| /* |
| * QTest testcase for parallel flash with AMD command set |
| * |
| * Copyright (c) 2019 Stephen Checkoway |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "libqtest.h" |
| |
| /* |
| * To test the pflash_cfi02 device, we run QEMU with the musicpal machine with |
| * a pflash drive. This enables us to test some flash configurations, but not |
| * all. In particular, we're limited to a 16-bit wide flash device. |
| */ |
| |
| #define MP_FLASH_SIZE_MAX (32 * 1024 * 1024) |
| #define BASE_ADDR (0x100000000ULL - MP_FLASH_SIZE_MAX) |
| |
| #define UNIFORM_FLASH_SIZE (8 * 1024 * 1024) |
| #define UNIFORM_FLASH_SECTOR_SIZE (64 * 1024) |
| |
| /* Use a newtype to keep flash addresses separate from byte addresses. */ |
| typedef struct { |
| uint64_t addr; |
| } faddr; |
| #define FLASH_ADDR(x) ((faddr) { .addr = (x) }) |
| |
| #define CFI_ADDR FLASH_ADDR(0x55) |
| #define UNLOCK0_ADDR FLASH_ADDR(0x555) |
| #define UNLOCK1_ADDR FLASH_ADDR(0x2AA) |
| |
| #define CFI_CMD 0x98 |
| #define UNLOCK0_CMD 0xAA |
| #define UNLOCK1_CMD 0x55 |
| #define SECOND_UNLOCK_CMD 0x80 |
| #define AUTOSELECT_CMD 0x90 |
| #define RESET_CMD 0xF0 |
| #define PROGRAM_CMD 0xA0 |
| #define SECTOR_ERASE_CMD 0x30 |
| #define CHIP_ERASE_CMD 0x10 |
| #define UNLOCK_BYPASS_CMD 0x20 |
| #define UNLOCK_BYPASS_RESET_CMD 0x00 |
| #define ERASE_SUSPEND_CMD 0xB0 |
| #define ERASE_RESUME_CMD SECTOR_ERASE_CMD |
| |
| typedef struct { |
| int bank_width; |
| |
| /* Nonuniform block size. */ |
| int nb_blocs[4]; |
| int sector_len[4]; |
| |
| QTestState *qtest; |
| } FlashConfig; |
| |
| static char *image_path; |
| |
| /* |
| * The pflash implementation allows some parameters to be unspecified. We want |
| * to test those configurations but we also need to know the real values in |
| * our testing code. So after we launch qemu, we'll need a new FlashConfig |
| * with the correct values filled in. |
| */ |
| static FlashConfig expand_config_defaults(const FlashConfig *c) |
| { |
| FlashConfig ret = *c; |
| |
| if (ret.bank_width == 0) { |
| ret.bank_width = 2; |
| } |
| if (ret.nb_blocs[0] == 0 && ret.sector_len[0] == 0) { |
| ret.sector_len[0] = UNIFORM_FLASH_SECTOR_SIZE; |
| ret.nb_blocs[0] = UNIFORM_FLASH_SIZE / UNIFORM_FLASH_SECTOR_SIZE; |
| } |
| |
| /* XXX: Limitations of test harness. */ |
| assert(ret.bank_width == 2); |
| return ret; |
| } |
| |
| /* |
| * Return a bit mask suitable for extracting the least significant |
| * status/query response from an interleaved response. |
| */ |
| static inline uint64_t device_mask(const FlashConfig *c) |
| { |
| return (uint64_t)-1; |
| } |
| |
| /* |
| * Return a bit mask exactly as long as the bank_width. |
| */ |
| static inline uint64_t bank_mask(const FlashConfig *c) |
| { |
| if (c->bank_width == 8) { |
| return (uint64_t)-1; |
| } |
| return (1ULL << (c->bank_width * 8)) - 1ULL; |
| } |
| |
| static inline void flash_write(const FlashConfig *c, uint64_t byte_addr, |
| uint64_t data) |
| { |
| /* Sanity check our tests. */ |
| assert((data & ~bank_mask(c)) == 0); |
| uint64_t addr = BASE_ADDR + byte_addr; |
| switch (c->bank_width) { |
| case 1: |
| qtest_writeb(c->qtest, addr, data); |
| break; |
| case 2: |
| qtest_writew(c->qtest, addr, data); |
