| /* |
| * QEMU System Emulator |
| * |
| * Copyright (c) 2003-2008 Fabrice Bellard |
| * Copyright (c) 2011-2015 Red Hat Inc |
| * |
| * Authors: |
| * Juan Quintela <quintela@redhat.com> |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| #include "qemu/osdep.h" |
| #include "qemu-common.h" |
| #include "cpu.h" |
| #include <zlib.h> |
| #include "qapi-event.h" |
| #include "qemu/cutils.h" |
| #include "qemu/bitops.h" |
| #include "qemu/bitmap.h" |
| #include "qemu/timer.h" |
| #include "qemu/main-loop.h" |
| #include "xbzrle.h" |
| #include "ram.h" |
| #include "migration.h" |
| #include "migration/register.h" |
| #include "migration/misc.h" |
| #include "qemu-file.h" |
| #include "migration/vmstate.h" |
| #include "postcopy-ram.h" |
| #include "exec/address-spaces.h" |
| #include "migration/page_cache.h" |
| #include "qemu/error-report.h" |
| #include "trace.h" |
| #include "exec/ram_addr.h" |
| #include "qemu/rcu_queue.h" |
| #include "migration/colo.h" |
| |
| /***********************************************************/ |
| /* ram save/restore */ |
| |
| /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it |
| * worked for pages that where filled with the same char. We switched |
| * it to only search for the zero value. And to avoid confusion with |
| * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it. |
| */ |
| |
| #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ |
| #define RAM_SAVE_FLAG_ZERO 0x02 |
| #define RAM_SAVE_FLAG_MEM_SIZE 0x04 |
| #define RAM_SAVE_FLAG_PAGE 0x08 |
| #define RAM_SAVE_FLAG_EOS 0x10 |
| #define RAM_SAVE_FLAG_CONTINUE 0x20 |
| #define RAM_SAVE_FLAG_XBZRLE 0x40 |
| /* 0x80 is reserved in migration.h start with 0x100 next */ |
| #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 |
| |
| static inline bool is_zero_range(uint8_t *p, uint64_t size) |
| { |
| return buffer_is_zero(p, size); |
| } |
| |
| XBZRLECacheStats xbzrle_counters; |
| |
| /* struct contains XBZRLE cache and a static page |
| used by the compression */ |
| static struct { |
| /* buffer used for XBZRLE encoding */ |
| uint8_t *encoded_buf; |
| /* buffer for storing page content */ |
| uint8_t *current_buf; |
| /* Cache for XBZRLE, Protected by lock. */ |
| PageCache *cache; |
| QemuMutex lock; |
| /* it will store a page full of zeros */ |
| uint8_t *zero_target_page; |
| } XBZRLE; |
| |
| /* buffer used for XBZRLE decoding */ |
| static uint8_t *xbzrle_decoded_buf; |
| |
| static void XBZRLE_cache_lock(void) |
| { |
| if (migrate_use_xbzrle()) |
| qemu_mutex_lock(&XBZRLE.lock); |
| } |
| |
| static void XBZRLE_cache_unlock(void) |
| { |
| if (migrate_use_xbzrle()) |
| qemu_mutex_unlock(&XBZRLE.lock); |
| } |
| |
| /** |
| * xbzrle_cache_resize: resize the xbzrle cache |
| * |
| * This function is called from qmp_migrate_set_cache_size in main |
| * thread, possibly while a migration is in progress. A running |
| * migration may be using the cache and might finish during this call, |
| * hence changes to the cache are protected by XBZRLE.lock(). |
| * |
| * Returns the new_size or negative in case of error. |
| * |
| * @new_size: new cache size |
| */ |
| int64_t xbzrle_cache_resize(int64_t new_size) |
| { |
| PageCache *new_cache; |
| int64_t ret; |
| |
| if (new_size < TARGET_PAGE_SIZE) { |
| return -1; |
| } |
| |
| XBZRLE_cache_lock(); |
| |
| if (XBZRLE.cache != NULL) { |
| if (pow2floor(new_size) == migrate_xbzrle_cache_size()) { |
| goto out_new_size; |
| } |
| new_cache = cache_init(new_size / TARGET_PAGE_SIZE, |
| TARGET_PAGE_SIZE); |
| if (!new_cache) { |
| error_report("Error creating cache"); |
| ret = -1; |
| goto out; |
| } |
| |
| cache_fini(XBZRLE.cache); |
| XBZRLE.cache = new_cache; |
| } |
| |
| out_new_size: |
| ret = pow2floor(new_size); |
| out: |
| XBZRLE_cache_unlock(); |
| return ret; |
| } |
| |
| /* |
| * An outstanding page request, on the source, having been received |
| * and queued |
| */ |
| struct RAMSrcPageRequest { |
| RAMBlock *rb; |
| hwaddr offset; |
| hwaddr len; |
| |
| QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; |
| }; |
| |
| /* State of RAM for migration */ |
| struct RAMState { |
| /* QEMUFile used for this migration */ |
| QEMUFile *f; |
| /* Last block that we have visited searching for dirty pages */ |
| RAMBlock *last_seen_block; |
| /* Last block from where we have sent data */ |
| RAMBlock *last_sent_block; |
| /* Last dirty target page we have sent */ |
| ram_addr_t last_page; |
| /* last ram version we have seen */ |
| uint32_t last_version; |
| /* We are in the first round */ |
| bool ram_bulk_stage; |
| /* How many times we have dirty too many pages */ |
| int dirty_rate_high_cnt; |
| /* these variables are used for bitmap sync */ |
| /* last time we did a full bitmap_sync */ |
| int64_t time_last_bitmap_sync; |
| /* bytes transferred at start_time */ |
| uint64_t bytes_xfer_prev; |
