| /* |
| * SH4 emulation |
| * |
| * Copyright (c) 2005 Samuel Tardieu |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include "qemu/osdep.h" |
| |
| #include "cpu.h" |
| #include "exec/exec-all.h" |
| #include "exec/log.h" |
| #include "sysemu/sysemu.h" |
| |
| #if !defined(CONFIG_USER_ONLY) |
| #include "hw/sh4/sh_intc.h" |
| #endif |
| |
| #if defined(CONFIG_USER_ONLY) |
| |
| void superh_cpu_do_interrupt(CPUState *cs) |
| { |
| cs->exception_index = -1; |
| } |
| |
| int superh_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size, int rw, |
| int mmu_idx) |
| { |
| SuperHCPU *cpu = SUPERH_CPU(cs); |
| CPUSH4State *env = &cpu->env; |
| |
| env->tea = address; |
| cs->exception_index = -1; |
| switch (rw) { |
| case 0: |
| cs->exception_index = 0x0a0; |
| break; |
| case 1: |
| cs->exception_index = 0x0c0; |
| break; |
| case 2: |
| cs->exception_index = 0x0a0; |
| break; |
| } |
| return 1; |
| } |
| |
| int cpu_sh4_is_cached(CPUSH4State * env, target_ulong addr) |
| { |
| /* For user mode, only U0 area is cacheable. */ |
| return !(addr & 0x80000000); |
| } |
| |
| #else /* !CONFIG_USER_ONLY */ |
| |
| #define MMU_OK 0 |
| #define MMU_ITLB_MISS (-1) |
| #define MMU_ITLB_MULTIPLE (-2) |
| #define MMU_ITLB_VIOLATION (-3) |
| #define MMU_DTLB_MISS_READ (-4) |
| #define MMU_DTLB_MISS_WRITE (-5) |
| #define MMU_DTLB_INITIAL_WRITE (-6) |
| #define MMU_DTLB_VIOLATION_READ (-7) |
| #define MMU_DTLB_VIOLATION_WRITE (-8) |
| #define MMU_DTLB_MULTIPLE (-9) |
| #define MMU_DTLB_MISS (-10) |
| #define MMU_IADDR_ERROR (-11) |
| #define MMU_DADDR_ERROR_READ (-12) |
| #define MMU_DADDR_ERROR_WRITE (-13) |
| |
| void superh_cpu_do_interrupt(CPUState *cs) |
| { |
| SuperHCPU *cpu = SUPERH_CPU(cs); |
| CPUSH4State *env = &cpu->env; |
| int do_irq = cs->interrupt_request & CPU_INTERRUPT_HARD; |
| int do_exp, irq_vector = cs->exception_index; |
| |
| /* prioritize exceptions over interrupts */ |
| |
| do_exp = cs->exception_index != -1; |
| do_irq = do_irq && (cs->exception_index == -1); |
| |
| if (env->sr & (1u << SR_BL)) { |
| if (do_exp && cs->exception_index != 0x1e0) { |
| /* In theory a masked exception generates a reset exception, |
| which in turn jumps to the reset vector. However this only |
| works when using a bootloader. When using a kernel and an |
| initrd, they need to be reloaded and the program counter |
| should be loaded with the kernel entry point. |
| qemu_system_reset_request takes care of that. */ |
| qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); |
| return; |
| } |
| if (do_irq && !env->in_sleep) { |
| return; /* masked */ |
| } |
| } |
| env->in_sleep = 0; |
| |
| if (do_irq) { |
| irq_vector = sh_intc_get_pending_vector(env->intc_handle, |
| (env->sr >> 4) & 0xf); |
| if (irq_vector == -1) { |
| return; /* masked */ |
| } |
| } |
| |
| if (qemu_loglevel_mask(CPU_LOG_INT)) { |
