| /* |
| * Arm MPS3 board emulation for Cortex-R-based FPGA images. |
| * (For M-profile images see mps2.c and mps2tz.c.) |
| * |
| * Copyright (c) 2017 Linaro Limited |
| * Written by Peter Maydell |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 or |
| * (at your option) any later version. |
| */ |
| |
| /* |
| * The MPS3 is an FPGA based dev board. This file handles FPGA images |
| * which use the Cortex-R CPUs. We model these separately from the |
| * M-profile images, because on M-profile the FPGA image is based on |
| * a "Subsystem for Embedded" which is similar to an SoC, whereas |
| * the R-profile FPGA images don't have that abstraction layer. |
| * |
| * We model the following FPGA images here: |
| * "mps3-an536" -- dual Cortex-R52 as documented in Arm Application Note AN536 |
| * |
| * Application Note AN536: |
| * https://developer.arm.com/documentation/dai0536/latest/ |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/units.h" |
| #include "qapi/error.h" |
| #include "qapi/qmp/qlist.h" |
| #include "exec/address-spaces.h" |
| #include "cpu.h" |
| #include "sysemu/sysemu.h" |
| #include "hw/boards.h" |
| #include "hw/or-irq.h" |
| #include "hw/qdev-clock.h" |
| #include "hw/qdev-properties.h" |
| #include "hw/arm/boot.h" |
| #include "hw/arm/bsa.h" |
| #include "hw/char/cmsdk-apb-uart.h" |
| #include "hw/i2c/arm_sbcon_i2c.h" |
| #include "hw/intc/arm_gicv3.h" |
| #include "hw/misc/mps2-scc.h" |
| #include "hw/misc/mps2-fpgaio.h" |
| #include "hw/misc/unimp.h" |
| #include "hw/net/lan9118.h" |
| #include "hw/rtc/pl031.h" |
| #include "hw/ssi/pl022.h" |
| #include "hw/timer/cmsdk-apb-dualtimer.h" |
| #include "hw/watchdog/cmsdk-apb-watchdog.h" |
| |
| /* Define the layout of RAM and ROM in a board */ |
| typedef struct RAMInfo { |
| const char *name; |
| hwaddr base; |
| hwaddr size; |
| int mrindex; /* index into rams[]; -1 for the system RAM block */ |
| int flags; |
| } RAMInfo; |
| |
| /* |
| * The MPS3 DDR is 3GiB, but on a 32-bit host QEMU doesn't permit |
| * emulation of that much guest RAM, so artificially make it smaller. |
| */ |
| #if HOST_LONG_BITS == 32 |
| #define MPS3_DDR_SIZE (1 * GiB) |
| #else |
| #define MPS3_DDR_SIZE (3 * GiB) |
| #endif |
| |
| /* |
| * Flag values: |
| * IS_MAIN: this is the main machine RAM |
| * IS_ROM: this area is read-only |
| */ |
| #define IS_MAIN 1 |
| #define IS_ROM 2 |
| |
| #define MPS3R_RAM_MAX 9 |
| #define MPS3R_CPU_MAX 2 |
| #define MPS3R_UART_MAX 4 /* shared UART count */ |
| |
| #define PERIPHBASE 0xf0000000 |
| #define NUM_SPIS 96 |
| |
| typedef enum MPS3RFPGAType { |
| FPGA_AN536, |
| } MPS3RFPGAType; |
| |
| struct MPS3RMachineClass { |
| MachineClass parent; |
| MPS3RFPGAType fpga_type; |
| const RAMInfo *raminfo; |
| hwaddr loader_start; |
| }; |
| |
| struct MPS3RMachineState { |
