| /* |
| * ARM TLB (Translation lookaside buffer) helpers. |
| * |
| * This code is licensed under the GNU GPL v2 or later. |
| * |
| * SPDX-License-Identifier: GPL-2.0-or-later |
| */ |
| #include "qemu/osdep.h" |
| #include "cpu.h" |
| #include "internals.h" |
| #include "cpu-features.h" |
| #include "exec/exec-all.h" |
| #include "exec/helper-proto.h" |
| |
| |
| /* |
| * Returns true if the stage 1 translation regime is using LPAE format page |
| * tables. Used when raising alignment exceptions, whose FSR changes depending |
| * on whether the long or short descriptor format is in use. |
| */ |
| bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) |
| { |
| mmu_idx = stage_1_mmu_idx(mmu_idx); |
| return regime_using_lpae_format(env, mmu_idx); |
| } |
| |
| static inline uint32_t merge_syn_data_abort(uint32_t template_syn, |
| ARMMMUFaultInfo *fi, |
| unsigned int target_el, |
| bool same_el, bool is_write, |
| int fsc) |
| { |
| uint32_t syn; |
| |
| /* |
| * ISV is only set for stage-2 data aborts routed to EL2 and |
| * never for stage-1 page table walks faulting on stage 2 |
| * or for stage-1 faults. |
| * |
| * Furthermore, ISV is only set for certain kinds of load/stores. |
| * If the template syndrome does not have ISV set, we should leave |
| * it cleared. |
| * |
| * See ARMv8 specs, D7-1974: |
| * ISS encoding for an exception from a Data Abort, the |
| * ISV field. |
| * |
| * TODO: FEAT_LS64/FEAT_LS64_V/FEAT_SL64_ACCDATA: Translation, |
| * Access Flag, and Permission faults caused by LD64B, ST64B, |
| * ST64BV, or ST64BV0 insns report syndrome info even for stage-1 |
| * faults and regardless of the target EL. |
| */ |
| if (template_syn & ARM_EL_VNCR) { |
| /* |
| * FEAT_NV2 faults on accesses via VNCR_EL2 are a special case: |
| * they are always reported as "same EL", even though we are going |
| * from EL1 to EL2. |
| */ |
| assert(!fi->stage2); |
| syn = syn_data_abort_vncr(fi->ea, is_write, fsc); |
| } else if (!(template_syn & ARM_EL_ISV) || target_el != 2 |
| || fi->s1ptw || !fi->stage2) { |
| syn = syn_data_abort_no_iss(same_el, 0, |
| fi->ea, 0, fi->s1ptw, is_write, fsc); |
| } else { |
| /* |
| * Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template |
| * syndrome created at translation time. |
| * Now we create the runtime syndrome with the remaining fields. |
| */ |
| syn = syn_data_abort_with_iss(same_el, |
| 0, 0, 0, 0, 0, |
| fi->ea, 0, fi->s1ptw, is_write, fsc, |
| true); |
| /* Merge the runtime syndrome with the template syndrome. */ |
| syn |= template_syn; |
| } |
| return syn; |
| } |
| |
| static uint32_t compute_fsr_fsc(CPUARMState *env, ARMMMUFaultInfo *fi, |
| int target_el, int mmu_idx, uint32_t *ret_fsc) |
| { |
| ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx); |
| uint32_t fsr, fsc; |
| |
| /* |
| * For M-profile there is no guest-facing FSR. We compute a |
| * short-form value for env->exception.fsr which we will then |
| * examine in arm_v7m_cpu_do_interrupt(). In theory we could |
| * use the LPAE format instead as long as both bits of code agree |
| * (and arm_fi_to_lfsc() handled the M-profile specific |
| * ARMFault_QEMU_NSCExec and ARMFault_QEMU_SFault cases). |
| */ |
| if (!arm_feature(env, ARM_FEATURE_M) && |
| (target_el == 2 || arm_el_is_aa64(env, target_el) || |
| arm_s1_regime_using_lpae_format(env, arm_mmu_idx))) { |
| /* |
| * LPAE format fault status register : bottom 6 bits are |
| * status code in the same form as needed for syndrome |
| */ |
| fsr = arm_fi_to_lfsc(fi); |
| fsc = extract32(fsr, 0, 6); |
| } else { |
| fsr = arm_fi_to_sfsc(fi); |
| /* |
| * Short format FSR : this fault will never actually be reported |
| * to an EL that uses a syndrome register. Use a (currently) |
| * reserved FSR code in case the constructed syndrome does leak |
| * into the guest somehow. |
| */ |
| fsc = 0x3f; |
| } |
| |
| *ret_fsc = fsc; |
| return fsr; |
| } |
| |
| static bool report_as_gpc_exception(ARMCPU *cpu, int current_el, |
| ARMMMUFaultInfo *fi) |
| { |
| bool ret; |
| |
