blob: c9c64e29781dac3c137f666b8904d07d34b96c2b [file] [log] [blame]
/* Copyright 2008 IBM Corporation
* 2008 Red Hat, Inc.
* Copyright 2011 Intel Corporation
* Copyright 2016 Veertu, Inc.
* Copyright 2017 The Android Open Source Project
*
* QEMU Hypervisor.framework support
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*
* This file contain code under public domain from the hvdos project:
* https://github.com/mist64/hvdos
*
* Parts Copyright (c) 2011 NetApp, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "qemu/memalign.h"
#include "qapi/error.h"
#include "migration/blocker.h"
#include "sysemu/hvf.h"
#include "sysemu/hvf_int.h"
#include "sysemu/runstate.h"
#include "sysemu/cpus.h"
#include "hvf-i386.h"
#include "vmcs.h"
#include "vmx.h"
#include "x86.h"
#include "x86_descr.h"
#include "x86_mmu.h"
#include "x86_decode.h"
#include "x86_emu.h"
#include "x86_task.h"
#include "x86hvf.h"
#include <Hypervisor/hv.h>
#include <Hypervisor/hv_vmx.h>
#include <sys/sysctl.h>
#include "hw/i386/apic_internal.h"
#include "qemu/main-loop.h"
#include "qemu/accel.h"
#include "target/i386/cpu.h"
static Error *invtsc_mig_blocker;
void vmx_update_tpr(CPUState *cpu)
{
/* TODO: need integrate APIC handling */
X86CPU *x86_cpu = X86_CPU(cpu);
int tpr = cpu_get_apic_tpr(x86_cpu->apic_state) << 4;
int irr = apic_get_highest_priority_irr(x86_cpu->apic_state);
wreg(cpu->accel->fd, HV_X86_TPR, tpr);
if (irr == -1) {
wvmcs(cpu->accel->fd, VMCS_TPR_THRESHOLD, 0);
} else {
wvmcs(cpu->accel->fd, VMCS_TPR_THRESHOLD, (irr > tpr) ? tpr >> 4 :
irr >> 4);
}
}
static void update_apic_tpr(CPUState *cpu)
{
X86CPU *x86_cpu = X86_CPU(cpu);
int tpr = rreg(cpu->accel->fd, HV_X86_TPR) >> 4;
cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
}
#define VECTORING_INFO_VECTOR_MASK 0xff
void hvf_handle_io(CPUArchState *env, uint16_t port, void *buffer,
int direction, int size, int count)
{
int i;
uint8_t *ptr = buffer;
for (i = 0; i < count; i++) {
address_space_rw(&address_space_io, port, MEMTXATTRS_UNSPECIFIED,
ptr, size,
direction);
ptr += size;
}
}
static bool ept_emulation_fault(hvf_slot *slot, uint64_t gpa, uint64_t ept_qual)
{
int read, write;
/* EPT fault on an instruction fetch doesn't make sense here */
if (ept_qual & EPT_VIOLATION_INST_FETCH) {
return false;
}
/* EPT fault must be a read fault or a write fault */
read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
if ((read | write) == 0) {
return false;
}
if (write && slot) {
if (slot->flags & HVF_SLOT_LOG) {
uint64_t dirty_page_start = gpa & ~(TARGET_PAGE_SIZE - 1u);
memory_region_set_dirty(slot->region, gpa - slot->start, 1);
hv_vm_protect(dirty_page_start, TARGET_PAGE_SIZE,
HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC);
}
}
/*
* The EPT violation must have been caused by accessing a
* guest-physical address that is a translation of a guest-linear
* address.