| MachineState parent; |
| struct arm_boot_info bootinfo; |
| MemoryRegion ram[MPS3R_RAM_MAX]; |
| Object *cpu[MPS3R_CPU_MAX]; |
| MemoryRegion cpu_sysmem[MPS3R_CPU_MAX]; |
| MemoryRegion sysmem_alias[MPS3R_CPU_MAX]; |
| MemoryRegion cpu_ram[MPS3R_CPU_MAX]; |
| GICv3State gic; |
| /* per-CPU UARTs followed by the shared UARTs */ |
| CMSDKAPBUART uart[MPS3R_CPU_MAX + MPS3R_UART_MAX]; |
| OrIRQState cpu_uart_oflow[MPS3R_CPU_MAX]; |
| OrIRQState uart_oflow; |
| CMSDKAPBWatchdog watchdog; |
| CMSDKAPBDualTimer dualtimer; |
| ArmSbconI2CState i2c[5]; |
| PL022State spi[3]; |
| MPS2SCC scc; |
| MPS2FPGAIO fpgaio; |
| UnimplementedDeviceState i2s_audio; |
| PL031State rtc; |
| Clock *clk; |
| }; |
| |
| #define TYPE_MPS3R_MACHINE "mps3r" |
| #define TYPE_MPS3R_AN536_MACHINE MACHINE_TYPE_NAME("mps3-an536") |
| |
| OBJECT_DECLARE_TYPE(MPS3RMachineState, MPS3RMachineClass, MPS3R_MACHINE) |
| |
| /* |
| * Main clock frequency CLK in Hz (50MHz). In the image there are also |
| * ACLK, MCLK, GPUCLK and PERIPHCLK at the same frequency; for our |
| * model we just roll them all into one. |
| */ |
| #define CLK_FRQ 50000000 |
| |
| static const RAMInfo an536_raminfo[] = { |
| { |
| .name = "ATCM", |
| .base = 0x00000000, |
| .size = 0x00008000, |
| .mrindex = 0, |
| }, { |
| /* We model the QSPI flash as simple ROM for now */ |
| .name = "QSPI", |
| .base = 0x08000000, |
| .size = 0x00800000, |
| .flags = IS_ROM, |
| .mrindex = 1, |
| }, { |
| .name = "BRAM", |
| .base = 0x10000000, |
| .size = 0x00080000, |
| .mrindex = 2, |
| }, { |
| .name = "DDR", |
| .base = 0x20000000, |
| .size = MPS3_DDR_SIZE, |
| .mrindex = -1, |
| }, { |
| .name = "ATCM0", |
| .base = 0xee000000, |
| .size = 0x00008000, |
| .mrindex = 3, |
| }, { |
| .name = "BTCM0", |
| .base = 0xee100000, |
| .size = 0x00008000, |
| .mrindex = 4, |
| }, { |
| .name = "CTCM0", |
| .base = 0xee200000, |
| .size = 0x00008000, |
| .mrindex = 5, |
| }, { |
| .name = "ATCM1", |
| .base = 0xee400000, |
| .size = 0x00008000, |
| .mrindex = 6, |
| }, { |
| .name = "BTCM1", |
| .base = 0xee500000, |
| .size = 0x00008000, |
| .mrindex = 7, |
| }, { |
| .name = "CTCM1", |
| .base = 0xee600000, |
| .size = 0x00008000, |
| .mrindex = 8, |
| }, { |
| .name = NULL, |
| } |
| }; |
| |
| static const int an536_oscclk[] = { |
| 24000000, /* 24MHz reference for RTC and timers */ |
| 50000000, /* 50MHz ACLK */ |
| 50000000, /* 50MHz MCLK */ |
| 50000000, /* 50MHz GPUCLK */ |
| 24576000, /* 24.576MHz AUDCLK */ |
| 23750000, /* 23.75MHz HDLCDCLK */ |
| 100000000, /* 100MHz DDR4_REF_CLK */ |
| }; |
| |
| static MemoryRegion *mr_for_raminfo(MPS3RMachineState *mms, |
| const RAMInfo *raminfo) |
| { |
| /* Return an initialized MemoryRegion for the RAMInfo. */ |
| MemoryRegion *ram; |
| |
| if (raminfo->mrindex < 0) { |
| /* Means this RAMInfo is for QEMU's "system memory" */ |
