| /* |
| * ARM micro operations |
| * |
| * Copyright (c) 2003 Fabrice Bellard |
| * Copyright (c) 2005 CodeSourcery, LLC |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| #include "exec.h" |
| |
| #define REGNAME r0 |
| #define REG (env->regs[0]) |
| #include "op_template.h" |
| |
| #define REGNAME r1 |
| #define REG (env->regs[1]) |
| #include "op_template.h" |
| |
| #define REGNAME r2 |
| #define REG (env->regs[2]) |
| #include "op_template.h" |
| |
| #define REGNAME r3 |
| #define REG (env->regs[3]) |
| #include "op_template.h" |
| |
| #define REGNAME r4 |
| #define REG (env->regs[4]) |
| #include "op_template.h" |
| |
| #define REGNAME r5 |
| #define REG (env->regs[5]) |
| #include "op_template.h" |
| |
| #define REGNAME r6 |
| #define REG (env->regs[6]) |
| #include "op_template.h" |
| |
| #define REGNAME r7 |
| #define REG (env->regs[7]) |
| #include "op_template.h" |
| |
| #define REGNAME r8 |
| #define REG (env->regs[8]) |
| #include "op_template.h" |
| |
| #define REGNAME r9 |
| #define REG (env->regs[9]) |
| #include "op_template.h" |
| |
| #define REGNAME r10 |
| #define REG (env->regs[10]) |
| #include "op_template.h" |
| |
| #define REGNAME r11 |
| #define REG (env->regs[11]) |
| #include "op_template.h" |
| |
| #define REGNAME r12 |
| #define REG (env->regs[12]) |
| #include "op_template.h" |
| |
| #define REGNAME r13 |
| #define REG (env->regs[13]) |
| #include "op_template.h" |
| |
| #define REGNAME r14 |
| #define REG (env->regs[14]) |
| #include "op_template.h" |
| |
| #define REGNAME r15 |
| #define REG (env->regs[15]) |
| #define SET_REG(x) REG = x & ~(uint32_t)1 |
| #include "op_template.h" |
| |
| void OPPROTO op_bx_T0(void) |
| { |
| env->regs[15] = T0 & ~(uint32_t)1; |
| env->thumb = (T0 & 1) != 0; |
| } |
| |
| void OPPROTO op_movl_T0_0(void) |
| { |
| T0 = 0; |
| } |
| |
| void OPPROTO op_movl_T0_im(void) |
| { |
| T0 = PARAM1; |
| } |
| |
| void OPPROTO op_movl_T1_im(void) |
| { |
| T1 = PARAM1; |
| } |
| |
| void OPPROTO op_mov_CF_T1(void) |
| { |
| env->CF = ((uint32_t)T1) >> 31; |
| } |
| |
| void OPPROTO op_movl_T2_im(void) |
| { |
| T2 = PARAM1; |
| } |
| |
| void OPPROTO op_addl_T1_im(void) |
| { |
| T1 += PARAM1; |
| } |
| |
| void OPPROTO op_addl_T1_T2(void) |
| { |
| T1 += T2; |
| } |
| |
| void OPPROTO op_subl_T1_T2(void) |
| { |
| T1 -= T2; |
| } |
| |
| void OPPROTO op_addl_T0_T1(void) |
| { |
| T0 += T1; |
| } |
| |
| void OPPROTO op_addl_T0_T1_cc(void) |
| { |
| unsigned int src1; |
| src1 = T0; |
| T0 += T1; |
| env->NZF = T0; |
| env->CF = T0 < src1; |
| env->VF = (src1 ^ T1 ^ -1) & (src1 ^ T0); |
| } |
| |
| void OPPROTO op_adcl_T0_T1(void) |
| { |
| T0 += T1 + env->CF; |
| } |
| |
