| /* |
| * QEMU TCG support -- s390x vector floating point instruction support |
| * |
| * Copyright (C) 2019 Red Hat Inc |
| * |
| * Authors: |
| * David Hildenbrand <david@redhat.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| */ |
| #include "qemu/osdep.h" |
| #include "qemu-common.h" |
| #include "cpu.h" |
| #include "internal.h" |
| #include "vec.h" |
| #include "tcg_s390x.h" |
| #include "tcg/tcg-gvec-desc.h" |
| #include "exec/exec-all.h" |
| #include "exec/helper-proto.h" |
| #include "fpu/softfloat.h" |
| |
| #define VIC_INVALID 0x1 |
| #define VIC_DIVBYZERO 0x2 |
| #define VIC_OVERFLOW 0x3 |
| #define VIC_UNDERFLOW 0x4 |
| #define VIC_INEXACT 0x5 |
| |
| /* returns the VEX. If the VEX is 0, there is no trap */ |
| static uint8_t check_ieee_exc(CPUS390XState *env, uint8_t enr, bool XxC, |
| uint8_t *vec_exc) |
| { |
| uint8_t vece_exc = 0, trap_exc; |
| unsigned qemu_exc; |
| |
| /* Retrieve and clear the softfloat exceptions */ |
| qemu_exc = env->fpu_status.float_exception_flags; |
| if (qemu_exc == 0) { |
| return 0; |
| } |
| env->fpu_status.float_exception_flags = 0; |
| |
| vece_exc = s390_softfloat_exc_to_ieee(qemu_exc); |
| |
| /* Add them to the vector-wide s390x exception bits */ |
| *vec_exc |= vece_exc; |
| |
| /* Check for traps and construct the VXC */ |
| trap_exc = vece_exc & env->fpc >> 24; |
| if (trap_exc) { |
| if (trap_exc & S390_IEEE_MASK_INVALID) { |
| return enr << 4 | VIC_INVALID; |
| } else if (trap_exc & S390_IEEE_MASK_DIVBYZERO) { |
| return enr << 4 | VIC_DIVBYZERO; |
| } else if (trap_exc & S390_IEEE_MASK_OVERFLOW) { |
| return enr << 4 | VIC_OVERFLOW; |
| } else if (trap_exc & S390_IEEE_MASK_UNDERFLOW) { |
| return enr << 4 | VIC_UNDERFLOW; |
| } else if (!XxC) { |
| g_assert(trap_exc & S390_IEEE_MASK_INEXACT); |
| /* inexact has lowest priority on traps */ |
| return enr << 4 | VIC_INEXACT; |
| } |
| } |
| return 0; |
| } |
| |
| static void handle_ieee_exc(CPUS390XState *env, uint8_t vxc, uint8_t vec_exc, |
| uintptr_t retaddr) |
| { |
| if (vxc) { |
| /* on traps, the fpc flags are not updated, instruction is suppressed */ |
| tcg_s390_vector_exception(env, vxc, retaddr); |
| } |
| if (vec_exc) { |
| /* indicate exceptions for all elements combined */ |
| env->fpc |= vec_exc << 16; |
| } |
| } |
| |
| static float32 s390_vec_read_float32(const S390Vector *v, uint8_t enr) |
| { |
| return make_float32(s390_vec_read_element32(v, enr)); |
| } |
| |
| static float64 s390_vec_read_float64(const S390Vector *v, uint8_t enr) |
| { |
| return make_float64(s390_vec_read_element64(v, enr)); |
| } |
| |
| static float128 s390_vec_read_float128(const S390Vector *v) |
| { |
| return make_float128(s390_vec_read_element64(v, 0), |
| s390_vec_read_element64(v, 1)); |
| } |
| |
| static void s390_vec_write_float32(S390Vector *v, uint8_t enr, float32 data) |
| { |
| return s390_vec_write_element32(v, enr, data); |
| } |
| |
| static void s390_vec_write_float64(S390Vector *v, uint8_t enr, float64 data) |
| { |
| return s390_vec_write_element64(v, enr, data); |
| } |
| |
| static void s390_vec_write_float128(S390Vector *v, float128 data) |
| { |
| s390_vec_write_element64(v, 0, data.high); |
| s390_vec_write_element64(v, 1, data.low); |
| } |
| |
| typedef float32 (*vop32_2_fn)(float32 a, float_status *s); |
| static void vop32_2(S390Vector *v1, const S390Vector *v2, CPUS390XState *env, |
| bool s, bool XxC, uint8_t erm, vop32_2_fn fn, |
| uintptr_t retaddr) |
| { |
| uint8_t vxc, vec_exc = 0; |
| S390Vector tmp = {}; |
| int i, old_mode; |
| |
| old_mode = s390_swap_bfp_rounding_mode(env, erm); |
| for (i = 0; i < 4; i++) { |
| const float32 a = s390_vec_read_float32(v2, i); |
| |
| s390_vec_write_float32(&tmp, i, fn(a, &env->fpu_status)); |
| vxc = check_ieee_exc(env, i, XxC, &vec_exc); |
| if (s || vxc) { |
| break; |
| } |
| } |
| s390_restore_bfp_rounding_mode(env, old_mode); |
| handle_ieee_exc(env, vxc, vec_exc, retaddr); |
| *v1 = tmp; |
| } |
| |
| typedef float64 (*vop64_2_fn)(float64 a, float_status *s); |