| const char *expname; |
| switch (cs->exception_index) { |
| case 0x0e0: |
| expname = "addr_error"; |
| break; |
| case 0x040: |
| expname = "tlb_miss"; |
| break; |
| case 0x0a0: |
| expname = "tlb_violation"; |
| break; |
| case 0x180: |
| expname = "illegal_instruction"; |
| break; |
| case 0x1a0: |
| expname = "slot_illegal_instruction"; |
| break; |
| case 0x800: |
| expname = "fpu_disable"; |
| break; |
| case 0x820: |
| expname = "slot_fpu"; |
| break; |
| case 0x100: |
| expname = "data_write"; |
| break; |
| case 0x060: |
| expname = "dtlb_miss_write"; |
| break; |
| case 0x0c0: |
| expname = "dtlb_violation_write"; |
| break; |
| case 0x120: |
| expname = "fpu_exception"; |
| break; |
| case 0x080: |
| expname = "initial_page_write"; |
| break; |
| case 0x160: |
| expname = "trapa"; |
| break; |
| default: |
| expname = do_irq ? "interrupt" : "???"; |
| break; |
| } |
| qemu_log("exception 0x%03x [%s] raised\n", |
| irq_vector, expname); |
| log_cpu_state(cs, 0); |
| } |
| |
| env->ssr = cpu_read_sr(env); |
| env->spc = env->pc; |
| env->sgr = env->gregs[15]; |
| env->sr |= (1u << SR_BL) | (1u << SR_MD) | (1u << SR_RB); |
| env->lock_addr = -1; |
| |
| if (env->flags & DELAY_SLOT_MASK) { |
| /* Branch instruction should be executed again before delay slot. */ |
| env->spc -= 2; |
| /* Clear flags for exception/interrupt routine. */ |
| env->flags &= ~DELAY_SLOT_MASK; |
| } |
| |
| if (do_exp) { |
| env->expevt = cs->exception_index; |
| switch (cs->exception_index) { |
| case 0x000: |
| case 0x020: |
| case 0x140: |
| env->sr &= ~(1u << SR_FD); |
| env->sr |= 0xf << 4; /* IMASK */ |
| env->pc = 0xa0000000; |
| break; |
| case 0x040: |
| case 0x060: |
| env->pc = env->vbr + 0x400; |
| break; |
| case 0x160: |
| env->spc += 2; /* special case for TRAPA */ |
| /* fall through */ |
| default: |
| env->pc = env->vbr + 0x100; |
| break; |
| } |
| return; |
| } |
| |
| if (do_irq) { |
| env->intevt = irq_vector; |
| env->pc = env->vbr + 0x600; |
| return; |
| } |
| } |
| |
| static void update_itlb_use(CPUSH4State * env, int itlbnb) |
| { |
| uint8_t or_mask = 0, and_mask = (uint8_t) - 1; |
| |
| switch (itlbnb) { |
| case 0: |
| and_mask = 0x1f; |
| break; |
| case 1: |
| and_mask = 0xe7; |
| or_mask = 0x80; |
| break; |
| case 2: |
| and_mask = 0xfb; |
| or_mask = 0x50; |
| break; |
| case 3: |
| or_mask = 0x2c; |
| break; |
| } |
| |
| env->mmucr &= (and_mask << 24) | 0x00ffffff; |
| env->mmucr |= (or_mask << 24); |
| } |
| |
| static int itlb_replacement(CPUSH4State * env) |
| { |
| SuperHCPU *cpu = sh_env_get_cpu(env); |
| |
| if ((env->mmucr & 0xe0000000) == 0xe0000000) { |
| return 0; |
| } |
| if ((env->mmucr & 0x98000000) == 0x18000000) { |
| return 1; |
| } |
| if ((env->mmucr & 0x54000000) == 0x04000000) { |
| return 2; |
| } |
| if ((env->mmucr & 0x2c000000) == 0x00000000) { |
| return 3; |
| } |
