x80000000; |
| } |
| if (mask & CPSR_Q) |
| env->QF = ((val & CPSR_Q) != 0); |
| if (mask & CPSR_T) |
| env->thumb = ((val & CPSR_T) != 0); |
| if (mask & CPSR_IT_0_1) { |
| env->condexec_bits &= ~3; |
| env->condexec_bits |= (val >> 25) & 3; |
| } |
| if (mask & CPSR_IT_2_7) { |
| env->condexec_bits &= 3; |
| env->condexec_bits |= (val >> 8) & 0xfc; |
| } |
| if (mask & CPSR_GE) { |
| env->GE = (val >> 16) & 0xf; |
| } |
| |
| if ((env->uncached_cpsr ^ val) & mask & CPSR_M) { |
| if (bad_mode_switch(env, val & CPSR_M)) { |
| /* Attempt to switch to an invalid mode: this is UNPREDICTABLE. |
| * We choose to ignore the attempt and leave the CPSR M field |
| * untouched. |
| */ |
| mask &= ~CPSR_M; |
| } else { |
| switch_mode(env, val & CPSR_M); |
| } |
| } |
| mask &= ~CACHED_CPSR_BITS; |
| env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); |
| } |
| |
| /* Sign/zero extend */ |
| uint32_t HELPER(sxtb16)(uint32_t x) |
| { |
| uint32_t res; |
| res = (uint16_t)(int8_t)x; |
| res |= (uint32_t)(int8_t)(x >> 16) << 16; |
| return res; |
| } |
| |
| uint32_t HELPER(uxtb16)(uint32_t x) |
| { |
| uint32_t res; |
| res = (uint16_t)(uint8_t)x; |
| res |= (uint32_t)(uint8_t)(x >> 16) << 16; |
| return res; |
| } |
| |
| uint32_t HELPER(clz)(uint32_t x) |
| { |
| return clz32(x); |
| } |
| |
| int32_t HELPER(sdiv)(int32_t num, int32_t den) |
| { |
| if (den == 0) |
| return 0; |
| if (num == INT_MIN && den == -1) |
| return INT_MIN; |
| return num / den; |
| } |
| |
| uint32_t HELPER(udiv)(uint32_t num, uint32_t den) |
| { |
| if (den == 0) |
| return 0; |
| return num / den; |
| } |
| |
| uint32_t HELPER(rbit)(uint32_t x) |
| { |
| x = ((x & 0xff000000) >> 24) |
| | ((x & 0x00ff0000) >> 8) |
| | ((x & 0x0000ff00) << 8) |
| | ((x & 0x000000ff) << 24); |
| x = ((x & 0xf0f0f0f0) >> 4) |
| | ((x & 0x0f0f0f0f) << 4); |
| x = ((x & 0x88888888) >> 3) |
| | ((x & 0x44444444) >> 1) |
| | ((x & 0x22222222) << 1) |
| | ((x & 0x11111111) << 3); |
| return x; |
| } |
| |
| #if defined(CONFIG_USER_ONLY) |
| |
| void arm_cpu_do_interrupt(CPUState *cs) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| |
| env->exception_index = -1; |
| } |
| |
| int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw, |
| int mmu_idx) |
| { |
| if (rw == 2) { |
| env->exception_index = EXCP_PREFETCH_ABORT; |
| env->cp15.c6_insn = address; |
| } else { |
| env->exception_index = EXCP_DATA_ABORT; |
| env->cp15.c6_data = address; |
| } |
| return 1; |
| } |
| |
| /* These should probably raise undefined insn exceptions. */ |
| void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
| { |
| cpu_abort(env, "v7m_mrs %d\n", reg); |
| } |
| |
| uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
| { |
| cpu_abort(env, "v7m_mrs %d\n", reg); |
| return 0; |
| } |
| |
| void switch_mode(CPUARMState *env, int mode) |
| { |
| if (mode != ARM_CPU_MODE_USR) |
| cpu_abort(env, "Tried to switch out of user mode\n"); |
| } |
| |
| void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) |
| { |
| cpu_abort(env, "banked r13 write\n"); |
| } |
| |
| uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) |
| { |
| cpu_abort(env, "banked r13 read\n"); |
| return 0; |
| } |
| |
| #else |
| |
| /* Map CPU modes onto saved register banks. */ |
| int bank_number(int mode) |
| { |
| switch (mode) { |
| case ARM_CPU_MODE_USR: |
| case ARM_CPU_MODE_SYS: |
| return 0; |
| case ARM_CPU_MODE_SVC: |
| return 1; |
| case ARM_CPU_MODE_ABT: |
| return 2; |
| case ARM_CPU_MODE_UND: |
| return 3; |
| case ARM_CPU_MODE_IRQ: |
| return 4; |
| case ARM_CPU_MODE_FIQ: |
| return 5; |
| } |
| hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode); |
| } |
| |
| void switch_mode(CPUARMState *env, int mode) |
| { |
| int old_mode; |
| int i; |
| |
| old_mode = env->uncached_cpsr & CPSR_M; |
| if (mode == old_mode) |
| return; |
| |
| if (old_mode == ARM_CPU_MODE_FIQ) { |
| memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); |
| memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); |
| } else if (mode == ARM_CPU_MODE_FIQ) { |
| memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); |
| memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); |
| } |
| |
| i = bank_number(old_mode); |
| env->banked_r13[i] = env->regs[13]; |
| env->banked_r14[i] = env->regs[14]; |
| env->banked_spsr[i] = env->spsr; |
| |
| i = bank_number(mode); |
| env->regs[13] = env->banked_r13[i]; |
| env->regs[14] = env->banked_r14[i]; |
| env->spsr = env->banked_spsr[i]; |
| } |
| |
| static void v7m_push(CPUARMState *env, uint32_t val) |
| { |
| CPUState *cs = ENV_GET_CPU(env); |
| env->regs[13] -= 4; |
| stl_phys(cs->as, env->regs[13], val); |
| } |
| |
| static uint32_t v7m_pop(CPUARMState *env) |
| { |
| CPUState *cs = ENV_GET_CPU(env); |
| uint32_t val; |
| val = ldl_phys(cs->as, env->regs[13]); |
| env->regs[13] += 4; |
| return val; |
| } |
| |
| /* Switch to V7M main or process stack pointer. */ |
| static void switch_v7m_sp(CPUARMState *env, int process) |
| { |
| uint32_t tmp; |
| if (env->v7m.current_sp != process) { |
| tmp = env->v7m.other_sp; |
| env->v7m.other_sp = env->regs[13]; |
| env->regs[13] = tmp; |
| env->v7m.current_sp = process; |
| } |
| } |
| |
| static void do_v7m_exception_exit(CPUARMState *env) |
| { |
| uint32_t type; |
| uint32_t xpsr; |
| |
| type = env->regs[15]; |
| if (env->v7m.exception != 0) |
| armv7m_nvic_complete_irq(env->nvic, env->v7m.exception); |
| |
| /* Switch to the target stack. */ |
| switch_v7m_sp(env, (type & 4) != 0); |
| /* Pop registers. */ |
| env->regs[0] = v7m_pop(env); |
| env->regs[1] = v7m_pop(env); |
| env->regs[2] = v7m_pop(env); |
| env->regs[3] = v7m_pop(env); |
| env->regs[12] = v7m_pop(env); |
| env->regs[14] = v7m_pop(env); |
| env->regs[15] = v7m_pop(env); |
| xpsr = v7m_pop(env); |
| xpsr_write(env, xpsr, 0xfffffdff); |
| /* Undo stack alignment. */ |
| if (xpsr & 0x200) |
| env->regs[13] |= 4; |
| /* ??? The exception return type specifies Thread/Handler mode. However |
| this is also implied by the xPSR value. Not sure what to do |
| if there is a mismatch. */ |
| /* ??? Likewise for mismatches between the CONTROL register and the stack |
| pointer. */ |
| } |
| |
| /* Exception names for debug logging; note that not all of these |
| * precisely correspond to architectural exceptions. |
| */ |
| static const char * const excnames[] = { |
| [EXCP_UDEF] = "Undefined Instruction", |
| [EXCP_SWI] = "SVC", |
| [EXCP_PREFETCH_ABORT] = "Prefetch Abort", |
| [EXCP_DATA_ABORT] = "Data Abort", |
| [EXCP_IRQ] = "IRQ", |
| [EXCP_FIQ] = "FIQ", |
| [EXCP_BKPT] = "Breakpoint", |
| [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", |
| [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", |
| [EXCP_STREX] = "QEMU intercept of STREX", |
| }; |
| |
| static inline void arm_log_exception(int idx) |
| { |
| if (qemu_loglevel_mask(CPU_LOG_INT)) { |
| const char *exc = NULL; |
| |
| if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { |
| exc = excnames[idx]; |
| } |
| if (!exc) { |
| exc = "unknown"; |
| } |
| qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); |
| } |
| } |
| |
| void arm_v7m_cpu_do_interrupt(CPUState *cs) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| uint32_t xpsr = xpsr_read(env); |
| uint32_t lr; |
| uint32_t addr; |
| |
| arm_log_exception(env->exception_index); |
| |
| lr = 0xfffffff1; |
| if (env->v7m.current_sp) |
| lr |= 4; |
| if (env->v7m.exception == 0) |
| lr |= 8; |
| |
| /* For exceptions we just mark as pending on the NVIC, and let that |
| handle it. */ |
| /* TODO: Need to escalate if the current priority is higher than the |
| one we're raising. */ |
| switch (env->exception_index) { |
| case EXCP_UDEF: |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE); |
| return; |
| case EXCP_SWI: |
