blob: dd19e888614ea50d67f75b778b622209ffaa5abe [file] [log] [blame]
/*
* QTest testcase for PowerNV 10 interrupt controller (xive2)
* - Test irq to hardware thread
* - Test 'Pull Thread Context to Odd Thread Reporting Line'
*
* Copyright (c) 2024, IBM Corporation.
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include "qemu/osdep.h"
#include "libqtest.h"
#include "pnv-xive2-common.h"
#include "hw/intc/pnv_xive2_regs.h"
#include "hw/ppc/xive_regs.h"
#include "hw/ppc/xive2_regs.h"
#define SMT 4 /* some tests will break if less than 4 */
static void set_table(QTestState *qts, uint64_t type, uint64_t addr)
{
uint64_t vsd, size, log_size;
/*
* First, let's make sure that all the resources used fit in the
* given table.
*/
switch (type) {
case VST_ESB:
size = MAX_IRQS / 4;
break;
case VST_EAS:
size = MAX_IRQS * 8;
break;
case VST_END:
size = MAX_ENDS * 32;
break;
case VST_NVP:
case VST_NVG:
case VST_NVC:
size = MAX_VPS * 32;
break;
case VST_SYNC:
size = 64 * 1024;
break;
default:
g_assert_not_reached();
}
g_assert_cmpuint(size, <=, XIVE_VST_SIZE);
log_size = ctzl(XIVE_VST_SIZE) - 12;
vsd = ((uint64_t) VSD_MODE_EXCLUSIVE) << 62 | addr | log_size;
pnv_xive_xscom_write(qts, X_VC_VSD_TABLE_ADDR, type << 48);
pnv_xive_xscom_write(qts, X_VC_VSD_TABLE_DATA, vsd);
if (type != VST_EAS && type != VST_IC && type != VST_ERQ) {
pnv_xive_xscom_write(qts, X_PC_VSD_TABLE_ADDR, type << 48);
pnv_xive_xscom_write(qts, X_PC_VSD_TABLE_DATA, vsd);
}
}
static void set_tima8(QTestState *qts, uint32_t pir, uint32_t offset,
uint8_t b)
{
uint64_t ic_addr;
ic_addr = XIVE_IC_TM_INDIRECT + (pir << XIVE_PAGE_SHIFT);
qtest_writeb(qts, ic_addr + offset, b);
}
static void set_tima32(QTestState *qts, uint32_t pir, uint32_t offset,
uint32_t l)
{
uint64_t ic_addr;
ic_addr = XIVE_IC_TM_INDIRECT + (pir << XIVE_PAGE_SHIFT);
qtest_writel(qts, ic_addr + offset, l);
}
static uint8_t get_tima8(QTestState *qts, uint32_t pir, uint32_t offset)
{
uint64_t ic_addr;
ic_addr = XIVE_IC_TM_INDIRECT + (pir << XIVE_PAGE_SHIFT);
return qtest_readb(qts, ic_addr + offset);
}
static uint16_t get_tima16(QTestState *qts, uint32_t pir, uint32_t offset)
{
uint64_t ic_addr;
ic_addr = XIVE_IC_TM_INDIRECT + (pir << XIVE_PAGE_SHIFT);
return qtest_readw(qts, ic_addr + offset);
}
static uint32_t get_tima32(QTestState *qts, uint32_t pir, uint32_t offset)
{
uint64_t ic_addr;
ic_addr = XIVE_IC_TM_INDIRECT + (pir << XIVE_PAGE_SHIFT);
return qtest_readl(qts, ic_addr + offset);
}
static void reset_pool_threads(QTestState *qts)
{
uint8_t first_group = 0;
int i;
for (i = 0; i < SMT; i++) {
uint32_t nvp_idx = 0x100 + i;
set_nvp(qts, nvp_idx, first_group);
set_tima32(qts, i, TM_QW2_HV_POOL + TM_WORD0, 0x000000ff);
set_tima32(qts, i, TM_QW2_HV_POOL + TM_WORD1, 0);
set_tima32(qts, i, TM_QW2_HV_POOL + TM_WORD2, TM_QW2W2_VP | nvp_idx);
}
}
static void reset_hw_threads(QTestState *qts)
{
uint8_t first_group = 0;
uint32_t w1 = 0x000000ff;
int i;
if (SMT >= 4) {
/* define 2 groups of 2, part of a bigger group of size 4 */
set_nvg(qts, 0x80, 0x02);
set_nvg(qts, 0x82, 0x02);
set_nvg(qts, 0x81, 0);
first_group = 0x01;
w1 = 0x000300ff;
}
for (i = 0; i < SMT; i++) {
set_nvp(qts, 0x80 + i, first_group);
set_tima32(qts, i, TM_QW3_HV_PHYS + TM_WORD0, 0x00ff00ff);
set_tima32(qts, i, TM_QW3_HV_PHYS + TM_WORD1, w1);
set_tima32(qts, i, TM_QW3_HV_PHYS + TM_WORD2, 0x80000000);
}
}
static void reset_state(QTestState *qts)
{
size_t mem_used = XIVE_MEM_END - XIVE_MEM_START;
qtest_memset(qts, XIVE_MEM_START, 0, mem_used);
reset_hw_threads(qts);
reset_pool_threads(qts);
}
static void init_xive(QTestState *qts)
{
uint64_t val1, val2, range;
/*
* We can take a few shortcuts here, as we know the default values
* used for xive initialization
*/
/*
* Set the BARs.