| cpu_abort(CPU(cpu), "Unhandled itlb_replacement"); |
| } |
| |
| /* Find the corresponding entry in the right TLB |
| Return entry, MMU_DTLB_MISS or MMU_DTLB_MULTIPLE |
| */ |
| static int find_tlb_entry(CPUSH4State * env, target_ulong address, |
| tlb_t * entries, uint8_t nbtlb, int use_asid) |
| { |
| int match = MMU_DTLB_MISS; |
| uint32_t start, end; |
| uint8_t asid; |
| int i; |
| |
| asid = env->pteh & 0xff; |
| |
| for (i = 0; i < nbtlb; i++) { |
| if (!entries[i].v) |
| continue; /* Invalid entry */ |
| if (!entries[i].sh && use_asid && entries[i].asid != asid) |
| continue; /* Bad ASID */ |
| start = (entries[i].vpn << 10) & ~(entries[i].size - 1); |
| end = start + entries[i].size - 1; |
| if (address >= start && address <= end) { /* Match */ |
| if (match != MMU_DTLB_MISS) |
| return MMU_DTLB_MULTIPLE; /* Multiple match */ |
| match = i; |
| } |
| } |
| return match; |
| } |
| |
| static void increment_urc(CPUSH4State * env) |
| { |
| uint8_t urb, urc; |
| |
| /* Increment URC */ |
| urb = ((env->mmucr) >> 18) & 0x3f; |
| urc = ((env->mmucr) >> 10) & 0x3f; |
| urc++; |
| if ((urb > 0 && urc > urb) || urc > (UTLB_SIZE - 1)) |
| urc = 0; |
| env->mmucr = (env->mmucr & 0xffff03ff) | (urc << 10); |
| } |
| |
| /* Copy and utlb entry into itlb |
| Return entry |
| */ |
| static int copy_utlb_entry_itlb(CPUSH4State *env, int utlb) |
| { |
| int itlb; |
| |
| tlb_t * ientry; |
| itlb = itlb_replacement(env); |
| ientry = &env->itlb[itlb]; |
| if (ientry->v) { |
| tlb_flush_page(CPU(sh_env_get_cpu(env)), ientry->vpn << 10); |
| } |
| *ientry = env->utlb[utlb]; |
| update_itlb_use(env, itlb); |
| return itlb; |
| } |
| |
| /* Find itlb entry |
| Return entry, MMU_ITLB_MISS, MMU_ITLB_MULTIPLE or MMU_DTLB_MULTIPLE |
| */ |
| static int find_itlb_entry(CPUSH4State * env, target_ulong address, |
| int use_asid) |
| { |
| int e; |
| |
| e = find_tlb_entry(env, address, env->itlb, ITLB_SIZE, use_asid); |
| if (e == MMU_DTLB_MULTIPLE) { |
| e = MMU_ITLB_MULTIPLE; |
| } else if (e == MMU_DTLB_MISS) { |
| e = MMU_ITLB_MISS; |
| } else if (e >= 0) { |
| update_itlb_use(env, e); |
| } |
| return e; |
| } |
| |
| /* Find utlb entry |
| Return entry, MMU_DTLB_MISS, MMU_DTLB_MULTIPLE */ |
| static int find_utlb_entry(CPUSH4State * env, target_ulong address, int use_asid) |
| { |
| /* per utlb access */ |
| increment_urc(env); |
| |
| /* Return entry */ |
| return find_tlb_entry(env, address, env->utlb, UTLB_SIZE, use_asid); |
| } |
| |
| /* Match address against MMU |
| Return MMU_OK, MMU_DTLB_MISS_READ, MMU_DTLB_MISS_WRITE, |
| MMU_DTLB_INITIAL_WRITE, MMU_DTLB_VIOLATION_READ, |
| MMU_DTLB_VIOLATION_WRITE, MMU_ITLB_MISS, |
| MMU_ITLB_MULTIPLE, MMU_ITLB_VIOLATION, |
| MMU_IADDR_ERROR, MMU_DADDR_ERROR_READ, MMU_DADDR_ERROR_WRITE. |
| */ |
| static int get_mmu_address(CPUSH4State * env, target_ulong * physical, |
| int *prot, target_ulong address, |
