| /* |
| * Arm SSE (Subsystems for Embedded): IoTKit |
| * |
| * Copyright (c) 2018 Linaro Limited |
| * Written by Peter Maydell |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 or |
| * (at your option) any later version. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/log.h" |
| #include "qemu/bitops.h" |
| #include "qapi/error.h" |
| #include "trace.h" |
| #include "hw/sysbus.h" |
| #include "hw/registerfields.h" |
| #include "hw/arm/armsse.h" |
| #include "hw/arm/boot.h" |
| |
| /* Format of the System Information block SYS_CONFIG register */ |
| typedef enum SysConfigFormat { |
| IoTKitFormat, |
| SSE200Format, |
| } SysConfigFormat; |
| |
| struct ARMSSEInfo { |
| const char *name; |
| int sram_banks; |
| int num_cpus; |
| uint32_t sys_version; |
| uint32_t cpuwait_rst; |
| SysConfigFormat sys_config_format; |
| bool has_mhus; |
| bool has_ppus; |
| bool has_cachectrl; |
| bool has_cpusecctrl; |
| bool has_cpuid; |
| }; |
| |
| static const ARMSSEInfo armsse_variants[] = { |
| { |
| .name = TYPE_IOTKIT, |
| .sram_banks = 1, |
| .num_cpus = 1, |
| .sys_version = 0x41743, |
| .cpuwait_rst = 0, |
| .sys_config_format = IoTKitFormat, |
| .has_mhus = false, |
| .has_ppus = false, |
| .has_cachectrl = false, |
| .has_cpusecctrl = false, |
| .has_cpuid = false, |
| }, |
| { |
| .name = TYPE_SSE200, |
| .sram_banks = 4, |
| .num_cpus = 2, |
| .sys_version = 0x22041743, |
| .cpuwait_rst = 2, |
| .sys_config_format = SSE200Format, |
| .has_mhus = true, |
| .has_ppus = true, |
| .has_cachectrl = true, |
| .has_cpusecctrl = true, |
| .has_cpuid = true, |
| }, |
| }; |
| |
| static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info) |
| { |
| /* Return the SYS_CONFIG value for this SSE */ |
| uint32_t sys_config; |
| |
| switch (info->sys_config_format) { |
| case IoTKitFormat: |
| sys_config = 0; |
| sys_config = deposit32(sys_config, 0, 4, info->sram_banks); |
| sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12); |
| break; |
| case SSE200Format: |
| sys_config = 0; |
| sys_config = deposit32(sys_config, 0, 4, info->sram_banks); |
| sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width); |
| sys_config = deposit32(sys_config, 24, 4, 2); |
| if (info->num_cpus > 1) { |
| sys_config = deposit32(sys_config, 10, 1, 1); |
| sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1); |
| sys_config = deposit32(sys_config, 28, 4, 2); |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| return sys_config; |
| } |
| |
| /* Clock frequency in HZ of the 32KHz "slow clock" */ |
| #define S32KCLK (32 * 1000) |
| |
| /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */ |
| static bool irq_is_common[32] = { |
| [0 ... 5] = true, |
| /* 6, 7: per-CPU MHU interrupts */ |
| [8 ... 12] = true, |
| /* 13: per-CPU icache interrupt */ |
| /* 14: reserved */ |
| [15 ... 20] = true, |
| /* 21: reserved */ |
| [22 ... 26] = true, |
| /* 27: reserved */ |
| /* 28, 29: per-CPU CTI interrupts */ |
| /* 30, 31: reserved */ |
| }; |
| |
| /* |
| * Create an alias region in @container of @size bytes starting at @base |
| * which mirrors the memory starting at @orig. |
| */ |
| static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container, |
| const char *name, hwaddr base, hwaddr size, hwaddr orig) |
| { |
| memory_region_init_alias(mr, NULL, name, container, orig, size); |
| /* The alias is even lower priority than unimplemented_device regions */ |
| memory_region_add_subregion_overlap(container, base, mr, -1500); |
| } |
| |
| static void irq_status_forwarder(void *opaque, int n, int level) |
| { |
| qemu_irq destirq = opaque; |
| |
| qemu_set_irq(destirq, level); |
| } |
| |
| static void nsccfg_handler(void *opaque, int n, int level) |
| { |
| ARMSSE *s = ARMSSE(opaque); |
| |
| s->nsccfg = level; |
| } |
| |
| static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum) |
| { |
| /* Each of the 4 AHB and 4 APB PPCs that might be present in a |
| * system using the ARMSSE has a collection of control lines which |
| * are provided by the security controller and which we want to |
| * expose as control lines on the ARMSSE device itself, so the |
| * code using the ARMSSE can wire them up to the PPCs. |
| */ |
| SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum]; |
| DeviceState *armssedev = DEVICE(s); |
| DeviceState *dev_secctl = DEVICE(&s->secctl); |
| DeviceState *dev_splitter = DEVICE(splitter); |
| char *name; |
| |
| name = g_strdup_printf("%s_nonsec", ppcname); |
| qdev_pass_gpios(dev_secctl, armssedev, name); |
| g_free(name); |
| name = g_strdup_printf("%s_ap", ppcname); |
| qdev_pass_gpios(dev_secctl, armssedev, name); |
| g_free(name); |
| name = g_strdup_printf("%s_irq_enable", ppcname); |
| qdev_pass_gpios(dev_secctl, armssedev, name); |
| g_free(name); |
| name = g_strdup_printf("%s_irq_clear", ppcname); |
| qdev_pass_gpios(dev_secctl, armssedev, name); |
| g_free(name); |
| |
| /* irq_status is a little more tricky, because we need to |
| * split it so we can send it both to the security controller |
| * and to our OR gate for the NVIC interrupt line. |
| * Connect up the splitter's outputs, and create a GPIO input |
| * which will pass the line state to the input splitter. |