| /* number of dirty pages since start_time */ |
| uint64_t num_dirty_pages_period; |
| /* xbzrle misses since the beginning of the period */ |
| uint64_t xbzrle_cache_miss_prev; |
| /* number of iterations at the beginning of period */ |
| uint64_t iterations_prev; |
| /* Iterations since start */ |
| uint64_t iterations; |
| /* protects modification of the bitmap */ |
| uint64_t migration_dirty_pages; |
| /* number of dirty bits in the bitmap */ |
| QemuMutex bitmap_mutex; |
| /* The RAMBlock used in the last src_page_requests */ |
| RAMBlock *last_req_rb; |
| /* Queue of outstanding page requests from the destination */ |
| QemuMutex src_page_req_mutex; |
| QSIMPLEQ_HEAD(src_page_requests, RAMSrcPageRequest) src_page_requests; |
| }; |
| typedef struct RAMState RAMState; |
| |
| static RAMState *ram_state; |
| |
| uint64_t ram_bytes_remaining(void) |
| { |
| return ram_state->migration_dirty_pages * TARGET_PAGE_SIZE; |
| } |
| |
| MigrationStats ram_counters; |
| |
| /* used by the search for pages to send */ |
| struct PageSearchStatus { |
| /* Current block being searched */ |
| RAMBlock *block; |
| /* Current page to search from */ |
| unsigned long page; |
| /* Set once we wrap around */ |
| bool complete_round; |
| }; |
| typedef struct PageSearchStatus PageSearchStatus; |
| |
| struct CompressParam { |
| bool done; |
| bool quit; |
| QEMUFile *file; |
| QemuMutex mutex; |
| QemuCond cond; |
| RAMBlock *block; |
| ram_addr_t offset; |
| }; |
| typedef struct CompressParam CompressParam; |
| |
| struct DecompressParam { |
| bool done; |
| bool quit; |
| QemuMutex mutex; |
| QemuCond cond; |
| void *des; |
| uint8_t *compbuf; |
| int len; |
| }; |
| typedef struct DecompressParam DecompressParam; |
| |
| static CompressParam *comp_param; |
| static QemuThread *compress_threads; |
| /* comp_done_cond is used to wake up the migration thread when |
| * one of the compression threads has finished the compression. |
| * comp_done_lock is used to co-work with comp_done_cond. |
| */ |
| static QemuMutex comp_done_lock; |
| static QemuCond comp_done_cond; |
| /* The empty QEMUFileOps will be used by file in CompressParam */ |
| static const QEMUFileOps empty_ops = { }; |
| |
| static DecompressParam *decomp_param; |
| static QemuThread *decompress_threads; |
| static QemuMutex decomp_done_lock; |
| static QemuCond decomp_done_cond; |
| |
| static int do_compress_ram_page(QEMUFile *f, RAMBlock *block, |
| ram_addr_t offset); |
| |
| static void *do_data_compress(void *opaque) |
| { |
| CompressParam *param = opaque; |
| RAMBlock *block; |
| ram_addr_t offset; |
| |
| qemu_mutex_lock(¶m->mutex); |
| while (!param->quit) { |
| if (param->block) { |
| block = param->block; |
| offset = param->offset; |
| param->block = NULL; |
| qemu_mutex_unlock(¶m->mutex); |
| |
| do_compress_ram_page(param->file, block, offset); |
| |
| qemu_mutex_lock(&comp_done_lock); |
| param->done = true; |
| qemu_cond_signal(&comp_done_cond); |
| qemu_mutex_unlock(&comp_done_lock); |
| |
| qemu_mutex_lock(¶m->mutex); |
| } else { |
| qemu_cond_wait(¶m->cond, ¶m->mutex); |
| } |
| } |
| qemu_mutex_unlock(¶m->mutex); |
| |
| return NULL; |
| } |
| |
| static inline void terminate_compression_threads(void) |
| { |
| int idx, thread_count; |
| |
| thread_count = migrate_compress_threads(); |
| |
| for (idx = 0; idx < thread_count; idx++) { |
| qemu_mutex_lock(&comp_param[idx].mutex); |
| comp_param[idx].quit = true; |
| qemu_cond_signal(&comp_param[idx].cond); |
| qemu_mutex_unlock(&comp_param[idx].mutex); |
| } |
| } |
| |
| void migrate_compress_threads_join(void) |
| { |
| int i, thread_count; |
| |
| if (!migrate_use_compression()) { |
| return; |
| } |
| terminate_compression_threads(); |
| thread_count = migrate_compress_threads(); |
| for (i = 0; i < thread_count; i++) { |
| qemu_thread_join(compress_threads + i); |
| qemu_fclose(comp_param[i].file); |
| qemu_mutex_destroy(&comp_param[i].mutex); |
| qemu_cond_destroy(&comp_param[i].cond); |
| } |
| qemu_mutex_destroy(&comp_done_lock); |
| qemu_cond_destroy(&comp_done_cond); |
| g_free(compress_threads); |
| g_free(comp_param); |
| compress_threads = NULL; |
| comp_param = NULL; |
| } |
| |
| void migrate_compress_threads_create(void) |
| { |
| int i, thread_count; |
| |
| if (!migrate_use_compression()) { |
| return; |
| } |
| thread_count = migrate_compress_threads(); |
| compress_threads = g_new0(QemuThread, thread_count); |
| comp_param = g_new0(CompressParam, thread_count); |
| qemu_cond_init(&comp_done_cond); |
| qemu_mutex_init(&comp_done_lock); |
| for (i = 0; i < thread_count; i++) { |
| /* comp_param[i].file is just used as a dummy buffer to save data, |
| * set its ops to empty. |
| */ |
| comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops); |
| comp_param[i].done = true; |
| comp_param[i].quit = false; |
| qemu_mutex_init(&comp_param[i].mutex); |