| void OPPROTO op_adcl_T0_T1_cc(void) |
| { |
| unsigned int src1; |
| src1 = T0; |
| if (!env->CF) { |
| T0 += T1; |
| env->CF = T0 < src1; |
| } else { |
| T0 += T1 + 1; |
| env->CF = T0 <= src1; |
| } |
| env->VF = (src1 ^ T1 ^ -1) & (src1 ^ T0); |
| env->NZF = T0; |
| FORCE_RET(); |
| } |
| |
| #define OPSUB(sub, sbc, res, T0, T1) \ |
| \ |
| void OPPROTO op_ ## sub ## l_T0_T1(void) \ |
| { \ |
| res = T0 - T1; \ |
| } \ |
| \ |
| void OPPROTO op_ ## sub ## l_T0_T1_cc(void) \ |
| { \ |
| unsigned int src1; \ |
| src1 = T0; \ |
| T0 -= T1; \ |
| env->NZF = T0; \ |
| env->CF = src1 >= T1; \ |
| env->VF = (src1 ^ T1) & (src1 ^ T0); \ |
| res = T0; \ |
| } \ |
| \ |
| void OPPROTO op_ ## sbc ## l_T0_T1(void) \ |
| { \ |
| res = T0 - T1 + env->CF - 1; \ |
| } \ |
| \ |
| void OPPROTO op_ ## sbc ## l_T0_T1_cc(void) \ |
| { \ |
| unsigned int src1; \ |
| src1 = T0; \ |
| if (!env->CF) { \ |
| T0 = T0 - T1 - 1; \ |
| env->CF = src1 > T1; \ |
| } else { \ |
| T0 = T0 - T1; \ |
| env->CF = src1 >= T1; \ |
| } \ |
| env->VF = (src1 ^ T1) & (src1 ^ T0); \ |
| env->NZF = T0; \ |
| res = T0; \ |
| FORCE_RET(); \ |
| } |
| |
| OPSUB(sub, sbc, T0, T0, T1) |
| |
| OPSUB(rsb, rsc, T0, T1, T0) |
| |
| void OPPROTO op_andl_T0_T1(void) |
| { |
| T0 &= T1; |
| } |
| |
| void OPPROTO op_xorl_T0_T1(void) |
| { |
| T0 ^= T1; |
| } |
| |
| void OPPROTO op_orl_T0_T1(void) |
| { |
| T0 |= T1; |
| } |
| |
| void OPPROTO op_bicl_T0_T1(void) |
| { |
| T0 &= ~T1; |
| } |
| |
| void OPPROTO op_notl_T1(void) |
| { |
| T1 = ~T1; |
| } |
| |
| void OPPROTO op_logic_T0_cc(void) |
| { |
| env->NZF = T0; |
| } |
| |
| void OPPROTO op_logic_T1_cc(void) |
| { |
| env->NZF = T1; |
| } |
| |
| #define EIP (env->regs[15]) |
| |
| void OPPROTO op_test_eq(void) |
| { |
| if (env->NZF == 0) |
| GOTO_LABEL_PARAM(1);; |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_test_ne(void) |
| { |
| if (env->NZF != 0) |
| GOTO_LABEL_PARAM(1);; |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_test_cs(void) |
| { |
| if (env->CF != 0) |
| GOTO_LABEL_PARAM(1); |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_test_cc(void) |
| { |
| if (env->CF == 0) |
| GOTO_LABEL_PARAM(1); |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_test_mi(void) |
| { |
| if ((env->NZF & 0x80000000) != 0) |
| GOTO_LABEL_PARAM(1); |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_test_pl(void) |
| { |
| if ((env->NZF & 0x80000000) == 0) |
| GOTO_LABEL_PARAM(1); |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_test_vs(void) |
| { |
| if ((env->VF & 0x80000000) != 0) |
| GOTO_LABEL_PARAM(1); |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_test_vc(void) |
| { |
| if ((env->VF & 0x80000000) == 0) |