*/
if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
(ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
return false;
}
if (!slot) {
return true;
}
if (!memory_region_is_ram(slot->region) &&
!(read && memory_region_is_romd(slot->region))) {
return true;
}
return false;
}
void hvf_arch_vcpu_destroy(CPUState *cpu)
{
X86CPU *x86_cpu = X86_CPU(cpu);
CPUX86State *env = &x86_cpu->env;
g_free(env->hvf_mmio_buf);
}
static void init_tsc_freq(CPUX86State *env)
{
size_t length;
uint64_t tsc_freq;
if (env->tsc_khz != 0) {
return;
}
length = sizeof(uint64_t);
if (sysctlbyname("machdep.tsc.frequency", &tsc_freq, &length, NULL, 0)) {
return;
}
env->tsc_khz = tsc_freq / 1000; /* Hz to KHz */
}
static void init_apic_bus_freq(CPUX86State *env)
{
size_t length;
uint64_t bus_freq;
if (env->apic_bus_freq != 0) {
return;
}
length = sizeof(uint64_t);
if (sysctlbyname("hw.busfrequency", &bus_freq, &length, NULL, 0)) {
return;
}
env->apic_bus_freq = bus_freq;
}
static inline bool tsc_is_known(CPUX86State *env)
{
return env->tsc_khz != 0;
}
static inline bool apic_bus_freq_is_known(CPUX86State *env)
{
return env->apic_bus_freq != 0;
}
void hvf_kick_vcpu_thread(CPUState *cpu)
{
cpus_kick_thread(cpu);
hv_vcpu_interrupt(&cpu->accel->fd, 1);
}
int hvf_arch_init(void)
{
return 0;
}
int hvf_arch_init_vcpu(CPUState *cpu)
{
X86CPU *x86cpu = X86_CPU(cpu);
CPUX86State *env = &x86cpu->env;
Error *local_err = NULL;
int r;
uint64_t reqCap;
init_emu();
init_decoder();
hvf_state->hvf_caps = g_new0(struct hvf_vcpu_caps, 1);
env->hvf_mmio_buf = g_new(char, 4096);
if (x86cpu->vmware_cpuid_freq) {
init_tsc_freq(env);
init_apic_bus_freq(env);
if (!tsc_is_known(env) || !apic_bus_freq_is_known(env)) {
error_report("vmware-cpuid-freq: feature couldn't be enabled");
}
}
if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
invtsc_mig_blocker == NULL) {
error_setg(&invtsc_mig_blocker,
"State blocked by non-migratable CPU device (invtsc flag)");
r = migrate_add_blocker(&invtsc_mig_blocker, &local_err);
if (r < 0) {
error_report_err(local_err);
return r;
}
}
if (hv_vmx_read_capability(HV_VMX_CAP_PINBASED,
&hvf_state->hvf_caps->vmx_cap_pinbased)) {
abort();
}
if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED,
&hvf_state->hvf_caps->vmx_cap_procbased)) {
abort();
}
if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2,
&hvf_state->hvf_caps->vmx_cap_procbased2)) {
abort();
}
if (hv_vmx_read_capability(HV_VMX_CAP_ENTRY,
&hvf_state->hvf_caps->vmx_cap_entry)) {
abort();
}
/* set VMCS control fields */
wvmcs(cpu->accel->fd, VMCS_PIN_BASED_CTLS,
cap2ctrl(hvf_state->hvf_caps->vmx_cap_pinbased,
VMCS_PIN_BASED_CTLS_EXTINT |
VMCS_PIN_BASED_CTLS_NMI |
VMCS_PIN_BASED_CTLS_VNMI));
wvmcs(cpu->accel->fd, VMCS_PRI_PROC_BASED_CTLS,
cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased,
VMCS_PRI_PROC_BASED_CTLS_HLT |
VMCS_PRI_PROC_BASED_CTLS_MWAIT |
VMCS_PRI_PROC_BASED_CTLS_TSC_OFFSET |
VMCS_PRI_PROC_BASED_CTLS_TPR_SHADOW) |
VMCS_PRI_PROC_BASED_CTLS_SEC_CONTROL);
reqCap = VMCS_PRI_PROC_BASED2_CTLS_APIC_ACCESSES;
/* Is RDTSCP support in CPUID? If so, enable it in the VMCS. */
if (hvf_get_supported_cpuid(0x80000001, 0, R_EDX) & CPUID_EXT2_RDTSCP) {
reqCap |= VMCS_PRI_PROC_BASED2_CTLS_RDTSCP;
}
wvmcs(cpu->accel->fd, VMCS_SEC_PROC_BASED_CTLS,
cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased2, reqCap));
wvmcs(cpu->accel->fd, VMCS_ENTRY_CTLS,
cap2ctrl(hvf_state->hvf_caps->vmx_cap_entry, 0));
wvmcs(cpu->accel->fd, VMCS_EXCEPTION_BITMAP, 0); /* Double fault */
wvmcs(cpu->accel->fd, VMCS_TPR_THRESHOLD, 0);
x86cpu = X86_CPU(cpu);
x86cpu->env.xsave_buf_len = 4096;
x86cpu->env.xsave_buf = qemu_memalign(4096, x86cpu->env.xsave_buf_len);
/*
* The allocated storage must be large enough for all of the
* possible XSAVE state components.