| MachineState *machine = MACHINE(mms); |
| assert(!(raminfo->flags & IS_ROM)); |
| return machine->ram; |
| } |
| |
| assert(raminfo->mrindex < MPS3R_RAM_MAX); |
| ram = &mms->ram[raminfo->mrindex]; |
| |
| memory_region_init_ram(ram, NULL, raminfo->name, |
| raminfo->size, &error_fatal); |
| if (raminfo->flags & IS_ROM) { |
| memory_region_set_readonly(ram, true); |
| } |
| return ram; |
| } |
| |
| /* |
| * There is no defined secondary boot protocol for Linux for the AN536, |
| * because real hardware has a restriction that atomic operations between |
| * the two CPUs do not function correctly, and so true SMP is not |
| * possible. Therefore for cases where the user is directly booting |
| * a kernel, we treat the system as essentially uniprocessor, and |
| * put the secondary CPU into power-off state (as if the user on the |
| * real hardware had configured the secondary to be halted via the |
| * SCC config registers). |
| * |
| * Note that the default secondary boot code would not work here anyway |
| * as it assumes a GICv2, and we have a GICv3. |
| */ |
| static void mps3r_write_secondary_boot(ARMCPU *cpu, |
| const struct arm_boot_info *info) |
| { |
| /* |
| * Power the secondary CPU off. This means we don't need to write any |
| * boot code into guest memory. Note that the 'cpu' argument to this |
| * function is the primary CPU we passed to arm_load_kernel(), not |
| * the secondary. Loop around all the other CPUs, as the boot.c |
| * code does for the "disable secondaries if PSCI is enabled" case. |
| */ |
| for (CPUState *cs = first_cpu; cs; cs = CPU_NEXT(cs)) { |
| if (cs != first_cpu) { |
| object_property_set_bool(OBJECT(cs), "start-powered-off", true, |
| &error_abort); |
| } |
| } |
| } |
| |
| static void mps3r_secondary_cpu_reset(ARMCPU *cpu, |
| const struct arm_boot_info *info) |
| { |
| /* We don't need to do anything here because the CPU will be off */ |
| } |
| |
| static void create_gic(MPS3RMachineState *mms, MemoryRegion *sysmem) |
| { |
| MachineState *machine = MACHINE(mms); |
| DeviceState *gicdev; |
| QList *redist_region_count; |
| |
| object_initialize_child(OBJECT(mms), "gic", &mms->gic, TYPE_ARM_GICV3); |
| gicdev = DEVICE(&mms->gic); |
| qdev_prop_set_uint32(gicdev, "num-cpu", machine->smp.cpus); |
| qdev_prop_set_uint32(gicdev, "num-irq", NUM_SPIS + GIC_INTERNAL); |
| redist_region_count = qlist_new(); |
| qlist_append_int(redist_region_count, machine->smp.cpus); |
| qdev_prop_set_array(gicdev, "redist-region-count", redist_region_count); |
| object_property_set_link(OBJECT(&mms->gic), "sysmem", |
| OBJECT(sysmem), &error_fatal); |
| sysbus_realize(SYS_BUS_DEVICE(&mms->gic), &error_fatal); |
| sysbus_mmio_map(SYS_BUS_DEVICE(&mms->gic), 0, PERIPHBASE); |
| sysbus_mmio_map(SYS_BUS_DEVICE(&mms->gic), 1, PERIPHBASE + 0x100000); |