| GOTO_LABEL_PARAM(1); |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_test_hi(void) |
| { |
| if (env->CF != 0 && env->NZF != 0) |
| GOTO_LABEL_PARAM(1); |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_test_ls(void) |
| { |
| if (env->CF == 0 || env->NZF == 0) |
| GOTO_LABEL_PARAM(1); |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_test_ge(void) |
| { |
| if (((env->VF ^ env->NZF) & 0x80000000) == 0) |
| GOTO_LABEL_PARAM(1); |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_test_lt(void) |
| { |
| if (((env->VF ^ env->NZF) & 0x80000000) != 0) |
| GOTO_LABEL_PARAM(1); |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_test_gt(void) |
| { |
| if (env->NZF != 0 && ((env->VF ^ env->NZF) & 0x80000000) == 0) |
| GOTO_LABEL_PARAM(1); |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_test_le(void) |
| { |
| if (env->NZF == 0 || ((env->VF ^ env->NZF) & 0x80000000) != 0) |
| GOTO_LABEL_PARAM(1); |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_jmp0(void) |
| { |
| JUMP_TB(op_jmp0, PARAM1, 0, PARAM2); |
| } |
| |
| void OPPROTO op_jmp1(void) |
| { |
| JUMP_TB(op_jmp1, PARAM1, 1, PARAM2); |
| } |
| |
| void OPPROTO op_exit_tb(void) |
| { |
| EXIT_TB(); |
| } |
| |
| void OPPROTO op_movl_T0_psr(void) |
| { |
| T0 = compute_cpsr(); |
| } |
| |
| /* NOTE: N = 1 and Z = 1 cannot be stored currently */ |
| void OPPROTO op_movl_psr_T0(void) |
| { |
| unsigned int psr; |
| psr = T0; |
| env->CF = (psr >> 29) & 1; |
| env->NZF = (psr & 0xc0000000) ^ 0x40000000; |
| env->VF = (psr << 3) & 0x80000000; |
| /* for user mode we do not update other state info */ |
| } |
| |
| void OPPROTO op_mul_T0_T1(void) |
| { |
| T0 = T0 * T1; |
| } |
| |
| /* 64 bit unsigned mul */ |
| void OPPROTO op_mull_T0_T1(void) |
| { |
| uint64_t res; |
| res = (uint64_t)T0 * (uint64_t)T1; |
| T1 = res >> 32; |
| T0 = res; |
| } |
| |
| /* 64 bit signed mul */ |
| void OPPROTO op_imull_T0_T1(void) |
| { |
| uint64_t res; |
| res = (int64_t)((int32_t)T0) * (int64_t)((int32_t)T1); |
| T1 = res >> 32; |
| T0 = res; |
| } |
| |
| /* 48 bit signed mul, top 32 bits */ |
| void OPPROTO op_imulw_T0_T1(void) |
| { |
| uint64_t res; |
| res = (int64_t)((int32_t)T0) * (int64_t)((int32_t)T1); |
| T0 = res >> 16; |
| } |
| |
| void OPPROTO op_addq_T0_T1(void) |
| { |
| uint64_t res; |
| res = ((uint64_t)T1 << 32) | T0; |
| res += ((uint64_t)(env->regs[PARAM2]) << 32) | (env->regs[PARAM1]); |
| T1 = res >> 32; |
| T0 = res; |
| } |
| |
| void OPPROTO op_addq_lo_T0_T1(void) |
| { |
| uint64_t res; |
| res = ((uint64_t)T1 << 32) | T0; |
| res += (uint64_t)(env->regs[PARAM1]); |
| T1 = res >> 32; |
| T0 = res; |
| } |
| |
| void OPPROTO op_logicq_cc(void) |