| int rw, int access_type) |
| { |
| int use_asid, n; |
| tlb_t *matching = NULL; |
| |
| use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD)); |
| |
| if (rw == 2) { |
| n = find_itlb_entry(env, address, use_asid); |
| if (n >= 0) { |
| matching = &env->itlb[n]; |
| if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) { |
| n = MMU_ITLB_VIOLATION; |
| } else { |
| *prot = PAGE_EXEC; |
| } |
| } else { |
| n = find_utlb_entry(env, address, use_asid); |
| if (n >= 0) { |
| n = copy_utlb_entry_itlb(env, n); |
| matching = &env->itlb[n]; |
| if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) { |
| n = MMU_ITLB_VIOLATION; |
| } else { |
| *prot = PAGE_READ | PAGE_EXEC; |
| if ((matching->pr & 1) && matching->d) { |
| *prot |= PAGE_WRITE; |
| } |
| } |
| } else if (n == MMU_DTLB_MULTIPLE) { |
| n = MMU_ITLB_MULTIPLE; |
| } else if (n == MMU_DTLB_MISS) { |
| n = MMU_ITLB_MISS; |
| } |
| } |
| } else { |
| n = find_utlb_entry(env, address, use_asid); |
| if (n >= 0) { |
| matching = &env->utlb[n]; |
| if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) { |
| n = (rw == 1) ? MMU_DTLB_VIOLATION_WRITE : |
| MMU_DTLB_VIOLATION_READ; |
| } else if ((rw == 1) && !(matching->pr & 1)) { |
| n = MMU_DTLB_VIOLATION_WRITE; |
| } else if ((rw == 1) && !matching->d) { |
| n = MMU_DTLB_INITIAL_WRITE; |
| } else { |
| *prot = PAGE_READ; |
| if ((matching->pr & 1) && matching->d) { |
| *prot |= PAGE_WRITE; |
| } |
| } |
| } else if (n == MMU_DTLB_MISS) { |
| n = (rw == 1) ? MMU_DTLB_MISS_WRITE : |
| MMU_DTLB_MISS_READ; |
| } |
| } |
| if (n >= 0) { |
| n = MMU_OK; |
| *physical = ((matching->ppn << 10) & ~(matching->size - 1)) | |
| (address & (matching->size - 1)); |
| } |
| return n; |
| } |
| |
| static int get_physical_address(CPUSH4State * env, target_ulong * physical, |
| int *prot, target_ulong address, |
| int rw, int access_type) |
| { |
| /* P1, P2 and P4 areas do not use translation */ |
| if ((address >= 0x80000000 && address < 0xc0000000) || |
| address >= 0xe0000000) { |
| if (!(env->sr & (1u << SR_MD)) |
| && (address < 0xe0000000 || address >= 0xe4000000)) { |
| /* Unauthorized access in user mode (only store queues are available) */ |
| qemu_log_mask(LOG_GUEST_ERROR, "Unauthorized access\n"); |
| if (rw == 0) |
| return MMU_DADDR_ERROR_READ; |
| else if (rw == 1) |
| return MMU_DADDR_ERROR_WRITE; |
| else |
| return MMU_IADDR_ERROR; |
| } |
| if (address >= 0x80000000 && address < 0xc0000000) { |
| /* Mask upper 3 bits for P1 and P2 areas */ |
| *physical = address & 0x1fffffff; |
| } else { |
| *physical = address; |
| } |
| *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| return MMU_OK; |
| } |
| |
| /* If MMU is disabled, return the corresponding physical page */ |
| if (!(env->mmucr & MMUCR_AT)) { |
| *physical = address & 0x1FFFFFFF; |
| *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| return MMU_OK; |
