| Xilinx Versal Virt (``xlnx-versal-virt``) | 
 | ========================================= | 
 |  | 
 | Xilinx Versal is a family of heterogeneous multi-core SoCs | 
 | (System on Chip) that combine traditional hardened CPUs and I/O | 
 | peripherals in a Processing System (PS) with runtime programmable | 
 | FPGA logic (PL) and an Artificial Intelligence Engine (AIE). | 
 |  | 
 | More details here: | 
 | https://www.xilinx.com/products/silicon-devices/acap/versal.html | 
 |  | 
 | The family of Versal SoCs share a single architecture but come in | 
 | different parts with different speed grades, amounts of PL and | 
 | other differences. | 
 |  | 
 | The Xilinx Versal Virt board in QEMU is a model of a virtual board | 
 | (does not exist in reality) with a virtual Versal SoC without I/O | 
 | limitations. Currently, we support the following cores and devices: | 
 |  | 
 | Implemented CPU cores: | 
 |  | 
 | - 2 ACPUs (ARM Cortex-A72) | 
 |  | 
 | Implemented devices: | 
 |  | 
 | - Interrupt controller (ARM GICv3) | 
 | - 2 UARTs (ARM PL011) | 
 | - An RTC (Versal built-in) | 
 | - 2 GEMs (Cadence MACB Ethernet MACs) | 
 | - 8 ADMA (Xilinx zDMA) channels | 
 | - 2 SD Controllers | 
 | - OCM (256KB of On Chip Memory) | 
 | - XRAM (4MB of on chip Accelerator RAM) | 
 | - DDR memory | 
 | - BBRAM (36 bytes of Battery-backed RAM) | 
 | - eFUSE (3072 bytes of one-time field-programmable bit array) | 
 | - 2 CANFDs | 
 |  | 
 | QEMU does not yet model any other devices, including the PL and the AI Engine. | 
 |  | 
 | Other differences between the hardware and the QEMU model: | 
 |  | 
 | - QEMU allows the amount of DDR memory provided to be specified with the | 
 |   ``-m`` argument. If a DTB is provided on the command line then QEMU will | 
 |   edit it to include suitable entries describing the Versal DDR memory ranges. | 
 |  | 
 | - QEMU provides 8 virtio-mmio virtio transports; these start at | 
 |   address ``0xa0000000`` and have IRQs from 111 and upwards. | 
 |  | 
 | Running | 
 | """"""" | 
 | If the user provides an Operating System to be loaded, we expect users | 
 | to use the ``-kernel`` command line option. | 
 |  | 
 | Users can load firmware or boot-loaders with the ``-device loader`` options. | 
 |  | 
 | When loading an OS, QEMU generates a DTB and selects an appropriate address | 
 | where it gets loaded. This DTB will be passed to the kernel in register x0. | 
 |  | 
 | If there's no ``-kernel`` option, we generate a DTB and place it at 0x1000 | 
 | for boot-loaders or firmware to pick it up. | 
 |  | 
 | If users want to provide their own DTB, they can use the ``-dtb`` option. | 
 | These DTBs will have their memory nodes modified to match QEMU's | 
 | selected ram_size option before they get passed to the kernel or FW. | 
 |  | 
 | When loading an OS, we turn on QEMU's PSCI implementation with SMC | 
 | as the PSCI conduit. When there's no ``-kernel`` option, we assume the user | 
 | provides EL3 firmware to handle PSCI. | 
 |  | 
 | A few examples: | 
 |  | 
 | Direct Linux boot of a generic ARM64 upstream Linux kernel: | 
 |  | 
 | .. code-block:: bash | 
 |  | 
 |   $ qemu-system-aarch64 -M xlnx-versal-virt -m 2G \ | 
 |       -serial mon:stdio -display none \ | 
 |       -kernel arch/arm64/boot/Image \ | 
 |       -nic user -nic user \ | 
 |       -device virtio-rng-device,bus=virtio-mmio-bus.0 \ | 
 |       -drive if=none,index=0,file=hd0.qcow2,id=hd0,snapshot \ | 
 |       -drive file=qemu_sd.qcow2,if=sd,index=0,snapshot \ | 
 |       -device virtio-blk-device,drive=hd0 -append root=/dev/vda | 
 |  | 