| { |
| env->NZF = (T1 & 0x80000000) | ((T0 | T1) != 0); |
| } |
| |
| /* memory access */ |
| |
| void OPPROTO op_ldub_T0_T1(void) |
| { |
| T0 = ldub((void *)T1); |
| } |
| |
| void OPPROTO op_ldsb_T0_T1(void) |
| { |
| T0 = ldsb((void *)T1); |
| } |
| |
| void OPPROTO op_lduw_T0_T1(void) |
| { |
| T0 = lduw((void *)T1); |
| } |
| |
| void OPPROTO op_ldsw_T0_T1(void) |
| { |
| T0 = ldsw((void *)T1); |
| } |
| |
| void OPPROTO op_ldl_T0_T1(void) |
| { |
| T0 = ldl((void *)T1); |
| } |
| |
| void OPPROTO op_stb_T0_T1(void) |
| { |
| stb((void *)T1, T0); |
| } |
| |
| void OPPROTO op_stw_T0_T1(void) |
| { |
| stw((void *)T1, T0); |
| } |
| |
| void OPPROTO op_stl_T0_T1(void) |
| { |
| stl((void *)T1, T0); |
| } |
| |
| void OPPROTO op_swpb_T0_T1(void) |
| { |
| int tmp; |
| |
| cpu_lock(); |
| tmp = ldub((void *)T1); |
| stb((void *)T1, T0); |
| T0 = tmp; |
| cpu_unlock(); |
| } |
| |
| void OPPROTO op_swpl_T0_T1(void) |
| { |
| int tmp; |
| |
| cpu_lock(); |
| tmp = ldl((void *)T1); |
| stl((void *)T1, T0); |
| T0 = tmp; |
| cpu_unlock(); |
| } |
| |
| /* shifts */ |
| |
| /* T1 based */ |
| |
| void OPPROTO op_shll_T1_im(void) |
| { |
| T1 = T1 << PARAM1; |
| } |
| |
| void OPPROTO op_shrl_T1_im(void) |
| { |
| T1 = (uint32_t)T1 >> PARAM1; |
| } |
| |
| void OPPROTO op_shrl_T1_0(void) |
| { |
| T1 = 0; |
| } |
| |
| void OPPROTO op_sarl_T1_im(void) |
| { |
| T1 = (int32_t)T1 >> PARAM1; |
| } |
| |
| void OPPROTO op_sarl_T1_0(void) |
| { |
| T1 = (int32_t)T1 >> 31; |
| } |
| |
| void OPPROTO op_rorl_T1_im(void) |
| { |
| int shift; |
| shift = PARAM1; |
| T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift)); |
| } |
| |
| void OPPROTO op_rrxl_T1(void) |
| { |
| T1 = ((uint32_t)T1 >> 1) | ((uint32_t)env->CF << 31); |
| } |
| |
| /* T1 based, set C flag */ |
| void OPPROTO op_shll_T1_im_cc(void) |
| { |
| env->CF = (T1 >> (32 - PARAM1)) & 1; |
| T1 = T1 << PARAM1; |
| } |
| |
| void OPPROTO op_shrl_T1_im_cc(void) |
| { |
| env->CF = (T1 >> (PARAM1 - 1)) & 1; |
| T1 = (uint32_t)T1 >> PARAM1; |
| } |
| |
| void OPPROTO op_shrl_T1_0_cc(void) |
| { |
| env->CF = (T1 >> 31) & 1; |
| T1 = 0; |
| } |
| |
| void OPPROTO op_sarl_T1_im_cc(void) |
| { |
| env->CF = (T1 >> (PARAM1 - 1)) & 1; |
| T1 = (int32_t)T1 >> PARAM1; |
| } |
| |
| void OPPROTO op_sarl_T1_0_cc(void) |
| { |
| env->CF = (T1 >> 31) & 1; |
| T1 = (int32_t)T1 >> 31; |
| } |
| |
| void OPPROTO op_rorl_T1_im_cc(void) |
| { |
| int shift; |
| shift = PARAM1; |
| env->CF = (T1 >> (shift - 1)) & 1; |
| T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift)); |
| } |
| |
| void OPPROTO op_rrxl_T1_cc(void) |
| { |
| uint32_t c; |
| c = T1 & 1; |