| break; |
| case 4: |
| qtest_writel(c->qtest, addr, data); |
| break; |
| case 8: |
| qtest_writeq(c->qtest, addr, data); |
| break; |
| default: |
| abort(); |
| } |
| } |
| |
| static inline uint64_t flash_read(const FlashConfig *c, uint64_t byte_addr) |
| { |
| uint64_t addr = BASE_ADDR + byte_addr; |
| switch (c->bank_width) { |
| case 1: |
| return qtest_readb(c->qtest, addr); |
| case 2: |
| return qtest_readw(c->qtest, addr); |
| case 4: |
| return qtest_readl(c->qtest, addr); |
| case 8: |
| return qtest_readq(c->qtest, addr); |
| default: |
| abort(); |
| } |
| } |
| |
| /* |
| * Convert a flash address expressed in the maximum width of the device as a |
| * byte address. |
| */ |
| static inline uint64_t as_byte_addr(const FlashConfig *c, faddr flash_addr) |
| { |
| /* |
| * Command addresses are always given as addresses in the maximum |
| * supported bus size for the flash chip. So an x8/x16 chip in x8 mode |
| * uses addresses 0xAAA and 0x555 to unlock because the least significant |
| * bit is ignored. (0x555 rather than 0x554 is traditional.) |
| * |
| * In general we need to multiply by the maximum device width. |
| */ |
| return flash_addr.addr * c->bank_width; |
| } |
| |
| /* |
| * Return the command value or expected status replicated across all devices. |
| */ |
| static inline uint64_t replicate(const FlashConfig *c, uint64_t data) |
| { |
| /* Sanity check our tests. */ |
| assert((data & ~device_mask(c)) == 0); |
| return data; |
| } |
| |
| static inline void flash_cmd(const FlashConfig *c, faddr cmd_addr, |
| uint8_t cmd) |
| { |
| flash_write(c, as_byte_addr(c, cmd_addr), replicate(c, cmd)); |
| } |
| |
| static inline uint64_t flash_query(const FlashConfig *c, faddr query_addr) |
| { |
| return flash_read(c, as_byte_addr(c, query_addr)); |
| } |
| |
| static inline uint64_t flash_query_1(const FlashConfig *c, faddr query_addr) |
| { |
| return flash_query(c, query_addr) & device_mask(c); |
| } |
| |
| static void unlock(const FlashConfig *c) |
| { |
| flash_cmd(c, UNLOCK0_ADDR, UNLOCK0_CMD); |
| flash_cmd(c, UNLOCK1_ADDR, UNLOCK1_CMD); |
| } |
| |
| static void reset(const FlashConfig *c) |
| { |
| flash_cmd(c, FLASH_ADDR(0), RESET_CMD); |
| } |
| |
| static void sector_erase(const FlashConfig *c, uint64_t byte_addr) |
| { |
| unlock(c); |
| flash_cmd(c, UNLOCK0_ADDR, SECOND_UNLOCK_CMD); |
| unlock(c); |
| flash_write(c, byte_addr, replicate(c, SECTOR_ERASE_CMD)); |
| } |
| |
| static void wait_for_completion(const FlashConfig *c, uint64_t byte_addr) |
| { |
| /* If DQ6 is toggling, step the clock and ensure the toggle stops. */ |
| const uint64_t dq6 = replicate(c, 0x40); |
| if ((flash_read(c, byte_addr) & dq6) ^ (flash_read(c, byte_addr) & dq6)) { |
| /* Wait for erase or program to finish. */ |
| qtest_clock_step_next(c->qtest); |
| /* Ensure that DQ6 has stopped toggling. */ |
| g_assert_cmphex(flash_read(c, byte_addr), ==, flash_read(c, byte_addr)); |
| } |
| } |
| |
| static void bypass_program(const FlashConfig *c, uint64_t byte_addr, |
| uint16_t data) |
| { |
| flash_cmd(c, UNLOCK0_ADDR, PROGRAM_CMD); |
| flash_write(c, byte_addr, data); |
| /* |
| * Data isn't valid until DQ6 stops toggling. We don't model this as |