| /* The PC already points to the next instruction. */ |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC); |
| return; |
| case EXCP_PREFETCH_ABORT: |
| case EXCP_DATA_ABORT: |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM); |
| return; |
| case EXCP_BKPT: |
| if (semihosting_enabled) { |
| int nr; |
| nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; |
| if (nr == 0xab) { |
| env->regs[15] += 2; |
| env->regs[0] = do_arm_semihosting(env); |
| qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n"); |
| return; |
| } |
| } |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG); |
| return; |
| case EXCP_IRQ: |
| env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic); |
| break; |
| case EXCP_EXCEPTION_EXIT: |
| do_v7m_exception_exit(env); |
| return; |
| default: |
| cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index); |
| return; /* Never happens. Keep compiler happy. */ |
| } |
| |
| /* Align stack pointer. */ |
| /* ??? Should only do this if Configuration Control Register |
| STACKALIGN bit is set. */ |
| if (env->regs[13] & 4) { |
| env->regs[13] -= 4; |
| xpsr |= 0x200; |
| } |
| /* Switch to the handler mode. */ |
| v7m_push(env, xpsr); |
| v7m_push(env, env->regs[15]); |
| v7m_push(env, env->regs[14]); |
| v7m_push(env, env->regs[12]); |
| v7m_push(env, env->regs[3]); |
| v7m_push(env, env->regs[2]); |
| v7m_push(env, env->regs[1]); |
| v7m_push(env, env->regs[0]); |
| switch_v7m_sp(env, 0); |
| /* Clear IT bits */ |
| env->condexec_bits = 0; |
| env->regs[14] = lr; |
| addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4); |
| env->regs[15] = addr & 0xfffffffe; |
| env->thumb = addr & 1; |
| } |
| |
| /* Handle a CPU exception. */ |
| void arm_cpu_do_interrupt(CPUState *cs) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| uint32_t addr; |
| uint32_t mask; |
| int new_mode; |
| uint32_t offset; |
| |
| assert(!IS_M(env)); |
| |
| arm_log_exception(env->exception_index); |
| |
| /* TODO: Vectored interrupt controller. */ |
| switch (env->exception_index) { |
| case EXCP_UDEF: |
| new_mode = ARM_CPU_MODE_UND; |
| addr = 0x04; |
| mask = CPSR_I; |
| if (env->thumb) |
| offset = 2; |
| else |
| offset = 4; |
| break; |
| case EXCP_SWI: |
| if (semihosting_enabled) { |
| /* Check for semihosting interrupt. */ |
| if (env->thumb) { |
| mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code) |
| & 0xff; |
| } else { |
| mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code) |
| & 0xffffff; |
| } |
| /* Only intercept calls from privileged modes, to provide some |
| semblance of security. */ |
| if (((mask == 0x123456 && !env->thumb) |
| || (mask == 0xab && env->thumb)) |
| && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { |
| env->regs[0] = do_arm_semihosting(env); |
| qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n"); |
| return; |
| } |
| } |
| new_mode = ARM_CPU_MODE_SVC; |
| addr = 0x08; |
| mask = CPSR_I; |
| /* The PC already points to the next instruction. */ |
| offset = 0; |
| break; |
| case EXCP_BKPT: |
| /* See if this is a semihosting syscall. */ |
| if (env->thumb && semihosting_enabled) { |
| mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; |
| if (mask == 0xab |
| && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { |
| env->regs[15] += 2; |
| env->regs[0] = do_arm_semihosting(env); |
| qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n"); |
| return; |
| } |
| } |
| env->cp15.c5_insn = 2; |
| /* Fall through to prefetch abort. */ |
| case EXCP_PREFETCH_ABORT: |
| qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", |
| env->cp15.c5_insn, env->cp15.c6_insn); |
| new_mode = ARM_CPU_MODE_ABT; |
| addr = 0x0c; |
| mask = CPSR_A | CPSR_I; |
| offset = 4; |
| break; |
| case EXCP_DATA_ABORT: |
| qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", |
| env->cp15.c5_data, env->cp15.c6_data); |
| new_mode = ARM_CPU_MODE_ABT; |
| addr = 0x10; |
| mask = CPSR_A | CPSR_I; |
| offset = 8; |
| break; |
| case EXCP_IRQ: |
| new_mode = ARM_CPU_MODE_IRQ; |
| addr = 0x18; |
| /* Disable IRQ and imprecise data aborts. */ |
| mask = CPSR_A | CPSR_I; |
| offset = 4; |
| break; |
| case EXCP_FIQ: |
| new_mode = ARM_CPU_MODE_FIQ; |
| addr = 0x1c; |
| /* Disable FIQ, IRQ and imprecise data aborts. */ |
| mask = CPSR_A | CPSR_I | CPSR_F; |
| offset = 4; |
| break; |
| default: |
| cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index); |
| return; /* Never happens. Keep compiler happy. */ |
| } |
| /* High vectors. */ |
| if (env->cp15.c1_sys & SCTLR_V) { |
| /* when enabled, base address cannot be remapped. */ |
| addr += 0xffff0000; |
| } else { |
| /* ARM v7 architectures provide a vector base address register to remap |
| * the interrupt vector table. |
| * This register is only followed in non-monitor mode, and has a secure |
| * and un-secure copy. Since the cpu is always in a un-secure operation |
| * and is never in monitor mode this feature is always active. |
| * Note: only bits 31:5 are valid. |
| */ |
| addr += env->cp15.c12_vbar; |
| } |
| switch_mode (env, new_mode); |
| env->spsr = cpsr_read(env); |
| /* Clear IT bits. */ |
| env->condexec_bits = 0; |
| /* Switch to the new mode, and to the correct instruction set. */ |
| env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; |
| env->uncached_cpsr |= mask; |
| /* this is a lie, as the was no c1_sys on V4T/V5, but who cares |
| * and we should just guard the thumb mode on V4 */ |
| if (arm_feature(env, ARM_FEATURE_V4T)) { |
| env->thumb = (env->cp15.c1_sys & SCTLR_TE) != 0; |
| } |
| env->regs[14] = env->regs[15] + offset; |
| env->regs[15] = addr; |
| cs->interrupt_request |= CPU_INTERRUPT_EXITTB; |
| } |
| |
| /* Check section/page access permissions. |
| Returns the page protection flags, or zero if the access is not |
| permitted. */ |
| static inline int check_ap(CPUARMState *env, int ap, int domain_prot, |
| int access_type, int is_user) |
| { |
| int prot_ro; |
| |
| if (domain_prot == 3) { |
| return PAGE_READ | PAGE_WRITE; |
| } |
| |
| if (access_type == 1) |
| prot_ro = 0; |
| else |
| prot_ro = PAGE_READ; |
| |
| switch (ap) { |
| case 0: |
| if (arm_feature(env, ARM_FEATURE_V7)) { |
| return 0; |
| } |
| if (access_type == 1) |
| return 0; |
| switch (env->cp15.c1_sys & (SCTLR_S | SCTLR_R)) { |
| case SCTLR_S: |
| return is_user ? 0 : PAGE_READ; |
| case SCTLR_R: |
| return PAGE_READ; |
| default: |
| return 0; |
| } |
| case 1: |
| return is_user ? 0 : PAGE_READ | PAGE_WRITE; |
| case 2: |
| if (is_user) |
| return prot_ro; |
| else |
| return PAGE_READ | PAGE_WRITE; |
| case 3: |
| return PAGE_READ | PAGE_WRITE; |
| case 4: /* Reserved. */ |
| return 0; |
| case 5: |
| return is_user ? 0 : prot_ro; |
| case 6: |
| return prot_ro; |
| case 7: |
| if (!arm_feature (env, ARM_FEATURE_V6K)) |
| return 0; |
| return prot_ro; |
| default: |
| abort(); |
| } |
| } |
| |
| static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address) |
| { |
| uint32_t table; |
| |
| if (address & env->cp15.c2_mask) |
| table = env->cp15.c2_base1 & 0xffffc000; |
| else |
| table = env->cp15.c2_base0 & env->cp15.c2_base_mask; |
| |
| table |= (address >> 18) & 0x3ffc; |
| return table; |
| } |
| |
| static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type, |
| int is_user, hwaddr *phys_ptr, |
| int *prot, target_ulong *page_size) |
| { |
| CPUState *cs = ENV_GET_CPU(env); |
| int code; |
| uint32_t table; |
| uint32_t desc; |
| int type; |
| int ap; |
| int domain; |
| int domain_prot; |
| hwaddr phys_addr; |
| |
| /* Pagetable walk. */ |
| /* Lookup l1 descriptor. */ |
| table = get_level1_table_address(env, address); |
| desc = ldl_phys(cs->as, table); |
| type = (desc & 3); |
| domain = (desc >> 5) & 0x0f; |
| domain_prot = (env->cp15.c3 >> (domain * 2)) & 3; |
| if (type == 0) { |
| /* Section translation fault. */ |
| code = 5; |
| goto do_fault; |