| switch (fi->gpcf) { |
| case GPCF_None: |
| return false; |
| case GPCF_AddressSize: |
| case GPCF_Walk: |
| case GPCF_EABT: |
| /* R_PYTGX: GPT faults are reported as GPC. */ |
| ret = true; |
| break; |
| case GPCF_Fail: |
| /* |
| * R_BLYPM: A GPF at EL3 is reported as insn or data abort. |
| * R_VBZMW, R_LXHQR: A GPF at EL[0-2] is reported as a GPC |
| * if SCR_EL3.GPF is set, otherwise an insn or data abort. |
| */ |
| ret = (cpu->env.cp15.scr_el3 & SCR_GPF) && current_el != 3; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| assert(cpu_isar_feature(aa64_rme, cpu)); |
| assert(fi->type == ARMFault_GPCFOnWalk || |
| fi->type == ARMFault_GPCFOnOutput); |
| if (fi->gpcf == GPCF_AddressSize) { |
| assert(fi->level == 0); |
| } else { |
| assert(fi->level >= 0 && fi->level <= 1); |
| } |
| |
| return ret; |
| } |
| |
| static unsigned encode_gpcsc(ARMMMUFaultInfo *fi) |
| { |
| static uint8_t const gpcsc[] = { |
| [GPCF_AddressSize] = 0b000000, |
| [GPCF_Walk] = 0b000100, |
| [GPCF_Fail] = 0b001100, |
| [GPCF_EABT] = 0b010100, |
| }; |
| |
| /* Note that we've validated fi->gpcf and fi->level above. */ |
| return gpcsc[fi->gpcf] | fi->level; |
| } |
| |
| static G_NORETURN |
| void arm_deliver_fault(ARMCPU *cpu, vaddr addr, |
| MMUAccessType access_type, |
| int mmu_idx, ARMMMUFaultInfo *fi) |
| { |
| CPUARMState *env = &cpu->env; |
| int target_el = exception_target_el(env); |
| int current_el = arm_current_el(env); |
| bool same_el; |
| uint32_t syn, exc, fsr, fsc; |
| /* |
| * We know this must be a data or insn abort, and that |
| * env->exception.syndrome contains the template syndrome set |
| * up at translate time. So we can check only the VNCR bit |
| * (and indeed syndrome does not have the EC field in it, |
| * because we masked that out in disas_set_insn_syndrome()) |
| */ |
| bool is_vncr = (access_type != MMU_INST_FETCH) && |
| (env->exception.syndrome & ARM_EL_VNCR); |
| |
| if (is_vncr) { |
| /* FEAT_NV2 faults on accesses via VNCR_EL2 go to EL2 */ |
| target_el = 2; |
| } |
| |
| if (report_as_gpc_exception(cpu, current_el, fi)) { |
| target_el = 3; |
| |
| fsr = compute_fsr_fsc(env, fi, target_el, mmu_idx, &fsc); |
| |
| syn = syn_gpc(fi->stage2 && fi->type == ARMFault_GPCFOnWalk, |
| access_type == MMU_INST_FETCH, |
| encode_gpcsc(fi), is_vncr, |
| 0, fi->s1ptw, |
| access_type == MMU_DATA_STORE, fsc); |
| |
| env->cp15.mfar_el3 = fi->paddr; |
| switch (fi->paddr_space) { |
| case ARMSS_Secure: |
| break; |
| case ARMSS_NonSecure: |
| env->cp15.mfar_el3 |= R_MFAR_NS_MASK; |
| break; |
| case ARMSS_Root: |
| env->cp15.mfar_el3 |= R_MFAR_NSE_MASK; |
| break; |
| case ARMSS_Realm: |
| env->cp15.mfar_el3 |= R_MFAR_NSE_MASK | R_MFAR_NS_MASK; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| exc = EXCP_GPC; |
| goto do_raise; |
| } |
| |
| /* If SCR_EL3.GPF is unset, GPF may still be routed to EL2. */ |
| if (fi->gpcf == GPCF_Fail && target_el < 2) { |
| if (arm_hcr_el2_eff(env) & HCR_GPF) { |
| target_el = 2; |
| } |
| } |
| |
| if (fi->stage2) { |
| target_el = 2; |
| env->cp15.hpfar_el2 = extract64(fi->s2addr, 12, 47) << 4; |
| if (arm_is_secure_below_el3(env) && fi->s1ns) { |
| env->cp15.hpfar_el2 |= HPFAR_NS; |
| } |
| } |
| |
| same_el = current_el == target_el; |
| fsr = compute_fsr_fsc(env, fi, target_el, mmu_idx, &fsc); |
| |
| if (access_type == MMU_INST_FETCH) { |
| syn = syn_insn_abort(same_el, fi->ea, fi->s1ptw, fsc); |
| exc = EXCP_PREFETCH_ABORT; |
| } else { |
| syn = merge_syn_data_abort(env->exception.syndrome, fi, target_el, |
| same_el, access_type == MMU_DATA_STORE, |
| fsc); |
| if (access_type == MMU_DATA_STORE |
| && arm_feature(env, ARM_FEATURE_V6)) { |
| fsr |= (1 << 11); |
| } |
| exc = EXCP_DATA_ABORT; |
| } |
| |
| do_raise: |
| env->exception.vaddress = addr; |
| env->exception.fsr = fsr; |
| raise_exception(env, exc, syn, target_el); |
| } |
| |
| /* Raise a data fault alignment exception for the specified virtual address */ |
| void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, |
| MMUAccessType access_type, |