*/
assert(hvf_get_supported_cpuid(0xd, 0, R_ECX) <= x86cpu->env.xsave_buf_len);
hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_STAR, 1);
hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_LSTAR, 1);
hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_CSTAR, 1);
hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_FMASK, 1);
hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_FSBASE, 1);
hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_GSBASE, 1);
hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_KERNELGSBASE, 1);
hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_TSC_AUX, 1);
hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_IA32_TSC, 1);
hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_IA32_SYSENTER_CS, 1);
hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_IA32_SYSENTER_EIP, 1);
hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_IA32_SYSENTER_ESP, 1);
return 0;
}
static void hvf_store_events(CPUState *cpu, uint32_t ins_len, uint64_t idtvec_info)
{
X86CPU *x86_cpu = X86_CPU(cpu);
CPUX86State *env = &x86_cpu->env;
env->exception_nr = -1;
env->exception_pending = 0;
env->exception_injected = 0;
env->interrupt_injected = -1;
env->nmi_injected = false;
env->ins_len = 0;
env->has_error_code = false;
if (idtvec_info & VMCS_IDT_VEC_VALID) {
switch (idtvec_info & VMCS_IDT_VEC_TYPE) {
case VMCS_IDT_VEC_HWINTR:
case VMCS_IDT_VEC_SWINTR:
env->interrupt_injected = idtvec_info & VMCS_IDT_VEC_VECNUM;
break;
case VMCS_IDT_VEC_NMI:
env->nmi_injected = true;
break;
case VMCS_IDT_VEC_HWEXCEPTION:
case VMCS_IDT_VEC_SWEXCEPTION:
env->exception_nr = idtvec_info & VMCS_IDT_VEC_VECNUM;
env->exception_injected = 1;
break;
case VMCS_IDT_VEC_PRIV_SWEXCEPTION:
default:
abort();
}
if ((idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWEXCEPTION ||
(idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWINTR) {
env->ins_len = ins_len;
}
if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
env->has_error_code = true;
env->error_code = rvmcs(cpu->accel->fd, VMCS_IDT_VECTORING_ERROR);
}
}
if ((rvmcs(cpu->accel->fd, VMCS_GUEST_INTERRUPTIBILITY) &
VMCS_INTERRUPTIBILITY_NMI_BLOCKING)) {
env->hflags2 |= HF2_NMI_MASK;
} else {
env->hflags2 &= ~HF2_NMI_MASK;
}
if (rvmcs(cpu->accel->fd, VMCS_GUEST_INTERRUPTIBILITY) &
(VMCS_INTERRUPTIBILITY_STI_BLOCKING |
VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) {
env->hflags |= HF_INHIBIT_IRQ_MASK;
} else {
env->hflags &= ~HF_INHIBIT_IRQ_MASK;
}
}
static void hvf_cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count,
uint32_t *eax, uint32_t *ebx,
uint32_t *ecx, uint32_t *edx)
{
/*
* A wrapper extends cpu_x86_cpuid with 0x40000000 and 0x40000010 leafs,
* leafs 0x40000001-0x4000000F are filled with zeros
* Provides vmware-cpuid-freq support to hvf
*
* Note: leaf 0x40000000 not exposes HVF,
* leaving hypervisor signature empty
*/
if (index < 0x40000000 || index > 0x40000010 ||
!tsc_is_known(env) || !apic_bus_freq_is_known(env)) {
cpu_x86_cpuid(env, index, count, eax, ebx, ecx, edx);
return;
}
switch (index) {
case 0x40000000:
*eax = 0x40000010; /* Max available cpuid leaf */
*ebx = 0; /* Leave signature empty */
*ecx = 0;
*edx = 0;
break;
case 0x40000010:
*eax = env->tsc_khz;
*ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
*ecx = 0;
*edx = 0;
break;