| /* |
| * Wire the outputs from each CPU's generic timer and the GICv3 |
| * maintenance interrupt signal to the appropriate GIC PPI inputs, |
| * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs. |
| */ |
| for (int i = 0; i < machine->smp.cpus; i++) { |
| DeviceState *cpudev = DEVICE(mms->cpu[i]); |
| SysBusDevice *gicsbd = SYS_BUS_DEVICE(&mms->gic); |
| int intidbase = NUM_SPIS + i * GIC_INTERNAL; |
| int irq; |
| /* |
| * Mapping from the output timer irq lines from the CPU to the |
| * GIC PPI inputs used for this board. This isn't a BSA board, |
| * but it uses the standard convention for the PPI numbers. |
| */ |
| const int timer_irq[] = { |
| [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, |
| [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, |
| [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, |
| }; |
| |
| for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { |
| qdev_connect_gpio_out(cpudev, irq, |
| qdev_get_gpio_in(gicdev, |
| intidbase + timer_irq[irq])); |
| } |
| |
| qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0, |
| qdev_get_gpio_in(gicdev, |
| intidbase + ARCH_GIC_MAINT_IRQ)); |
| |
| qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, |
| qdev_get_gpio_in(gicdev, |
| intidbase + VIRTUAL_PMU_IRQ)); |
| |
| sysbus_connect_irq(gicsbd, i, |
| qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); |
| sysbus_connect_irq(gicsbd, i + machine->smp.cpus, |
| qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); |
| sysbus_connect_irq(gicsbd, i + 2 * machine->smp.cpus, |
| qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); |
| sysbus_connect_irq(gicsbd, i + 3 * machine->smp.cpus, |
| qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); |
| } |
| } |
| |
| /* |
| * Create UART uartno, and map it into the MemoryRegion mem at address baseaddr. |
| * The qemu_irq arguments are where we connect the various IRQs from the UART. |
| */ |
| static void create_uart(MPS3RMachineState *mms, int uartno, MemoryRegion *mem, |
| hwaddr baseaddr, qemu_irq txirq, qemu_irq rxirq, |
| qemu_irq txoverirq, qemu_irq rxoverirq, |
| qemu_irq combirq) |
| { |
| g_autofree char *s = g_strdup_printf("uart%d", uartno); |
| SysBusDevice *sbd; |
| |
| assert(uartno < ARRAY_SIZE(mms->uart)); |
| object_initialize_child(OBJECT(mms), s, &mms->uart[uartno], |
| TYPE_CMSDK_APB_UART); |
| qdev_prop_set_uint32(DEVICE(&mms->uart[uartno]), "pclk-frq", CLK_FRQ); |
| qdev_prop_set_chr(DEVICE(&mms->uart[uartno]), "chardev", serial_hd(uartno)); |
| sbd = SYS_BUS_DEVICE(&mms->uart[uartno]); |
| sysbus_realize(sbd, &error_fatal); |
| memory_region_add_subregion(mem, baseaddr, |
| sysbus_mmio_get_region(sbd, 0)); |
| sysbus_connect_irq(sbd, 0, txirq); |
| sysbus_connect_irq(sbd, 1, rxirq); |
| sysbus_connect_irq(sbd, 2, txoverirq); |