| */ |
| name = g_strdup_printf("%s_irq_status", ppcname); |
| qdev_connect_gpio_out(dev_splitter, 0, |
| qdev_get_gpio_in_named(dev_secctl, |
| name, 0)); |
| qdev_connect_gpio_out(dev_splitter, 1, |
| qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum)); |
| s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0); |
| qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder, |
| s->irq_status_in[ppcnum], name, 1); |
| g_free(name); |
| } |
| |
| static void armsse_forward_sec_resp_cfg(ARMSSE *s) |
| { |
| /* Forward the 3rd output from the splitter device as a |
| * named GPIO output of the armsse object. |
| */ |
| DeviceState *dev = DEVICE(s); |
| DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter); |
| |
| qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1); |
| s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder, |
| s->sec_resp_cfg, 1); |
| qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in); |
| } |
| |
| static void armsse_init(Object *obj) |
| { |
| ARMSSE *s = ARMSSE(obj); |
| ARMSSEClass *asc = ARMSSE_GET_CLASS(obj); |
| const ARMSSEInfo *info = asc->info; |
| int i; |
| |
| assert(info->sram_banks <= MAX_SRAM_BANKS); |
| assert(info->num_cpus <= SSE_MAX_CPUS); |
| |
| memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX); |
| |
| for (i = 0; i < info->num_cpus; i++) { |
| /* |
| * We put each CPU in its own cluster as they are logically |
| * distinct and may be configured differently. |
| */ |
| char *name; |
| |
| name = g_strdup_printf("cluster%d", i); |
| object_initialize_child(obj, name, &s->cluster[i], |
| sizeof(s->cluster[i]), TYPE_CPU_CLUSTER, |
| &error_abort, NULL); |
| qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i); |
| g_free(name); |
| |
| name = g_strdup_printf("armv7m%d", i); |
| sysbus_init_child_obj(OBJECT(&s->cluster[i]), name, |
| &s->armv7m[i], sizeof(s->armv7m), TYPE_ARMV7M); |
| qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type", |
| ARM_CPU_TYPE_NAME("cortex-m33")); |
| g_free(name); |
| name = g_strdup_printf("arm-sse-cpu-container%d", i); |
| memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX); |
| g_free(name); |
| if (i > 0) { |
| name = g_strdup_printf("arm-sse-container-alias%d", i); |
| memory_region_init_alias(&s->container_alias[i - 1], obj, |
| name, &s->container, 0, UINT64_MAX); |
| g_free(name); |
| } |
| } |
| |
| sysbus_init_child_obj(obj, "secctl", &s->secctl, sizeof(s->secctl), |
| TYPE_IOTKIT_SECCTL); |
| sysbus_init_child_obj(obj, "apb-ppc0", &s->apb_ppc0, sizeof(s->apb_ppc0), |
| TYPE_TZ_PPC); |
| sysbus_init_child_obj(obj, "apb-ppc1", &s->apb_ppc1, sizeof(s->apb_ppc1), |
| TYPE_TZ_PPC); |
| for (i = 0; i < info->sram_banks; i++) { |
| char *name = g_strdup_printf("mpc%d", i); |
| sysbus_init_child_obj(obj, name, &s->mpc[i], |
| sizeof(s->mpc[i]), TYPE_TZ_MPC); |
| g_free(name); |
| } |
| object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate, |
| sizeof(s->mpc_irq_orgate), TYPE_OR_IRQ, |
| &error_abort, NULL); |
| |
| for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) { |
| char *name = g_strdup_printf("mpc-irq-splitter-%d", i); |
| SplitIRQ *splitter = &s->mpc_irq_splitter[i]; |
| |
| object_initialize_child(obj, name, splitter, sizeof(*splitter), |
| TYPE_SPLIT_IRQ, &error_abort, NULL); |
| g_free(name); |
| } |
| sysbus_init_child_obj(obj, "timer0", &s->timer0, sizeof(s->timer0), |
| TYPE_CMSDK_APB_TIMER); |
| sysbus_init_child_obj(obj, "timer1", &s->timer1, sizeof(s->timer1), |
| TYPE_CMSDK_APB_TIMER); |
| sysbus_init_child_obj(obj, "s32ktimer", &s->s32ktimer, sizeof(s->s32ktimer), |
| TYPE_CMSDK_APB_TIMER); |
| sysbus_init_child_obj(obj, "dualtimer", &s->dualtimer, sizeof(s->dualtimer), |
| TYPE_CMSDK_APB_DUALTIMER); |
| sysbus_init_child_obj(obj, "s32kwatchdog", &s->s32kwatchdog, |
| sizeof(s->s32kwatchdog), TYPE_CMSDK_APB_WATCHDOG); |
| sysbus_init_child_obj(obj, "nswatchdog", &s->nswatchdog, |
| sizeof(s->nswatchdog), TYPE_CMSDK_APB_WATCHDOG); |
| sysbus_init_child_obj(obj, "swatchdog", &s->swatchdog, |
| sizeof(s->swatchdog), TYPE_CMSDK_APB_WATCHDOG); |
| sysbus_init_child_obj(obj, "armsse-sysctl", &s->sysctl, |
| sizeof(s->sysctl), TYPE_IOTKIT_SYSCTL); |
| sysbus_init_child_obj(obj, "armsse-sysinfo", &s->sysinfo, |
| sizeof(s->sysinfo), TYPE_IOTKIT_SYSINFO); |
| if (info->has_mhus) { |
| sysbus_init_child_obj(obj, "mhu0", &s->mhu[0], sizeof(s->mhu[0]), |
| TYPE_ARMSSE_MHU); |
| sysbus_init_child_obj(obj, "mhu1", &s->mhu[1], sizeof(s->mhu[1]), |
| TYPE_ARMSSE_MHU); |
| } |
| if (info->has_ppus) { |
| for (i = 0; i < info->num_cpus; i++) { |
| char *name = g_strdup_printf("CPU%dCORE_PPU", i); |
| int ppuidx = CPU0CORE_PPU + i; |
| |
| sysbus_init_child_obj(obj, name, &s->ppu[ppuidx], |
| sizeof(s->ppu[ppuidx]), |
| TYPE_UNIMPLEMENTED_DEVICE); |
| g_free(name); |
| } |
| sysbus_init_child_obj(obj, "DBG_PPU", &s->ppu[DBG_PPU], |
| sizeof(s->ppu[DBG_PPU]), |
| TYPE_UNIMPLEMENTED_DEVICE); |
| for (i = 0; i < info->sram_banks; i++) { |
| char *name = g_strdup_printf("RAM%d_PPU", i); |
| int ppuidx = RAM0_PPU + i; |
| |
| sysbus_init_child_obj(obj, name, &s->ppu[ppuidx], |
| sizeof(s->ppu[ppuidx]), |
| TYPE_UNIMPLEMENTED_DEVICE); |
| g_free(name); |