 | Direct Linux boot of PetaLinux 2019.2: | 
 |  | 
 | .. code-block:: bash | 
 |  | 
 |   $ qemu-system-aarch64  -M xlnx-versal-virt -m 2G \ | 
 |       -serial mon:stdio -display none \ | 
 |       -kernel petalinux-v2019.2/Image \ | 
 |       -append "rdinit=/sbin/init console=ttyAMA0,115200n8 earlycon=pl011,mmio,0xFF000000,115200n8" \ | 
 |       -net nic,model=cadence_gem,netdev=net0 -netdev user,id=net0 \ | 
 |       -device virtio-rng-device,bus=virtio-mmio-bus.0,rng=rng0 \ | 
 |       -object rng-random,filename=/dev/urandom,id=rng0 | 
 |  | 
 | Boot PetaLinux 2019.2 via ARM Trusted Firmware (2018.3 because the 2019.2 | 
 | version of ATF tries to configure the CCI which we don't model) and U-boot: | 
 |  | 
 | .. code-block:: bash | 
 |  | 
 |   $ qemu-system-aarch64 -M xlnx-versal-virt -m 2G \ | 
 |       -serial stdio -display none \ | 
 |       -device loader,file=petalinux-v2018.3/bl31.elf,cpu-num=0 \ | 
 |       -device loader,file=petalinux-v2019.2/u-boot.elf \ | 
 |       -device loader,addr=0x20000000,file=petalinux-v2019.2/Image \ | 
 |       -nic user -nic user \ | 
 |       -device virtio-rng-device,bus=virtio-mmio-bus.0,rng=rng0 \ | 
 |       -object rng-random,filename=/dev/urandom,id=rng0 | 
 |  | 
 | Run the following at the U-Boot prompt: | 
 |  | 
 | .. code-block:: bash | 
 |  | 
 |   Versal> | 
 |   fdt addr $fdtcontroladdr | 
 |   fdt move $fdtcontroladdr 0x40000000 | 
 |   fdt set /timer clock-frequency <0x3dfd240> | 
 |   setenv bootargs "rdinit=/sbin/init maxcpus=1 console=ttyAMA0,115200n8 earlycon=pl011,mmio,0xFF000000,115200n8" | 
 |   booti 20000000 - 40000000 | 
 |   fdt addr $fdtcontroladdr | 
 |  | 
 | Boot Linux as DOM0 on Xen via U-Boot: | 
 |  | 
 | .. code-block:: bash | 
 |  | 
 |   $ qemu-system-aarch64 -M xlnx-versal-virt -m 4G \ | 
 |       -serial stdio -display none \ | 
 |       -device loader,file=petalinux-v2019.2/u-boot.elf,cpu-num=0 \ | 
 |       -device loader,addr=0x30000000,file=linux/2018-04-24/xen \ | 
 |       -device loader,addr=0x40000000,file=petalinux-v2019.2/Image \ | 
 |       -nic user -nic user \ | 
 |       -device virtio-rng-device,bus=virtio-mmio-bus.0,rng=rng0 \ | 
 |       -object rng-random,filename=/dev/urandom,id=rng0 | 
 |  | 
 | Run the following at the U-Boot prompt: | 
 |  | 
 | .. code-block:: bash | 
 |  | 
 |   Versal> | 
 |   fdt addr $fdtcontroladdr | 
 |   fdt move $fdtcontroladdr 0x20000000 | 
 |   fdt set /timer clock-frequency <0x3dfd240> | 
 |   fdt set /chosen xen,xen-bootargs "console=dtuart dtuart=/uart@ff000000 dom0_mem=640M bootscrub=0 maxcpus=1 timer_slop=0" | 
 |   fdt set /chosen xen,dom0-bootargs "rdinit=/sbin/init clk_ignore_unused console=hvc0 maxcpus=1" | 
 |   fdt mknode /chosen dom0 | 
 |   fdt set /chosen/dom0 compatible "xen,multiboot-module" | 
 |   fdt set /chosen/dom0 reg <0x00000000 0x40000000 0x0 0x03100000> | 
 |   booti 30000000 - 20000000 | 
 |  | 
 | Boot Linux as Dom0 on Xen via ARM Trusted Firmware and U-Boot: | 
 |  | 
 | .. code-block:: bash | 
 |  | 
 |   $ qemu-system-aarch64 -M xlnx-versal-virt -m 4G \ | 
 |       -serial stdio -display none \ | 
 |       -device loader,file=petalinux-v2018.3/bl31.elf,cpu-num=0 \ | 
 |       -device loader,file=petalinux-v2019.2/u-boot.elf \ | 
 |       -device loader,addr=0x30000000,file=linux/2018-04-24/xen \ | 
 |       -device loader,addr=0x40000000,file=petalinux-v2019.2/Image \ | 
 |       -nic user -nic user \ | 
 |       -device virtio-rng-device,bus=virtio-mmio-bus.0,rng=rng0 \ | 
 |       -object rng-random,filename=/dev/urandom,id=rng0 | 
 |  | 
 | Run the following at the U-Boot prompt: | 