| T1 = ((uint32_t)T1 >> 1) | ((uint32_t)env->CF << 31); |
| env->CF = c; |
| } |
| |
| /* T2 based */ |
| void OPPROTO op_shll_T2_im(void) |
| { |
| T2 = T2 << PARAM1; |
| } |
| |
| void OPPROTO op_shrl_T2_im(void) |
| { |
| T2 = (uint32_t)T2 >> PARAM1; |
| } |
| |
| void OPPROTO op_shrl_T2_0(void) |
| { |
| T2 = 0; |
| } |
| |
| void OPPROTO op_sarl_T2_im(void) |
| { |
| T2 = (int32_t)T2 >> PARAM1; |
| } |
| |
| void OPPROTO op_sarl_T2_0(void) |
| { |
| T2 = (int32_t)T2 >> 31; |
| } |
| |
| void OPPROTO op_rorl_T2_im(void) |
| { |
| int shift; |
| shift = PARAM1; |
| T2 = ((uint32_t)T2 >> shift) | (T2 << (32 - shift)); |
| } |
| |
| void OPPROTO op_rrxl_T2(void) |
| { |
| T2 = ((uint32_t)T2 >> 1) | ((uint32_t)env->CF << 31); |
| } |
| |
| /* T1 based, use T0 as shift count */ |
| |
| void OPPROTO op_shll_T1_T0(void) |
| { |
| int shift; |
| shift = T0 & 0xff; |
| if (shift >= 32) |
| T1 = 0; |
| else |
| T1 = T1 << shift; |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_shrl_T1_T0(void) |
| { |
| int shift; |
| shift = T0 & 0xff; |
| if (shift >= 32) |
| T1 = 0; |
| else |
| T1 = (uint32_t)T1 >> shift; |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_sarl_T1_T0(void) |
| { |
| int shift; |
| shift = T0 & 0xff; |
| if (shift >= 32) |
| shift = 31; |
| T1 = (int32_t)T1 >> shift; |
| } |
| |
| void OPPROTO op_rorl_T1_T0(void) |
| { |
| int shift; |
| shift = T0 & 0x1f; |
| if (shift) { |
| T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift)); |
| } |
| FORCE_RET(); |
| } |
| |
| /* T1 based, use T0 as shift count and compute CF */ |
| |
| void OPPROTO op_shll_T1_T0_cc(void) |
| { |
| int shift; |
| shift = T0 & 0xff; |
| if (shift >= 32) { |
| if (shift == 32) |
| env->CF = T1 & 1; |
| else |
| env->CF = 0; |
| T1 = 0; |
| } else if (shift != 0) { |
| env->CF = (T1 >> (32 - shift)) & 1; |
| T1 = T1 << shift; |
| } |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_shrl_T1_T0_cc(void) |
| { |
| int shift; |
| shift = T0 & 0xff; |
| if (shift >= 32) { |
| if (shift == 32) |
| env->CF = (T1 >> 31) & 1; |
| else |
| env->CF = 0; |
| T1 = 0; |
| } else if (shift != 0) { |
| env->CF = (T1 >> (shift - 1)) & 1; |
| T1 = (uint32_t)T1 >> shift; |
| } |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_sarl_T1_T0_cc(void) |
| { |
| int shift; |
| shift = T0 & 0xff; |
| if (shift >= 32) { |
| env->CF = (T1 >> 31) & 1; |
| T1 = (int32_t)T1 >> 31; |
| } else { |
| env->CF = (T1 >> (shift - 1)) & 1; |
| T1 = (int32_t)T1 >> shift; |
| } |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_rorl_T1_T0_cc(void) |
| { |
| int shift1, shift; |
| shift1 = T0 & 0xff; |
| shift = shift1 & 0x1f; |
| if (shift == 0) { |
| if (shift1 != 0) |