| } |
| } |
| if (info->has_cachectrl) { |
| for (i = 0; i < info->num_cpus; i++) { |
| char *name = g_strdup_printf("cachectrl%d", i); |
| |
| sysbus_init_child_obj(obj, name, &s->cachectrl[i], |
| sizeof(s->cachectrl[i]), |
| TYPE_UNIMPLEMENTED_DEVICE); |
| g_free(name); |
| } |
| } |
| if (info->has_cpusecctrl) { |
| for (i = 0; i < info->num_cpus; i++) { |
| char *name = g_strdup_printf("cpusecctrl%d", i); |
| |
| sysbus_init_child_obj(obj, name, &s->cpusecctrl[i], |
| sizeof(s->cpusecctrl[i]), |
| TYPE_UNIMPLEMENTED_DEVICE); |
| g_free(name); |
| } |
| } |
| if (info->has_cpuid) { |
| for (i = 0; i < info->num_cpus; i++) { |
| char *name = g_strdup_printf("cpuid%d", i); |
| |
| sysbus_init_child_obj(obj, name, &s->cpuid[i], |
| sizeof(s->cpuid[i]), |
| TYPE_ARMSSE_CPUID); |
| g_free(name); |
| } |
| } |
| object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, |
| sizeof(s->nmi_orgate), TYPE_OR_IRQ, |
| &error_abort, NULL); |
| object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate, |
| sizeof(s->ppc_irq_orgate), TYPE_OR_IRQ, |
| &error_abort, NULL); |
| object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter, |
| sizeof(s->sec_resp_splitter), TYPE_SPLIT_IRQ, |
| &error_abort, NULL); |
| for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) { |
| char *name = g_strdup_printf("ppc-irq-splitter-%d", i); |
| SplitIRQ *splitter = &s->ppc_irq_splitter[i]; |
| |
| object_initialize_child(obj, name, splitter, sizeof(*splitter), |
| TYPE_SPLIT_IRQ, &error_abort, NULL); |
| g_free(name); |
| } |
| if (info->num_cpus > 1) { |
| for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) { |
| if (irq_is_common[i]) { |
| char *name = g_strdup_printf("cpu-irq-splitter%d", i); |
| SplitIRQ *splitter = &s->cpu_irq_splitter[i]; |
| |
| object_initialize_child(obj, name, splitter, sizeof(*splitter), |
| TYPE_SPLIT_IRQ, &error_abort, NULL); |
| g_free(name); |
| } |
| } |
| } |
| } |
| |
| static void armsse_exp_irq(void *opaque, int n, int level) |
| { |
| qemu_irq *irqarray = opaque; |
| |
| qemu_set_irq(irqarray[n], level); |
| } |
| |
| static void armsse_mpcexp_status(void *opaque, int n, int level) |
| { |
| ARMSSE *s = ARMSSE(opaque); |
| qemu_set_irq(s->mpcexp_status_in[n], level); |
| } |
| |
| static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno) |
| { |
| /* |
| * Return a qemu_irq which can be used to signal IRQ n to |
| * all CPUs in the SSE. |
| */ |
| ARMSSEClass *asc = ARMSSE_GET_CLASS(s); |
| const ARMSSEInfo *info = asc->info; |
| |
| assert(irq_is_common[irqno]); |
| |
| if (info->num_cpus == 1) { |
| /* Only one CPU -- just connect directly to it */ |
| return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno); |
| } else { |
| /* Connect to the splitter which feeds all CPUs */ |
| return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0); |
| } |
| } |
| |
| static void map_ppu(ARMSSE *s, int ppuidx, const char *name, hwaddr addr) |
| { |
| /* Map a PPU unimplemented device stub */ |
| DeviceState *dev = DEVICE(&s->ppu[ppuidx]); |
| |
| qdev_prop_set_string(dev, "name", name); |
| qdev_prop_set_uint64(dev, "size", 0x1000); |
| qdev_init_nofail(dev); |
| sysbus_mmio_map(SYS_BUS_DEVICE(&s->ppu[ppuidx]), 0, addr); |
| } |
| |
| static void armsse_realize(DeviceState *dev, Error **errp) |
| { |
| ARMSSE *s = ARMSSE(dev); |
| ARMSSEClass *asc = ARMSSE_GET_CLASS(dev); |
| const ARMSSEInfo *info = asc->info; |
| int i; |
| MemoryRegion *mr; |
| Error *err = NULL; |
| SysBusDevice *sbd_apb_ppc0; |
| SysBusDevice *sbd_secctl; |
| DeviceState *dev_apb_ppc0; |
| DeviceState *dev_apb_ppc1; |
| DeviceState *dev_secctl; |
| DeviceState *dev_splitter; |
| uint32_t addr_width_max; |
| |
| if (!s->board_memory) { |
| error_setg(errp, "memory property was not set"); |
| return; |
| } |
| |
| if (!s->mainclk_frq) { |
| error_setg(errp, "MAINCLK property was not set"); |
| return; |
| } |
| |
| /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */ |
| assert(is_power_of_2(info->sram_banks)); |
| addr_width_max = 24 - ctz32(info->sram_banks); |
| if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) { |
| error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d", |
| addr_width_max); |
| return; |
| } |
| |
| /* Handling of which devices should be available only to secure |
| * code is usually done differently for M profile than for A profile. |
| * Instead of putting some devices only into the secure address space, |
| * devices exist in both address spaces but with hard-wired security |
| * permissions that will cause the CPU to fault for non-secure accesses. |
| * |
| * The ARMSSE has an IDAU (Implementation Defined Access Unit), |
| * which specifies hard-wired security permissions for different |
| * areas of the physical address space. For the ARMSSE IDAU, the |
| * top 4 bits of the physical address are the IDAU region ID, and |
| * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS |
| * region, otherwise it is an S region. |
| * |
| * The various devices and RAMs are generally all mapped twice, |
| * once into a region that the IDAU defines as secure and once |
| * into a non-secure region. They sit behind either a Memory |