| } |
| if (domain_prot == 0 || domain_prot == 2) { |
| if (type == 2) |
| code = 9; /* Section domain fault. */ |
| else |
| code = 11; /* Page domain fault. */ |
| goto do_fault; |
| } |
| if (type == 2) { |
| /* 1Mb section. */ |
| phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); |
| ap = (desc >> 10) & 3; |
| code = 13; |
| *page_size = 1024 * 1024; |
| } else { |
| /* Lookup l2 entry. */ |
| if (type == 1) { |
| /* Coarse pagetable. */ |
| table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); |
| } else { |
| /* Fine pagetable. */ |
| table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); |
| } |
| desc = ldl_phys(cs->as, table); |
| switch (desc & 3) { |
| case 0: /* Page translation fault. */ |
| code = 7; |
| goto do_fault; |
| case 1: /* 64k page. */ |
| phys_addr = (desc & 0xffff0000) | (address & 0xffff); |
| ap = (desc >> (4 + ((address >> 13) & 6))) & 3; |
| *page_size = 0x10000; |
| break; |
| case 2: /* 4k page. */ |
| phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
| ap = (desc >> (4 + ((address >> 13) & 6))) & 3; |
| *page_size = 0x1000; |
| break; |
| case 3: /* 1k page. */ |
| if (type == 1) { |
| if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
| phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
| } else { |
| /* Page translation fault. */ |
| code = 7; |
| goto do_fault; |
| } |
| } else { |
| phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); |
| } |
| ap = (desc >> 4) & 3; |
| *page_size = 0x400; |
| break; |
| default: |
| /* Never happens, but compiler isn't smart enough to tell. */ |
| abort(); |
| } |
| code = 15; |
| } |
| *prot = check_ap(env, ap, domain_prot, access_type, is_user); |
| if (!*prot) { |
| /* Access permission fault. */ |
| goto do_fault; |
| } |
| *prot |= PAGE_EXEC; |
| *phys_ptr = phys_addr; |
| return 0; |
| do_fault: |
| return code | (domain << 4); |
| } |
| |
| static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type, |
| int is_user, hwaddr *phys_ptr, |
| int *prot, target_ulong *page_size) |
| { |
| CPUState *cs = ENV_GET_CPU(env); |
| int code; |
| uint32_t table; |
| uint32_t desc; |
| uint32_t xn; |
| uint32_t pxn = 0; |
| int type; |
| int ap; |
| int domain = 0; |
| int domain_prot; |
| hwaddr phys_addr; |
| |
| /* Pagetable walk. */ |
| /* Lookup l1 descriptor. */ |
| table = get_level1_table_address(env, address); |
| desc = ldl_phys(cs->as, table); |
| type = (desc & 3); |
| if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { |
| /* Section translation fault, or attempt to use the encoding |
| * which is Reserved on implementations without PXN. |
| */ |
| code = 5; |
| goto do_fault; |
| } |
| if ((type == 1) || !(desc & (1 << 18))) { |
| /* Page or Section. */ |
| domain = (desc >> 5) & 0x0f; |
| } |
| domain_prot = (env->cp15.c3 >> (domain * 2)) & 3; |
| if (domain_prot == 0 || domain_prot == 2) { |
| if (type != 1) { |
| code = 9; /* Section domain fault. */ |
| } else { |
| code = 11; /* Page domain fault. */ |
| } |
| goto do_fault; |
| } |
| if (type != 1) { |
| if (desc & (1 << 18)) { |
| /* Supersection. */ |
| phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); |
| *page_size = 0x1000000; |
| } else { |
| /* Section. */ |
| phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); |
| *page_size = 0x100000; |
| } |
| ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); |
| xn = desc & (1 << 4); |
| pxn = desc & 1; |
| code = 13; |
| } else { |
| if (arm_feature(env, ARM_FEATURE_PXN)) { |
| pxn = (desc >> 2) & 1; |
| } |
| /* Lookup l2 entry. */ |
| table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); |
| desc = ldl_phys(cs->as, table); |
| ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); |
| switch (desc & 3) { |
| case 0: /* Page translation fault. */ |
| code = 7; |
| goto do_fault; |
| case 1: /* 64k page. */ |
| phys_addr = (desc & 0xffff0000) | (address & 0xffff); |
| xn = desc & (1 << 15); |
| *page_size = 0x10000; |
| break; |
| case 2: case 3: /* 4k page. */ |
| phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
| xn = desc & 1; |
| *page_size = 0x1000; |
| break; |
| default: |
| /* Never happens, but compiler isn't smart enough to tell. */ |
| abort(); |
| } |
| code = 15; |
| } |
| if (domain_prot == 3) { |
| *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| } else { |
| if (pxn && !is_user) { |
| xn = 1; |
| } |
| if (xn && access_type == 2) |
| goto do_fault; |
| |
| /* The simplified model uses AP[0] as an access control bit. */ |
| if ((env->cp15.c1_sys & SCTLR_AFE) && (ap & 1) == 0) { |
| /* Access flag fault. */ |
| code = (code == 15) ? 6 : 3; |
| goto do_fault; |
| } |
| *prot = check_ap(env, ap, domain_prot, access_type, is_user); |
| if (!*prot) { |
| /* Access permission fault. */ |
| goto do_fault; |
| } |
| if (!xn) { |
| *prot |= PAGE_EXEC; |
| } |
| } |
| *phys_ptr = phys_addr; |
| return 0; |
| do_fault: |
| return code | (domain << 4); |
| } |
| |
| /* Fault type for long-descriptor MMU fault reporting; this corresponds |
| * to bits [5..2] in the STATUS field in long-format DFSR/IFSR. |
| */ |
| typedef enum { |
| translation_fault = 1, |
| access_fault = 2, |
| permission_fault = 3, |
| } MMUFaultType; |
| |
| static int get_phys_addr_lpae(CPUARMState *env, uint32_t address, |
| int access_type, int is_user, |
| hwaddr *phys_ptr, int *prot, |
| target_ulong *page_size_ptr) |
| { |
| CPUState *cs = ENV_GET_CPU(env); |
| /* Read an LPAE long-descriptor translation table. */ |
| MMUFaultType fault_type = translation_fault; |
| uint32_t level = 1; |
| uint32_t epd; |
| uint32_t tsz; |
| uint64_t ttbr; |
| int ttbr_select; |
| int n; |
| hwaddr descaddr; |
| uint32_t tableattrs; |
| target_ulong page_size; |
| uint32_t attrs; |
| |
| /* Determine whether this address is in the region controlled by |
| * TTBR0 or TTBR1 (or if it is in neither region and should fault). |
| * This is a Non-secure PL0/1 stage 1 translation, so controlled by |
| * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: |
| */ |
| uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3); |
| uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3); |
| if (t0sz && !extract32(address, 32 - t0sz, t0sz)) { |
| /* there is a ttbr0 region and we are in it (high bits all zero) */ |
| ttbr_select = 0; |
| } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) { |
| /* there is a ttbr1 region and we are in it (high bits all one) */ |
| ttbr_select = 1; |
| } else if (!t0sz) { |
| /* ttbr0 region is "everything not in the ttbr1 region" */ |
| ttbr_select = 0; |
| } else if (!t1sz) { |
| /* ttbr1 region is "everything not in the ttbr0 region" */ |
| ttbr_select = 1; |
| } else { |
| /* in the gap between the two regions, this is a Translation fault */ |
| fault_type = translation_fault; |
| goto do_fault; |
| } |
| |
| /* Note that QEMU ignores shareability and cacheability attributes, |
| * so we don't need to do anything with the SH, ORGN, IRGN fields |
| * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the |
| * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently |
| * implement any ASID-like capability so we can ignore it (instead |
| * we will always flush the TLB any time the ASID is changed). |
| */ |
| if (ttbr_select == 0) { |
| ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0; |
| epd = extract32(env->cp15.c2_control, 7, 1); |
| tsz = t0sz; |
| } else { |
| ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1; |
| epd = extract32(env->cp15.c2_control, 23, 1); |
| tsz = t1sz; |
| } |
| |
| if (epd) { |
| /* Translation table walk disabled => Translation fault on TLB miss */ |
| goto do_fault; |
| } |
| |
| /* If the region is small enough we will skip straight to a 2nd level |
| * lookup. This affects the number of bits of the address used in |
| * combination with the TTBR to find the first descriptor. ('n' here |
| * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are |
| * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero). |
| */ |
| if (tsz > 1) { |
| level = 2; |
| n = 14 - tsz; |
| } else { |
| n = 5 - tsz; |
| } |
| |
| /* Clear the vaddr bits which aren't part of the within-region address, |
| * so that we don't have to special case things when calculating the |
| * first descriptor address. |
| */ |
| address &= (0xffffffffU >> tsz); |
| |
| /* Now we can extract the actual base address from the TTBR */ |
| descaddr = extract64(ttbr, 0, 40); |
| descaddr &= ~((1ULL << n) - 1); |
| |
| tableattrs = 0; |
| for (;;) { |
| uint64_t descriptor; |
| |
| descaddr |= ((address >> (9 * (4 - level))) & 0xff8); |
| descriptor = ldq_phys(cs->as, descaddr); |
| if (!(descriptor & 1) || |
| (!(descriptor & 2) && (level == 3))) { |
| /* Invalid, or the Reserved level 3 encoding */ |
| goto do_fault; |
| } |
| descaddr = descriptor & 0xfffffff000ULL; |
| |
| if ((descriptor & 2) && (level < 3)) { |
| /* Table entry. The top five bits are attributes which may |
| * propagate down through lower levels of the table (and |
| * which are all arranged so that 0 means "no effect", so |
| * we can gather them up by ORing in the bits at each level). |
| */ |
| tableattrs |= extract64(descriptor, 59, 5); |
| level++; |
| continue; |
| } |
| /* Block entry at level 1 or 2, or page entry at level 3. |
| * These are basically the same thing, although the number |
| * of bits we pull in from the vaddr varies. |
| */ |
| page_size = (1 << (39 - (9 * level))); |
| descaddr |= (address & (page_size - 1)); |
| /* Extract attributes from the descriptor and merge with table attrs */ |
| attrs = extract64(descriptor, 2, 10) |
| | (extract64(descriptor, 52, 12) << 10); |
| attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ |
| attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ |
| /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 |
| * means "force PL1 access only", which means forcing AP[1] to 0. |
| */ |
| if (extract32(tableattrs, 2, 1)) { |
| attrs &= ~(1 << 4); |
| } |
| /* Since we're always in the Non-secure state, NSTable is ignored. */ |
| break; |
| } |
| /* Here descaddr is the final physical address, and attributes |
| * are all in attrs. |
| */ |
| fault_type = access_fault; |
| if ((attrs & (1 << 8)) == 0) { |
| /* Access flag */ |
| goto do_fault; |
| } |
| fault_type = permission_fault; |
| if (is_user && !(attrs & (1 << 4))) { |
| /* Unprivileged access not enabled */ |
| goto do_fault; |
| } |
| *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) { |
| /* XN or PXN */ |
| if (access_type == 2) { |
| goto do_fault; |
| } |
| *prot &= ~PAGE_EXEC; |
| } |
| if (attrs & (1 << 5)) { |
| /* Write access forbidden */ |
| if (access_type == 1) { |
| goto do_fault; |
| } |
| *prot &= ~PAGE_WRITE; |
| } |
| |
| *phys_ptr = descaddr; |
| *page_size_ptr = page_size; |
| return 0; |
| |
| do_fault: |
| /* Long-descriptor format IFSR/DFSR value */ |
| return (1 << 9) | (fault_type << 2) | level; |
| } |
| |
| static int get_phys_addr_mpu(CPUARMState *env, uint32_t address, |
| int access_type, int is_user, |
| hwaddr *phys_ptr, int *prot) |
| { |
| int n; |
| uint32_t mask; |
| uint32_t base; |
| |
| *phys_ptr = address; |
| for (n = 7; n >= 0; n--) { |
| base = env->cp15.c6_region[n]; |
| if ((base & 1) == 0) |
| continue; |
| mask = 1 << ((base >> 1) & 0x1f); |
| /* Keep this shift separate from the above to avoid an |
| (undefined) << 32. */ |
| mask = (mask << 1) - 1; |
| if (((base ^ address) & ~mask) == 0) |
| break; |
| } |
| if (n < 0) |
| return 2; |
| |
| if (access_type == 2) { |
| mask = env->cp15.c5_insn; |
| } else { |
| mask = env->cp15.c5_data; |
| } |
| mask = (mask >> (n * 4)) & 0xf; |
| switch (mask) { |
| case 0: |
| return 1; |
| case 1: |
| if (is_user) |
| return 1; |
| *prot = PAGE_READ | PAGE_WRITE; |
| break; |
| case 2: |
| *prot = PAGE_READ; |
| if (!is_user) |
| *prot |= PAGE_WRITE; |
| break; |
| case 3: |
| *prot = PAGE_READ | PAGE_WRITE; |
| break; |
| case 5: |
| if (is_user) |
| return 1; |
| *prot = PAGE_READ; |
| break; |
| case 6: |
| *prot = PAGE_READ; |
| break; |
| default: |
| /* Bad permission. */ |
| return 1; |
| } |
| *prot |= PAGE_EXEC; |
| return 0; |
| } |
| |
| /* get_phys_addr - get the physical address for this virtual address |
| * |
| * Find the physical address corresponding to the given virtual address, |
| * by doing a translation table walk on MMU based systems or using the |
| * MPU state on MPU based systems. |
| * |
| * Returns 0 if the translation was successful. Otherwise, phys_ptr, |
| * prot and page_size are not filled in, and the return value provides |
| * information on why the translation aborted, in the format of a |
| * DFSR/IFSR fault register, with the following caveats: |
| * * we honour the short vs long DFSR format differences. |
| * * the WnR bit is never set (the caller must do this). |
| * * for MPU based systems we don't bother to return a full FSR format |
| * value. |
| * |
| * @env: CPUARMState |
| * @address: virtual address to get physical address for |
| * @access_type: 0 for read, 1 for write, 2 for execute |
| * @is_user: 0 for privileged access, 1 for user |
| * @phys_ptr: set to the physical address corresponding to the virtual address |
| * @prot: set to the permissions for the page containing phys_ptr |
| * @page_size: set to the size of the page containing phys_ptr |
| */ |
| static inline int get_phys_addr(CPUARMState *env, uint32_t address, |
| int access_type, int is_user, |
| hwaddr *phys_ptr, int *prot, |
| target_ulong *page_size) |
| { |
| /* Fast Context Switch Extension. */ |
| if (address < 0x02000000) |
| address += env->cp15.c13_fcse; |
| |
| if ((env->cp15.c1_sys & SCTLR_M) == 0) { |
| /* MMU/MPU disabled. */ |
| *phys_ptr = address; |
| *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| *page_size = TARGET_PAGE_SIZE; |
| return 0; |
| } else if (arm_feature(env, ARM_FEATURE_MPU)) { |
| *page_size = TARGET_PAGE_SIZE; |
| return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr, |
| prot); |
| } else if (extended_addresses_enabled(env)) { |
| return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr, |
| prot, page_size); |
| } else if (env->cp15.c1_sys & SCTLR_XP) { |
| return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr, |
| prot, page_size); |
| } else { |
| return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr, |
| prot, page_size); |
| } |
| } |
| |
| int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, |
| int access_type, int mmu_idx) |
| { |
| hwaddr phys_addr; |
| target_ulong page_size; |
| int prot; |
| int ret, is_user; |
| |
| is_user = mmu_idx == MMU_USER_IDX; |
| ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot, |
| &page_size); |
| if (ret == 0) { |
| /* Map a single [sub]page. */ |
| phys_addr &= ~(hwaddr)0x3ff; |
| address &= ~(uint32_t)0x3ff; |
| tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size); |
| return 0; |
| } |
| |
| if (access_type == 2) { |
| env->cp15.c5_insn = ret; |
| env->cp15.c6_insn = address; |
| env->exception_index = EXCP_PREFETCH_ABORT; |
| } else { |
| env->cp15.c5_data = ret; |
| if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6)) |
| env->cp15.c5_data |= (1 << 11); |
| env->cp15.c6_data = address; |
| env->exception_index = EXCP_DATA_ABORT; |
| } |
| return 1; |
| } |
| |
| hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| hwaddr phys_addr; |
| target_ulong page_size; |
| int prot; |
| int ret; |
| |
| ret = get_phys_addr(&cpu->env, addr, 0, 0, &phys_addr, &prot, &page_size); |
| |
| if (ret != 0) { |
| return -1; |
| } |
| |
| return phys_addr; |
| } |
| |
| void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) |
| { |