 |  | 
 | .. code-block:: bash | 
 |  | 
 |   Versal> | 
 |   fdt addr $fdtcontroladdr | 
 |   fdt move $fdtcontroladdr 0x20000000 | 
 |   fdt set /timer clock-frequency <0x3dfd240> | 
 |   fdt set /chosen xen,xen-bootargs "console=dtuart dtuart=/uart@ff000000 dom0_mem=640M bootscrub=0 maxcpus=1 timer_slop=0" | 
 |   fdt set /chosen xen,dom0-bootargs "rdinit=/sbin/init clk_ignore_unused console=hvc0 maxcpus=1" | 
 |   fdt mknode /chosen dom0 | 
 |   fdt set /chosen/dom0 compatible "xen,multiboot-module" | 
 |   fdt set /chosen/dom0 reg <0x00000000 0x40000000 0x0 0x03100000> | 
 |   booti 30000000 - 20000000 | 
 |  | 
 | It's possible to change the OSPI flash model emulated by using the machine model | 
 | option ``ospi-flash``. | 
 |  | 
 | BBRAM File Backend | 
 | """""""""""""""""" | 
 | BBRAM can have an optional file backend, which must be a seekable | 
 | binary file with a size of 36 bytes or larger. A file with all | 
 | binary 0s is a 'blank'. | 
 |  | 
 | To add a file-backend for the BBRAM: | 
 |  | 
 | .. code-block:: bash | 
 |  | 
 |   -drive if=pflash,index=0,file=versal-bbram.bin,format=raw | 
 |  | 
 | To use a different index value, N, from default of 0, add: | 
 |  | 
 | .. code-block:: bash | 
 |  | 
 |   -global driver=xlnx.bbram-ctrl,property=drive-index,value=N | 
 |  | 
 | eFUSE File Backend | 
 | """""""""""""""""" | 
 | eFUSE can have an optional file backend, which must be a seekable | 
 | binary file with a size of 3072 bytes or larger. A file with all | 
 | binary 0s is a 'blank'. | 
 |  | 
 | To add a file-backend for the eFUSE: | 
 |  | 
 | .. code-block:: bash | 
 |  | 
 |   -drive if=pflash,index=1,file=versal-efuse.bin,format=raw | 
 |  | 
 | To use a different index value, N, from default of 1, add: | 
 |  | 
 | .. code-block:: bash | 
 |  | 
 |   -global xlnx-efuse.drive-index=N | 
 |  | 
 | .. warning:: | 
 |   In actual physical Versal, BBRAM and eFUSE contain sensitive data. | 
 |   The QEMU device models do **not** encrypt nor obfuscate any data | 
 |   when holding them in models' memory or when writing them to their | 
 |   file backends. | 
 |  | 
 |   Thus, a file backend should be used with caution, and 'format=luks' | 
 |   is highly recommended (albeit with usage complexity). | 
 |  | 
 |   Better yet, do not use actual product data when running guest image | 
 |   on this Xilinx Versal Virt board. | 
 |  | 
 | Using CANFDs for Versal Virt | 
 | """""""""""""""""""""""""""" | 
 | Versal CANFD controller is developed based on SocketCAN and QEMU CAN bus | 
 | implementation. Bus connection and socketCAN connection for each CAN module | 
 | can be set through command lines. | 
 |  | 
 | To connect both CANFD0 and CANFD1 on the same bus: | 
 |  | 
 | .. code-block:: bash | 
 |  | 
 |     -object can-bus,id=canbus -machine canbus0=canbus -machine canbus1=canbus | 
 |  | 
 | To connect CANFD0 and CANFD1 to separate buses: | 
 |  | 
 | .. code-block:: bash | 
 |  | 
 |     -object can-bus,id=canbus0 -object can-bus,id=canbus1 \ | 
 |     -machine canbus0=canbus0 -machine canbus1=canbus1 | 
 |  | 
 | The SocketCAN interface can connect to a Physical or a Virtual CAN interfaces on | 
 | the host machine. Please check this document to learn about CAN interface on | 
 | Linux: docs/system/devices/can.rst | 
 |  | 
 | To connect CANFD0 and CANFD1 to host machine's CAN interface can0: | 
 |  | 
 | .. code-block:: bash | 
 |  | 
 |     -object can-bus,id=canbus -machine canbus0=canbus -machine canbus1=canbus | 
 |     -object can-host-socketcan,id=canhost0,if=can0,canbus=canbus |