| * Protection Controller (for RAM) or a Peripheral Protection |
| * Controller (for devices), which allow a more fine grained |
| * configuration of whether non-secure accesses are permitted. |
| * |
| * (The other place that guest software can configure security |
| * permissions is in the architected SAU (Security Attribution |
| * Unit), which is entirely inside the CPU. The IDAU can upgrade |
| * the security attributes for a region to more restrictive than |
| * the SAU specifies, but cannot downgrade them.) |
| * |
| * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff |
| * 0x20000000..0x2007ffff 32KB FPGA block RAM |
| * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff |
| * 0x40000000..0x4000ffff base peripheral region 1 |
| * 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE) |
| * 0x40020000..0x4002ffff system control element peripherals |
| * 0x40080000..0x400fffff base peripheral region 2 |
| * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff |
| */ |
| |
| memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2); |
| |
| for (i = 0; i < info->num_cpus; i++) { |
| DeviceState *cpudev = DEVICE(&s->armv7m[i]); |
| Object *cpuobj = OBJECT(&s->armv7m[i]); |
| int j; |
| char *gpioname; |
| |
| qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32); |
| /* |
| * In real hardware the initial Secure VTOR is set from the INITSVTOR* |
| * registers in the IoT Kit System Control Register block. In QEMU |
| * we set the initial value here, and also the reset value of the |
| * sysctl register, from this object's QOM init-svtor property. |
| * If the guest changes the INITSVTOR* registers at runtime then the |
| * code in iotkit-sysctl.c will update the CPU init-svtor property |
| * (which will then take effect on the next CPU warm-reset). |
| * |
| * Note that typically a board using the SSE-200 will have a system |
| * control processor whose boot firmware initializes the INITSVTOR* |
| * registers before powering up the CPUs. QEMU doesn't emulate |
| * the control processor, so instead we behave in the way that the |
| * firmware does: the initial value should be set by the board code |
| * (using the init-svtor property on the ARMSSE object) to match |
| * whatever its firmware does. |
| */ |
| qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor); |
| /* |
| * CPUs start powered down if the corresponding bit in the CPUWAIT |
| * register is 1. In real hardware the CPUWAIT register reset value is |
| * a configurable property of the SSE-200 (via the CPUWAIT0_RST and |
| * CPUWAIT1_RST parameters), but since all the boards we care about |
| * start CPU0 and leave CPU1 powered off, we hard-code that in |
| * info->cpuwait_rst for now. We can add QOM properties for this |
| * later if necessary. |
| */ |
| if (extract32(info->cpuwait_rst, i, 1)) { |
| object_property_set_bool(cpuobj, true, "start-powered-off", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| } |
| |
| if (i > 0) { |
| memory_region_add_subregion_overlap(&s->cpu_container[i], 0, |
| &s->container_alias[i - 1], -1); |
| } else { |
| memory_region_add_subregion_overlap(&s->cpu_container[i], 0, |
| &s->container, -1); |
| } |
| object_property_set_link(cpuobj, OBJECT(&s->cpu_container[i]), |
| "memory", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| object_property_set_link(cpuobj, OBJECT(s), "idau", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| object_property_set_bool(cpuobj, true, "realized", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| /* |
| * The cluster must be realized after the armv7m container, as |
| * the container's CPU object is only created on realize, and the |
| * CPU must exist and have been parented into the cluster before |
| * the cluster is realized. |
| */ |
| object_property_set_bool(OBJECT(&s->cluster[i]), |
| true, "realized", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| |
| /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */ |
| s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq); |
| for (j = 0; j < s->exp_numirq; j++) { |
| s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + 32); |
| } |
| if (i == 0) { |
| gpioname = g_strdup("EXP_IRQ"); |
| } else { |
| gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i); |
| } |
| qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq, |
| s->exp_irqs[i], |
| gpioname, s->exp_numirq); |
| g_free(gpioname); |
| } |
| |
| /* Wire up the splitters that connect common IRQs to all CPUs */ |
| if (info->num_cpus > 1) { |
| for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) { |
| if (irq_is_common[i]) { |
| Object *splitter = OBJECT(&s->cpu_irq_splitter[i]); |
| DeviceState *devs = DEVICE(splitter); |
| int cpunum; |
| |
| object_property_set_int(splitter, info->num_cpus, |
| "num-lines", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| object_property_set_bool(splitter, true, "realized", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| for (cpunum = 0; cpunum < info->num_cpus; cpunum++) { |
| DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]); |
| |
| qdev_connect_gpio_out(devs, cpunum, |
| qdev_get_gpio_in(cpudev, i)); |
| } |
| } |
| } |
| } |
| |
| /* Set up the big aliases first */ |