| if ((env->uncached_cpsr & CPSR_M) == mode) { |
| env->regs[13] = val; |
| } else { |
| env->banked_r13[bank_number(mode)] = val; |
| } |
| } |
| |
| uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) |
| { |
| if ((env->uncached_cpsr & CPSR_M) == mode) { |
| return env->regs[13]; |
| } else { |
| return env->banked_r13[bank_number(mode)]; |
| } |
| } |
| |
| uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
| { |
| switch (reg) { |
| case 0: /* APSR */ |
| return xpsr_read(env) & 0xf8000000; |
| case 1: /* IAPSR */ |
| return xpsr_read(env) & 0xf80001ff; |
| case 2: /* EAPSR */ |
| return xpsr_read(env) & 0xff00fc00; |
| case 3: /* xPSR */ |
| return xpsr_read(env) & 0xff00fdff; |
| case 5: /* IPSR */ |
| return xpsr_read(env) & 0x000001ff; |
| case 6: /* EPSR */ |
| return xpsr_read(env) & 0x0700fc00; |
| case 7: /* IEPSR */ |
| return xpsr_read(env) & 0x0700edff; |
| case 8: /* MSP */ |
| return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13]; |
| case 9: /* PSP */ |
| return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp; |
| case 16: /* PRIMASK */ |
| return (env->uncached_cpsr & CPSR_I) != 0; |
| case 17: /* BASEPRI */ |
| case 18: /* BASEPRI_MAX */ |
| return env->v7m.basepri; |
| case 19: /* FAULTMASK */ |
| return (env->uncached_cpsr & CPSR_F) != 0; |
| case 20: /* CONTROL */ |
| return env->v7m.control; |
| default: |
| /* ??? For debugging only. */ |
| cpu_abort(env, "Unimplemented system register read (%d)\n", reg); |
| return 0; |
| } |
| } |
| |
| void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
| { |
| switch (reg) { |
| case 0: /* APSR */ |
| xpsr_write(env, val, 0xf8000000); |
| break; |
| case 1: /* IAPSR */ |
| xpsr_write(env, val, 0xf8000000); |
| break; |
| case 2: /* EAPSR */ |
| xpsr_write(env, val, 0xfe00fc00); |
| break; |
| case 3: /* xPSR */ |
| xpsr_write(env, val, 0xfe00fc00); |
| break; |
| case 5: /* IPSR */ |
| /* IPSR bits are readonly. */ |
| break; |
| case 6: /* EPSR */ |
| xpsr_write(env, val, 0x0600fc00); |
| break; |
| case 7: /* IEPSR */ |
| xpsr_write(env, val, 0x0600fc00); |
| break; |
| case 8: /* MSP */ |
| if (env->v7m.current_sp) |
| env->v7m.other_sp = val; |
| else |
| env->regs[13] = val; |
| break; |
| case 9: /* PSP */ |
| if (env->v7m.current_sp) |
| env->regs[13] = val; |
| else |
| env->v7m.other_sp = val; |
| break; |
| case 16: /* PRIMASK */ |
| if (val & 1) |
| env->uncached_cpsr |= CPSR_I; |
| else |
| env->uncached_cpsr &= ~CPSR_I; |
| break; |
| case 17: /* BASEPRI */ |
| env->v7m.basepri = val & 0xff; |
| break; |
| case 18: /* BASEPRI_MAX */ |
| val &= 0xff; |
| if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0)) |
| env->v7m.basepri = val; |
| break; |
| case 19: /* FAULTMASK */ |
| if (val & 1) |
| env->uncached_cpsr |= CPSR_F; |
| else |
| env->uncached_cpsr &= ~CPSR_F; |
| break; |
| case 20: /* CONTROL */ |
| env->v7m.control = val & 3; |
| switch_v7m_sp(env, (val & 2) != 0); |
| break; |
| default: |
| /* ??? For debugging only. */ |
| cpu_abort(env, "Unimplemented system register write (%d)\n", reg); |
| return; |
| } |
| } |
| |
| #endif |
| |
| /* Note that signed overflow is undefined in C. The following routines are |
| careful to use unsigned types where modulo arithmetic is required. |
| Failure to do so _will_ break on newer gcc. */ |
| |
| /* Signed saturating arithmetic. */ |
| |
| /* Perform 16-bit signed saturating addition. */ |
| static inline uint16_t add16_sat(uint16_t a, uint16_t b) |
| { |
| uint16_t res; |
| |
| res = a + b; |
| if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { |
| if (a & 0x8000) |
| res = 0x8000; |
| else |
| res = 0x7fff; |
| } |
| return res; |
| } |
| |
| /* Perform 8-bit signed saturating addition. */ |
| static inline uint8_t add8_sat(uint8_t a, uint8_t b) |
| { |
| uint8_t res; |
| |
| res = a + b; |
| if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { |
| if (a & 0x80) |
| res = 0x80; |
| else |
| res = 0x7f; |
| } |
| return res; |
| } |
| |
| /* Perform 16-bit signed saturating subtraction. */ |
| static inline uint16_t sub16_sat(uint16_t a, uint16_t b) |
| { |
| uint16_t res; |
| |
| res = a - b; |
| if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { |
| if (a & 0x8000) |
| res = 0x8000; |
| else |
| res = 0x7fff; |
| } |
| return res; |
| } |
| |
| /* Perform 8-bit signed saturating subtraction. */ |
| static inline uint8_t sub8_sat(uint8_t a, uint8_t b) |
| { |
| uint8_t res; |
| |
| res = a - b; |
| if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { |
| if (a & 0x80) |
| res = 0x80; |
| else |
| res = 0x7f; |
| } |
| return res; |
| } |
| |
| #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); |
| #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); |
| #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); |
| #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); |
| #define PFX q |
| |
| #include "op_addsub.h" |
| |
| /* Unsigned saturating arithmetic. */ |
| static inline uint16_t add16_usat(uint16_t a, uint16_t b) |
| { |
| uint16_t res; |
| res = a + b; |
| if (res < a) |
| res = 0xffff; |
| return res; |
| } |
| |
| static inline uint16_t sub16_usat(uint16_t a, uint16_t b) |
| { |
| if (a > b) |
| return a - b; |
| else |
| return 0; |
| } |
| |
| static inline uint8_t add8_usat(uint8_t a, uint8_t b) |
| { |
| uint8_t res; |
| res = a + b; |
| if (res < a) |
| res = 0xff; |
| return res; |
| } |
| |
| static inline uint8_t sub8_usat(uint8_t a, uint8_t b) |
| { |
| if (a > b) |
| return a - b; |
| else |
| return 0; |
| } |
| |
| #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); |
| #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); |
| #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); |
| #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); |
| #define PFX uq |
| |
| #include "op_addsub.h" |
| |
| /* Signed modulo arithmetic. */ |
| #define SARITH16(a, b, n, op) do { \ |
| int32_t sum; \ |
| sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ |
| RESULT(sum, n, 16); \ |
| if (sum >= 0) \ |
| ge |= 3 << (n * 2); \ |
| } while(0) |
| |
| #define SARITH8(a, b, n, op) do { \ |
| int32_t sum; \ |
| sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ |
| RESULT(sum, n, 8); \ |
| if (sum >= 0) \ |
| ge |= 1 << n; \ |
| } while(0) |
| |
| |
| #define ADD16(a, b, n) SARITH16(a, b, n, +) |
| #define SUB16(a, b, n) SARITH16(a, b, n, -) |
| #define ADD8(a, b, n) SARITH8(a, b, n, +) |
| #define SUB8(a, b, n) SARITH8(a, b, n, -) |
| #define PFX s |
| #define ARITH_GE |
| |
| #include "op_addsub.h" |
| |
| /* Unsigned modulo arithmetic. */ |
| #define ADD16(a, b, n) do { \ |
| uint32_t sum; \ |
| sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ |
| RESULT(sum, n, 16); \ |
| if ((sum >> 16) == 1) \ |
| ge |= 3 << (n * 2); \ |
| } while(0) |
| |
| #define ADD8(a, b, n) do { \ |
| uint32_t sum; \ |
| sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ |
| RESULT(sum, n, 8); \ |
| if ((sum >> 8) == 1) \ |
| ge |= 1 << n; \ |
| } while(0) |
| |
| #define SUB16(a, b, n) do { \ |
| uint32_t sum; \ |
| sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ |
| RESULT(sum, n, 16); \ |
| if ((sum >> 16) == 0) \ |
| ge |= 3 << (n * 2); \ |
| } while(0) |
| |
| #define SUB8(a, b, n) do { \ |
| uint32_t sum; \ |
| sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ |
| RESULT(sum, n, 8); \ |
| if ((sum >> 8) == 0) \ |
| ge |= 1 << n; \ |
| } while(0) |
| |
| #define PFX u |
| #define ARITH_GE |
| |
| #include "op_addsub.h" |
| |
| /* Halved signed arithmetic. */ |
| #define ADD16(a, b, n) \ |
| RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) |
| #define SUB16(a, b, n) \ |
| RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) |
| #define ADD8(a, b, n) \ |
| RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) |
| #define SUB8(a, b, n) \ |
| RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) |
| #define PFX sh |
| |
| #include "op_addsub.h" |
| |
| /* Halved unsigned arithmetic. */ |
| #define ADD16(a, b, n) \ |
| RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) |
| #define SUB16(a, b, n) \ |
| RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) |
| #define ADD8(a, b, n) \ |
| RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) |
| #define SUB8(a, b, n) \ |
| RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) |
| #define PFX uh |
| |
| #include "op_addsub.h" |
| |
| static inline uint8_t do_usad(uint8_t a, uint8_t b) |
| { |
| if (a > b) |
| return a - b; |
| else |
| return b - a; |
| } |
| |
| /* Unsigned sum of absolute byte differences. */ |
| uint32_t HELPER(usad8)(uint32_t a, uint32_t b) |
| { |
| uint32_t sum; |
| sum = do_usad(a, b); |
| sum += do_usad(a >> 8, b >> 8); |
| sum += do_usad(a >> 16, b >>16); |
| sum += do_usad(a >> 24, b >> 24); |
| return sum; |
| } |
| |
| /* For ARMv6 SEL instruction. */ |
| uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) |
| { |
| uint32_t mask; |
| |
| mask = 0; |
| if (flags & 1) |
| mask |= 0xff; |
| if (flags & 2) |
| mask |= 0xff00; |
| if (flags & 4) |
| mask |= 0xff0000; |
| if (flags & 8) |
| mask |= 0xff000000; |
| return (a & mask) | (b & ~mask); |
| } |
| |
| /* VFP support. We follow the convention used for VFP instructions: |
| Single precision routines have a "s" suffix, double precision a |
| "d" suffix. */ |
| |
| /* Convert host exception flags to vfp form. */ |
| static inline int vfp_exceptbits_from_host(int host_bits) |
| { |
| int target_bits = 0; |
| |
| if (host_bits & float_flag_invalid) |
| target_bits |= 1; |
| if (host_bits & float_flag_divbyzero) |
| target_bits |= 2; |
| if (host_bits & float_flag_overflow) |
| target_bits |= 4; |
| if (host_bits & (float_flag_underflow | float_flag_output_denormal)) |
| target_bits |= 8; |
| if (host_bits & float_flag_inexact) |
| target_bits |= 0x10; |
| if (host_bits & float_flag_input_denormal) |
| target_bits |= 0x80; |
| return target_bits; |
| } |
| |
| uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) |
| { |
| int i; |
| uint32_t fpscr; |
| |
| fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) |
| | (env->vfp.vec_len << 16) |
| | (env->vfp.vec_stride << 20); |
| i = get_float_exception_flags(&env->vfp.fp_status); |
| i |= get_float_exception_flags(&env->vfp.standard_fp_status); |
| fpscr |= vfp_exceptbits_from_host(i); |
| return fpscr; |
| } |
| |
| uint32_t vfp_get_fpscr(CPUARMState *env) |
| { |
| return HELPER(vfp_get_fpscr)(env); |
| } |
| |
| /* Convert vfp exception flags to target form. */ |
| static inline int vfp_exceptbits_to_host(int target_bits) |
| { |
| int host_bits = 0; |
| |
| if (target_bits & 1) |
| host_bits |= float_flag_invalid; |
| if (target_bits & 2) |
| host_bits |= float_flag_divbyzero; |
| if (target_bits & 4) |
| host_bits |= float_flag_overflow; |
| if (target_bits & 8) |
| host_bits |= float_flag_underflow; |
| if (target_bits & 0x10) |
| host_bits |= float_flag_inexact; |
| if (target_bits & 0x80) |
| host_bits |= float_flag_input_denormal; |
| return host_bits; |
| } |
| |
| void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) |
| { |
| int i; |
| uint32_t changed; |
| |
| changed = env->vfp.xregs[ARM_VFP_FPSCR]; |
| env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); |
| env->vfp.vec_len = (val >> 16) & 7; |
| env->vfp.vec_stride = (val >> 20) & 3; |
| |
| changed ^= val; |
| if (changed & (3 << 22)) { |
| i = (val >> 22) & 3; |
| switch (i) { |
| case FPROUNDING_TIEEVEN: |
| i = float_round_nearest_even; |
| break; |
| case FPROUNDING_POSINF: |
| i = float_round_up; |
| break; |
| case FPROUNDING_NEGINF: |
| i = float_round_down; |
| break; |
| case FPROUNDING_ZERO: |
| i = float_round_to_zero; |
| break; |
| } |
| set_float_rounding_mode(i, &env->vfp.fp_status); |
| } |
| if (changed & (1 << 24)) { |
| set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
| set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
| } |
| if (changed & (1 << 25)) |
| set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); |
| |
| i = vfp_exceptbits_to_host(val); |
| set_float_exception_flags(i, &env->vfp.fp_status); |
| set_float_exception_flags(0, &env->vfp.standard_fp_status); |
| } |
| |
| void vfp_set_fpscr(CPUARMState *env, uint32_t val) |
| { |
| HELPER(vfp_set_fpscr)(env, val); |
| } |
| |
| #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) |
| |
| #define VFP_BINOP(name) \ |
| float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ |
| { \ |
| float_status *fpst = fpstp; \ |
| return float32_ ## name(a, b, fpst); \ |
| } \ |
| float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ |
| { \ |
| float_status *fpst = fpstp; \ |
| return float64_ ## name(a, b, fpst); \ |
| } |
| VFP_BINOP(add) |
| VFP_BINOP(sub) |
| VFP_BINOP(mul) |
| VFP_BINOP(div) |
| VFP_BINOP(min) |
| VFP_BINOP(max) |
| VFP_BINOP(minnum) |
| VFP_BINOP(maxnum) |
| #undef VFP_BINOP |
| |
| float32 VFP_HELPER(neg, s)(float32 a) |
| { |
| return float32_chs(a); |
| } |
| |
| float64 VFP_HELPER(neg, d)(float64 a) |
| { |
| return float64_chs(a); |
| } |
| |
| float32 VFP_HELPER(abs, s)(float32 a) |
| { |
| return float32_abs(a); |
| } |
| |
| float64 VFP_HELPER(abs, d)(float64 a) |
| { |
| return float64_abs(a); |
| } |
| |
| float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) |
| { |
| return float32_sqrt(a, &env->vfp.fp_status); |
| } |
| |
| float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) |
| { |
| return float64_sqrt(a, &env->vfp.fp_status); |
| } |
| |
| /* XXX: check quiet/signaling case */ |
| #define DO_VFP_cmp(p, type) \ |
| void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ |
| { \ |
| uint32_t flags; \ |
| switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ |
| case 0: flags = 0x6; break; \ |
| case -1: flags = 0x8; break; \ |
| case 1: flags = 0x2; break; \ |
| default: case 2: flags = 0x3; break; \ |
| } \ |
| env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ |
| | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ |
| } \ |
| void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ |
| { \ |
| uint32_t flags; \ |
| switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ |
| case 0: flags = 0x6; break; \ |
| case -1: flags = 0x8; break; \ |
| case 1: flags = 0x2; break; \ |
| default: case 2: flags = 0x3; break; \ |
| } \ |
| env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ |
| | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ |
| } |
| DO_VFP_cmp(s, float32) |
| DO_VFP_cmp(d, float64) |
| #undef DO_VFP_cmp |
| |
| /* Integer to float and float to integer conversions */ |
| |
| #define CONV_ITOF(name, fsz, sign) \ |
| float##fsz HELPER(name)(uint32_t x, void *fpstp) \ |
| { \ |
| float_status *fpst = fpstp; \ |
| return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ |
| } |
| |
| #define CONV_FTOI(name, fsz, sign, round) \ |
| uint32_t HELPER(name)(float##fsz x, void *fpstp) \ |
| { \ |
| float_status *fpst = fpstp; \ |
| if (float##fsz##_is_any_nan(x)) { \ |
| float_raise(float_flag_invalid, fpst); \ |
| return 0; \ |
| } \ |
| return float##fsz##_to_##sign##int32##round(x, fpst); \ |
| } |
| |
| #define FLOAT_CONVS(name, p, fsz, sign) \ |
| CONV_ITOF(vfp_##name##to##p, fsz, sign) \ |
| CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ |
| CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) |
| |
| FLOAT_CONVS(si, s, 32, ) |
| FLOAT_CONVS(si, d, 64, ) |
| FLOAT_CONVS(ui, s, 32, u) |
| FLOAT_CONVS(ui, d, 64, u) |
| |
| #undef CONV_ITOF |
| #undef CONV_FTOI |
| #undef FLOAT_CONVS |
| |
| /* floating point conversion */ |
| float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) |
| { |
| float64 r = float32_to_float64(x, &env->vfp.fp_status); |