| sysbus_connect_irq(sbd, 3, rxoverirq); |
| sysbus_connect_irq(sbd, 4, combirq); |
| } |
| |
| static void mps3r_common_init(MachineState *machine) |
| { |
| MPS3RMachineState *mms = MPS3R_MACHINE(machine); |
| MPS3RMachineClass *mmc = MPS3R_MACHINE_GET_CLASS(mms); |
| MemoryRegion *sysmem = get_system_memory(); |
| DeviceState *gicdev; |
| QList *oscclk; |
| |
| mms->clk = clock_new(OBJECT(machine), "CLK"); |
| clock_set_hz(mms->clk, CLK_FRQ); |
| |
| for (const RAMInfo *ri = mmc->raminfo; ri->name; ri++) { |
| MemoryRegion *mr = mr_for_raminfo(mms, ri); |
| memory_region_add_subregion(sysmem, ri->base, mr); |
| } |
| |
| assert(machine->smp.cpus <= MPS3R_CPU_MAX); |
| for (int i = 0; i < machine->smp.cpus; i++) { |
| g_autofree char *sysmem_name = g_strdup_printf("cpu-%d-memory", i); |
| g_autofree char *ramname = g_strdup_printf("cpu-%d-memory", i); |
| g_autofree char *alias_name = g_strdup_printf("sysmem-alias-%d", i); |
| |
| /* |
| * Each CPU has some private RAM/peripherals, so create the container |
| * which will house those, with the whole-machine system memory being |
| * used where there's no CPU-specific device. Note that we need the |
| * sysmem_alias aliases because we can't put one MR (the original |
| * 'sysmem') into more than one other MR. |
| */ |
| memory_region_init(&mms->cpu_sysmem[i], OBJECT(machine), |
| sysmem_name, UINT64_MAX); |
| memory_region_init_alias(&mms->sysmem_alias[i], OBJECT(machine), |
| alias_name, sysmem, 0, UINT64_MAX); |
| memory_region_add_subregion_overlap(&mms->cpu_sysmem[i], 0, |
| &mms->sysmem_alias[i], -1); |
| |
| mms->cpu[i] = object_new(machine->cpu_type); |
| object_property_set_link(mms->cpu[i], "memory", |
| OBJECT(&mms->cpu_sysmem[i]), &error_abort); |
| object_property_set_int(mms->cpu[i], "reset-cbar", |
| PERIPHBASE, &error_abort); |
| qdev_realize(DEVICE(mms->cpu[i]), NULL, &error_fatal); |
| object_unref(mms->cpu[i]); |
| |
| /* Per-CPU RAM */ |
| memory_region_init_ram(&mms->cpu_ram[i], NULL, ramname, |
| 0x1000, &error_fatal); |
| memory_region_add_subregion(&mms->cpu_sysmem[i], 0xe7c01000, |
| &mms->cpu_ram[i]); |
| } |
| |
| create_gic(mms, sysmem); |
| gicdev = DEVICE(&mms->gic); |
| |
| /* |
| * UARTs 0 and 1 are per-CPU; their interrupts are wired to |
| * the relevant CPU's PPI 0..3, aka INTID 16..19 |
| */ |
| for (int i = 0; i < machine->smp.cpus; i++) { |
| int intidbase = NUM_SPIS + i * GIC_INTERNAL; |
| g_autofree char *s = g_strdup_printf("cpu-uart-oflow-orgate%d", i); |
| DeviceState *orgate; |
| |
| /* The two overflow IRQs from the UART are ORed together into PPI 3 */ |
| object_initialize_child(OBJECT(mms), s, &mms->cpu_uart_oflow[i], |
| TYPE_OR_IRQ); |
| orgate = DEVICE(&mms->cpu_uart_oflow[i]); |
| qdev_prop_set_uint32(orgate, "num-lines", 2); |
| qdev_realize(orgate, NULL, &error_fatal); |
| qdev_connect_gpio_out(orgate, 0, |