* We reuse the same values used by firmware to ease debug.
*/
pnv_xive_xscom_write(qts, X_CQ_IC_BAR, XIVE_IC_BAR);
pnv_xive_xscom_write(qts, X_CQ_TM_BAR, XIVE_TM_BAR);
/* ESB and NVPG use 2 pages per resource. The others only one page */
range = (MAX_IRQS << 17) >> 25;
val1 = XIVE_ESB_BAR | range;
pnv_xive_xscom_write(qts, X_CQ_ESB_BAR, val1);
range = (MAX_ENDS << 16) >> 25;
val1 = XIVE_END_BAR | range;
pnv_xive_xscom_write(qts, X_CQ_END_BAR, val1);
range = (MAX_VPS << 17) >> 25;
val1 = XIVE_NVPG_BAR | range;
pnv_xive_xscom_write(qts, X_CQ_NVPG_BAR, val1);
range = (MAX_VPS << 16) >> 25;
val1 = XIVE_NVC_BAR | range;
pnv_xive_xscom_write(qts, X_CQ_NVC_BAR, val1);
/*
* Enable hw threads.
* We check the value written. Useless with current
* implementation, but it validates the xscom read path and it's
* what the hardware procedure says
*/
val1 = 0xF000000000000000ull; /* core 0, 4 threads */
pnv_xive_xscom_write(qts, X_TCTXT_EN0, val1);
val2 = pnv_xive_xscom_read(qts, X_TCTXT_EN0);
g_assert_cmphex(val1, ==, val2);
/* Memory tables */
set_table(qts, VST_ESB, XIVE_ESB_MEM);
set_table(qts, VST_EAS, XIVE_EAS_MEM);
set_table(qts, VST_END, XIVE_END_MEM);
set_table(qts, VST_NVP, XIVE_NVP_MEM);
set_table(qts, VST_NVG, XIVE_NVG_MEM);
set_table(qts, VST_NVC, XIVE_NVC_MEM);
set_table(qts, VST_SYNC, XIVE_SYNC_MEM);
reset_hw_threads(qts);
reset_pool_threads(qts);
}
static void test_hw_irq(QTestState *qts)
{
uint32_t irq = 2;
uint32_t irq_data = 0x600df00d;
uint32_t end_index = 5;
uint32_t target_pir = 1;
uint32_t target_nvp = 0x80 + target_pir;
uint8_t priority = 5;
uint32_t reg32;
uint16_t reg16;
uint8_t pq, nsr, cppr;
printf("# ============================================================\n");
printf("# Testing irq %d to hardware thread %d\n", irq, target_pir);
/* irq config */
set_eas(qts, irq, end_index, irq_data);
set_end(qts, end_index, target_nvp, priority, false /* group */);
/* enable and trigger irq */
get_esb(qts, irq, XIVE_EOI_PAGE, XIVE_ESB_SET_PQ_00);
set_esb(qts, irq, XIVE_TRIGGER_PAGE, 0, 0);
/* check irq is raised on cpu */
pq = get_esb(qts, irq, XIVE_EOI_PAGE, XIVE_ESB_GET);
g_assert_cmpuint(pq, ==, XIVE_ESB_PENDING);
reg32 = get_tima32(qts, target_pir, TM_QW3_HV_PHYS + TM_WORD0);
nsr = reg32 >> 24;
cppr = (reg32 >> 16) & 0xFF;
g_assert_cmphex(nsr, ==, 0x80);
g_assert_cmphex(cppr, ==, 0xFF);
/* ack the irq */
reg16 = get_tima16(qts, target_pir, TM_SPC_ACK_HV_REG);
nsr = reg16 >> 8;
cppr = reg16 & 0xFF;
g_assert_cmphex(nsr, ==, 0x80);
g_assert_cmphex(cppr, ==, priority);
/* check irq data is what was configured */
reg32 = qtest_readl(qts, xive_get_queue_addr(end_index));
g_assert_cmphex((reg32 & 0x7fffffff), ==, (irq_data & 0x7fffffff));
/* End Of Interrupt */
set_esb(qts, irq, XIVE_EOI_PAGE, XIVE_ESB_STORE_EOI, 0);
pq = get_esb(qts, irq, XIVE_EOI_PAGE, XIVE_ESB_GET);
g_assert_cmpuint(pq, ==, XIVE_ESB_RESET);
/* reset CPPR */