| qemu_cond_init(&comp_param[i].cond); |
| qemu_thread_create(compress_threads + i, "compress", |
| do_data_compress, comp_param + i, |
| QEMU_THREAD_JOINABLE); |
| } |
| } |
| |
| /** |
| * save_page_header: write page header to wire |
| * |
| * If this is the 1st block, it also writes the block identification |
| * |
| * Returns the number of bytes written |
| * |
| * @f: QEMUFile where to send the data |
| * @block: block that contains the page we want to send |
| * @offset: offset inside the block for the page |
| * in the lower bits, it contains flags |
| */ |
| static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block, |
| ram_addr_t offset) |
| { |
| size_t size, len; |
| |
| if (block == rs->last_sent_block) { |
| offset |= RAM_SAVE_FLAG_CONTINUE; |
| } |
| qemu_put_be64(f, offset); |
| size = 8; |
| |
| if (!(offset & RAM_SAVE_FLAG_CONTINUE)) { |
| len = strlen(block->idstr); |
| qemu_put_byte(f, len); |
| qemu_put_buffer(f, (uint8_t *)block->idstr, len); |
| size += 1 + len; |
| rs->last_sent_block = block; |
| } |
| return size; |
| } |
| |
| /** |
| * mig_throttle_guest_down: throotle down the guest |
| * |
| * Reduce amount of guest cpu execution to hopefully slow down memory |
| * writes. If guest dirty memory rate is reduced below the rate at |
| * which we can transfer pages to the destination then we should be |
| * able to complete migration. Some workloads dirty memory way too |
| * fast and will not effectively converge, even with auto-converge. |
| */ |
| static void mig_throttle_guest_down(void) |
| { |
| MigrationState *s = migrate_get_current(); |
| uint64_t pct_initial = s->parameters.cpu_throttle_initial; |
| uint64_t pct_icrement = s->parameters.cpu_throttle_increment; |
| |
| /* We have not started throttling yet. Let's start it. */ |
| if (!cpu_throttle_active()) { |
| cpu_throttle_set(pct_initial); |
| } else { |
| /* Throttling already on, just increase the rate */ |
| cpu_throttle_set(cpu_throttle_get_percentage() + pct_icrement); |
| } |
| } |
| |
| /** |
| * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache |
| * |
| * @rs: current RAM state |
| * @current_addr: address for the zero page |
| * |
| * Update the xbzrle cache to reflect a page that's been sent as all 0. |
| * The important thing is that a stale (not-yet-0'd) page be replaced |
| * by the new data. |
| * As a bonus, if the page wasn't in the cache it gets added so that |
| * when a small write is made into the 0'd page it gets XBZRLE sent. |
| */ |
| static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr) |
| { |
| if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { |
| return; |
| } |
| |
| /* We don't care if this fails to allocate a new cache page |
| * as long as it updated an old one */ |
| cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, |
| ram_counters.dirty_sync_count); |
| } |
| |
| #define ENCODING_FLAG_XBZRLE 0x1 |
| |
| /** |
| * save_xbzrle_page: compress and send current page |
| * |
| * Returns: 1 means that we wrote the page |
| * 0 means that page is identical to the one already sent |
| * -1 means that xbzrle would be longer than normal |
| * |
| * @rs: current RAM state |
| * @current_data: pointer to the address of the page contents |
| * @current_addr: addr of the page |
| * @block: block that contains the page we want to send |
| * @offset: offset inside the block for the page |
| * @last_stage: if we are at the completion stage |
| */ |
| static int save_xbzrle_page(RAMState *rs, uint8_t **current_data, |
| ram_addr_t current_addr, RAMBlock *block, |
| ram_addr_t offset, bool last_stage) |
| { |
| int encoded_len = 0, bytes_xbzrle; |
| uint8_t *prev_cached_page; |
| |
| if (!cache_is_cached(XBZRLE.cache, current_addr, |
| ram_counters.dirty_sync_count)) { |
| xbzrle_counters.cache_miss++; |
| if (!last_stage) { |
| if (cache_insert(XBZRLE.cache, current_addr, *current_data, |
| ram_counters.dirty_sync_count) == -1) { |
| return -1; |
| } else { |
| /* update *current_data when the page has been |
| inserted into cache */ |
| *current_data = get_cached_data(XBZRLE.cache, current_addr); |
| } |
| } |
| return -1; |
| } |
| |
| prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); |
| |
| /* save current buffer into memory */ |
| memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); |
| |
| /* XBZRLE encoding (if there is no overflow) */ |
| encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, |
| TARGET_PAGE_SIZE, XBZRLE.encoded_buf, |
| TARGET_PAGE_SIZE); |
| if (encoded_len == 0) { |
| trace_save_xbzrle_page_skipping(); |
| return 0; |
| } else if (encoded_len == -1) { |
| trace_save_xbzrle_page_overflow(); |
| xbzrle_counters.overflow++; |
| /* update data in the cache */ |
| if (!last_stage) { |
| memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE); |
| *current_data = prev_cached_page; |
| } |
| return -1; |
| } |
| |