| make_alias(s, &s->alias1, &s->container, "alias 1", |
| 0x10000000, 0x10000000, 0x00000000); |
| make_alias(s, &s->alias2, &s->container, |
| "alias 2", 0x30000000, 0x10000000, 0x20000000); |
| /* The 0x50000000..0x5fffffff region is not a pure alias: it has |
| * a few extra devices that only appear there (generally the |
| * control interfaces for the protection controllers). |
| * We implement this by mapping those devices over the top of this |
| * alias MR at a higher priority. Some of the devices in this range |
| * are per-CPU, so we must put this alias in the per-cpu containers. |
| */ |
| for (i = 0; i < info->num_cpus; i++) { |
| make_alias(s, &s->alias3[i], &s->cpu_container[i], |
| "alias 3", 0x50000000, 0x10000000, 0x40000000); |
| } |
| |
| /* Security controller */ |
| object_property_set_bool(OBJECT(&s->secctl), true, "realized", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| sbd_secctl = SYS_BUS_DEVICE(&s->secctl); |
| dev_secctl = DEVICE(&s->secctl); |
| sysbus_mmio_map(sbd_secctl, 0, 0x50080000); |
| sysbus_mmio_map(sbd_secctl, 1, 0x40080000); |
| |
| s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1); |
| qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in); |
| |
| /* The sec_resp_cfg output from the security controller must be split into |
| * multiple lines, one for each of the PPCs within the ARMSSE and one |
| * that will be an output from the ARMSSE to the system. |
| */ |
| object_property_set_int(OBJECT(&s->sec_resp_splitter), 3, |
| "num-lines", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| object_property_set_bool(OBJECT(&s->sec_resp_splitter), true, |
| "realized", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| dev_splitter = DEVICE(&s->sec_resp_splitter); |
| qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0, |
| qdev_get_gpio_in(dev_splitter, 0)); |
| |
| /* Each SRAM bank lives behind its own Memory Protection Controller */ |
| for (i = 0; i < info->sram_banks; i++) { |
| char *ramname = g_strdup_printf("armsse.sram%d", i); |
| SysBusDevice *sbd_mpc; |
| uint32_t sram_bank_size = 1 << s->sram_addr_width; |
| |
| memory_region_init_ram(&s->sram[i], NULL, ramname, |
| sram_bank_size, &err); |
| g_free(ramname); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| object_property_set_link(OBJECT(&s->mpc[i]), OBJECT(&s->sram[i]), |
| "downstream", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| object_property_set_bool(OBJECT(&s->mpc[i]), true, "realized", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| /* Map the upstream end of the MPC into the right place... */ |
| sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]); |
| memory_region_add_subregion(&s->container, |
| 0x20000000 + i * sram_bank_size, |
| sysbus_mmio_get_region(sbd_mpc, 1)); |
| /* ...and its register interface */ |
| memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000, |
| sysbus_mmio_get_region(sbd_mpc, 0)); |
| } |
| |
| /* We must OR together lines from the MPC splitters to go to the NVIC */ |
| object_property_set_int(OBJECT(&s->mpc_irq_orgate), |
| IOTS_NUM_EXP_MPC + info->sram_banks, |
| "num-lines", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| object_property_set_bool(OBJECT(&s->mpc_irq_orgate), true, |
| "realized", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0, |
| armsse_get_common_irq_in(s, 9)); |
| |
| /* Devices behind APB PPC0: |
| * 0x40000000: timer0 |
| * 0x40001000: timer1 |
| * 0x40002000: dual timer |
| * 0x40003000: MHU0 (SSE-200 only) |
| * 0x40004000: MHU1 (SSE-200 only) |
| * We must configure and realize each downstream device and connect |
| * it to the appropriate PPC port; then we can realize the PPC and |
| * map its upstream ends to the right place in the container. |
| */ |
| qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq); |
| object_property_set_bool(OBJECT(&s->timer0), true, "realized", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0, |
| armsse_get_common_irq_in(s, 3)); |
| mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0); |
| object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[0]", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| |
| qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq); |
| object_property_set_bool(OBJECT(&s->timer1), true, "realized", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0, |
| armsse_get_common_irq_in(s, 4)); |
| mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0); |
| object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[1]", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| |
| |
| qdev_prop_set_uint32(DEVICE(&s->dualtimer), "pclk-frq", s->mainclk_frq); |
| object_property_set_bool(OBJECT(&s->dualtimer), true, "realized", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0, |
| armsse_get_common_irq_in(s, 5)); |
| mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0); |
| object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[2]", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| |
| if (info->has_mhus) { |
| /* |
| * An SSE-200 with only one CPU should have only one MHU created, |
| * with the region where the second MHU usually is being RAZ/WI. |