| env->CF = (T1 >> 31) & 1; |
| } else { |
| env->CF = (T1 >> (shift - 1)) & 1; |
| T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift)); |
| } |
| FORCE_RET(); |
| } |
| |
| /* misc */ |
| void OPPROTO op_clz_T0(void) |
| { |
| int count; |
| for (count = 32; T0 > 0; count--) |
| T0 = T0 >> 1; |
| T0 = count; |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_sarl_T0_im(void) |
| { |
| T0 = (int32_t)T0 >> PARAM1; |
| } |
| |
| /* 16->32 Sign extend */ |
| void OPPROTO op_sxl_T0(void) |
| { |
| T0 = (int16_t)T0; |
| } |
| |
| void OPPROTO op_sxl_T1(void) |
| { |
| T1 = (int16_t)T1; |
| } |
| |
| #define SIGNBIT (uint32_t)0x80000000 |
| /* saturating arithmetic */ |
| void OPPROTO op_addl_T0_T1_setq(void) |
| { |
| uint32_t res; |
| |
| res = T0 + T1; |
| if (((res ^ T0) & SIGNBIT) && !((T0 ^ T1) & SIGNBIT)) |
| env->QF = 1; |
| |
| T0 = res; |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_addl_T0_T1_saturate(void) |
| { |
| uint32_t res; |
| |
| res = T0 + T1; |
| if (((res ^ T0) & SIGNBIT) && !((T0 ^ T1) & SIGNBIT)) { |
| env->QF = 1; |
| if (T0 & SIGNBIT) |
| T0 = 0x80000000; |
| else |
| T0 = 0x7fffffff; |
| } |
| else |
| T0 = res; |
| |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_subl_T0_T1_saturate(void) |
| { |
| uint32_t res; |
| |
| res = T0 - T1; |
| if (((res ^ T0) & SIGNBIT) && ((T0 ^ T1) & SIGNBIT)) { |
| env->QF = 1; |
| if (T0 & SIGNBIT) |
| T0 = 0x8000000; |
| else |
| T0 = 0x7fffffff; |
| } |
| else |
| T0 = res; |
| |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_double_T1_saturate(void) |
| { |
| int32_t val; |
| |
| val = T1; |
| if (val >= 0x40000000) { |
| T1 = 0x7fffffff; |
| env->QF = 1; |
| } else if (val <= (int32_t)0xc0000000) { |
| T1 = 0x80000000; |
| env->QF = 1; |
| } else { |
| T1 = val << 1; |
| } |
| FORCE_RET(); |
| } |
| |
| /* thumb shift by immediate */ |
| void OPPROTO op_shll_T0_im_thumb(void) |
| { |
| int shift; |
| shift = PARAM1; |
| if (shift != 0) { |
| env->CF = (T1 >> (32 - shift)) & 1; |
| T0 = T0 << shift; |
| } |
| env->NZF = T0; |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_shrl_T0_im_thumb(void) |
| { |
| int shift; |
| |
| shift = PARAM1; |
| if (shift == 0) { |
| env->CF = ((uint32_t)shift) >> 31; |
| T0 = 0; |
| } else { |
| env->CF = (T0 >> (shift - 1)) & 1; |
| T0 = T0 >> shift; |
| } |
| env->NZF = T0; |
| FORCE_RET(); |
| } |
| |
| void OPPROTO op_sarl_T0_im_thumb(void) |
| { |
| int shift; |
| |
| shift = PARAM1; |
| if (shift == 0) { |
| T0 = ((int32_t)T0) >> 31; |
| env->CF = T0 & 1; |
| } else { |
| env->CF = (T0 >> (shift - 1)) & 1; |
| T0 = ((int32_t)T0) >> shift; |
| } |
| env->NZF = T0; |
| FORCE_RET(); |
| } |
| |
| /* exceptions */ |