| /* we need to update the data in the cache, in order to get the same data */ |
| if (!last_stage) { |
| memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); |
| } |
| |
| /* Send XBZRLE based compressed page */ |
| bytes_xbzrle = save_page_header(rs, rs->f, block, |
| offset | RAM_SAVE_FLAG_XBZRLE); |
| qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE); |
| qemu_put_be16(rs->f, encoded_len); |
| qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len); |
| bytes_xbzrle += encoded_len + 1 + 2; |
| xbzrle_counters.pages++; |
| xbzrle_counters.bytes += bytes_xbzrle; |
| ram_counters.transferred += bytes_xbzrle; |
| |
| return 1; |
| } |
| |
| /** |
| * migration_bitmap_find_dirty: find the next dirty page from start |
| * |
| * Called with rcu_read_lock() to protect migration_bitmap |
| * |
| * Returns the byte offset within memory region of the start of a dirty page |
| * |
| * @rs: current RAM state |
| * @rb: RAMBlock where to search for dirty pages |
| * @start: page where we start the search |
| */ |
| static inline |
| unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, |
| unsigned long start) |
| { |
| unsigned long size = rb->used_length >> TARGET_PAGE_BITS; |
| unsigned long *bitmap = rb->bmap; |
| unsigned long next; |
| |
| if (rs->ram_bulk_stage && start > 0) { |
| next = start + 1; |
| } else { |
| next = find_next_bit(bitmap, size, start); |
| } |
| |
| return next; |
| } |
| |
| static inline bool migration_bitmap_clear_dirty(RAMState *rs, |
| RAMBlock *rb, |
| unsigned long page) |
| { |
| bool ret; |
| |
| ret = test_and_clear_bit(page, rb->bmap); |
| |
| if (ret) { |
| rs->migration_dirty_pages--; |
| } |
| return ret; |
| } |
| |
| static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb, |
| ram_addr_t start, ram_addr_t length) |
| { |
| rs->migration_dirty_pages += |
| cpu_physical_memory_sync_dirty_bitmap(rb, start, length, |
| &rs->num_dirty_pages_period); |
| } |
| |
| /** |
| * ram_pagesize_summary: calculate all the pagesizes of a VM |
| * |
| * Returns a summary bitmap of the page sizes of all RAMBlocks |
| * |
| * For VMs with just normal pages this is equivalent to the host page |
| * size. If it's got some huge pages then it's the OR of all the |
| * different page sizes. |
| */ |
| uint64_t ram_pagesize_summary(void) |
| { |
| RAMBlock *block; |
| uint64_t summary = 0; |
| |
| RAMBLOCK_FOREACH(block) { |
| summary |= block->page_size; |
| } |
| |
| return summary; |
| } |
| |
| static void migration_bitmap_sync(RAMState *rs) |
| { |
| RAMBlock *block; |
| int64_t end_time; |
| uint64_t bytes_xfer_now; |
| |
| ram_counters.dirty_sync_count++; |
| |
| if (!rs->time_last_bitmap_sync) { |
| rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); |
| } |
| |
| trace_migration_bitmap_sync_start(); |
| memory_global_dirty_log_sync(); |
| |
| qemu_mutex_lock(&rs->bitmap_mutex); |
| rcu_read_lock(); |
| RAMBLOCK_FOREACH(block) { |
| migration_bitmap_sync_range(rs, block, 0, block->used_length); |
| } |
| rcu_read_unlock(); |
| qemu_mutex_unlock(&rs->bitmap_mutex); |
| |
| trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); |
| |
| end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); |
| |
| /* more than 1 second = 1000 millisecons */ |
| if (end_time > rs->time_last_bitmap_sync + 1000) { |
| /* calculate period counters */ |
| ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000 |
| / (end_time - rs->time_last_bitmap_sync); |
| bytes_xfer_now = ram_counters.transferred; |
| |
| if (migrate_auto_converge()) { |
| /* The following detection logic can be refined later. For now: |
| Check to see if the dirtied bytes is 50% more than the approx. |
| amount of bytes that just got transferred since the last time we |
| were in this routine. If that happens twice, start or increase |
| throttling */ |
| |
| if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE > |
| (bytes_xfer_now - rs->bytes_xfer_prev) / 2) && |
| (++rs->dirty_rate_high_cnt >= 2)) { |
| trace_migration_throttle(); |
| rs->dirty_rate_high_cnt = 0; |
| mig_throttle_guest_down(); |
| } |
| } |
| |
| if (migrate_use_xbzrle()) { |
| if (rs->iterations_prev != rs->iterations) { |
| xbzrle_counters.cache_miss_rate = |
| (double)(xbzrle_counters.cache_miss - |
| rs->xbzrle_cache_miss_prev) / |
| (rs->iterations - rs->iterations_prev); |
| } |
| rs->iterations_prev = rs->iterations; |
| rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; |
| } |
| |
| /* reset period counters */ |
| rs->time_last_bitmap_sync = end_time; |
| rs->num_dirty_pages_period = 0; |
| rs->bytes_xfer_prev = bytes_xfer_now; |
| } |
| if (migrate_use_events()) { |
| qapi_event_send_migration_pass(ram_counters.dirty_sync_count, NULL); |
| } |
| } |
| |
| /** |
| * save_zero_page: send the zero page to the stream |
| * |
| * Returns the number of pages written. |
| * |
| * @rs: current RAM state |