| static void vop64_2(S390Vector *v1, const S390Vector *v2, CPUS390XState *env, |
| bool s, bool XxC, uint8_t erm, vop64_2_fn fn, |
| uintptr_t retaddr) |
| { |
| uint8_t vxc, vec_exc = 0; |
| S390Vector tmp = {}; |
| int i, old_mode; |
| |
| old_mode = s390_swap_bfp_rounding_mode(env, erm); |
| for (i = 0; i < 2; i++) { |
| const float64 a = s390_vec_read_float64(v2, i); |
| |
| s390_vec_write_float64(&tmp, i, fn(a, &env->fpu_status)); |
| vxc = check_ieee_exc(env, i, XxC, &vec_exc); |
| if (s || vxc) { |
| break; |
| } |
| } |
| s390_restore_bfp_rounding_mode(env, old_mode); |
| handle_ieee_exc(env, vxc, vec_exc, retaddr); |
| *v1 = tmp; |
| } |
| |
| typedef float128 (*vop128_2_fn)(float128 a, float_status *s); |
| static void vop128_2(S390Vector *v1, const S390Vector *v2, CPUS390XState *env, |
| bool s, bool XxC, uint8_t erm, vop128_2_fn fn, |
| uintptr_t retaddr) |
| { |
| const float128 a = s390_vec_read_float128(v2); |
| uint8_t vxc, vec_exc = 0; |
| S390Vector tmp = {}; |
| int old_mode; |
| |
| old_mode = s390_swap_bfp_rounding_mode(env, erm); |
| s390_vec_write_float128(&tmp, fn(a, &env->fpu_status)); |
| vxc = check_ieee_exc(env, 0, XxC, &vec_exc); |
| s390_restore_bfp_rounding_mode(env, old_mode); |
| handle_ieee_exc(env, vxc, vec_exc, retaddr); |
| *v1 = tmp; |
| } |
| |
| static float64 vcdg64(float64 a, float_status *s) |
| { |
| return int64_to_float64(a, s); |
| } |
| |
| static float64 vcdlg64(float64 a, float_status *s) |
| { |
| return uint64_to_float64(a, s); |
| } |
| |
| static float64 vcgd64(float64 a, float_status *s) |
| { |
| const float64 tmp = float64_to_int64(a, s); |
| |
| return float64_is_any_nan(a) ? INT64_MIN : tmp; |
| } |
| |
| static float64 vclgd64(float64 a, float_status *s) |
| { |
| const float64 tmp = float64_to_uint64(a, s); |
| |
| return float64_is_any_nan(a) ? 0 : tmp; |
| } |
| |
| #define DEF_GVEC_VOP2_FN(NAME, FN, BITS) \ |
| void HELPER(gvec_##NAME##BITS)(void *v1, const void *v2, CPUS390XState *env, \ |
| uint32_t desc) \ |
| { \ |
| const uint8_t erm = extract32(simd_data(desc), 4, 4); \ |
| const bool se = extract32(simd_data(desc), 3, 1); \ |
| const bool XxC = extract32(simd_data(desc), 2, 1); \ |
| \ |
| vop##BITS##_2(v1, v2, env, se, XxC, erm, FN, GETPC()); \ |
| } |
| |
| #define DEF_GVEC_VOP2_64(NAME) \ |
| DEF_GVEC_VOP2_FN(NAME, NAME##64, 64) |
| |
| #define DEF_GVEC_VOP2(NAME, OP) \ |
| DEF_GVEC_VOP2_FN(NAME, float32_##OP, 32) \ |
| DEF_GVEC_VOP2_FN(NAME, float64_##OP, 64) \ |
| DEF_GVEC_VOP2_FN(NAME, float128_##OP, 128) |
| |
| DEF_GVEC_VOP2_64(vcdg) |
| DEF_GVEC_VOP2_64(vcdlg) |
| DEF_GVEC_VOP2_64(vcgd) |
| DEF_GVEC_VOP2_64(vclgd) |
| DEF_GVEC_VOP2(vfi, round_to_int) |
| DEF_GVEC_VOP2(vfsq, sqrt) |
| |
| typedef float32 (*vop32_3_fn)(float32 a, float32 b, float_status *s); |
| static void vop32_3(S390Vector *v1, const S390Vector *v2, const S390Vector *v3, |
| CPUS390XState *env, bool s, vop32_3_fn fn, |
| uintptr_t retaddr) |
| { |
| uint8_t vxc, vec_exc = 0; |
| S390Vector tmp = {}; |
| int i; |
| |
| for (i = 0; i < 4; i++) { |
| const float32 a = s390_vec_read_float32(v2, i); |
| const float32 b = s390_vec_read_float32(v3, i); |
| |
| s390_vec_write_float32(&tmp, i, fn(a, b, &env->fpu_status)); |
| vxc = check_ieee_exc(env, i, false, &vec_exc); |
| if (s || vxc) { |
| break; |
| } |
| } |
| handle_ieee_exc(env, vxc, vec_exc, retaddr); |
| *v1 = tmp; |
| } |
| |
| typedef float64 (*vop64_3_fn)(float64 a, float64 b, float_status *s); |
| static void vop64_3(S390Vector *v1, const S390Vector *v2, const S390Vector *v3, |
| CPUS390XState *env, bool s, vop64_3_fn fn, |
| uintptr_t retaddr) |
| { |
| uint8_t vxc, vec_exc = 0; |
| S390Vector tmp = {}; |
| int i; |
| |
| for (i = 0; i < 2; i++) { |
| const float64 a = s390_vec_read_float64(v2, i); |
| const float64 b = s390_vec_read_float64(v3, i); |
| |
| s390_vec_write_float64(&tmp, i, fn(a, b, &env->fpu_status)); |
| vxc = check_ieee_exc(env, i, false, &vec_exc); |
| if (s || vxc) { |