default:
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
}
}
int hvf_vcpu_exec(CPUState *cpu)
{
X86CPU *x86_cpu = X86_CPU(cpu);
CPUX86State *env = &x86_cpu->env;
int ret = 0;
uint64_t rip = 0;
if (hvf_process_events(cpu)) {
return EXCP_HLT;
}
do {
if (cpu->accel->dirty) {
hvf_put_registers(cpu);
cpu->accel->dirty = false;
}
if (hvf_inject_interrupts(cpu)) {
return EXCP_INTERRUPT;
}
vmx_update_tpr(cpu);
bql_unlock();
if (!cpu_is_bsp(X86_CPU(cpu)) && cpu->halted) {
bql_lock();
return EXCP_HLT;
}
hv_return_t r = hv_vcpu_run_until(cpu->accel->fd, HV_DEADLINE_FOREVER);
assert_hvf_ok(r);
/* handle VMEXIT */
uint64_t exit_reason = rvmcs(cpu->accel->fd, VMCS_EXIT_REASON);
uint64_t exit_qual = rvmcs(cpu->accel->fd, VMCS_EXIT_QUALIFICATION);
uint32_t ins_len = (uint32_t)rvmcs(cpu->accel->fd,
VMCS_EXIT_INSTRUCTION_LENGTH);
uint64_t idtvec_info = rvmcs(cpu->accel->fd, VMCS_IDT_VECTORING_INFO);
hvf_store_events(cpu, ins_len, idtvec_info);
rip = rreg(cpu->accel->fd, HV_X86_RIP);
env->eflags = rreg(cpu->accel->fd, HV_X86_RFLAGS);
bql_lock();
update_apic_tpr(cpu);
current_cpu = cpu;
ret = 0;
switch (exit_reason) {
case EXIT_REASON_HLT: {
macvm_set_rip(cpu, rip + ins_len);
if (!((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
(env->eflags & IF_MASK))
&& !(cpu->interrupt_request & CPU_INTERRUPT_NMI) &&
!(idtvec_info & VMCS_IDT_VEC_VALID)) {
cpu->halted = 1;
ret = EXCP_HLT;
break;
}
ret = EXCP_INTERRUPT;
break;
}
case EXIT_REASON_MWAIT: {
ret = EXCP_INTERRUPT;
break;
}
/* Need to check if MMIO or unmapped fault */
case EXIT_REASON_EPT_FAULT:
{
hvf_slot *slot;
uint64_t gpa = rvmcs(cpu->accel->fd, VMCS_GUEST_PHYSICAL_ADDRESS);
if (((idtvec_info & VMCS_IDT_VEC_VALID) == 0) &&
((exit_qual & EXIT_QUAL_NMIUDTI) != 0)) {
vmx_set_nmi_blocking(cpu);
}
slot = hvf_find_overlap_slot(gpa, 1);
/* mmio */
if (ept_emulation_fault(slot, gpa, exit_qual)) {
struct x86_decode decode;
load_regs(cpu);
decode_instruction(env, &decode);
exec_instruction(env, &decode);
store_regs(cpu);
break;
}
break;
}
case EXIT_REASON_INOUT:
{
uint32_t in = (exit_qual & 8) != 0;
uint32_t size = (exit_qual & 7) + 1;
uint32_t string = (exit_qual & 16) != 0;
uint32_t port = exit_qual >> 16;
/*uint32_t rep = (exit_qual & 0x20) != 0;*/
if (!string && in) {
uint64_t val = 0;
load_regs(cpu);
hvf_handle_io(env, port, &val, 0, size, 1);
if (size == 1) {
AL(env) = val;
} else if (size == 2) {
AX(env) = val;
} else if (size == 4) {
RAX(env) = (uint32_t)val;
} else {
RAX(env) = (uint64_t)val;
}
env->eip += ins_len;
store_regs(cpu);
break;
} else if (!string && !in) {
RAX(env) = rreg(cpu->accel->fd, HV_X86_RAX);
hvf_handle_io(env, port, &RAX(env), 1, size, 1);
macvm_set_rip(cpu, rip + ins_len);
break;
}
struct x86_decode decode;
load_regs(cpu);
decode_instruction(env, &decode);
assert(ins_len == decode.len);
exec_instruction(env, &decode);
store_regs(cpu);
break;
}
case EXIT_REASON_CPUID: {
uint32_t rax = (uint32_t)rreg(cpu->accel->fd, HV_X86_RAX);
uint32_t rbx = (uint32_t)rreg(cpu->accel->fd, HV_X86_RBX);
uint32_t rcx = (uint32_t)rreg(cpu->accel->fd, HV_X86_RCX);
uint32_t rdx = (uint32_t)rreg(cpu->accel->fd, HV_X86_RDX);
if (rax == 1) {
/* CPUID1.ecx.OSXSAVE needs to know CR4 */
env->cr[4] = rvmcs(cpu->accel->fd, VMCS_GUEST_CR4);
}
hvf_cpu_x86_cpuid(env, rax, rcx, &rax, &rbx, &rcx, &rdx);