| * @block: block that contains the page we want to send |
| * @offset: offset inside the block for the page |
| * @p: pointer to the page |
| */ |
| static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, |
| uint8_t *p) |
| { |
| int pages = -1; |
| |
| if (is_zero_range(p, TARGET_PAGE_SIZE)) { |
| ram_counters.duplicate++; |
| ram_counters.transferred += |
| save_page_header(rs, rs->f, block, offset | RAM_SAVE_FLAG_ZERO); |
| qemu_put_byte(rs->f, 0); |
| ram_counters.transferred += 1; |
| pages = 1; |
| } |
| |
| return pages; |
| } |
| |
| static void ram_release_pages(const char *rbname, uint64_t offset, int pages) |
| { |
| if (!migrate_release_ram() || !migration_in_postcopy()) { |
| return; |
| } |
| |
| ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS); |
| } |
| |
| /** |
| * ram_save_page: send the given page to the stream |
| * |
| * Returns the number of pages written. |
| * < 0 - error |
| * >=0 - Number of pages written - this might legally be 0 |
| * if xbzrle noticed the page was the same. |
| * |
| * @rs: current RAM state |
| * @block: block that contains the page we want to send |
| * @offset: offset inside the block for the page |
| * @last_stage: if we are at the completion stage |
| */ |
| static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage) |
| { |
| int pages = -1; |
| uint64_t bytes_xmit; |
| ram_addr_t current_addr; |
| uint8_t *p; |
| int ret; |
| bool send_async = true; |
| RAMBlock *block = pss->block; |
| ram_addr_t offset = pss->page << TARGET_PAGE_BITS; |
| |
| p = block->host + offset; |
| trace_ram_save_page(block->idstr, (uint64_t)offset, p); |
| |
| /* In doubt sent page as normal */ |
| bytes_xmit = 0; |
| ret = ram_control_save_page(rs->f, block->offset, |
| offset, TARGET_PAGE_SIZE, &bytes_xmit); |
| if (bytes_xmit) { |
| ram_counters.transferred += bytes_xmit; |
| pages = 1; |
| } |
| |
| XBZRLE_cache_lock(); |
| |
| current_addr = block->offset + offset; |
| |
| if (ret != RAM_SAVE_CONTROL_NOT_SUPP) { |
| if (ret != RAM_SAVE_CONTROL_DELAYED) { |
| if (bytes_xmit > 0) { |
| ram_counters.normal++; |
| } else if (bytes_xmit == 0) { |
| ram_counters.duplicate++; |
| } |
| } |
| } else { |
| pages = save_zero_page(rs, block, offset, p); |
| if (pages > 0) { |
| /* Must let xbzrle know, otherwise a previous (now 0'd) cached |
| * page would be stale |
| */ |
| xbzrle_cache_zero_page(rs, current_addr); |
| ram_release_pages(block->idstr, offset, pages); |
| } else if (!rs->ram_bulk_stage && |
| !migration_in_postcopy() && migrate_use_xbzrle()) { |
| pages = save_xbzrle_page(rs, &p, current_addr, block, |
| offset, last_stage); |
| if (!last_stage) { |
| /* Can't send this cached data async, since the cache page |
| * might get updated before it gets to the wire |
| */ |
| send_async = false; |
| } |
| } |
| } |
| |
| /* XBZRLE overflow or normal page */ |
| if (pages == -1) { |
| ram_counters.transferred += |
| save_page_header(rs, rs->f, block, offset | RAM_SAVE_FLAG_PAGE); |
| if (send_async) { |
| qemu_put_buffer_async(rs->f, p, TARGET_PAGE_SIZE, |
| migrate_release_ram() & |
| migration_in_postcopy()); |
| } else { |
| qemu_put_buffer(rs->f, p, TARGET_PAGE_SIZE); |
| } |
| ram_counters.transferred += TARGET_PAGE_SIZE; |
| pages = 1; |
| ram_counters.normal++; |
| } |
| |
| XBZRLE_cache_unlock(); |
| |
| return pages; |
| } |
| |
| static int do_compress_ram_page(QEMUFile *f, RAMBlock *block, |
| ram_addr_t offset) |
| { |
| RAMState *rs = ram_state; |
| int bytes_sent, blen; |
| uint8_t *p = block->host + (offset & TARGET_PAGE_MASK); |
| |
| bytes_sent = save_page_header(rs, f, block, offset | |
| RAM_SAVE_FLAG_COMPRESS_PAGE); |
| blen = qemu_put_compression_data(f, p, TARGET_PAGE_SIZE, |
| migrate_compress_level()); |
| if (blen < 0) { |
| bytes_sent = 0; |
| qemu_file_set_error(migrate_get_current()->to_dst_file, blen); |
| error_report("compressed data failed!"); |
| } else { |
| bytes_sent += blen; |
| ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1); |
| } |
| |
| return bytes_sent; |
| } |
| |
| static void flush_compressed_data(RAMState *rs) |
| { |
| int idx, len, thread_count; |
| |
| if (!migrate_use_compression()) { |
| return; |
| } |
| thread_count = migrate_compress_threads(); |
| |
| qemu_mutex_lock(&comp_done_lock); |
| for (idx = 0; idx < thread_count; idx++) { |
| while (!comp_param[idx].done) { |
| qemu_cond_wait(&comp_done_cond, &comp_done_lock); |
| } |
| } |
| qemu_mutex_unlock(&comp_done_lock); |
| |
| for (idx = 0; idx < thread_count; idx++) { |
| qemu_mutex_lock(&comp_param[idx].mutex); |
| if (!comp_param[idx].quit) { |
| len = qemu_put_qemu_file(rs->f, comp_param[idx].file); |
| ram_counters.transferred += len; |
| } |
| qemu_mutex_unlock(&comp_param[idx].mutex); |
| } |
| } |
| |
| static inline void set_compress_params(CompressParam *param, RAMBlock *block, |
| ram_addr_t offset) |
| { |