| break; |
| } |
| } |
| handle_ieee_exc(env, vxc, vec_exc, retaddr); |
| *v1 = tmp; |
| } |
| |
| typedef float128 (*vop128_3_fn)(float128 a, float128 b, float_status *s); |
| static void vop128_3(S390Vector *v1, const S390Vector *v2, const S390Vector *v3, |
| CPUS390XState *env, bool s, vop128_3_fn fn, |
| uintptr_t retaddr) |
| { |
| const float128 a = s390_vec_read_float128(v2); |
| const float128 b = s390_vec_read_float128(v3); |
| uint8_t vxc, vec_exc = 0; |
| S390Vector tmp = {}; |
| |
| s390_vec_write_float128(&tmp, fn(a, b, &env->fpu_status)); |
| vxc = check_ieee_exc(env, 0, false, &vec_exc); |
| handle_ieee_exc(env, vxc, vec_exc, retaddr); |
| *v1 = tmp; |
| } |
| |
| #define DEF_GVEC_VOP3_B(NAME, OP, BITS) \ |
| void HELPER(gvec_##NAME##BITS)(void *v1, const void *v2, const void *v3, \ |
| CPUS390XState *env, uint32_t desc) \ |
| { \ |
| const bool se = extract32(simd_data(desc), 3, 1); \ |
| \ |
| vop##BITS##_3(v1, v2, v3, env, se, float##BITS##_##OP, GETPC()); \ |
| } |
| |
| #define DEF_GVEC_VOP3(NAME, OP) \ |
| DEF_GVEC_VOP3_B(NAME, OP, 32) \ |
| DEF_GVEC_VOP3_B(NAME, OP, 64) \ |
| DEF_GVEC_VOP3_B(NAME, OP, 128) |
| |
| DEF_GVEC_VOP3(vfa, add) |
| DEF_GVEC_VOP3(vfs, sub) |
| DEF_GVEC_VOP3(vfd, div) |
| DEF_GVEC_VOP3(vfm, mul) |
| |
| static int wfc32(const S390Vector *v1, const S390Vector *v2, |
| CPUS390XState *env, bool signal, uintptr_t retaddr) |
| { |
| /* only the zero-indexed elements are compared */ |
| const float32 a = s390_vec_read_float32(v1, 0); |
| const float32 b = s390_vec_read_float32(v2, 0); |
| uint8_t vxc, vec_exc = 0; |
| int cmp; |
| |
| if (signal) { |
| cmp = float32_compare(a, b, &env->fpu_status); |
| } else { |
| cmp = float32_compare_quiet(a, b, &env->fpu_status); |
| } |
| vxc = check_ieee_exc(env, 0, false, &vec_exc); |
| handle_ieee_exc(env, vxc, vec_exc, retaddr); |
| |
| return float_comp_to_cc(env, cmp); |
| } |
| |
| static int wfc64(const S390Vector *v1, const S390Vector *v2, |
| CPUS390XState *env, bool signal, uintptr_t retaddr) |
| { |
| /* only the zero-indexed elements are compared */ |
| const float64 a = s390_vec_read_float64(v1, 0); |
| const float64 b = s390_vec_read_float64(v2, 0); |
| uint8_t vxc, vec_exc = 0; |
| int cmp; |
| |
| if (signal) { |
| cmp = float64_compare(a, b, &env->fpu_status); |
| } else { |
| cmp = float64_compare_quiet(a, b, &env->fpu_status); |
| } |
| vxc = check_ieee_exc(env, 0, false, &vec_exc); |
| handle_ieee_exc(env, vxc, vec_exc, retaddr); |
| |
| return float_comp_to_cc(env, cmp); |
| } |
| |
| static int wfc128(const S390Vector *v1, const S390Vector *v2, |
| CPUS390XState *env, bool signal, uintptr_t retaddr) |
| { |
| /* only the zero-indexed elements are compared */ |
| const float128 a = s390_vec_read_float128(v1); |
| const float128 b = s390_vec_read_float128(v2); |
| uint8_t vxc, vec_exc = 0; |
| int cmp; |
| |
| if (signal) { |
| cmp = float128_compare(a, b, &env->fpu_status); |
| } else { |
| cmp = float128_compare_quiet(a, b, &env->fpu_status); |
| } |
| vxc = check_ieee_exc(env, 0, false, &vec_exc); |
| handle_ieee_exc(env, vxc, vec_exc, retaddr); |
| |
| return float_comp_to_cc(env, cmp); |
| } |
| |
| #define DEF_GVEC_WFC_B(NAME, SIGNAL, BITS) \ |
| void HELPER(gvec_##NAME##BITS)(const void *v1, const void *v2, \ |
| CPUS390XState *env, uint32_t desc) \ |
| { \ |
| env->cc_op = wfc##BITS(v1, v2, env, SIGNAL, GETPC()); \ |
| } |
| |
| #define DEF_GVEC_WFC(NAME, SIGNAL) \ |
| DEF_GVEC_WFC_B(NAME, SIGNAL, 32) \ |
| DEF_GVEC_WFC_B(NAME, SIGNAL, 64) \ |
| DEF_GVEC_WFC_B(NAME, SIGNAL, 128) |
| |
| DEF_GVEC_WFC(wfc, false) |
| DEF_GVEC_WFC(wfk, true) |
| |
| typedef bool (*vfc32_fn)(float32 a, float32 b, float_status *status); |
| static int vfc32(S390Vector *v1, const S390Vector *v2, const S390Vector *v3, |
| CPUS390XState *env, bool s, vfc32_fn fn, uintptr_t retaddr) |
| { |
| uint8_t vxc, vec_exc = 0; |
| S390Vector tmp = {}; |
| int match = 0; |
| int i; |
| |
| for (i = 0; i < 4; i++) { |
| const float32 a = s390_vec_read_float32(v2, i); |