| int mmu_idx, uintptr_t retaddr) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| ARMMMUFaultInfo fi = {}; |
| |
| /* now we have a real cpu fault */ |
| cpu_restore_state(cs, retaddr); |
| |
| fi.type = ARMFault_Alignment; |
| arm_deliver_fault(cpu, vaddr, access_type, mmu_idx, &fi); |
| } |
| |
| void helper_exception_pc_alignment(CPUARMState *env, target_ulong pc) |
| { |
| ARMMMUFaultInfo fi = { .type = ARMFault_Alignment }; |
| int target_el = exception_target_el(env); |
| int mmu_idx = cpu_mmu_index(env, true); |
| uint32_t fsc; |
| |
| env->exception.vaddress = pc; |
| |
| /* |
| * Note that the fsc is not applicable to this exception, |
| * since any syndrome is pcalignment not insn_abort. |
| */ |
| env->exception.fsr = compute_fsr_fsc(env, &fi, target_el, mmu_idx, &fsc); |
| raise_exception(env, EXCP_PREFETCH_ABORT, syn_pcalignment(), target_el); |
| } |
| |
| #if !defined(CONFIG_USER_ONLY) |
| |
| /* |
| * arm_cpu_do_transaction_failed: handle a memory system error response |
| * (eg "no device/memory present at address") by raising an external abort |
| * exception |
| */ |
| void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, |
| vaddr addr, unsigned size, |
| MMUAccessType access_type, |
| int mmu_idx, MemTxAttrs attrs, |
| MemTxResult response, uintptr_t retaddr) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| ARMMMUFaultInfo fi = {}; |
| |
| /* now we have a real cpu fault */ |
| cpu_restore_state(cs, retaddr); |
| |
| fi.ea = arm_extabort_type(response); |
| fi.type = ARMFault_SyncExternal; |
| arm_deliver_fault(cpu, addr, access_type, mmu_idx, &fi); |
| } |
| |
| bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size, |
| MMUAccessType access_type, int mmu_idx, |
| bool probe, uintptr_t retaddr) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| GetPhysAddrResult res = {}; |
| ARMMMUFaultInfo local_fi, *fi; |
| int ret; |
| |
| /* |
| * Allow S1_ptw_translate to see any fault generated here. |
| * Since this may recurse, read and clear. |
| */ |
| fi = cpu->env.tlb_fi; |
| if (fi) { |
| cpu->env.tlb_fi = NULL; |
| } else { |
| fi = memset(&local_fi, 0, sizeof(local_fi)); |
| } |
| |
| /* |
| * Walk the page table and (if the mapping exists) add the page |
| * to the TLB. On success, return true. Otherwise, if probing, |
| * return false. Otherwise populate fsr with ARM DFSR/IFSR fault |
| * register format, and signal the fault. |
| */ |
| ret = get_phys_addr(&cpu->env, address, access_type, |
| core_to_arm_mmu_idx(&cpu->env, mmu_idx), |
| &res, fi); |
| if (likely(!ret)) { |
| /* |
| * Map a single [sub]page. Regions smaller than our declared |
| * target page size are handled specially, so for those we |
| * pass in the exact addresses. |
| */ |
| if (res.f.lg_page_size >= TARGET_PAGE_BITS) { |
| res.f.phys_addr &= TARGET_PAGE_MASK; |
| address &= TARGET_PAGE_MASK; |
| } |
| |
| res.f.extra.arm.pte_attrs = res.cacheattrs.attrs; |
| res.f.extra.arm.shareability = res.cacheattrs.shareability; |
| |
| tlb_set_page_full(cs, mmu_idx, address, &res.f); |
| return true; |
| } else if (probe) { |
| return false; |
| } else { |
| /* now we have a real cpu fault */ |
| cpu_restore_state(cs, retaddr); |
| arm_deliver_fault(cpu, address, access_type, mmu_idx, fi); |
| } |
| } |
| #else |
| void arm_cpu_record_sigsegv(CPUState *cs, vaddr addr, |
| MMUAccessType access_type, |
| bool maperr, uintptr_t ra) |
| { |
| ARMMMUFaultInfo fi = { |
| .type = maperr ? ARMFault_Translation : ARMFault_Permission, |
| .level = 3, |
| }; |
| ARMCPU *cpu = ARM_CPU(cs); |
| |
| /* |
| * We report both ESR and FAR to signal handlers. |
| * For now, it's easiest to deliver the fault normally. |
| */ |
| cpu_restore_state(cs, ra); |
| arm_deliver_fault(cpu, addr, access_type, MMU_USER_IDX, &fi); |
| } |
| |
| void arm_cpu_record_sigbus(CPUState *cs, vaddr addr, |
| MMUAccessType access_type, uintptr_t ra) |
| { |
| arm_cpu_do_unaligned_access(cs, addr, access_type, MMU_USER_IDX, ra); |
| } |
| #endif /* !defined(CONFIG_USER_ONLY) */ |