| * writes are immediate, but if this changes in the future, we can wait |
| * until the program is complete. |
| */ |
| wait_for_completion(c, byte_addr); |
| } |
| |
| static void program(const FlashConfig *c, uint64_t byte_addr, uint16_t data) |
| { |
| unlock(c); |
| bypass_program(c, byte_addr, data); |
| } |
| |
| static void chip_erase(const FlashConfig *c) |
| { |
| unlock(c); |
| flash_cmd(c, UNLOCK0_ADDR, SECOND_UNLOCK_CMD); |
| unlock(c); |
| flash_cmd(c, UNLOCK0_ADDR, CHIP_ERASE_CMD); |
| } |
| |
| static void erase_suspend(const FlashConfig *c) |
| { |
| flash_cmd(c, FLASH_ADDR(0), ERASE_SUSPEND_CMD); |
| } |
| |
| static void erase_resume(const FlashConfig *c) |
| { |
| flash_cmd(c, FLASH_ADDR(0), ERASE_RESUME_CMD); |
| } |
| |
| /* |
| * Test flash commands with a variety of device geometry. |
| */ |
| static void test_geometry(const void *opaque) |
| { |
| const FlashConfig *config = opaque; |
| QTestState *qtest; |
| qtest = qtest_initf("-M musicpal" |
| " -drive if=pflash,file=%s,format=raw,copy-on-read=on" |
| /* Device geometry properties. */ |
| " -global driver=cfi.pflash02," |
| "property=num-blocks0,value=%d" |
| " -global driver=cfi.pflash02," |
| "property=sector-length0,value=%d" |
| " -global driver=cfi.pflash02," |
| "property=num-blocks1,value=%d" |
| " -global driver=cfi.pflash02," |
| "property=sector-length1,value=%d" |
| " -global driver=cfi.pflash02," |
| "property=num-blocks2,value=%d" |
| " -global driver=cfi.pflash02," |
| "property=sector-length2,value=%d" |
| " -global driver=cfi.pflash02," |
| "property=num-blocks3,value=%d" |
| " -global driver=cfi.pflash02," |
| "property=sector-length3,value=%d", |
| image_path, |
| config->nb_blocs[0], |
| config->sector_len[0], |
| config->nb_blocs[1], |
| config->sector_len[1], |
| config->nb_blocs[2], |
| config->sector_len[2], |
| config->nb_blocs[3], |
| config->sector_len[3]); |
| FlashConfig explicit_config = expand_config_defaults(config); |
| explicit_config.qtest = qtest; |
| const FlashConfig *c = &explicit_config; |
| |
| /* Check the IDs. */ |
| unlock(c); |
| flash_cmd(c, UNLOCK0_ADDR, AUTOSELECT_CMD); |
| g_assert_cmphex(flash_query(c, FLASH_ADDR(0)), ==, replicate(c, 0xBF)); |
| if (c->bank_width >= 2) { |
| /* |
| * XXX: The ID returned by the musicpal flash chip is 16 bits which |
| * wouldn't happen with an 8-bit device. It would probably be best to |
| * prohibit addresses larger than the device width in pflash_cfi02.c, |
| * but then we couldn't test smaller device widths at all. |
| */ |
| g_assert_cmphex(flash_query(c, FLASH_ADDR(1)), ==, |
| replicate(c, 0x236D)); |
| } |
| reset(c); |
| |
| /* Check the erase blocks. */ |
| flash_cmd(c, CFI_ADDR, CFI_CMD); |
| g_assert_cmphex(flash_query(c, FLASH_ADDR(0x10)), ==, replicate(c, 'Q')); |
| g_assert_cmphex(flash_query(c, FLASH_ADDR(0x11)), ==, replicate(c, 'R')); |
| g_assert_cmphex(flash_query(c, FLASH_ADDR(0x12)), ==, replicate(c, 'Y')); |
| |
| /* Num erase regions. */ |
| int nb_erase_regions = flash_query_1(c, FLASH_ADDR(0x2C)); |
| g_assert_cmphex(nb_erase_regions, ==, |
| !!c->nb_blocs[0] + !!c->nb_blocs[1] + !!c->nb_blocs[2] + |
| !!c->nb_blocs[3]); |
| |
| /* Check device length. */ |
| uint32_t device_len = 1 << flash_query_1(c, FLASH_ADDR(0x27)); |