| const float32 b = s390_vec_read_float32(v3, i); |
| |
| /* swap the order of the parameters, so we can use existing functions */ |
| if (fn(b, a, &env->fpu_status)) { |
| match++; |
| s390_vec_write_element32(&tmp, i, -1u); |
| } |
| vxc = check_ieee_exc(env, i, false, &vec_exc); |
| if (s || vxc) { |
| break; |
| } |
| } |
| |
| handle_ieee_exc(env, vxc, vec_exc, retaddr); |
| *v1 = tmp; |
| if (match) { |
| return s || match == 4 ? 0 : 1; |
| } |
| return 3; |
| } |
| |
| typedef bool (*vfc64_fn)(float64 a, float64 b, float_status *status); |
| static int vfc64(S390Vector *v1, const S390Vector *v2, const S390Vector *v3, |
| CPUS390XState *env, bool s, vfc64_fn fn, uintptr_t retaddr) |
| { |
| uint8_t vxc, vec_exc = 0; |
| S390Vector tmp = {}; |
| int match = 0; |
| int i; |
| |
| for (i = 0; i < 2; i++) { |
| const float64 a = s390_vec_read_float64(v2, i); |
| const float64 b = s390_vec_read_float64(v3, i); |
| |
| /* swap the order of the parameters, so we can use existing functions */ |
| if (fn(b, a, &env->fpu_status)) { |
| match++; |
| s390_vec_write_element64(&tmp, i, -1ull); |
| } |
| vxc = check_ieee_exc(env, i, false, &vec_exc); |
| if (s || vxc) { |
| break; |
| } |
| } |
| |
| handle_ieee_exc(env, vxc, vec_exc, retaddr); |
| *v1 = tmp; |
| if (match) { |
| return s || match == 2 ? 0 : 1; |
| } |
| return 3; |
| } |
| |
| typedef bool (*vfc128_fn)(float128 a, float128 b, float_status *status); |
| static int vfc128(S390Vector *v1, const S390Vector *v2, const S390Vector *v3, |
| CPUS390XState *env, bool s, vfc128_fn fn, uintptr_t retaddr) |
| { |
| const float128 a = s390_vec_read_float128(v2); |
| const float128 b = s390_vec_read_float128(v3); |
| uint8_t vxc, vec_exc = 0; |
| S390Vector tmp = {}; |
| bool match = false; |
| |
| /* swap the order of the parameters, so we can use existing functions */ |
| if (fn(b, a, &env->fpu_status)) { |
| match = true; |
| s390_vec_write_element64(&tmp, 0, -1ull); |
| s390_vec_write_element64(&tmp, 1, -1ull); |
| } |
| vxc = check_ieee_exc(env, 0, false, &vec_exc); |
| handle_ieee_exc(env, vxc, vec_exc, retaddr); |
| *v1 = tmp; |
| return match ? 0 : 3; |
| } |
| |
| #define DEF_GVEC_VFC_B(NAME, OP, BITS) \ |
| void HELPER(gvec_##NAME##BITS)(void *v1, const void *v2, const void *v3, \ |
| CPUS390XState *env, uint32_t desc) \ |
| { \ |
| const bool se = extract32(simd_data(desc), 3, 1); \ |
| const bool sq = extract32(simd_data(desc), 2, 1); \ |
| vfc##BITS##_fn fn = sq ? float##BITS##_##OP : float##BITS##_##OP##_quiet; \ |
| \ |
| vfc##BITS(v1, v2, v3, env, se, fn, GETPC()); \ |
| } \ |
| \ |
| void HELPER(gvec_##NAME##BITS##_cc)(void *v1, const void *v2, const void *v3, \ |
| CPUS390XState *env, uint32_t desc) \ |
| { \ |
| const bool se = extract32(simd_data(desc), 3, 1); \ |
| const bool sq = extract32(simd_data(desc), 2, 1); \ |
| vfc##BITS##_fn fn = sq ? float##BITS##_##OP : float##BITS##_##OP##_quiet; \ |
| \ |
| env->cc_op = vfc##BITS(v1, v2, v3, env, se, fn, GETPC()); \ |
| } |
| |
| #define DEF_GVEC_VFC(NAME, OP) \ |
| DEF_GVEC_VFC_B(NAME, OP, 32) \ |
| DEF_GVEC_VFC_B(NAME, OP, 64) \ |
| DEF_GVEC_VFC_B(NAME, OP, 128) \ |
| |
| DEF_GVEC_VFC(vfce, eq) |
| DEF_GVEC_VFC(vfch, lt) |
| DEF_GVEC_VFC(vfche, le) |
| |
| void HELPER(gvec_vfll32)(void *v1, const void *v2, CPUS390XState *env, |
| uint32_t desc) |
| { |
| const bool s = extract32(simd_data(desc), 3, 1); |
| uint8_t vxc, vec_exc = 0; |
| S390Vector tmp = {}; |
| int i; |
| |
| for (i = 0; i < 2; i++) { |
| /* load from even element */ |
| const float32 a = s390_vec_read_element32(v2, i * 2); |
| const uint64_t ret = float32_to_float64(a, &env->fpu_status); |
| |
| s390_vec_write_element64(&tmp, i, ret); |
| /* indicate the source element */ |
| vxc = check_ieee_exc(env, i * 2, false, &vec_exc); |
| if (s || vxc) { |
| break; |
| } |
| } |
| handle_ieee_exc(env, vxc, vec_exc, GETPC()); |
| *(S390Vector *)v1 = tmp; |
| } |
| |
| void HELPER(gvec_vfll64)(void *v1, const void *v2, CPUS390XState *env, |