| } |
| |
| /* We need to resort to the MMU */ |
| return get_mmu_address(env, physical, prot, address, rw, access_type); |
| } |
| |
| int superh_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size, int rw, |
| int mmu_idx) |
| { |
| SuperHCPU *cpu = SUPERH_CPU(cs); |
| CPUSH4State *env = &cpu->env; |
| target_ulong physical; |
| int prot, ret, access_type; |
| |
| access_type = ACCESS_INT; |
| ret = |
| get_physical_address(env, &physical, &prot, address, rw, |
| access_type); |
| |
| if (ret != MMU_OK) { |
| env->tea = address; |
| if (ret != MMU_DTLB_MULTIPLE && ret != MMU_ITLB_MULTIPLE) { |
| env->pteh = (env->pteh & PTEH_ASID_MASK) | |
| (address & PTEH_VPN_MASK); |
| } |
| switch (ret) { |
| case MMU_ITLB_MISS: |
| case MMU_DTLB_MISS_READ: |
| cs->exception_index = 0x040; |
| break; |
| case MMU_DTLB_MULTIPLE: |
| case MMU_ITLB_MULTIPLE: |
| cs->exception_index = 0x140; |
| break; |
| case MMU_ITLB_VIOLATION: |
| cs->exception_index = 0x0a0; |
| break; |
| case MMU_DTLB_MISS_WRITE: |
| cs->exception_index = 0x060; |
| break; |
| case MMU_DTLB_INITIAL_WRITE: |
| cs->exception_index = 0x080; |
| break; |
| case MMU_DTLB_VIOLATION_READ: |
| cs->exception_index = 0x0a0; |
| break; |
| case MMU_DTLB_VIOLATION_WRITE: |
| cs->exception_index = 0x0c0; |
| break; |
| case MMU_IADDR_ERROR: |
| case MMU_DADDR_ERROR_READ: |
| cs->exception_index = 0x0e0; |
| break; |
| case MMU_DADDR_ERROR_WRITE: |
| cs->exception_index = 0x100; |
| break; |
| default: |
| cpu_abort(cs, "Unhandled MMU fault"); |
| } |
| return 1; |
| } |
| |
| address &= TARGET_PAGE_MASK; |
| physical &= TARGET_PAGE_MASK; |
| |
| tlb_set_page(cs, address, physical, prot, mmu_idx, TARGET_PAGE_SIZE); |
| return 0; |
| } |
| |
| hwaddr superh_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) |
| { |
| SuperHCPU *cpu = SUPERH_CPU(cs); |
| target_ulong physical; |
| int prot; |
| |
| get_physical_address(&cpu->env, &physical, &prot, addr, 0, 0); |
| return physical; |
| } |
| |
| void cpu_load_tlb(CPUSH4State * env) |
| { |
| SuperHCPU *cpu = sh_env_get_cpu(env); |
| int n = cpu_mmucr_urc(env->mmucr); |
| tlb_t * entry = &env->utlb[n]; |
| |
| if (entry->v) { |
| /* Overwriting valid entry in utlb. */ |
| target_ulong address = entry->vpn << 10; |
| tlb_flush_page(CPU(cpu), address); |
| } |
| |
| /* Take values into cpu status from registers. */ |
| entry->asid = (uint8_t)cpu_pteh_asid(env->pteh); |
| entry->vpn = cpu_pteh_vpn(env->pteh); |
| entry->v = (uint8_t)cpu_ptel_v(env->ptel); |
| entry->ppn = cpu_ptel_ppn(env->ptel); |
| entry->sz = (uint8_t)cpu_ptel_sz(env->ptel); |
| switch (entry->sz) { |
| case 0: /* 00 */ |
| entry->size = 1024; /* 1K */ |
| break; |
| case 1: /* 01 */ |
| entry->size = 1024 * 4; /* 4K */ |
| break; |
| case 2: /* 10 */ |
| entry->size = 1024 * 64; /* 64K */ |
| break; |
| case 3: /* 11 */ |