| * We don't implement that SSE-200 config; if we want to support |
| * it then this code needs to be enhanced to handle creating the |
| * RAZ/WI region instead of the second MHU. |
| */ |
| assert(info->num_cpus == ARRAY_SIZE(s->mhu)); |
| |
| for (i = 0; i < ARRAY_SIZE(s->mhu); i++) { |
| char *port; |
| int cpunum; |
| SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]); |
| |
| object_property_set_bool(OBJECT(&s->mhu[i]), true, |
| "realized", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| port = g_strdup_printf("port[%d]", i + 3); |
| mr = sysbus_mmio_get_region(mhu_sbd, 0); |
| object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), |
| port, &err); |
| g_free(port); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| |
| /* |
| * Each MHU has an irq line for each CPU: |
| * MHU 0 irq line 0 -> CPU 0 IRQ 6 |
| * MHU 0 irq line 1 -> CPU 1 IRQ 6 |
| * MHU 1 irq line 0 -> CPU 0 IRQ 7 |
| * MHU 1 irq line 1 -> CPU 1 IRQ 7 |
| */ |
| for (cpunum = 0; cpunum < info->num_cpus; cpunum++) { |
| DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]); |
| |
| sysbus_connect_irq(mhu_sbd, cpunum, |
| qdev_get_gpio_in(cpudev, 6 + i)); |
| } |
| } |
| } |
| |
| object_property_set_bool(OBJECT(&s->apb_ppc0), true, "realized", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| |
| sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0); |
| dev_apb_ppc0 = DEVICE(&s->apb_ppc0); |
| |
| mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0); |
| memory_region_add_subregion(&s->container, 0x40000000, mr); |
| mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1); |
| memory_region_add_subregion(&s->container, 0x40001000, mr); |
| mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2); |
| memory_region_add_subregion(&s->container, 0x40002000, mr); |
| if (info->has_mhus) { |
| mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3); |
| memory_region_add_subregion(&s->container, 0x40003000, mr); |
| mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4); |
| memory_region_add_subregion(&s->container, 0x40004000, mr); |
| } |
| for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) { |
| qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i, |
| qdev_get_gpio_in_named(dev_apb_ppc0, |
| "cfg_nonsec", i)); |
| qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i, |
| qdev_get_gpio_in_named(dev_apb_ppc0, |
| "cfg_ap", i)); |
| } |
| qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0, |
| qdev_get_gpio_in_named(dev_apb_ppc0, |
| "irq_enable", 0)); |
| qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0, |
| qdev_get_gpio_in_named(dev_apb_ppc0, |
| "irq_clear", 0)); |
| qdev_connect_gpio_out(dev_splitter, 0, |
| qdev_get_gpio_in_named(dev_apb_ppc0, |
| "cfg_sec_resp", 0)); |
| |
| /* All the PPC irq lines (from the 2 internal PPCs and the 8 external |
| * ones) are sent individually to the security controller, and also |
| * ORed together to give a single combined PPC interrupt to the NVIC. |
| */ |
| object_property_set_int(OBJECT(&s->ppc_irq_orgate), |
| NUM_PPCS, "num-lines", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| object_property_set_bool(OBJECT(&s->ppc_irq_orgate), true, |
| "realized", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0, |
| armsse_get_common_irq_in(s, 10)); |
| |
| /* |
| * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias): |
| * private per-CPU region (all these devices are SSE-200 only): |
| * 0x50010000: L1 icache control registers |
| * 0x50011000: CPUSECCTRL (CPU local security control registers) |
| * 0x4001f000 and 0x5001f000: CPU_IDENTITY register block |
| */ |
| if (info->has_cachectrl) { |
| for (i = 0; i < info->num_cpus; i++) { |
| char *name = g_strdup_printf("cachectrl%d", i); |
| MemoryRegion *mr; |
| |
| qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name); |
| g_free(name); |
| qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000); |
| object_property_set_bool(OBJECT(&s->cachectrl[i]), true, |
| "realized", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| |
| mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0); |
| memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr); |
| } |
| } |
| if (info->has_cpusecctrl) { |
| for (i = 0; i < info->num_cpus; i++) { |
| char *name = g_strdup_printf("CPUSECCTRL%d", i); |
| MemoryRegion *mr; |
| |
| qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name); |
| g_free(name); |
| qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000); |
| object_property_set_bool(OBJECT(&s->cpusecctrl[i]), true, |
| "realized", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| |
| mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0); |
| memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr); |
| } |
| } |
| if (info->has_cpuid) { |
| for (i = 0; i < info->num_cpus; i++) { |
| MemoryRegion *mr; |
| |
| qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i); |
| object_property_set_bool(OBJECT(&s->cpuid[i]), true, |
| "realized", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| |
| mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0); |
| memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr); |
| } |
| } |
| |