| uint32_t desc) |
| { |
| /* load from even element */ |
| const float128 ret = float64_to_float128(s390_vec_read_float64(v2, 0), |
| &env->fpu_status); |
| uint8_t vxc, vec_exc = 0; |
| |
| vxc = check_ieee_exc(env, 0, false, &vec_exc); |
| handle_ieee_exc(env, vxc, vec_exc, GETPC()); |
| s390_vec_write_float128(v1, ret); |
| } |
| |
| void HELPER(gvec_vflr64)(void *v1, const void *v2, CPUS390XState *env, |
| uint32_t desc) |
| { |
| const uint8_t erm = extract32(simd_data(desc), 4, 4); |
| const bool s = extract32(simd_data(desc), 3, 1); |
| const bool XxC = extract32(simd_data(desc), 2, 1); |
| uint8_t vxc, vec_exc = 0; |
| S390Vector tmp = {}; |
| int i, old_mode; |
| |
| old_mode = s390_swap_bfp_rounding_mode(env, erm); |
| for (i = 0; i < 2; i++) { |
| float64 a = s390_vec_read_element64(v2, i); |
| uint32_t ret = float64_to_float32(a, &env->fpu_status); |
| |
| /* place at even element */ |
| s390_vec_write_element32(&tmp, i * 2, ret); |
| /* indicate the source element */ |
| vxc = check_ieee_exc(env, i, XxC, &vec_exc); |
| if (s || vxc) { |
| break; |
| } |
| } |
| s390_restore_bfp_rounding_mode(env, old_mode); |
| handle_ieee_exc(env, vxc, vec_exc, GETPC()); |
| *(S390Vector *)v1 = tmp; |
| } |
| |
| void HELPER(gvec_vflr128)(void *v1, const void *v2, CPUS390XState *env, |
| uint32_t desc) |
| { |
| const uint8_t erm = extract32(simd_data(desc), 4, 4); |
| const bool XxC = extract32(simd_data(desc), 2, 1); |
| uint8_t vxc, vec_exc = 0; |
| int old_mode; |
| float64 ret; |
| |
| old_mode = s390_swap_bfp_rounding_mode(env, erm); |
| ret = float128_to_float64(s390_vec_read_float128(v2), &env->fpu_status); |
| vxc = check_ieee_exc(env, 0, XxC, &vec_exc); |
| s390_restore_bfp_rounding_mode(env, old_mode); |
| handle_ieee_exc(env, vxc, vec_exc, GETPC()); |
| |
| /* place at even element, odd element is unpredictable */ |
| s390_vec_write_float64(v1, 0, ret); |
| } |
| |
| static void vfma32(S390Vector *v1, const S390Vector *v2, const S390Vector *v3, |
| const S390Vector *v4, CPUS390XState *env, bool s, int flags, |
| uintptr_t retaddr) |
| { |
| uint8_t vxc, vec_exc = 0; |
| S390Vector tmp = {}; |
| int i; |
| |
| for (i = 0; i < 4; i++) { |
| const float32 a = s390_vec_read_float32(v2, i); |
| const float32 b = s390_vec_read_float32(v3, i); |
| const float32 c = s390_vec_read_float32(v4, i); |
| float32 ret = float32_muladd(a, b, c, flags, &env->fpu_status); |
| |
| s390_vec_write_float32(&tmp, i, ret); |
| vxc = check_ieee_exc(env, i, false, &vec_exc); |
| if (s || vxc) { |
| break; |
| } |
| } |
| handle_ieee_exc(env, vxc, vec_exc, retaddr); |
| *v1 = tmp; |
| } |
| |
| static void vfma64(S390Vector *v1, const S390Vector *v2, const S390Vector *v3, |
| const S390Vector *v4, CPUS390XState *env, bool s, int flags, |
| uintptr_t retaddr) |
| { |
| uint8_t vxc, vec_exc = 0; |
| S390Vector tmp = {}; |
| int i; |
| |
| for (i = 0; i < 2; i++) { |
| const float64 a = s390_vec_read_float64(v2, i); |
| const float64 b = s390_vec_read_float64(v3, i); |
| const float64 c = s390_vec_read_float64(v4, i); |
| const float64 ret = float64_muladd(a, b, c, flags, &env->fpu_status); |
| |
| s390_vec_write_float64(&tmp, i, ret); |
| vxc = check_ieee_exc(env, i, false, &vec_exc); |
| if (s || vxc) { |
| break; |
| } |
| } |
| handle_ieee_exc(env, vxc, vec_exc, retaddr); |
| *v1 = tmp; |
| } |
| |
| static void vfma128(S390Vector *v1, const S390Vector *v2, const S390Vector *v3, |
| const S390Vector *v4, CPUS390XState *env, bool s, int flags, |
| uintptr_t retaddr) |
| { |
| const float128 a = s390_vec_read_float128(v2); |
| const float128 b = s390_vec_read_float128(v3); |
| const float128 c = s390_vec_read_float128(v4); |
| uint8_t vxc, vec_exc = 0; |
| float128 ret; |
| |
| ret = float128_muladd(a, b, c, flags, &env->fpu_status); |
| vxc = check_ieee_exc(env, 0, false, &vec_exc); |
| handle_ieee_exc(env, vxc, vec_exc, retaddr); |
| s390_vec_write_float128(v1, ret); |
| } |
| |
| #define DEF_GVEC_VFMA_B(NAME, FLAGS, BITS) \ |