| param->block = block; |
| param->offset = offset; |
| } |
| |
| static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block, |
| ram_addr_t offset) |
| { |
| int idx, thread_count, bytes_xmit = -1, pages = -1; |
| |
| thread_count = migrate_compress_threads(); |
| qemu_mutex_lock(&comp_done_lock); |
| while (true) { |
| for (idx = 0; idx < thread_count; idx++) { |
| if (comp_param[idx].done) { |
| comp_param[idx].done = false; |
| bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file); |
| qemu_mutex_lock(&comp_param[idx].mutex); |
| set_compress_params(&comp_param[idx], block, offset); |
| qemu_cond_signal(&comp_param[idx].cond); |
| qemu_mutex_unlock(&comp_param[idx].mutex); |
| pages = 1; |
| ram_counters.normal++; |
| ram_counters.transferred += bytes_xmit; |
| break; |
| } |
| } |
| if (pages > 0) { |
| break; |
| } else { |
| qemu_cond_wait(&comp_done_cond, &comp_done_lock); |
| } |
| } |
| qemu_mutex_unlock(&comp_done_lock); |
| |
| return pages; |
| } |
| |
| /** |
| * ram_save_compressed_page: compress the given page and send it to the stream |
| * |
| * Returns the number of pages written. |
| * |
| * @rs: current RAM state |
| * @block: block that contains the page we want to send |
| * @offset: offset inside the block for the page |
| * @last_stage: if we are at the completion stage |
| */ |
| static int ram_save_compressed_page(RAMState *rs, PageSearchStatus *pss, |
| bool last_stage) |
| { |
| int pages = -1; |
| uint64_t bytes_xmit = 0; |
| uint8_t *p; |
| int ret, blen; |
| RAMBlock *block = pss->block; |
| ram_addr_t offset = pss->page << TARGET_PAGE_BITS; |
| |
| p = block->host + offset; |
| |
| ret = ram_control_save_page(rs->f, block->offset, |
| offset, TARGET_PAGE_SIZE, &bytes_xmit); |
| if (bytes_xmit) { |
| ram_counters.transferred += bytes_xmit; |
| pages = 1; |
| } |
| if (ret != RAM_SAVE_CONTROL_NOT_SUPP) { |
| if (ret != RAM_SAVE_CONTROL_DELAYED) { |
| if (bytes_xmit > 0) { |
| ram_counters.normal++; |
| } else if (bytes_xmit == 0) { |
| ram_counters.duplicate++; |
| } |
| } |
| } else { |
| /* When starting the process of a new block, the first page of |
| * the block should be sent out before other pages in the same |
| * block, and all the pages in last block should have been sent |
| * out, keeping this order is important, because the 'cont' flag |
| * is used to avoid resending the block name. |
| */ |
| if (block != rs->last_sent_block) { |
| flush_compressed_data(rs); |
| pages = save_zero_page(rs, block, offset, p); |
| if (pages == -1) { |
| /* Make sure the first page is sent out before other pages */ |
| bytes_xmit = save_page_header(rs, rs->f, block, offset | |
| RAM_SAVE_FLAG_COMPRESS_PAGE); |
| blen = qemu_put_compression_data(rs->f, p, TARGET_PAGE_SIZE, |
| migrate_compress_level()); |
| if (blen > 0) { |
| ram_counters.transferred += bytes_xmit + blen; |
| ram_counters.normal++; |
| pages = 1; |
| } else { |
| qemu_file_set_error(rs->f, blen); |
| error_report("compressed data failed!"); |
| } |
| } |
| if (pages > 0) { |
| ram_release_pages(block->idstr, offset, pages); |
| } |
| } else { |
| pages = save_zero_page(rs, block, offset, p); |
| if (pages == -1) { |
| pages = compress_page_with_multi_thread(rs, block, offset); |
| } else { |
| ram_release_pages(block->idstr, offset, pages); |
| } |
| } |
| } |
| |
| return pages; |
| } |
| |
| /** |
| * find_dirty_block: find the next dirty page and update any state |
| * associated with the search process. |
| * |
| * Returns if a page is found |
| * |
| * @rs: current RAM state |
| * @pss: data about the state of the current dirty page scan |
| * @again: set to false if the search has scanned the whole of RAM |
| */ |
| static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again) |
| { |
| pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page); |
| if (pss->complete_round && pss->block == rs->last_seen_block && |
| pss->page >= rs->last_page) { |
| /* |
| * We've been once around the RAM and haven't found anything. |
| * Give up. |
| */ |
| *again = false; |
| return false; |
| } |
| if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) { |
| /* Didn't find anything in this RAM Block */ |
| pss->page = 0; |
| pss->block = QLIST_NEXT_RCU(pss->block, next); |
| if (!pss->block) { |
| /* Hit the end of the list */ |
| pss->block = QLIST_FIRST_RCU(&ram_list.blocks); |
| /* Flag that we've looped */ |
| pss->complete_round = true; |
| rs->ram_bulk_stage = false; |
| if (migrate_use_xbzrle()) { |
| /* If xbzrle is on, stop using the data compression at this |
| * point. In theory, xbzrle can do better than compression. |
| */ |
| flush_compressed_data(rs); |
| } |
| } |
| /* Didn't find anything this time, but try again on the new block */ |
| *again = true; |
| return false; |
| } else { |
| /* Can go around again, but... */ |
| *again = true; |
| /* We've found something so probably don't need to */ |