| /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */ |
| /* Devices behind APB PPC1: |
| * 0x4002f000: S32K timer |
| */ |
| qdev_prop_set_uint32(DEVICE(&s->s32ktimer), "pclk-frq", S32KCLK); |
| object_property_set_bool(OBJECT(&s->s32ktimer), true, "realized", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0, |
| armsse_get_common_irq_in(s, 2)); |
| mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0); |
| object_property_set_link(OBJECT(&s->apb_ppc1), OBJECT(mr), "port[0]", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| |
| object_property_set_bool(OBJECT(&s->apb_ppc1), true, "realized", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0); |
| memory_region_add_subregion(&s->container, 0x4002f000, mr); |
| |
| dev_apb_ppc1 = DEVICE(&s->apb_ppc1); |
| qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0, |
| qdev_get_gpio_in_named(dev_apb_ppc1, |
| "cfg_nonsec", 0)); |
| qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0, |
| qdev_get_gpio_in_named(dev_apb_ppc1, |
| "cfg_ap", 0)); |
| qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0, |
| qdev_get_gpio_in_named(dev_apb_ppc1, |
| "irq_enable", 0)); |
| qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0, |
| qdev_get_gpio_in_named(dev_apb_ppc1, |
| "irq_clear", 0)); |
| qdev_connect_gpio_out(dev_splitter, 1, |
| qdev_get_gpio_in_named(dev_apb_ppc1, |
| "cfg_sec_resp", 0)); |
| |
| object_property_set_int(OBJECT(&s->sysinfo), info->sys_version, |
| "SYS_VERSION", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| object_property_set_int(OBJECT(&s->sysinfo), |
| armsse_sys_config_value(s, info), |
| "SYS_CONFIG", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| object_property_set_bool(OBJECT(&s->sysinfo), true, "realized", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| /* System information registers */ |
| sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000); |
| /* System control registers */ |
| object_property_set_int(OBJECT(&s->sysctl), info->sys_version, |
| "SYS_VERSION", &err); |
| object_property_set_int(OBJECT(&s->sysctl), info->cpuwait_rst, |
| "CPUWAIT_RST", &err); |
| object_property_set_int(OBJECT(&s->sysctl), s->init_svtor, |
| "INITSVTOR0_RST", &err); |
| object_property_set_int(OBJECT(&s->sysctl), s->init_svtor, |
| "INITSVTOR1_RST", &err); |
| object_property_set_bool(OBJECT(&s->sysctl), true, "realized", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000); |
| |
| if (info->has_ppus) { |
| /* CPUnCORE_PPU for each CPU */ |
| for (i = 0; i < info->num_cpus; i++) { |
| char *name = g_strdup_printf("CPU%dCORE_PPU", i); |
| |
| map_ppu(s, CPU0CORE_PPU + i, name, 0x50023000 + i * 0x2000); |
| /* |
| * We don't support CPU debug so don't create the |
| * CPU0DEBUG_PPU at 0x50024000 and 0x50026000. |
| */ |
| g_free(name); |
| } |
| map_ppu(s, DBG_PPU, "DBG_PPU", 0x50029000); |
| |
| for (i = 0; i < info->sram_banks; i++) { |
| char *name = g_strdup_printf("RAM%d_PPU", i); |
| |
| map_ppu(s, RAM0_PPU + i, name, 0x5002a000 + i * 0x1000); |
| g_free(name); |
| } |
| } |
| |
| /* This OR gate wires together outputs from the secure watchdogs to NMI */ |
| object_property_set_int(OBJECT(&s->nmi_orgate), 2, "num-lines", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| object_property_set_bool(OBJECT(&s->nmi_orgate), true, "realized", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0, |
| qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0)); |
| |
| qdev_prop_set_uint32(DEVICE(&s->s32kwatchdog), "wdogclk-frq", S32KCLK); |
| object_property_set_bool(OBJECT(&s->s32kwatchdog), true, "realized", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, |
| qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0)); |
| sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000); |
| |
| /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */ |
| |
| qdev_prop_set_uint32(DEVICE(&s->nswatchdog), "wdogclk-frq", s->mainclk_frq); |
| object_property_set_bool(OBJECT(&s->nswatchdog), true, "realized", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0, |
| armsse_get_common_irq_in(s, 1)); |
| sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000); |
| |
| qdev_prop_set_uint32(DEVICE(&s->swatchdog), "wdogclk-frq", s->mainclk_frq); |
| object_property_set_bool(OBJECT(&s->swatchdog), true, "realized", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0, |
| qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1)); |
| sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000); |
| |
| for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) { |
| Object *splitter = OBJECT(&s->ppc_irq_splitter[i]); |
| |
| object_property_set_int(splitter, 2, "num-lines", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| object_property_set_bool(splitter, true, "realized", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| } |
| |
| for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) { |
| char *ppcname = g_strdup_printf("ahb_ppcexp%d", i); |
| |
| armsse_forward_ppc(s, ppcname, i); |
| g_free(ppcname); |
| } |
| |
| for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) { |
| char *ppcname = g_strdup_printf("apb_ppcexp%d", i); |
| |
| armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC); |