| entry->size = 1024 * 1024; /* 1M */ |
| break; |
| default: |
| cpu_abort(CPU(cpu), "Unhandled load_tlb"); |
| break; |
| } |
| entry->sh = (uint8_t)cpu_ptel_sh(env->ptel); |
| entry->c = (uint8_t)cpu_ptel_c(env->ptel); |
| entry->pr = (uint8_t)cpu_ptel_pr(env->ptel); |
| entry->d = (uint8_t)cpu_ptel_d(env->ptel); |
| entry->wt = (uint8_t)cpu_ptel_wt(env->ptel); |
| entry->sa = (uint8_t)cpu_ptea_sa(env->ptea); |
| entry->tc = (uint8_t)cpu_ptea_tc(env->ptea); |
| } |
| |
| void cpu_sh4_invalidate_tlb(CPUSH4State *s) |
| { |
| int i; |
| |
| /* UTLB */ |
| for (i = 0; i < UTLB_SIZE; i++) { |
| tlb_t * entry = &s->utlb[i]; |
| entry->v = 0; |
| } |
| /* ITLB */ |
| for (i = 0; i < ITLB_SIZE; i++) { |
| tlb_t * entry = &s->itlb[i]; |
| entry->v = 0; |
| } |
| |
| tlb_flush(CPU(sh_env_get_cpu(s))); |
| } |
| |
| uint32_t cpu_sh4_read_mmaped_itlb_addr(CPUSH4State *s, |
| hwaddr addr) |
| { |
| int index = (addr & 0x00000300) >> 8; |
| tlb_t * entry = &s->itlb[index]; |
| |
| return (entry->vpn << 10) | |
| (entry->v << 8) | |
| (entry->asid); |
| } |
| |
| void cpu_sh4_write_mmaped_itlb_addr(CPUSH4State *s, hwaddr addr, |
| uint32_t mem_value) |
| { |
| uint32_t vpn = (mem_value & 0xfffffc00) >> 10; |
| uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8); |
| uint8_t asid = (uint8_t)(mem_value & 0x000000ff); |
| |
| int index = (addr & 0x00000300) >> 8; |
| tlb_t * entry = &s->itlb[index]; |
| if (entry->v) { |
| /* Overwriting valid entry in itlb. */ |
| target_ulong address = entry->vpn << 10; |
| tlb_flush_page(CPU(sh_env_get_cpu(s)), address); |
| } |
| entry->asid = asid; |
| entry->vpn = vpn; |
| entry->v = v; |
| } |
| |
| uint32_t cpu_sh4_read_mmaped_itlb_data(CPUSH4State *s, |
| hwaddr addr) |
| { |
| int array = (addr & 0x00800000) >> 23; |
| int index = (addr & 0x00000300) >> 8; |
| tlb_t * entry = &s->itlb[index]; |
| |
| if (array == 0) { |
| /* ITLB Data Array 1 */ |
| return (entry->ppn << 10) | |
| (entry->v << 8) | |
| (entry->pr << 5) | |
| ((entry->sz & 1) << 6) | |
| ((entry->sz & 2) << 4) | |
| (entry->c << 3) | |
| (entry->sh << 1); |
| } else { |
| /* ITLB Data Array 2 */ |
| return (entry->tc << 1) | |
| (entry->sa); |
| } |
| } |
| |
| void cpu_sh4_write_mmaped_itlb_data(CPUSH4State *s, hwaddr addr, |
| uint32_t mem_value) |
| { |
| int array = (addr & 0x00800000) >> 23; |
| int index = (addr & 0x00000300) >> 8; |
| tlb_t * entry = &s->itlb[index]; |
| |
| if (array == 0) { |
| /* ITLB Data Array 1 */ |
| if (entry->v) { |
| /* Overwriting valid entry in utlb. */ |
| target_ulong address = entry->vpn << 10; |
| tlb_flush_page(CPU(sh_env_get_cpu(s)), address); |
| } |
| entry->ppn = (mem_value & 0x1ffffc00) >> 10; |
| entry->v = (mem_value & 0x00000100) >> 8; |
| entry->sz = (mem_value & 0x00000080) >> 6 | |
| (mem_value & 0x00000010) >> 4; |
| entry->pr = (mem_value & 0x00000040) >> 5; |