| g_assert_cmphex(device_len, ==, UNIFORM_FLASH_SIZE); |
| |
| /* Check that erase suspend to read/write is supported. */ |
| uint16_t pri = flash_query_1(c, FLASH_ADDR(0x15)) + |
| (flash_query_1(c, FLASH_ADDR(0x16)) << 8); |
| g_assert_cmpint(pri, >=, 0x2D + 4 * nb_erase_regions); |
| g_assert_cmpint(flash_query(c, FLASH_ADDR(pri + 0)), ==, replicate(c, 'P')); |
| g_assert_cmpint(flash_query(c, FLASH_ADDR(pri + 1)), ==, replicate(c, 'R')); |
| g_assert_cmpint(flash_query(c, FLASH_ADDR(pri + 2)), ==, replicate(c, 'I')); |
| g_assert_cmpint(flash_query_1(c, FLASH_ADDR(pri + 6)), ==, 2); /* R/W */ |
| reset(c); |
| |
| const uint64_t dq7 = replicate(c, 0x80); |
| const uint64_t dq6 = replicate(c, 0x40); |
| const uint64_t dq3 = replicate(c, 0x08); |
| const uint64_t dq2 = replicate(c, 0x04); |
| |
| uint64_t byte_addr = 0; |
| for (int region = 0; region < nb_erase_regions; ++region) { |
| uint64_t base = 0x2D + 4 * region; |
| flash_cmd(c, CFI_ADDR, CFI_CMD); |
| uint32_t nb_sectors = flash_query_1(c, FLASH_ADDR(base + 0)) + |
| (flash_query_1(c, FLASH_ADDR(base + 1)) << 8) + 1; |
| uint32_t sector_len = (flash_query_1(c, FLASH_ADDR(base + 2)) << 8) + |
| (flash_query_1(c, FLASH_ADDR(base + 3)) << 16); |
| g_assert_cmphex(nb_sectors, ==, c->nb_blocs[region]); |
| g_assert_cmphex(sector_len, ==, c->sector_len[region]); |
| reset(c); |
| |
| /* Erase and program sector. */ |
| for (uint32_t i = 0; i < nb_sectors; ++i) { |
| sector_erase(c, byte_addr); |
| |
| /* Check that DQ3 is 0. */ |
| g_assert_cmphex(flash_read(c, byte_addr) & dq3, ==, 0); |
| qtest_clock_step_next(c->qtest); /* Step over the 50 us timeout. */ |
| |
| /* Check that DQ3 is 1. */ |
| uint64_t status0 = flash_read(c, byte_addr); |
| g_assert_cmphex(status0 & dq3, ==, dq3); |
| |
| /* DQ7 is 0 during an erase. */ |
| g_assert_cmphex(status0 & dq7, ==, 0); |
| uint64_t status1 = flash_read(c, byte_addr); |
| |
| /* DQ6 toggles during an erase. */ |
| g_assert_cmphex(status0 & dq6, ==, ~status1 & dq6); |
| |
| /* Wait for erase to complete. */ |
| wait_for_completion(c, byte_addr); |
| |
| /* Ensure DQ6 has stopped toggling. */ |
| g_assert_cmphex(flash_read(c, byte_addr), ==, |
| flash_read(c, byte_addr)); |
| |
| /* Now the data should be valid. */ |
| g_assert_cmphex(flash_read(c, byte_addr), ==, bank_mask(c)); |
| |
| /* Program a bit pattern. */ |
| program(c, byte_addr, 0x55); |
| g_assert_cmphex(flash_read(c, byte_addr) & 0xFF, ==, 0x55); |
| program(c, byte_addr, 0xA5); |
| g_assert_cmphex(flash_read(c, byte_addr) & 0xFF, ==, 0x05); |
| byte_addr += sector_len; |
| } |
| } |
| |
| /* Erase the chip. */ |
| chip_erase(c); |
| /* Read toggle. */ |
| uint64_t status0 = flash_read(c, 0); |
| /* DQ7 is 0 during an erase. */ |
| g_assert_cmphex(status0 & dq7, ==, 0); |
| uint64_t status1 = flash_read(c, 0); |
| /* DQ6 toggles during an erase. */ |
| g_assert_cmphex(status0 & dq6, ==, ~status1 & dq6); |
| /* Wait for erase to complete. */ |
| qtest_clock_step_next(c->qtest); |
| /* Ensure DQ6 has stopped toggling. */ |
| g_assert_cmphex(flash_read(c, 0), ==, flash_read(c, 0)); |
| /* Now the data should be valid. */ |
| |
| for (int region = 0; region < nb_erase_regions; ++region) { |