| g_free(ppcname); |
| } |
| |
| for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) { |
| /* Wire up IRQ splitter for internal PPCs */ |
| DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]); |
| char *gpioname = g_strdup_printf("apb_ppc%d_irq_status", |
| i - NUM_EXTERNAL_PPCS); |
| TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1; |
| |
| qdev_connect_gpio_out(devs, 0, |
| qdev_get_gpio_in_named(dev_secctl, gpioname, 0)); |
| qdev_connect_gpio_out(devs, 1, |
| qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i)); |
| qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0, |
| qdev_get_gpio_in(devs, 0)); |
| g_free(gpioname); |
| } |
| |
| /* Wire up the splitters for the MPC IRQs */ |
| for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) { |
| SplitIRQ *splitter = &s->mpc_irq_splitter[i]; |
| DeviceState *dev_splitter = DEVICE(splitter); |
| |
| object_property_set_int(OBJECT(splitter), 2, "num-lines", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| object_property_set_bool(OBJECT(splitter), true, "realized", &err); |
| if (err) { |
| error_propagate(errp, err); |
| return; |
| } |
| |
| if (i < IOTS_NUM_EXP_MPC) { |
| /* Splitter input is from GPIO input line */ |
| s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0); |
| qdev_connect_gpio_out(dev_splitter, 0, |
| qdev_get_gpio_in_named(dev_secctl, |
| "mpcexp_status", i)); |
| } else { |
| /* Splitter input is from our own MPC */ |
| qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]), |
| "irq", 0, |
| qdev_get_gpio_in(dev_splitter, 0)); |
| qdev_connect_gpio_out(dev_splitter, 0, |
| qdev_get_gpio_in_named(dev_secctl, |
| "mpc_status", 0)); |
| } |
| |
| qdev_connect_gpio_out(dev_splitter, 1, |
| qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i)); |
| } |
| /* Create GPIO inputs which will pass the line state for our |
| * mpcexp_irq inputs to the correct splitter devices. |
| */ |
| qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status", |
| IOTS_NUM_EXP_MPC); |
| |
| armsse_forward_sec_resp_cfg(s); |
| |
| /* Forward the MSC related signals */ |
| qdev_pass_gpios(dev_secctl, dev, "mscexp_status"); |
| qdev_pass_gpios(dev_secctl, dev, "mscexp_clear"); |
| qdev_pass_gpios(dev_secctl, dev, "mscexp_ns"); |
| qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0, |
| armsse_get_common_irq_in(s, 11)); |
| |
| /* |
| * Expose our container region to the board model; this corresponds |
| * to the AHB Slave Expansion ports which allow bus master devices |
| * (eg DMA controllers) in the board model to make transactions into |
| * devices in the ARMSSE. |
| */ |
| sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container); |
| |
| system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq; |
| } |
| |
| static void armsse_idau_check(IDAUInterface *ii, uint32_t address, |
| int *iregion, bool *exempt, bool *ns, bool *nsc) |
| { |
| /* |
| * For ARMSSE systems the IDAU responses are simple logical functions |
| * of the address bits. The NSC attribute is guest-adjustable via the |
| * NSCCFG register in the security controller. |
| */ |
| ARMSSE *s = ARMSSE(ii); |
| int region = extract32(address, 28, 4); |
| |
| *ns = !(region & 1); |
| *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2)); |
| /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */ |
| *exempt = (address & 0xeff00000) == 0xe0000000; |
| *iregion = region; |
| } |
| |
| static const VMStateDescription armsse_vmstate = { |
| .name = "iotkit", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT32(nsccfg, ARMSSE), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static Property armsse_properties[] = { |
| DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION, |
| MemoryRegion *), |
| DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64), |
| DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0), |
| DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15), |
| DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000), |
| DEFINE_PROP_END_OF_LIST() |
| }; |
| |
| static void armsse_reset(DeviceState *dev) |
| { |
| ARMSSE *s = ARMSSE(dev); |
| |
| s->nsccfg = 0; |
| } |
| |
| static void armsse_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass); |
| ARMSSEClass *asc = ARMSSE_CLASS(klass); |
| |
| dc->realize = armsse_realize; |
| dc->vmsd = &armsse_vmstate; |
| dc->props = armsse_properties; |
| dc->reset = armsse_reset; |
| iic->check = armsse_idau_check; |
| asc->info = data; |
| } |
| |
| static const TypeInfo armsse_info = { |
| .name = TYPE_ARMSSE, |
| .parent = TYPE_SYS_BUS_DEVICE, |
| .instance_size = sizeof(ARMSSE), |
| .instance_init = armsse_init, |
| .abstract = true, |
| .interfaces = (InterfaceInfo[]) { |
| { TYPE_IDAU_INTERFACE }, |
| { } |
| } |
| }; |
| |
| static void armsse_register_types(void) |
| { |
| int i; |
| |
| type_register_static(&armsse_info); |
| |
| for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) { |
| TypeInfo ti = { |
| .name = armsse_variants[i].name, |
| .parent = TYPE_ARMSSE, |
| .class_init = armsse_class_init, |
| .class_data = (void *)&armsse_variants[i], |
| }; |
| type_register(&ti); |
| } |
| } |
| |
| type_init(armsse_register_types); |