| void HELPER(gvec_##NAME##BITS)(void *v1, const void *v2, const void *v3, \ |
| const void *v4, CPUS390XState *env, \ |
| uint32_t desc) \ |
| { \ |
| const bool se = extract32(simd_data(desc), 3, 1); \ |
| \ |
| vfma##BITS(v1, v2, v3, v4, env, se, FLAGS, GETPC()); \ |
| } |
| |
| #define DEF_GVEC_VFMA(NAME, FLAGS) \ |
| DEF_GVEC_VFMA_B(NAME, FLAGS, 32) \ |
| DEF_GVEC_VFMA_B(NAME, FLAGS, 64) \ |
| DEF_GVEC_VFMA_B(NAME, FLAGS, 128) |
| |
| DEF_GVEC_VFMA(vfma, 0) |
| DEF_GVEC_VFMA(vfms, float_muladd_negate_c) |
| DEF_GVEC_VFMA(vfnma, float_muladd_negate_result) |
| DEF_GVEC_VFMA(vfnms, float_muladd_negate_c | float_muladd_negate_result) |
| |
| void HELPER(gvec_vftci32)(void *v1, const void *v2, CPUS390XState *env, |
| uint32_t desc) |
| { |
| uint16_t i3 = extract32(simd_data(desc), 4, 12); |
| bool s = extract32(simd_data(desc), 3, 1); |
| int i, match = 0; |
| |
| for (i = 0; i < 4; i++) { |
| float32 a = s390_vec_read_float32(v2, i); |
| |
| if (float32_dcmask(env, a) & i3) { |
| match++; |
| s390_vec_write_element32(v1, i, -1u); |
| } else { |
| s390_vec_write_element32(v1, i, 0); |
| } |
| if (s) { |
| break; |
| } |
| } |
| |
| if (match == 4 || (s && match)) { |
| env->cc_op = 0; |
| } else if (match) { |
| env->cc_op = 1; |
| } else { |
| env->cc_op = 3; |
| } |
| } |
| |
| void HELPER(gvec_vftci64)(void *v1, const void *v2, CPUS390XState *env, |
| uint32_t desc) |
| { |
| const uint16_t i3 = extract32(simd_data(desc), 4, 12); |
| const bool s = extract32(simd_data(desc), 3, 1); |
| int i, match = 0; |
| |
| for (i = 0; i < 2; i++) { |
| const float64 a = s390_vec_read_float64(v2, i); |
| |
| if (float64_dcmask(env, a) & i3) { |
| match++; |
| s390_vec_write_element64(v1, i, -1ull); |
| } else { |
| s390_vec_write_element64(v1, i, 0); |
| } |
| if (s) { |
| break; |
| } |
| } |
| |
| if (match == 2 || (s && match)) { |
| env->cc_op = 0; |
| } else if (match) { |
| env->cc_op = 1; |
| } else { |
| env->cc_op = 3; |
| } |
| } |
| |
| void HELPER(gvec_vftci128)(void *v1, const void *v2, CPUS390XState *env, |
| uint32_t desc) |
| { |
| const float128 a = s390_vec_read_float128(v2); |
| uint16_t i3 = extract32(simd_data(desc), 4, 12); |
| |
| if (float128_dcmask(env, a) & i3) { |
| env->cc_op = 0; |
| s390_vec_write_element64(v1, 0, -1ull); |
| s390_vec_write_element64(v1, 1, -1ull); |
| } else { |
| env->cc_op = 3; |
| s390_vec_write_element64(v1, 0, 0); |
| s390_vec_write_element64(v1, 1, 0); |
| } |
| } |
| |
| typedef enum S390MinMaxType { |
| S390_MINMAX_TYPE_IEEE = 0, |
| S390_MINMAX_TYPE_JAVA, |
| S390_MINMAX_TYPE_C_MACRO, |
| S390_MINMAX_TYPE_CPP, |
| S390_MINMAX_TYPE_F, |
| } S390MinMaxType; |
| |
| typedef enum S390MinMaxRes { |
| S390_MINMAX_RES_MINMAX = 0, |
| S390_MINMAX_RES_A, |
| S390_MINMAX_RES_B, |
| S390_MINMAX_RES_SILENCE_A, |
| S390_MINMAX_RES_SILENCE_B, |
| } S390MinMaxRes; |
| |
| static S390MinMaxRes vfmin_res(uint16_t dcmask_a, uint16_t dcmask_b, |
| S390MinMaxType type, float_status *s) |
| { |
| const bool neg_a = dcmask_a & DCMASK_NEGATIVE; |
| const bool nan_a = dcmask_a & DCMASK_NAN; |
| const bool nan_b = dcmask_b & DCMASK_NAN; |
| |
| g_assert(type > S390_MINMAX_TYPE_IEEE && type <= S390_MINMAX_TYPE_F); |
| |
| if (unlikely((dcmask_a | dcmask_b) & DCMASK_NAN)) { |
| const bool sig_a = dcmask_a & DCMASK_SIGNALING_NAN; |
| const bool sig_b = dcmask_b & DCMASK_SIGNALING_NAN; |
| |
| if ((dcmask_a | dcmask_b) & DCMASK_SIGNALING_NAN) { |
| s->float_exception_flags |= float_flag_invalid; |
| } |
| switch (type) { |
| case S390_MINMAX_TYPE_JAVA: |
| if (sig_a) { |
| return S390_MINMAX_RES_SILENCE_A; |
| } else if (sig_b) { |
| return S390_MINMAX_RES_SILENCE_B; |
| } |
| return nan_a ? S390_MINMAX_RES_A : S390_MINMAX_RES_B; |
| case S390_MINMAX_TYPE_F: |
| return nan_b ? S390_MINMAX_RES_A : S390_MINMAX_RES_B; |
| case S390_MINMAX_TYPE_C_MACRO: |
| s->float_exception_flags |= float_flag_invalid; |
| return S390_MINMAX_RES_B; |
| case S390_MINMAX_TYPE_CPP: |
| s->float_exception_flags |= float_flag_invalid; |