| return true; |
| } |
| } |
| |
| /** |
| * unqueue_page: gets a page of the queue |
| * |
| * Helper for 'get_queued_page' - gets a page off the queue |
| * |
| * Returns the block of the page (or NULL if none available) |
| * |
| * @rs: current RAM state |
| * @offset: used to return the offset within the RAMBlock |
| */ |
| static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) |
| { |
| RAMBlock *block = NULL; |
| |
| qemu_mutex_lock(&rs->src_page_req_mutex); |
| if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) { |
| struct RAMSrcPageRequest *entry = |
| QSIMPLEQ_FIRST(&rs->src_page_requests); |
| block = entry->rb; |
| *offset = entry->offset; |
| |
| if (entry->len > TARGET_PAGE_SIZE) { |
| entry->len -= TARGET_PAGE_SIZE; |
| entry->offset += TARGET_PAGE_SIZE; |
| } else { |
| memory_region_unref(block->mr); |
| QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); |
| g_free(entry); |
| } |
| } |
| qemu_mutex_unlock(&rs->src_page_req_mutex); |
| |
| return block; |
| } |
| |
| /** |
| * get_queued_page: unqueue a page from the postocpy requests |
| * |
| * Skips pages that are already sent (!dirty) |
| * |
| * Returns if a queued page is found |
| * |
| * @rs: current RAM state |
| * @pss: data about the state of the current dirty page scan |
| */ |
| static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) |
| { |
| RAMBlock *block; |
| ram_addr_t offset; |
| bool dirty; |
| |
| do { |
| block = unqueue_page(rs, &offset); |
| /* |
| * We're sending this page, and since it's postcopy nothing else |
| * will dirty it, and we must make sure it doesn't get sent again |
| * even if this queue request was received after the background |
| * search already sent it. |
| */ |
| if (block) { |
| unsigned long page; |
| |
| page = offset >> TARGET_PAGE_BITS; |
| dirty = test_bit(page, block->bmap); |
| if (!dirty) { |
| trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, |
| page, test_bit(page, block->unsentmap)); |
| } else { |
| trace_get_queued_page(block->idstr, (uint64_t)offset, page); |
| } |
| } |
| |
| } while (block && !dirty); |
| |
| if (block) { |
| /* |
| * As soon as we start servicing pages out of order, then we have |
| * to kill the bulk stage, since the bulk stage assumes |
| * in (migration_bitmap_find_and_reset_dirty) that every page is |
| * dirty, that's no longer true. |
| */ |
| rs->ram_bulk_stage = false; |
| |
| /* |
| * We want the background search to continue from the queued page |
| * since the guest is likely to want other pages near to the page |
| * it just requested. |
| */ |
| pss->block = block; |
| pss->page = offset >> TARGET_PAGE_BITS; |
| } |
| |
| return !!block; |
| } |
| |
| /** |
| * migration_page_queue_free: drop any remaining pages in the ram |
| * request queue |
| * |
| * It should be empty at the end anyway, but in error cases there may |
| * be some left. in case that there is any page left, we drop it. |
| * |
| */ |
| static void migration_page_queue_free(RAMState *rs) |
| { |
| struct RAMSrcPageRequest *mspr, *next_mspr; |
| /* This queue generally should be empty - but in the case of a failed |
| * migration might have some droppings in. |
| */ |
| rcu_read_lock(); |
| QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { |
| memory_region_unref(mspr->rb->mr); |
| QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); |
| g_free(mspr); |
| } |
| rcu_read_unlock(); |
| } |
| |
| /** |
| * ram_save_queue_pages: queue the page for transmission |
| * |
| * A request from postcopy destination for example. |
| * |
| * Returns zero on success or negative on error |
| * |
| * @rbname: Name of the RAMBLock of the request. NULL means the |
| * same that last one. |
| * @start: starting address from the start of the RAMBlock |
| * @len: length (in bytes) to send |
| */ |
| int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len) |
| { |
| RAMBlock *ramblock; |
| RAMState *rs = ram_state; |
| |
| ram_counters.postcopy_requests++; |
| rcu_read_lock(); |
| if (!rbname) { |
| /* Reuse last RAMBlock */ |
| ramblock = rs->last_req_rb; |
| |
| if (!ramblock) { |
| /* |
| * Shouldn't happen, we can't reuse the last RAMBlock if |
| * it's the 1st request. |
| */ |
| error_report("ram_save_queue_pages no previous block"); |
| goto err; |
| } |
| } else { |
| ramblock = qemu_ram_block_by_name(rbname); |
| |
| if (!ramblock) { |
| /* We shouldn't be asked for a non-existent RAMBlock */ |
| error_report("ram_save_queue_pages no block '%s'", rbname); |
| goto err; |
| } |
| rs->last_req_rb = ramblock; |
| } |
| trace_ram_save_queue_pages(ramblock->idstr, start, len); |
| if (start+len > ramblock->used_length) { |
| error_report("%s request overrun start=" RAM_ADDR_FMT " len=" |
| RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, |
| __func__, start, len, ramblock->used_length); |
| goto err; |