| entry->c = (mem_value & 0x00000008) >> 3; |
| entry->sh = (mem_value & 0x00000002) >> 1; |
| } else { |
| /* ITLB Data Array 2 */ |
| entry->tc = (mem_value & 0x00000008) >> 3; |
| entry->sa = (mem_value & 0x00000007); |
| } |
| } |
| |
| uint32_t cpu_sh4_read_mmaped_utlb_addr(CPUSH4State *s, |
| hwaddr addr) |
| { |
| int index = (addr & 0x00003f00) >> 8; |
| tlb_t * entry = &s->utlb[index]; |
| |
| increment_urc(s); /* per utlb access */ |
| |
| return (entry->vpn << 10) | |
| (entry->v << 8) | |
| (entry->asid); |
| } |
| |
| void cpu_sh4_write_mmaped_utlb_addr(CPUSH4State *s, hwaddr addr, |
| uint32_t mem_value) |
| { |
| int associate = addr & 0x0000080; |
| uint32_t vpn = (mem_value & 0xfffffc00) >> 10; |
| uint8_t d = (uint8_t)((mem_value & 0x00000200) >> 9); |
| uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8); |
| uint8_t asid = (uint8_t)(mem_value & 0x000000ff); |
| int use_asid = !(s->mmucr & MMUCR_SV) || !(s->sr & (1u << SR_MD)); |
| |
| if (associate) { |
| int i; |
| tlb_t * utlb_match_entry = NULL; |
| int needs_tlb_flush = 0; |
| |
| /* search UTLB */ |
| for (i = 0; i < UTLB_SIZE; i++) { |
| tlb_t * entry = &s->utlb[i]; |
| if (!entry->v) |
| continue; |
| |
| if (entry->vpn == vpn |
| && (!use_asid || entry->asid == asid || entry->sh)) { |
| if (utlb_match_entry) { |
| CPUState *cs = CPU(sh_env_get_cpu(s)); |
| |
| /* Multiple TLB Exception */ |
| cs->exception_index = 0x140; |
| s->tea = addr; |
| break; |
| } |
| if (entry->v && !v) |
| needs_tlb_flush = 1; |
| entry->v = v; |
| entry->d = d; |
| utlb_match_entry = entry; |
| } |
| increment_urc(s); /* per utlb access */ |
| } |
| |
| /* search ITLB */ |
| for (i = 0; i < ITLB_SIZE; i++) { |
| tlb_t * entry = &s->itlb[i]; |
| if (entry->vpn == vpn |
| && (!use_asid || entry->asid == asid || entry->sh)) { |
| if (entry->v && !v) |
| needs_tlb_flush = 1; |
| if (utlb_match_entry) |
| *entry = *utlb_match_entry; |
| else |
| entry->v = v; |
| break; |
| } |
| } |
| |
| if (needs_tlb_flush) { |
| tlb_flush_page(CPU(sh_env_get_cpu(s)), vpn << 10); |
| } |
| |
| } else { |
| int index = (addr & 0x00003f00) >> 8; |
| tlb_t * entry = &s->utlb[index]; |
| if (entry->v) { |
| CPUState *cs = CPU(sh_env_get_cpu(s)); |
| |
| /* Overwriting valid entry in utlb. */ |
| target_ulong address = entry->vpn << 10; |
| tlb_flush_page(cs, address); |
| } |
| entry->asid = asid; |
| entry->vpn = vpn; |
| entry->d = d; |
| entry->v = v; |
| increment_urc(s); |
| } |
| } |
| |
| uint32_t cpu_sh4_read_mmaped_utlb_data(CPUSH4State *s, |
| hwaddr addr) |
| { |
| int array = (addr & 0x00800000) >> 23; |
| int index = (addr & 0x00003f00) >> 8; |
| tlb_t * entry = &s->utlb[index]; |
| |
| increment_urc(s); /* per utlb access */ |
| |
| if (array == 0) { |
| /* ITLB Data Array 1 */ |
| return (entry->ppn << 10) | |
| (entry->v << 8) | |
| (entry->pr << 5) | |
| ((entry->sz & 1) << 6) | |