| qdev_get_gpio_in(gicdev, intidbase + 19)); |
| |
| create_uart(mms, i, &mms->cpu_sysmem[i], 0xe7c00000, |
| qdev_get_gpio_in(gicdev, intidbase + 17), /* tx */ |
| qdev_get_gpio_in(gicdev, intidbase + 16), /* rx */ |
| qdev_get_gpio_in(orgate, 0), /* txover */ |
| qdev_get_gpio_in(orgate, 1), /* rxover */ |
| qdev_get_gpio_in(gicdev, intidbase + 18) /* combined */); |
| } |
| /* |
| * UARTs 2 to 5 are whole-system; all overflow IRQs are ORed |
| * together into IRQ 17 |
| */ |
| object_initialize_child(OBJECT(mms), "uart-oflow-orgate", |
| &mms->uart_oflow, TYPE_OR_IRQ); |
| qdev_prop_set_uint32(DEVICE(&mms->uart_oflow), "num-lines", |
| MPS3R_UART_MAX * 2); |
| qdev_realize(DEVICE(&mms->uart_oflow), NULL, &error_fatal); |
| qdev_connect_gpio_out(DEVICE(&mms->uart_oflow), 0, |
| qdev_get_gpio_in(gicdev, 17)); |
| |
| for (int i = 0; i < MPS3R_UART_MAX; i++) { |
| hwaddr baseaddr = 0xe0205000 + i * 0x1000; |
| int rxirq = 5 + i * 2, txirq = 6 + i * 2, combirq = 13 + i; |
| |
| create_uart(mms, i + MPS3R_CPU_MAX, sysmem, baseaddr, |
| qdev_get_gpio_in(gicdev, txirq), |
| qdev_get_gpio_in(gicdev, rxirq), |
| qdev_get_gpio_in(DEVICE(&mms->uart_oflow), i * 2), |
| qdev_get_gpio_in(DEVICE(&mms->uart_oflow), i * 2 + 1), |
| qdev_get_gpio_in(gicdev, combirq)); |
| } |
| |
| for (int i = 0; i < 4; i++) { |
| /* CMSDK GPIO controllers */ |
| g_autofree char *s = g_strdup_printf("gpio%d", i); |
| create_unimplemented_device(s, 0xe0000000 + i * 0x1000, 0x1000); |
| } |
| |
| object_initialize_child(OBJECT(mms), "watchdog", &mms->watchdog, |
| TYPE_CMSDK_APB_WATCHDOG); |
| qdev_connect_clock_in(DEVICE(&mms->watchdog), "WDOGCLK", mms->clk); |
| sysbus_realize(SYS_BUS_DEVICE(&mms->watchdog), &error_fatal); |
| sysbus_connect_irq(SYS_BUS_DEVICE(&mms->watchdog), 0, |
| qdev_get_gpio_in(gicdev, 0)); |
| sysbus_mmio_map(SYS_BUS_DEVICE(&mms->watchdog), 0, 0xe0100000); |
| |
| object_initialize_child(OBJECT(mms), "dualtimer", &mms->dualtimer, |
| TYPE_CMSDK_APB_DUALTIMER); |
| qdev_connect_clock_in(DEVICE(&mms->dualtimer), "TIMCLK", mms->clk); |
| sysbus_realize(SYS_BUS_DEVICE(&mms->dualtimer), &error_fatal); |
| sysbus_connect_irq(SYS_BUS_DEVICE(&mms->dualtimer), 0, |
| qdev_get_gpio_in(gicdev, 3)); |
| sysbus_connect_irq(SYS_BUS_DEVICE(&mms->dualtimer), 1, |
| qdev_get_gpio_in(gicdev, 1)); |
| sysbus_connect_irq(SYS_BUS_DEVICE(&mms->dualtimer), 2, |
| qdev_get_gpio_in(gicdev, 2)); |
| sysbus_mmio_map(SYS_BUS_DEVICE(&mms->dualtimer), 0, 0xe0101000); |
| |
| for (int i = 0; i < ARRAY_SIZE(mms->i2c); i++) { |
| static const hwaddr i2cbase[] = {0xe0102000, /* Touch */ |
| 0xe0103000, /* Audio */ |
| 0xe0107000, /* Shield0 */ |
| 0xe0108000, /* Shield1 */ |
| 0xe0109000}; /* DDR4 EEPROM */ |
| g_autofree char *s = g_strdup_printf("i2c%d", i); |
| |
| object_initialize_child(OBJECT(mms), s, &mms->i2c[i], |