| for (uint32_t i = 0; i < c->nb_blocs[region]; ++i) { |
| byte_addr = (uint64_t)i * c->sector_len[region]; |
| g_assert_cmphex(flash_read(c, byte_addr), ==, bank_mask(c)); |
| } |
| } |
| |
| /* Unlock bypass */ |
| unlock(c); |
| flash_cmd(c, UNLOCK0_ADDR, UNLOCK_BYPASS_CMD); |
| bypass_program(c, 0 * c->bank_width, 0x01); |
| bypass_program(c, 1 * c->bank_width, 0x23); |
| bypass_program(c, 2 * c->bank_width, 0x45); |
| /* |
| * Test that bypass programming, unlike normal programming can use any |
| * address for the PROGRAM_CMD. |
| */ |
| flash_cmd(c, FLASH_ADDR(3 * c->bank_width), PROGRAM_CMD); |
| flash_write(c, 3 * c->bank_width, 0x67); |
| wait_for_completion(c, 3 * c->bank_width); |
| flash_cmd(c, FLASH_ADDR(0), UNLOCK_BYPASS_RESET_CMD); |
| bypass_program(c, 4 * c->bank_width, 0x89); /* Should fail. */ |
| g_assert_cmphex(flash_read(c, 0 * c->bank_width), ==, 0x01); |
| g_assert_cmphex(flash_read(c, 1 * c->bank_width), ==, 0x23); |
| g_assert_cmphex(flash_read(c, 2 * c->bank_width), ==, 0x45); |
| g_assert_cmphex(flash_read(c, 3 * c->bank_width), ==, 0x67); |
| g_assert_cmphex(flash_read(c, 4 * c->bank_width), ==, bank_mask(c)); |
| |
| /* Test ignored high order bits of address. */ |
| flash_cmd(c, FLASH_ADDR(0x5555), UNLOCK0_CMD); |
| flash_cmd(c, FLASH_ADDR(0x2AAA), UNLOCK1_CMD); |
| flash_cmd(c, FLASH_ADDR(0x5555), AUTOSELECT_CMD); |
| g_assert_cmphex(flash_query(c, FLASH_ADDR(0)), ==, replicate(c, 0xBF)); |
| reset(c); |
| |
| /* |
| * Program a word on each sector, erase one or two sectors per region, and |
| * verify that all of those, and only those, are erased. |
| */ |
| byte_addr = 0; |
| for (int region = 0; region < nb_erase_regions; ++region) { |
| for (int i = 0; i < config->nb_blocs[region]; ++i) { |
| program(c, byte_addr, 0); |
| byte_addr += config->sector_len[region]; |
| } |
| } |
| unlock(c); |
| flash_cmd(c, UNLOCK0_ADDR, SECOND_UNLOCK_CMD); |
| unlock(c); |
| byte_addr = 0; |
| const uint64_t erase_cmd = replicate(c, SECTOR_ERASE_CMD); |
| for (int region = 0; region < nb_erase_regions; ++region) { |
| flash_write(c, byte_addr, erase_cmd); |
| if (c->nb_blocs[region] > 1) { |
| flash_write(c, byte_addr + c->sector_len[region], erase_cmd); |
| } |
| byte_addr += c->sector_len[region] * c->nb_blocs[region]; |
| } |
| |
| qtest_clock_step_next(c->qtest); /* Step over the 50 us timeout. */ |
| wait_for_completion(c, 0); |
| byte_addr = 0; |
| for (int region = 0; region < nb_erase_regions; ++region) { |
| for (int i = 0; i < config->nb_blocs[region]; ++i) { |
| if (i < 2) { |
| g_assert_cmphex(flash_read(c, byte_addr), ==, bank_mask(c)); |
| } else { |
| g_assert_cmphex(flash_read(c, byte_addr), ==, 0); |
| } |
| byte_addr += config->sector_len[region]; |
| } |
| } |
| |
| /* Test erase suspend/resume during erase timeout. */ |
| sector_erase(c, 0); |
| /* |
| * Check that DQ 3 is 0 and DQ6 and DQ2 are toggling in the sector being |
| * erased as well as in a sector not being erased. |
| */ |
| byte_addr = c->sector_len[0]; |
| status0 = flash_read(c, 0); |
| status1 = flash_read(c, 0); |
| g_assert_cmpint(status0 & dq3, ==, 0); |
| g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6); |
| g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2); |