set_tima8(qts, target_pir, TM_QW3_HV_PHYS + TM_CPPR, 0xFF);
reg32 = get_tima32(qts, target_pir, TM_QW3_HV_PHYS + TM_WORD0);
nsr = reg32 >> 24;
cppr = (reg32 >> 16) & 0xFF;
g_assert_cmphex(nsr, ==, 0x00);
g_assert_cmphex(cppr, ==, 0xFF);
}
#define XIVE_ODD_CL 0x80
static void test_pull_thread_ctx_to_odd_thread_cl(QTestState *qts)
{
uint32_t target_pir = 1;
uint32_t target_nvp = 0x80 + target_pir;
Xive2Nvp nvp;
uint8_t cl_pair[XIVE_REPORT_SIZE];
uint32_t qw1w0, qw3w0, qw1w2, qw2w2;
uint8_t qw3b8;
uint32_t cl_word;
uint32_t word2;
printf("# ============================================================\n");
printf("# Testing 'Pull Thread Context to Odd Thread Reporting Line'\n");
/* clear odd cache line prior to pull operation */
memset(cl_pair, 0, sizeof(cl_pair));
get_nvp(qts, target_nvp, &nvp);
set_cl_pair(qts, &nvp, cl_pair);
/* Read some values from TIMA that we expect to see in cacheline */
qw1w0 = get_tima32(qts, target_pir, TM_QW1_OS + TM_WORD0);
qw3w0 = get_tima32(qts, target_pir, TM_QW3_HV_PHYS + TM_WORD0);
qw1w2 = get_tima32(qts, target_pir, TM_QW1_OS + TM_WORD2);
qw2w2 = get_tima32(qts, target_pir, TM_QW2_HV_POOL + TM_WORD2);
qw3b8 = get_tima8(qts, target_pir, TM_QW3_HV_PHYS + TM_WORD2);
/* Execute the pull operation */
set_tima8(qts, target_pir, TM_SPC_PULL_PHYS_CTX_OL, 0);
/* Verify odd cache line values match TIMA after pull operation */
get_cl_pair(qts, &nvp, cl_pair);
memcpy(&cl_word, &cl_pair[XIVE_ODD_CL + TM_QW1_OS + TM_WORD0], 4);
g_assert_cmphex(qw1w0, ==, be32_to_cpu(cl_word));
memcpy(&cl_word, &cl_pair[XIVE_ODD_CL + TM_QW3_HV_PHYS + TM_WORD0], 4);
g_assert_cmphex(qw3w0, ==, be32_to_cpu(cl_word));
memcpy(&cl_word, &cl_pair[XIVE_ODD_CL + TM_QW1_OS + TM_WORD2], 4);
g_assert_cmphex(qw1w2, ==, be32_to_cpu(cl_word));
memcpy(&cl_word, &cl_pair[XIVE_ODD_CL + TM_QW2_HV_POOL + TM_WORD2], 4);
g_assert_cmphex(qw2w2, ==, be32_to_cpu(cl_word));
g_assert_cmphex(qw3b8, ==,
cl_pair[XIVE_ODD_CL + TM_QW3_HV_PHYS + TM_WORD2]);
/* Verify that all TIMA valid bits for target thread are cleared */
word2 = get_tima32(qts, target_pir, TM_QW1_OS + TM_WORD2);
g_assert_cmphex(xive_get_field32(TM_QW1W2_VO, word2), ==, 0);
word2 = get_tima32(qts, target_pir, TM_QW2_HV_POOL + TM_WORD2);
g_assert_cmphex(xive_get_field32(TM_QW2W2_VP, word2), ==, 0);
word2 = get_tima32(qts, target_pir, TM_QW3_HV_PHYS + TM_WORD2);
g_assert_cmphex(xive_get_field32(TM_QW3W2_VT, word2), ==, 0);
}
static void test_xive(void)
{
QTestState *qts;
qts = qtest_initf("-M powernv10 -smp %d,cores=1,threads=%d -nographic "
"-nodefaults -serial mon:stdio -S "
"-d guest_errors -trace '*xive*'",
SMT, SMT);
init_xive(qts);
test_hw_irq(qts);
/* omit reset_state here and use settings from test_hw_irq */
test_pull_thread_ctx_to_odd_thread_cl(qts);
reset_state(qts);
test_flush_sync_inject(qts);
qtest_quit(qts);
}
int main(int argc, char **argv)
{
g_test_init(&argc, &argv, NULL);
qtest_add_func("xive2", test_xive);
return g_test_run();
}