| return S390_MINMAX_RES_A; |
| default: |
| g_assert_not_reached(); |
| } |
| } else if (unlikely(dcmask_a & dcmask_b & DCMASK_ZERO)) { |
| switch (type) { |
| case S390_MINMAX_TYPE_JAVA: |
| return neg_a ? S390_MINMAX_RES_A : S390_MINMAX_RES_B; |
| case S390_MINMAX_TYPE_C_MACRO: |
| return S390_MINMAX_RES_B; |
| case S390_MINMAX_TYPE_F: |
| return !neg_a ? S390_MINMAX_RES_B : S390_MINMAX_RES_A; |
| case S390_MINMAX_TYPE_CPP: |
| return S390_MINMAX_RES_A; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| return S390_MINMAX_RES_MINMAX; |
| } |
| |
| static S390MinMaxRes vfmax_res(uint16_t dcmask_a, uint16_t dcmask_b, |
| S390MinMaxType type, float_status *s) |
| { |
| g_assert(type > S390_MINMAX_TYPE_IEEE && type <= S390_MINMAX_TYPE_F); |
| |
| if (unlikely((dcmask_a | dcmask_b) & DCMASK_NAN)) { |
| const bool sig_a = dcmask_a & DCMASK_SIGNALING_NAN; |
| const bool sig_b = dcmask_b & DCMASK_SIGNALING_NAN; |
| const bool nan_a = dcmask_a & DCMASK_NAN; |
| const bool nan_b = dcmask_b & DCMASK_NAN; |
| |
| if ((dcmask_a | dcmask_b) & DCMASK_SIGNALING_NAN) { |
| s->float_exception_flags |= float_flag_invalid; |
| } |
| switch (type) { |
| case S390_MINMAX_TYPE_JAVA: |
| if (sig_a) { |
| return S390_MINMAX_RES_SILENCE_A; |
| } else if (sig_b) { |
| return S390_MINMAX_RES_SILENCE_B; |
| } |
| return nan_a ? S390_MINMAX_RES_A : S390_MINMAX_RES_B; |
| case S390_MINMAX_TYPE_F: |
| return nan_b ? S390_MINMAX_RES_A : S390_MINMAX_RES_B; |
| case S390_MINMAX_TYPE_C_MACRO: |
| s->float_exception_flags |= float_flag_invalid; |
| return S390_MINMAX_RES_B; |
| case S390_MINMAX_TYPE_CPP: |
| s->float_exception_flags |= float_flag_invalid; |
| return S390_MINMAX_RES_A; |
| default: |
| g_assert_not_reached(); |
| } |
| } else if (unlikely(dcmask_a & dcmask_b & DCMASK_ZERO)) { |
| const bool neg_a = dcmask_a & DCMASK_NEGATIVE; |
| |
| switch (type) { |
| case S390_MINMAX_TYPE_JAVA: |
| case S390_MINMAX_TYPE_F: |
| return neg_a ? S390_MINMAX_RES_B : S390_MINMAX_RES_A; |
| case S390_MINMAX_TYPE_C_MACRO: |
| return S390_MINMAX_RES_B; |
| case S390_MINMAX_TYPE_CPP: |
| return S390_MINMAX_RES_A; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| return S390_MINMAX_RES_MINMAX; |
| } |
| |
| static S390MinMaxRes vfminmax_res(uint16_t dcmask_a, uint16_t dcmask_b, |
| S390MinMaxType type, bool is_min, |
| float_status *s) |
| { |
| return is_min ? vfmin_res(dcmask_a, dcmask_b, type, s) : |
| vfmax_res(dcmask_a, dcmask_b, type, s); |
| } |
| |
| static void vfminmax32(S390Vector *v1, const S390Vector *v2, |
| const S390Vector *v3, CPUS390XState *env, |
| S390MinMaxType type, bool is_min, bool is_abs, bool se, |
| uintptr_t retaddr) |
| { |
| float_status *s = &env->fpu_status; |
| uint8_t vxc, vec_exc = 0; |
| S390Vector tmp = {}; |
| int i; |
| |
| for (i = 0; i < 4; i++) { |
| float32 a = s390_vec_read_float32(v2, i); |
| float32 b = s390_vec_read_float32(v3, i); |
| float32 result; |
| |
| if (type != S390_MINMAX_TYPE_IEEE) { |
| S390MinMaxRes res; |
| |
| if (is_abs) { |
| a = float32_abs(a); |
| b = float32_abs(b); |
| } |
| |
| res = vfminmax_res(float32_dcmask(env, a), float32_dcmask(env, b), |
| type, is_min, s); |
| switch (res) { |
| case S390_MINMAX_RES_MINMAX: |
| result = is_min ? float32_min(a, b, s) : float32_max(a, b, s); |
| break; |
| case S390_MINMAX_RES_A: |
| result = a; |
| break; |
| case S390_MINMAX_RES_B: |
| result = b; |
| break; |
| case S390_MINMAX_RES_SILENCE_A: |
| result = float32_silence_nan(a, s); |
| break; |
| case S390_MINMAX_RES_SILENCE_B: |
| result = float32_silence_nan(b, s); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } else if (!is_abs) { |
| result = is_min ? float32_minnum(a, b, &env->fpu_status) : |
| float32_maxnum(a, b, &env->fpu_status); |
| } else { |
| result = is_min ? float32_minnummag(a, b, &env->fpu_status) : |
| float32_maxnummag(a, b, &env->fpu_status); |
| } |
| |
| s390_vec_write_float32(&tmp, i, result); |
| vxc = check_ieee_exc(env, i, false, &vec_exc); |