| |
| void OPPROTO op_swi(void) |
| { |
| env->exception_index = EXCP_SWI; |
| cpu_loop_exit(); |
| } |
| |
| void OPPROTO op_undef_insn(void) |
| { |
| env->exception_index = EXCP_UDEF; |
| cpu_loop_exit(); |
| } |
| |
| void OPPROTO op_debug(void) |
| { |
| env->exception_index = EXCP_DEBUG; |
| cpu_loop_exit(); |
| } |
| |
| /* VFP support. We follow the convention used for VFP instrunctions: |
| Single precition routines have a "s" suffix, double precision a |
| "d" suffix. */ |
| |
| #define VFP_OP(name, p) void OPPROTO op_vfp_##name##p(void) |
| |
| #define VFP_BINOP(name) \ |
| VFP_OP(name, s) \ |
| { \ |
| FT0s = float32_ ## name (FT0s, FT1s, &env->vfp.fp_status); \ |
| } \ |
| VFP_OP(name, d) \ |
| { \ |
| FT0d = float64_ ## name (FT0d, FT1d, &env->vfp.fp_status); \ |
| } |
| VFP_BINOP(add) |
| VFP_BINOP(sub) |
| VFP_BINOP(mul) |
| VFP_BINOP(div) |
| #undef VFP_BINOP |
| |
| #define VFP_HELPER(name) \ |
| VFP_OP(name, s) \ |
| { \ |
| do_vfp_##name##s(); \ |
| } \ |
| VFP_OP(name, d) \ |
| { \ |
| do_vfp_##name##d(); \ |
| } |
| VFP_HELPER(abs) |
| VFP_HELPER(sqrt) |
| VFP_HELPER(cmp) |
| VFP_HELPER(cmpe) |
| #undef VFP_HELPER |
| |
| /* XXX: Will this do the right thing for NANs. Should invert the signbit |
| without looking at the rest of the value. */ |
| VFP_OP(neg, s) |
| { |
| FT0s = float32_chs(FT0s); |
| } |
| |
| VFP_OP(neg, d) |
| { |
| FT0d = float64_chs(FT0d); |
| } |
| |
| VFP_OP(F1_ld0, s) |
| { |
| union { |
| uint32_t i; |
| float32 s; |
| } v; |
| v.i = 0; |
| FT1s = v.s; |
| } |
| |
| VFP_OP(F1_ld0, d) |
| { |
| union { |
| uint64_t i; |
| float64 d; |
| } v; |
| v.i = 0; |
| FT1d = v.d; |
| } |
| |
| /* Helper routines to perform bitwise copies between float and int. */ |
| static inline float32 vfp_itos(uint32_t i) |
| { |
| union { |
| uint32_t i; |
| float32 s; |
| } v; |
| |
| v.i = i; |
| return v.s; |
| } |
| |
| static inline uint32_t vfp_stoi(float32 s) |
| { |
| union { |
| uint32_t i; |
| float32 s; |
| } v; |
| |
| v.s = s; |
| return v.i; |
| } |
| |
| /* Integer to float conversion. */ |
| VFP_OP(uito, s) |
| { |
| FT0s = uint32_to_float32(vfp_stoi(FT0s), &env->vfp.fp_status); |
| } |
| |
| VFP_OP(uito, d) |
| { |
| FT0d = uint32_to_float64(vfp_stoi(FT0s), &env->vfp.fp_status); |
| } |
| |
| VFP_OP(sito, s) |
| { |
| FT0s = int32_to_float32(vfp_stoi(FT0s), &env->vfp.fp_status); |
| } |
| |
| VFP_OP(sito, d) |
| { |
| FT0d = int32_to_float64(vfp_stoi(FT0s), &env->vfp.fp_status); |
| } |
| |
| /* Float to integer conversion. */ |
| VFP_OP(toui, s) |
| { |
| FT0s = vfp_itos(float32_to_uint32(FT0s, &env->vfp.fp_status)); |
| } |
| |
| VFP_OP(toui, d) |
| { |
| FT0s = vfp_itos(float64_to_uint32(FT0d, &env->vfp.fp_status)); |