| TYPE_ARM_SBCON_I2C); |
| sysbus_realize(SYS_BUS_DEVICE(&mms->i2c[i]), &error_fatal); |
| sysbus_mmio_map(SYS_BUS_DEVICE(&mms->i2c[i]), 0, i2cbase[i]); |
| if (i != 2 && i != 3) { |
| /* |
| * internal-only bus: mark it full to avoid user-created |
| * i2c devices being plugged into it. |
| */ |
| qbus_mark_full(qdev_get_child_bus(DEVICE(&mms->i2c[i]), "i2c")); |
| } |
| } |
| |
| for (int i = 0; i < ARRAY_SIZE(mms->spi); i++) { |
| g_autofree char *s = g_strdup_printf("spi%d", i); |
| hwaddr baseaddr = 0xe0104000 + i * 0x1000; |
| |
| object_initialize_child(OBJECT(mms), s, &mms->spi[i], TYPE_PL022); |
| sysbus_realize(SYS_BUS_DEVICE(&mms->spi[i]), &error_fatal); |
| sysbus_mmio_map(SYS_BUS_DEVICE(&mms->spi[i]), 0, baseaddr); |
| sysbus_connect_irq(SYS_BUS_DEVICE(&mms->spi[i]), 0, |
| qdev_get_gpio_in(gicdev, 22 + i)); |
| } |
| |
| object_initialize_child(OBJECT(mms), "scc", &mms->scc, TYPE_MPS2_SCC); |
| qdev_prop_set_uint32(DEVICE(&mms->scc), "scc-cfg0", 0); |
| qdev_prop_set_uint32(DEVICE(&mms->scc), "scc-cfg4", 0x2); |
| qdev_prop_set_uint32(DEVICE(&mms->scc), "scc-aid", 0x00200008); |
| qdev_prop_set_uint32(DEVICE(&mms->scc), "scc-id", 0x41055360); |
| oscclk = qlist_new(); |
| for (int i = 0; i < ARRAY_SIZE(an536_oscclk); i++) { |
| qlist_append_int(oscclk, an536_oscclk[i]); |
| } |
| qdev_prop_set_array(DEVICE(&mms->scc), "oscclk", oscclk); |
| sysbus_realize(SYS_BUS_DEVICE(&mms->scc), &error_fatal); |
| sysbus_mmio_map(SYS_BUS_DEVICE(&mms->scc), 0, 0xe0200000); |
| |
| create_unimplemented_device("i2s-audio", 0xe0201000, 0x1000); |
| |
| object_initialize_child(OBJECT(mms), "fpgaio", &mms->fpgaio, |
| TYPE_MPS2_FPGAIO); |
| qdev_prop_set_uint32(DEVICE(&mms->fpgaio), "prescale-clk", an536_oscclk[1]); |
| qdev_prop_set_uint32(DEVICE(&mms->fpgaio), "num-leds", 10); |
| qdev_prop_set_bit(DEVICE(&mms->fpgaio), "has-switches", true); |
| qdev_prop_set_bit(DEVICE(&mms->fpgaio), "has-dbgctrl", false); |
| sysbus_realize(SYS_BUS_DEVICE(&mms->fpgaio), &error_fatal); |
| sysbus_mmio_map(SYS_BUS_DEVICE(&mms->fpgaio), 0, 0xe0202000); |
| |
| create_unimplemented_device("clcd", 0xe0209000, 0x1000); |
| |
| object_initialize_child(OBJECT(mms), "rtc", &mms->rtc, TYPE_PL031); |
| sysbus_realize(SYS_BUS_DEVICE(&mms->rtc), &error_fatal); |
| sysbus_mmio_map(SYS_BUS_DEVICE(&mms->rtc), 0, 0xe020a000); |
| sysbus_connect_irq(SYS_BUS_DEVICE(&mms->rtc), 0, |
| qdev_get_gpio_in(gicdev, 4)); |
| |
| /* |
| * In hardware this is a LAN9220; the LAN9118 is software compatible |
| * except that it doesn't support the checksum-offload feature. |
| */ |
| lan9118_init(0xe0300000, |
| qdev_get_gpio_in(gicdev, 18)); |
| |
| create_unimplemented_device("usb", 0xe0301000, 0x1000); |
| create_unimplemented_device("qspi-write-config", 0xe0600000, 0x1000); |
| |