wreg(cpu->accel->fd, HV_X86_RAX, rax);
wreg(cpu->accel->fd, HV_X86_RBX, rbx);
wreg(cpu->accel->fd, HV_X86_RCX, rcx);
wreg(cpu->accel->fd, HV_X86_RDX, rdx);
macvm_set_rip(cpu, rip + ins_len);
break;
}
case EXIT_REASON_XSETBV: {
X86CPU *x86_cpu = X86_CPU(cpu);
CPUX86State *env = &x86_cpu->env;
uint32_t eax = (uint32_t)rreg(cpu->accel->fd, HV_X86_RAX);
uint32_t ecx = (uint32_t)rreg(cpu->accel->fd, HV_X86_RCX);
uint32_t edx = (uint32_t)rreg(cpu->accel->fd, HV_X86_RDX);
if (ecx) {
macvm_set_rip(cpu, rip + ins_len);
break;
}
env->xcr0 = ((uint64_t)edx << 32) | eax;
wreg(cpu->accel->fd, HV_X86_XCR0, env->xcr0 | 1);
macvm_set_rip(cpu, rip + ins_len);
break;
}
case EXIT_REASON_INTR_WINDOW:
vmx_clear_int_window_exiting(cpu);
ret = EXCP_INTERRUPT;
break;
case EXIT_REASON_NMI_WINDOW:
vmx_clear_nmi_window_exiting(cpu);
ret = EXCP_INTERRUPT;
break;
case EXIT_REASON_EXT_INTR:
/* force exit and allow io handling */
ret = EXCP_INTERRUPT;
break;
case EXIT_REASON_RDMSR:
case EXIT_REASON_WRMSR:
{
load_regs(cpu);
if (exit_reason == EXIT_REASON_RDMSR) {
simulate_rdmsr(env);
} else {
simulate_wrmsr(env);
}
env->eip += ins_len;
store_regs(cpu);
break;
}
case EXIT_REASON_CR_ACCESS: {
int cr;
int reg;
load_regs(cpu);
cr = exit_qual & 15;
reg = (exit_qual >> 8) & 15;
switch (cr) {
case 0x0: {
macvm_set_cr0(cpu->accel->fd, RRX(env, reg));
break;
}
case 4: {
macvm_set_cr4(cpu->accel->fd, RRX(env, reg));
break;
}
case 8: {
X86CPU *x86_cpu = X86_CPU(cpu);
if (exit_qual & 0x10) {
RRX(env, reg) = cpu_get_apic_tpr(x86_cpu->apic_state);
} else {
int tpr = RRX(env, reg);
cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
ret = EXCP_INTERRUPT;
}
break;
}
default:
error_report("Unrecognized CR %d", cr);
abort();
}
env->eip += ins_len;
store_regs(cpu);
break;
}
case EXIT_REASON_APIC_ACCESS: { /* TODO */
struct x86_decode decode;
load_regs(cpu);
decode_instruction(env, &decode);
exec_instruction(env, &decode);
store_regs(cpu);
break;
}
case EXIT_REASON_TPR: {
ret = 1;
break;
}
case EXIT_REASON_TASK_SWITCH: {
uint64_t vinfo = rvmcs(cpu->accel->fd, VMCS_IDT_VECTORING_INFO);
x68_segment_selector sel = {.sel = exit_qual & 0xffff};
vmx_handle_task_switch(cpu, sel, (exit_qual >> 30) & 0x3,
vinfo & VMCS_INTR_VALID, vinfo & VECTORING_INFO_VECTOR_MASK, vinfo
& VMCS_INTR_T_MASK);
break;
}
case EXIT_REASON_TRIPLE_FAULT: {
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
ret = EXCP_INTERRUPT;
break;
}
case EXIT_REASON_RDPMC:
wreg(cpu->accel->fd, HV_X86_RAX, 0);
wreg(cpu->accel->fd, HV_X86_RDX, 0);
macvm_set_rip(cpu, rip + ins_len);
break;
case VMX_REASON_VMCALL:
env->exception_nr = EXCP0D_GPF;
env->exception_injected = 1;
env->has_error_code = true;
env->error_code = 0;
break;
default:
error_report("%llx: unhandled exit %llx", rip, exit_reason);
}
} while (ret == 0);
return ret;
}
int hvf_arch_insert_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
{
return -ENOSYS;
}
int hvf_arch_remove_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
{
return -ENOSYS;
}
int hvf_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
{
return -ENOSYS;
}
int hvf_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
{
return -ENOSYS;
}
void hvf_arch_remove_all_hw_breakpoints(void)
{
}
void hvf_arch_update_guest_debug(CPUState *cpu)
{
}
bool hvf_arch_supports_guest_debug(void)
{
return false;
}