| /* ARM requires that S<->D conversion of any kind of NaN generates |
| * a quiet NaN by forcing the most significant frac bit to 1. |
| */ |
| return float64_maybe_silence_nan(r); |
| } |
| |
| float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) |
| { |
| float32 r = float64_to_float32(x, &env->vfp.fp_status); |
| /* ARM requires that S<->D conversion of any kind of NaN generates |
| * a quiet NaN by forcing the most significant frac bit to 1. |
| */ |
| return float32_maybe_silence_nan(r); |
| } |
| |
| /* VFP3 fixed point conversion. */ |
| #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ |
| float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ |
| void *fpstp) \ |
| { \ |
| float_status *fpst = fpstp; \ |
| float##fsz tmp; \ |
| tmp = itype##_to_##float##fsz(x, fpst); \ |
| return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ |
| } |
| |
| /* Notice that we want only input-denormal exception flags from the |
| * scalbn operation: the other possible flags (overflow+inexact if |
| * we overflow to infinity, output-denormal) aren't correct for the |
| * complete scale-and-convert operation. |
| */ |
| #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ |
| uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \ |
| uint32_t shift, \ |
| void *fpstp) \ |
| { \ |
| float_status *fpst = fpstp; \ |
| int old_exc_flags = get_float_exception_flags(fpst); \ |
| float##fsz tmp; \ |
| if (float##fsz##_is_any_nan(x)) { \ |
| float_raise(float_flag_invalid, fpst); \ |
| return 0; \ |
| } \ |
| tmp = float##fsz##_scalbn(x, shift, fpst); \ |
| old_exc_flags |= get_float_exception_flags(fpst) \ |
| & float_flag_input_denormal; \ |
| set_float_exception_flags(old_exc_flags, fpst); \ |
| return float##fsz##_to_##itype##round(tmp, fpst); \ |
| } |
| |
| #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ |
| VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ |
| VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ |
| VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) |
| |
| #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ |
| VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ |
| VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) |
| |
| VFP_CONV_FIX(sh, d, 64, 64, int16) |
| VFP_CONV_FIX(sl, d, 64, 64, int32) |
| VFP_CONV_FIX_A64(sq, d, 64, 64, int64) |
| VFP_CONV_FIX(uh, d, 64, 64, uint16) |
| VFP_CONV_FIX(ul, d, 64, 64, uint32) |
| VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) |
| VFP_CONV_FIX(sh, s, 32, 32, int16) |
| VFP_CONV_FIX(sl, s, 32, 32, int32) |
| VFP_CONV_FIX_A64(sq, s, 32, 64, int64) |
| VFP_CONV_FIX(uh, s, 32, 32, uint16) |
| VFP_CONV_FIX(ul, s, 32, 32, uint32) |
| VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) |
| #undef VFP_CONV_FIX |
| #undef VFP_CONV_FIX_FLOAT |
| #undef VFP_CONV_FLOAT_FIX_ROUND |
| |
| /* Set the current fp rounding mode and return the old one. |
| * The argument is a softfloat float_round_ value. |
| */ |
| uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env) |
| { |
| float_status *fp_status = &env->vfp.fp_status; |
| |
| uint32_t prev_rmode = get_float_rounding_mode(fp_status); |
| set_float_rounding_mode(rmode, fp_status); |
| |
| return prev_rmode; |
| } |
| |
| /* Set the current fp rounding mode in the standard fp status and return |
| * the old one. This is for NEON instructions that need to change the |
| * rounding mode but wish to use the standard FPSCR values for everything |
| * else. Always set the rounding mode back to the correct value after |
| * modifying it. |
| * The argument is a softfloat float_round_ value. |
| */ |
| uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) |
| { |
| float_status *fp_status = &env->vfp.standard_fp_status; |
| |
| uint32_t prev_rmode = get_float_rounding_mode(fp_status); |
| set_float_rounding_mode(rmode, fp_status); |
| |
| return prev_rmode; |
| } |
| |
| /* Half precision conversions. */ |
| static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) |
| { |
| int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
| float32 r = float16_to_float32(make_float16(a), ieee, s); |
| if (ieee) { |
| return float32_maybe_silence_nan(r); |
| } |
| return r; |
| } |
| |
| static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) |
| { |
| int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
| float16 r = float32_to_float16(a, ieee, s); |
| if (ieee) { |
| r = float16_maybe_silence_nan(r); |
| } |
| return float16_val(r); |
| } |
| |
| float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
| { |
| return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); |
| } |
| |
| uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
| { |
| return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); |
| } |
| |
| float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
| { |
| return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); |
| } |
| |
| uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
| { |
| return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); |
| } |
| |
| float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env) |
| { |
| int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
| float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status); |
| if (ieee) { |
| return float64_maybe_silence_nan(r); |
| } |
| return r; |
| } |
| |
| uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env) |
| { |
| int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
| float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status); |
| if (ieee) { |
| r = float16_maybe_silence_nan(r); |
| } |
| return float16_val(r); |
| } |
| |
| #define float32_two make_float32(0x40000000) |
| #define float32_three make_float32(0x40400000) |
| #define float32_one_point_five make_float32(0x3fc00000) |
| |
| float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) |
| { |
| float_status *s = &env->vfp.standard_fp_status; |
| if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || |
| (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { |
| if (!(float32_is_zero(a) || float32_is_zero(b))) { |
| float_raise(float_flag_input_denormal, s); |
| } |
| return float32_two; |
| } |
| return float32_sub(float32_two, float32_mul(a, b, s), s); |
| } |
| |
| float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) |
| { |
| float_status *s = &env->vfp.standard_fp_status; |
| float32 product; |
| if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || |
| (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { |
| if (!(float32_is_zero(a) || float32_is_zero(b))) { |
| float_raise(float_flag_input_denormal, s); |
| } |
| return float32_one_point_five; |
| } |
| product = float32_mul(a, b, s); |
| return float32_div(float32_sub(float32_three, product, s), float32_two, s); |
| } |
| |
| /* NEON helpers. */ |
| |
| /* Constants 256 and 512 are used in some helpers; we avoid relying on |
| * int->float conversions at run-time. */ |
| #define float64_256 make_float64(0x4070000000000000LL) |
| #define float64_512 make_float64(0x4080000000000000LL) |
| |
| /* The algorithm that must be used to calculate the estimate |
| * is specified by the ARM ARM. |
| */ |
| static float64 recip_estimate(float64 a, CPUARMState *env) |
| { |
| /* These calculations mustn't set any fp exception flags, |
| * so we use a local copy of the fp_status. |
| */ |
| float_status dummy_status = env->vfp.standard_fp_status; |
| float_status *s = &dummy_status; |
| /* q = (int)(a * 512.0) */ |
| float64 q = float64_mul(float64_512, a, s); |
| int64_t q_int = float64_to_int64_round_to_zero(q, s); |
| |
| /* r = 1.0 / (((double)q + 0.5) / 512.0) */ |
| q = int64_to_float64(q_int, s); |
| q = float64_add(q, float64_half, s); |
| q = float64_div(q, float64_512, s); |
| q = float64_div(float64_one, q, s); |
| |
| /* s = (int)(256.0 * r + 0.5) */ |