| ((entry->sz & 2) << 4) | |
| (entry->c << 3) | |
| (entry->d << 2) | |
| (entry->sh << 1) | |
| (entry->wt); |
| } else { |
| /* ITLB Data Array 2 */ |
| return (entry->tc << 1) | |
| (entry->sa); |
| } |
| } |
| |
| void cpu_sh4_write_mmaped_utlb_data(CPUSH4State *s, hwaddr addr, |
| uint32_t mem_value) |
| { |
| int array = (addr & 0x00800000) >> 23; |
| int index = (addr & 0x00003f00) >> 8; |
| tlb_t * entry = &s->utlb[index]; |
| |
| increment_urc(s); /* per utlb access */ |
| |
| if (array == 0) { |
| /* UTLB Data Array 1 */ |
| if (entry->v) { |
| /* Overwriting valid entry in utlb. */ |
| target_ulong address = entry->vpn << 10; |
| tlb_flush_page(CPU(sh_env_get_cpu(s)), address); |
| } |
| entry->ppn = (mem_value & 0x1ffffc00) >> 10; |
| entry->v = (mem_value & 0x00000100) >> 8; |
| entry->sz = (mem_value & 0x00000080) >> 6 | |
| (mem_value & 0x00000010) >> 4; |
| entry->pr = (mem_value & 0x00000060) >> 5; |
| entry->c = (mem_value & 0x00000008) >> 3; |
| entry->d = (mem_value & 0x00000004) >> 2; |
| entry->sh = (mem_value & 0x00000002) >> 1; |
| entry->wt = (mem_value & 0x00000001); |
| } else { |
| /* UTLB Data Array 2 */ |
| entry->tc = (mem_value & 0x00000008) >> 3; |
| entry->sa = (mem_value & 0x00000007); |
| } |
| } |
| |
| int cpu_sh4_is_cached(CPUSH4State * env, target_ulong addr) |
| { |
| int n; |
| int use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD)); |
| |
| /* check area */ |
| if (env->sr & (1u << SR_MD)) { |
| /* For privileged mode, P2 and P4 area is not cacheable. */ |
| if ((0xA0000000 <= addr && addr < 0xC0000000) || 0xE0000000 <= addr) |
| return 0; |
| } else { |
| /* For user mode, only U0 area is cacheable. */ |
| if (0x80000000 <= addr) |
| return 0; |
| } |
| |
| /* |
| * TODO : Evaluate CCR and check if the cache is on or off. |
| * Now CCR is not in CPUSH4State, but in SH7750State. |
| * When you move the ccr into CPUSH4State, the code will be |
| * as follows. |
| */ |
| #if 0 |
| /* check if operand cache is enabled or not. */ |
| if (!(env->ccr & 1)) |
| return 0; |
| #endif |
| |
| /* if MMU is off, no check for TLB. */ |
| if (env->mmucr & MMUCR_AT) |
| return 1; |
| |
| /* check TLB */ |
| n = find_tlb_entry(env, addr, env->itlb, ITLB_SIZE, use_asid); |
| if (n >= 0) |
| return env->itlb[n].c; |
| |
| n = find_tlb_entry(env, addr, env->utlb, UTLB_SIZE, use_asid); |
| if (n >= 0) |
| return env->utlb[n].c; |
| |
| return 0; |
| } |
| |
| #endif |
| |
| bool superh_cpu_exec_interrupt(CPUState *cs, int interrupt_request) |
| { |
| if (interrupt_request & CPU_INTERRUPT_HARD) { |
| SuperHCPU *cpu = SUPERH_CPU(cs); |
| CPUSH4State *env = &cpu->env; |
| |
| /* Delay slots are indivisible, ignore interrupts */ |
| if (env->flags & DELAY_SLOT_MASK) { |
| return false; |
| } else { |
| superh_cpu_do_interrupt(cs); |
| return true; |
| } |
| } |
| return false; |
| } |