| } |
| |
| VFP_OP(tosi, s) |
| { |
| FT0s = vfp_itos(float32_to_int32(FT0s, &env->vfp.fp_status)); |
| } |
| |
| VFP_OP(tosi, d) |
| { |
| FT0s = vfp_itos(float64_to_int32(FT0d, &env->vfp.fp_status)); |
| } |
| |
| /* TODO: Set rounding mode properly. */ |
| VFP_OP(touiz, s) |
| { |
| FT0s = vfp_itos(float32_to_uint32_round_to_zero(FT0s, &env->vfp.fp_status)); |
| } |
| |
| VFP_OP(touiz, d) |
| { |
| FT0s = vfp_itos(float64_to_uint32_round_to_zero(FT0d, &env->vfp.fp_status)); |
| } |
| |
| VFP_OP(tosiz, s) |
| { |
| FT0s = vfp_itos(float32_to_int32_round_to_zero(FT0s, &env->vfp.fp_status)); |
| } |
| |
| VFP_OP(tosiz, d) |
| { |
| FT0s = vfp_itos(float64_to_int32_round_to_zero(FT0d, &env->vfp.fp_status)); |
| } |
| |
| /* floating point conversion */ |
| VFP_OP(fcvtd, s) |
| { |
| FT0d = float32_to_float64(FT0s, &env->vfp.fp_status); |
| } |
| |
| VFP_OP(fcvts, d) |
| { |
| FT0s = float64_to_float32(FT0d, &env->vfp.fp_status); |
| } |
| |
| /* Get and Put values from registers. */ |
| VFP_OP(getreg_F0, d) |
| { |
| FT0d = *(float64 *)((char *) env + PARAM1); |
| } |
| |
| VFP_OP(getreg_F0, s) |
| { |
| FT0s = *(float32 *)((char *) env + PARAM1); |
| } |
| |
| VFP_OP(getreg_F1, d) |
| { |
| FT1d = *(float64 *)((char *) env + PARAM1); |
| } |
| |
| VFP_OP(getreg_F1, s) |
| { |
| FT1s = *(float32 *)((char *) env + PARAM1); |
| } |
| |
| VFP_OP(setreg_F0, d) |
| { |
| *(float64 *)((char *) env + PARAM1) = FT0d; |
| } |
| |
| VFP_OP(setreg_F0, s) |
| { |
| *(float32 *)((char *) env + PARAM1) = FT0s; |
| } |
| |
| void OPPROTO op_vfp_movl_T0_fpscr(void) |
| { |
| do_vfp_get_fpscr (); |
| } |
| |
| void OPPROTO op_vfp_movl_T0_fpscr_flags(void) |
| { |
| T0 = env->vfp.fpscr & (0xf << 28); |
| } |
| |
| void OPPROTO op_vfp_movl_fpscr_T0(void) |
| { |
| do_vfp_set_fpscr(); |
| } |
| |
| /* Move between FT0s to T0 */ |
| void OPPROTO op_vfp_mrs(void) |
| { |
| T0 = vfp_stoi(FT0s); |
| } |
| |
| void OPPROTO op_vfp_msr(void) |
| { |
| FT0s = vfp_itos(T0); |
| } |
| |
| /* Move between FT0d and {T0,T1} */ |
| void OPPROTO op_vfp_mrrd(void) |
| { |
| CPU_DoubleU u; |
| |
| u.d = FT0d; |
| T0 = u.l.lower; |
| T1 = u.l.upper; |
| } |
| |
| void OPPROTO op_vfp_mdrr(void) |
| { |
| CPU_DoubleU u; |
| |
| u.l.lower = T0; |
| u.l.upper = T1; |
| FT0d = u.d; |
| } |
| |
| /* Floating point load/store. Address is in T1 */ |
| void OPPROTO op_vfp_lds(void) |
| { |
| FT0s = ldfl((void *)T1); |
| } |
| |
| void OPPROTO op_vfp_ldd(void) |
| { |
| FT0d = ldfq((void *)T1); |
| } |
| |
| void OPPROTO op_vfp_sts(void) |
| { |
| stfl((void *)T1, FT0s); |
| } |
| |
| void OPPROTO op_vfp_std(void) |
| { |
| stfq((void *)T1, FT0d); |
| } |