| mms->bootinfo.ram_size = machine->ram_size; |
| mms->bootinfo.board_id = -1; |
| mms->bootinfo.loader_start = mmc->loader_start; |
| mms->bootinfo.write_secondary_boot = mps3r_write_secondary_boot; |
| mms->bootinfo.secondary_cpu_reset_hook = mps3r_secondary_cpu_reset; |
| arm_load_kernel(ARM_CPU(mms->cpu[0]), machine, &mms->bootinfo); |
| } |
| |
| static void mps3r_set_default_ram_info(MPS3RMachineClass *mmc) |
| { |
| /* |
| * Set mc->default_ram_size and default_ram_id from the |
| * information in mmc->raminfo. |
| */ |
| MachineClass *mc = MACHINE_CLASS(mmc); |
| const RAMInfo *p; |
| |
| for (p = mmc->raminfo; p->name; p++) { |
| if (p->mrindex < 0) { |
| /* Found the entry for "system memory" */ |
| mc->default_ram_size = p->size; |
| mc->default_ram_id = p->name; |
| mmc->loader_start = p->base; |
| return; |
| } |
| } |
| g_assert_not_reached(); |
| } |
| |
| static void mps3r_class_init(ObjectClass *oc, void *data) |
| { |
| MachineClass *mc = MACHINE_CLASS(oc); |
| |
| mc->init = mps3r_common_init; |
| } |
| |
| static void mps3r_an536_class_init(ObjectClass *oc, void *data) |
| { |
| MachineClass *mc = MACHINE_CLASS(oc); |
| MPS3RMachineClass *mmc = MPS3R_MACHINE_CLASS(oc); |
| static const char * const valid_cpu_types[] = { |
| ARM_CPU_TYPE_NAME("cortex-r52"), |
| NULL |
| }; |
| |
| mc->desc = "ARM MPS3 with AN536 FPGA image for Cortex-R52"; |
| /* |
| * In the real FPGA image there are always two cores, but the standard |
| * initial setting for the SCC SYSCON 0x000 register is 0x21, meaning |
| * that the second core is held in reset and halted. Many images built for |
| * the board do not expect the second core to run at startup (especially |
| * since on the real FPGA image it is not possible to use LDREX/STREX |
| * in RAM between the two cores, so a true SMP setup isn't supported). |
| * |
| * As QEMU's equivalent of this, we support both -smp 1 and -smp 2, |
| * with the default being -smp 1. This seems a more intuitive UI for |
| * QEMU users than, for instance, having a machine property to allow |
| * the user to set the initial value of the SYSCON 0x000 register. |
| */ |
| mc->default_cpus = 1; |
| mc->min_cpus = 1; |
| mc->max_cpus = 2; |
| mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-r52"); |
| mc->valid_cpu_types = valid_cpu_types; |
| mmc->raminfo = an536_raminfo; |
| mps3r_set_default_ram_info(mmc); |
| } |
| |
| static const TypeInfo mps3r_machine_types[] = { |
| { |
| .name = TYPE_MPS3R_MACHINE, |
| .parent = TYPE_MACHINE, |
| .abstract = true, |
| .instance_size = sizeof(MPS3RMachineState), |
| .class_size = sizeof(MPS3RMachineClass), |
| .class_init = mps3r_class_init, |
| }, { |
| .name = TYPE_MPS3R_AN536_MACHINE, |
| .parent = TYPE_MPS3R_MACHINE, |
| .class_init = mps3r_an536_class_init, |
| }, |
| }; |
| |
| DEFINE_TYPES(mps3r_machine_types); |