| status0 = flash_read(c, byte_addr); |
| status1 = flash_read(c, byte_addr); |
| g_assert_cmpint(status0 & dq3, ==, 0); |
| g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6); |
| g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2); |
| |
| /* |
| * Check that after suspending, DQ6 does not toggle but DQ2 does toggle in |
| * an erase suspended sector but that neither toggle (we should be |
| * getting data) in a sector not being erased. |
| */ |
| erase_suspend(c); |
| status0 = flash_read(c, 0); |
| status1 = flash_read(c, 0); |
| g_assert_cmpint(status0 & dq6, ==, status1 & dq6); |
| g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2); |
| g_assert_cmpint(flash_read(c, byte_addr), ==, flash_read(c, byte_addr)); |
| |
| /* Check that after resuming, DQ3 is 1 and DQ6 and DQ2 toggle. */ |
| erase_resume(c); |
| status0 = flash_read(c, 0); |
| status1 = flash_read(c, 0); |
| g_assert_cmpint(status0 & dq3, ==, dq3); |
| g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6); |
| g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2); |
| status0 = flash_read(c, byte_addr); |
| status1 = flash_read(c, byte_addr); |
| g_assert_cmpint(status0 & dq3, ==, dq3); |
| g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6); |
| g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2); |
| wait_for_completion(c, 0); |
| |
| /* Repeat this process but this time suspend after the timeout. */ |
| sector_erase(c, 0); |
| qtest_clock_step_next(c->qtest); |
| /* |
| * Check that DQ 3 is 1 and DQ6 and DQ2 are toggling in the sector being |
| * erased as well as in a sector not being erased. |
| */ |
| byte_addr = c->sector_len[0]; |
| status0 = flash_read(c, 0); |
| status1 = flash_read(c, 0); |
| g_assert_cmpint(status0 & dq3, ==, dq3); |
| g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6); |
| g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2); |
| status0 = flash_read(c, byte_addr); |
| status1 = flash_read(c, byte_addr); |
| g_assert_cmpint(status0 & dq3, ==, dq3); |
| g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6); |
| g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2); |
| |
| /* |
| * Check that after suspending, DQ6 does not toggle but DQ2 does toggle in |
| * an erase suspended sector but that neither toggle (we should be |
| * getting data) in a sector not being erased. |
| */ |
| erase_suspend(c); |
| status0 = flash_read(c, 0); |
| status1 = flash_read(c, 0); |
| g_assert_cmpint(status0 & dq6, ==, status1 & dq6); |
| g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2); |
| g_assert_cmpint(flash_read(c, byte_addr), ==, flash_read(c, byte_addr)); |
| |
| /* Check that after resuming, DQ3 is 1 and DQ6 and DQ2 toggle. */ |
| erase_resume(c); |
| status0 = flash_read(c, 0); |
| status1 = flash_read(c, 0); |
| g_assert_cmpint(status0 & dq3, ==, dq3); |
| g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6); |
| g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2); |
| status0 = flash_read(c, byte_addr); |
| status1 = flash_read(c, byte_addr); |
| g_assert_cmpint(status0 & dq3, ==, dq3); |
| g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6); |
| g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2); |