| q = float64_mul(q, float64_256, s); |
| q = float64_add(q, float64_half, s); |
| q_int = float64_to_int64_round_to_zero(q, s); |
| |
| /* return (double)s / 256.0 */ |
| return float64_div(int64_to_float64(q_int, s), float64_256, s); |
| } |
| |
| float32 HELPER(recpe_f32)(float32 a, CPUARMState *env) |
| { |
| float_status *s = &env->vfp.standard_fp_status; |
| float64 f64; |
| uint32_t val32 = float32_val(a); |
| |
| int result_exp; |
| int a_exp = (val32 & 0x7f800000) >> 23; |
| int sign = val32 & 0x80000000; |
| |
| if (float32_is_any_nan(a)) { |
| if (float32_is_signaling_nan(a)) { |
| float_raise(float_flag_invalid, s); |
| } |
| return float32_default_nan; |
| } else if (float32_is_infinity(a)) { |
| return float32_set_sign(float32_zero, float32_is_neg(a)); |
| } else if (float32_is_zero_or_denormal(a)) { |
| if (!float32_is_zero(a)) { |
| float_raise(float_flag_input_denormal, s); |
| } |
| float_raise(float_flag_divbyzero, s); |
| return float32_set_sign(float32_infinity, float32_is_neg(a)); |
| } else if (a_exp >= 253) { |
| float_raise(float_flag_underflow, s); |
| return float32_set_sign(float32_zero, float32_is_neg(a)); |
| } |
| |
| f64 = make_float64((0x3feULL << 52) |
| | ((int64_t)(val32 & 0x7fffff) << 29)); |
| |
| result_exp = 253 - a_exp; |
| |
| f64 = recip_estimate(f64, env); |
| |
| val32 = sign |
| | ((result_exp & 0xff) << 23) |
| | ((float64_val(f64) >> 29) & 0x7fffff); |
| return make_float32(val32); |
| } |
| |
| /* The algorithm that must be used to calculate the estimate |
| * is specified by the ARM ARM. |
| */ |
| static float64 recip_sqrt_estimate(float64 a, CPUARMState *env) |
| { |
| /* These calculations mustn't set any fp exception flags, |
| * so we use a local copy of the fp_status. |
| */ |
| float_status dummy_status = env->vfp.standard_fp_status; |
| float_status *s = &dummy_status; |
| float64 q; |
| int64_t q_int; |
| |
| if (float64_lt(a, float64_half, s)) { |
| /* range 0.25 <= a < 0.5 */ |
| |
| /* a in units of 1/512 rounded down */ |
| /* q0 = (int)(a * 512.0); */ |
| q = float64_mul(float64_512, a, s); |
| q_int = float64_to_int64_round_to_zero(q, s); |
| |
| /* reciprocal root r */ |
| /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ |
| q = int64_to_float64(q_int, s); |
| q = float64_add(q, float64_half, s); |
| q = float64_div(q, float64_512, s); |
| q = float64_sqrt(q, s); |
| q = float64_div(float64_one, q, s); |
| } else { |
| /* range 0.5 <= a < 1.0 */ |
| |
| /* a in units of 1/256 rounded down */ |
| /* q1 = (int)(a * 256.0); */ |
| q = float64_mul(float64_256, a, s); |
| int64_t q_int = float64_to_int64_round_to_zero(q, s); |
| |
| /* reciprocal root r */ |
| /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ |
| q = int64_to_float64(q_int, s); |
| q = float64_add(q, float64_half, s); |
| q = float64_div(q, float64_256, s); |
| q = float64_sqrt(q, s); |
| q = float64_div(float64_one, q, s); |
| } |
| /* r in units of 1/256 rounded to nearest */ |
| /* s = (int)(256.0 * r + 0.5); */ |
| |
| q = float64_mul(q, float64_256,s ); |
| q = float64_add(q, float64_half, s); |
| q_int = float64_to_int64_round_to_zero(q, s); |
| |
| /* return (double)s / 256.0;*/ |
| return float64_div(int64_to_float64(q_int, s), float64_256, s); |
| } |
| |
| float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env) |
| { |
| float_status *s = &env->vfp.standard_fp_status; |
| int result_exp; |
| float64 f64; |
| uint32_t val; |
| uint64_t val64; |
| |
| val = float32_val(a); |
| |
| if (float32_is_any_nan(a)) { |
| if (float32_is_signaling_nan(a)) { |
| float_raise(float_flag_invalid, s); |
| } |
| return float32_default_nan; |
| } else if (float32_is_zero_or_denormal(a)) { |
| if (!float32_is_zero(a)) { |
| float_raise(float_flag_input_denormal, s); |
| } |
| float_raise(float_flag_divbyzero, s); |
| return float32_set_sign(float32_infinity, float32_is_neg(a)); |
| } else if (float32_is_neg(a)) { |
| float_raise(float_flag_invalid, s); |
| return float32_default_nan; |
| } else if (float32_is_infinity(a)) { |
| return float32_zero; |
| } |
| |
| /* Normalize to a double-precision value between 0.25 and 1.0, |
| * preserving the parity of the exponent. */ |
| if ((val & 0x800000) == 0) { |
| f64 = make_float64(((uint64_t)(val & 0x80000000) << 32) |
| | (0x3feULL << 52) |
| | ((uint64_t)(val & 0x7fffff) << 29)); |
| } else { |
| f64 = make_float64(((uint64_t)(val & 0x80000000) << 32) |
| | (0x3fdULL << 52) |
| | ((uint64_t)(val & 0x7fffff) << 29)); |
| } |
| |
| result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2; |
| |
| f64 = recip_sqrt_estimate(f64, env); |
| |
| val64 = float64_val(f64); |
| |
| val = ((result_exp & 0xff) << 23) |
| | ((val64 >> 29) & 0x7fffff); |
| return make_float32(val); |
| } |
| |
| uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env) |
| { |
| float64 f64; |
| |
| if ((a & 0x80000000) == 0) { |
| return 0xffffffff; |
| } |
| |
| f64 = make_float64((0x3feULL << 52) |
| | ((int64_t)(a & 0x7fffffff) << 21)); |
| |
| f64 = recip_estimate (f64, env); |
| |
| return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); |
| } |
| |
| uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env) |
| { |
| float64 f64; |
| |
| if ((a & 0xc0000000) == 0) { |
| return 0xffffffff; |
| } |
| |
| if (a & 0x80000000) { |
| f64 = make_float64((0x3feULL << 52) |
| | ((uint64_t)(a & 0x7fffffff) << 21)); |
| } else { /* bits 31-30 == '01' */ |
| f64 = make_float64((0x3fdULL << 52) |
| | ((uint64_t)(a & 0x3fffffff) << 22)); |
| } |
| |
| f64 = recip_sqrt_estimate(f64, env); |
| |
| return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); |
| } |
| |
| /* VFPv4 fused multiply-accumulate */ |
| float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| return float32_muladd(a, b, c, 0, fpst); |
| } |
| |
| float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| return float64_muladd(a, b, c, 0, fpst); |
| } |
| |
| /* ARMv8 round to integral */ |
| float32 HELPER(rints_exact)(float32 x, void *fp_status) |
| { |
| return float32_round_to_int(x, fp_status); |
| } |
| |
| float64 HELPER(rintd_exact)(float64 x, void *fp_status) |
| { |
| return float64_round_to_int(x, fp_status); |
| } |
| |
| float32 HELPER(rints)(float32 x, void *fp_status) |
| { |
| int old_flags = get_float_exception_flags(fp_status), new_flags; |
| float32 ret; |
| |
| ret = float32_round_to_int(x, fp_status); |
| |
| /* Suppress any inexact exceptions the conversion produced */ |
| if (!(old_flags & float_flag_inexact)) { |
| new_flags = get_float_exception_flags(fp_status); |
| set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); |
| } |
| |
| return ret; |
| } |
| |
| float64 HELPER(rintd)(float64 x, void *fp_status) |
| { |
| int old_flags = get_float_exception_flags(fp_status), new_flags; |
| float64 ret; |
| |
| ret = float64_round_to_int(x, fp_status); |
| |
| new_flags = get_float_exception_flags(fp_status); |
| |
| /* Suppress any inexact exceptions the conversion produced */ |
| if (!(old_flags & float_flag_inexact)) { |
| new_flags = get_float_exception_flags(fp_status); |
| set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); |
| } |
| |
| return ret; |
| } |
| |
| /* Convert ARM rounding mode to softfloat */ |
| int arm_rmode_to_sf(int rmode) |
| { |
| switch (rmode) { |
| case FPROUNDING_TIEAWAY: |
| rmode = float_round_ties_away; |
| break; |
| case FPROUNDING_ODD: |
| /* FIXME: add support for TIEAWAY and ODD */ |
| qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", |
| rmode); |
| case FPROUNDING_TIEEVEN: |
| default: |
| rmode = float_round_nearest_even; |
| break; |
| case FPROUNDING_POSINF: |
| rmode = float_round_up; |
| break; |
| case FPROUNDING_NEGINF: |
| rmode = float_round_down; |
| break; |
| case FPROUNDING_ZERO: |
| rmode = float_round_to_zero; |
| break; |
| } |
| return rmode; |
| } |