| if (se || vxc) { |
| break; |
| } |
| } |
| handle_ieee_exc(env, vxc, vec_exc, retaddr); |
| *v1 = tmp; |
| } |
| |
| static void vfminmax64(S390Vector *v1, const S390Vector *v2, |
| const S390Vector *v3, CPUS390XState *env, |
| S390MinMaxType type, bool is_min, bool is_abs, bool se, |
| uintptr_t retaddr) |
| { |
| float_status *s = &env->fpu_status; |
| uint8_t vxc, vec_exc = 0; |
| S390Vector tmp = {}; |
| int i; |
| |
| for (i = 0; i < 2; i++) { |
| float64 a = s390_vec_read_float64(v2, i); |
| float64 b = s390_vec_read_float64(v3, i); |
| float64 result; |
| |
| if (type != S390_MINMAX_TYPE_IEEE) { |
| S390MinMaxRes res; |
| |
| if (is_abs) { |
| a = float64_abs(a); |
| b = float64_abs(b); |
| } |
| |
| res = vfminmax_res(float64_dcmask(env, a), float64_dcmask(env, b), |
| type, is_min, s); |
| switch (res) { |
| case S390_MINMAX_RES_MINMAX: |
| result = is_min ? float64_min(a, b, s) : float64_max(a, b, s); |
| break; |
| case S390_MINMAX_RES_A: |
| result = a; |
| break; |
| case S390_MINMAX_RES_B: |
| result = b; |
| break; |
| case S390_MINMAX_RES_SILENCE_A: |
| result = float64_silence_nan(a, s); |
| break; |
| case S390_MINMAX_RES_SILENCE_B: |
| result = float64_silence_nan(b, s); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } else if (!is_abs) { |
| result = is_min ? float64_minnum(a, b, &env->fpu_status) : |
| float64_maxnum(a, b, &env->fpu_status); |
| } else { |
| result = is_min ? float64_minnummag(a, b, &env->fpu_status) : |
| float64_maxnummag(a, b, &env->fpu_status); |
| } |
| |
| s390_vec_write_float64(&tmp, i, result); |
| vxc = check_ieee_exc(env, i, false, &vec_exc); |
| if (se || vxc) { |
| break; |
| } |
| } |
| handle_ieee_exc(env, vxc, vec_exc, retaddr); |
| *v1 = tmp; |
| } |
| |
| static void vfminmax128(S390Vector *v1, const S390Vector *v2, |
| const S390Vector *v3, CPUS390XState *env, |
| S390MinMaxType type, bool is_min, bool is_abs, bool se, |
| uintptr_t retaddr) |
| { |
| float128 a = s390_vec_read_float128(v2); |
| float128 b = s390_vec_read_float128(v3); |
| float_status *s = &env->fpu_status; |
| uint8_t vxc, vec_exc = 0; |
| float128 result; |
| |
| if (type != S390_MINMAX_TYPE_IEEE) { |
| S390MinMaxRes res; |
| |
| if (is_abs) { |
| a = float128_abs(a); |
| b = float128_abs(b); |
| } |
| |
| res = vfminmax_res(float128_dcmask(env, a), float128_dcmask(env, b), |
| type, is_min, s); |
| switch (res) { |
| case S390_MINMAX_RES_MINMAX: |
| result = is_min ? float128_min(a, b, s) : float128_max(a, b, s); |
| break; |
| case S390_MINMAX_RES_A: |
| result = a; |
| break; |
| case S390_MINMAX_RES_B: |
| result = b; |
| break; |
| case S390_MINMAX_RES_SILENCE_A: |
| result = float128_silence_nan(a, s); |
| break; |
| case S390_MINMAX_RES_SILENCE_B: |
| result = float128_silence_nan(b, s); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } else if (!is_abs) { |
| result = is_min ? float128_minnum(a, b, &env->fpu_status) : |
| float128_maxnum(a, b, &env->fpu_status); |
| } else { |
| result = is_min ? float128_minnummag(a, b, &env->fpu_status) : |
| float128_maxnummag(a, b, &env->fpu_status); |
| } |
| |
| vxc = check_ieee_exc(env, 0, false, &vec_exc); |
| handle_ieee_exc(env, vxc, vec_exc, retaddr); |
| s390_vec_write_float128(v1, result); |
| } |
| |
| #define DEF_GVEC_VFMINMAX_B(NAME, IS_MIN, BITS) \ |
| void HELPER(gvec_##NAME##BITS)(void *v1, const void *v2, const void *v3, \ |
| CPUS390XState *env, uint32_t desc) \ |
| { \ |
| const bool se = extract32(simd_data(desc), 3, 1); \ |
| uint8_t type = extract32(simd_data(desc), 4, 4); \ |
| bool is_abs = false; \ |
| \ |
| if (type >= 8) { \ |
| is_abs = true; \ |
| type -= 8; \ |
| } \ |
| \ |
| vfminmax##BITS(v1, v2, v3, env, type, IS_MIN, is_abs, se, GETPC()); \ |
| } |
| |
| #define DEF_GVEC_VFMINMAX(NAME, IS_MIN) \ |
| DEF_GVEC_VFMINMAX_B(NAME, IS_MIN, 32) \ |
| DEF_GVEC_VFMINMAX_B(NAME, IS_MIN, 64) \ |
| DEF_GVEC_VFMINMAX_B(NAME, IS_MIN, 128) |
| |
| DEF_GVEC_VFMINMAX(vfmax, false) |
| DEF_GVEC_VFMINMAX(vfmin, true) |