| wait_for_completion(c, 0); |
| |
| qtest_quit(qtest); |
| } |
| |
| /* |
| * Test that |
| * 1. enter autoselect mode; |
| * 2. enter CFI mode; and then |
| * 3. exit CFI mode |
| * leaves the flash device in autoselect mode. |
| */ |
| static void test_cfi_in_autoselect(const void *opaque) |
| { |
| const FlashConfig *config = opaque; |
| QTestState *qtest; |
| qtest = qtest_initf("-M musicpal" |
| " -drive if=pflash,file=%s,format=raw,copy-on-read=on", |
| image_path); |
| FlashConfig explicit_config = expand_config_defaults(config); |
| explicit_config.qtest = qtest; |
| const FlashConfig *c = &explicit_config; |
| |
| /* 1. Enter autoselect. */ |
| unlock(c); |
| flash_cmd(c, UNLOCK0_ADDR, AUTOSELECT_CMD); |
| g_assert_cmphex(flash_query(c, FLASH_ADDR(0)), ==, replicate(c, 0xBF)); |
| |
| /* 2. Enter CFI. */ |
| flash_cmd(c, CFI_ADDR, CFI_CMD); |
| g_assert_cmphex(flash_query(c, FLASH_ADDR(0x10)), ==, replicate(c, 'Q')); |
| g_assert_cmphex(flash_query(c, FLASH_ADDR(0x11)), ==, replicate(c, 'R')); |
| g_assert_cmphex(flash_query(c, FLASH_ADDR(0x12)), ==, replicate(c, 'Y')); |
| |
| /* 3. Exit CFI. */ |
| reset(c); |
| g_assert_cmphex(flash_query(c, FLASH_ADDR(0)), ==, replicate(c, 0xBF)); |
| |
| qtest_quit(qtest); |
| } |
| |
| static void cleanup(void *opaque) |
| { |
| unlink(image_path); |
| g_free(image_path); |
| } |
| |
| /* |
| * XXX: Tests are limited to bank_width = 2 for now because that's what |
| * hw/arm/musicpal.c has. |
| */ |
| static const FlashConfig configuration[] = { |
| /* One x16 device. */ |
| { |
| .bank_width = 2, |
| }, |
| /* Nonuniform sectors (top boot). */ |
| { |
| .bank_width = 2, |
| .nb_blocs = { 127, 1, 2, 1 }, |
| .sector_len = { 0x10000, 0x08000, 0x02000, 0x04000 }, |
| }, |
| /* Nonuniform sectors (bottom boot). */ |
| { |
| .bank_width = 2, |
| .nb_blocs = { 1, 2, 1, 127 }, |
| .sector_len = { 0x04000, 0x02000, 0x08000, 0x10000 }, |
| }, |
| }; |
| |
| int main(int argc, char **argv) |
| { |
| GError *err = NULL; |
| int fd = g_file_open_tmp("qtest.XXXXXX", &image_path, &err); |
| g_assert_no_error(err); |
| |
| if (ftruncate(fd, UNIFORM_FLASH_SIZE) < 0) { |
| int error_code = errno; |
| close(fd); |
| cleanup(NULL); |
| g_printerr("Failed to truncate file %s to %u MB: %s\n", image_path, |
| UNIFORM_FLASH_SIZE, strerror(error_code)); |
| exit(EXIT_FAILURE); |
| } |
| close(fd); |
| |
| qtest_add_abrt_handler(cleanup, NULL); |
| g_test_init(&argc, &argv, NULL); |
| |
| size_t nb_configurations = sizeof configuration / sizeof configuration[0]; |
| for (size_t i = 0; i < nb_configurations; ++i) { |
| const FlashConfig *config = &configuration[i]; |
| char *path = g_strdup_printf("pflash-cfi02" |
| "/geometry/%dx%x-%dx%x-%dx%x-%dx%x" |
| "/%d", |
| config->nb_blocs[0], |
| config->sector_len[0], |
| config->nb_blocs[1], |
| config->sector_len[1], |
| config->nb_blocs[2], |
| config->sector_len[2], |
| config->nb_blocs[3], |
| config->sector_len[3], |
| config->bank_width); |
| qtest_add_data_func(path, config, test_geometry); |
| g_free(path); |
| } |
| |
| qtest_add_data_func("pflash-cfi02/cfi-in-autoselect", &configuration[0], |
| test_cfi_in_autoselect); |
| int result = g_test_run(); |
| cleanup(NULL); |
| return result; |
| } |