| } |
| |
| struct RAMSrcPageRequest *new_entry = |
| g_malloc0(sizeof(struct RAMSrcPageRequest)); |
| new_entry->rb = ramblock; |
| new_entry->offset = start; |
| new_entry->len = len; |
| |
| memory_region_ref(ramblock->mr); |
| qemu_mutex_lock(&rs->src_page_req_mutex); |
| QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); |
| qemu_mutex_unlock(&rs->src_page_req_mutex); |
| rcu_read_unlock(); |
| |
| return 0; |
| |
| err: |
| rcu_read_unlock(); |
| return -1; |
| } |
| |
| /** |
| * ram_save_target_page: save one target page |
| * |
| * Returns the number of pages written |
| * |
| * @rs: current RAM state |
| * @ms: current migration state |
| * @pss: data about the page we want to send |
| * @last_stage: if we are at the completion stage |
| */ |
| static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss, |
| bool last_stage) |
| { |
| int res = 0; |
| |
| /* Check the pages is dirty and if it is send it */ |
| if (migration_bitmap_clear_dirty(rs, pss->block, pss->page)) { |
| /* |
| * If xbzrle is on, stop using the data compression after first |
| * round of migration even if compression is enabled. In theory, |
| * xbzrle can do better than compression. |
| */ |
| if (migrate_use_compression() && |
| (rs->ram_bulk_stage || !migrate_use_xbzrle())) { |
| res = ram_save_compressed_page(rs, pss, last_stage); |
| } else { |
| res = ram_save_page(rs, pss, last_stage); |
| } |
| |
| if (res < 0) { |
| return res; |
| } |
| if (pss->block->unsentmap) { |
| clear_bit(pss->page, pss->block->unsentmap); |
| } |
| } |
| |
| return res; |
| } |
| |
| /** |
| * ram_save_host_page: save a whole host page |
| * |
| * Starting at *offset send pages up to the end of the current host |
| * page. It's valid for the initial offset to point into the middle of |
| * a host page in which case the remainder of the hostpage is sent. |
| * Only dirty target pages are sent. Note that the host page size may |
| * be a huge page for this block. |
| * The saving stops at the boundary of the used_length of the block |
| * if the RAMBlock isn't a multiple of the host page size. |
| * |
| * Returns the number of pages written or negative on error |
| * |
| * @rs: current RAM state |
| * @ms: current migration state |
| * @pss: data about the page we want to send |
| * @last_stage: if we are at the completion stage |
| */ |
| static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss, |
| bool last_stage) |
| { |
| int tmppages, pages = 0; |
| size_t pagesize_bits = |
| qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; |
| |
| do { |
| tmppages = ram_save_target_page(rs, pss, last_stage); |
| if (tmppages < 0) { |
| return tmppages; |
| } |
| |
| pages += tmppages; |
| pss->page++; |
| } while ((pss->page & (pagesize_bits - 1)) && |
| offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS)); |
| |
| /* The offset we leave with is the last one we looked at */ |
| pss->page--; |
| return pages; |
| } |
| |
| /** |
| * ram_find_and_save_block: finds a dirty page and sends it to f |
| * |
| * Called within an RCU critical section. |
| * |
| * Returns the number of pages written where zero means no dirty pages |
| * |
| * @rs: current RAM state |
| * @last_stage: if we are at the completion stage |
| * |
| * On systems where host-page-size > target-page-size it will send all the |
| * pages in a host page that are dirty. |
| */ |
| |
| static int ram_find_and_save_block(RAMState *rs, bool last_stage) |
| { |
| PageSearchStatus pss; |
| int pages = 0; |
| bool again, found; |
| |
| /* No dirty page as there is zero RAM */ |
| if (!ram_bytes_total()) { |
| return pages; |
| } |
| |
| pss.block = rs->last_seen_block; |
| pss.page = rs->last_page; |
| pss.complete_round = false; |
| |
| if (!pss.block) { |
| pss.block = QLIST_FIRST_RCU(&ram_list.blocks); |
| } |
| |
| do { |
| again = true; |
| found = get_queued_page(rs, &pss); |
| |
| if (!found) { |
| /* priority queue empty, so just search for something dirty */ |
| found = find_dirty_block(rs, &pss, &again); |
| } |
| |
| if (found) { |
| pages = ram_save_host_page(rs, &pss, last_stage); |
| } |
| } while (!pages && again); |
| |
| rs->last_seen_block = pss.block; |
| rs->last_page = pss.page; |
| |
| return pages; |
| } |
| |
| void acct_update_position(QEMUFile *f, size_t size, bool zero) |
| { |
| uint64_t pages = size / TARGET_PAGE_SIZE; |
| |
| if (zero) { |
| ram_counters.duplicate += pages; |
| } else { |
| ram_counters.normal += pages; |
| ram_counters.transferred += size; |
| qemu_update_position(f, size); |
| } |
| } |
| |
| uint64_t ram_bytes_total(void) |
| { |
| RAMBlock *block; |
| uint64_t total = 0; |
| |
| rcu_read_lock(); |
| RAMBLOCK_FOREACH(block) { |
| total += block->used_length; |
| } |
| rcu_read_unlock(); |
| return total; |
| } |
| |
| void free_xbzrle_decoded_buf(void) |
| { |
| g_free(xbzrle_decoded_buf); |
| xbzrle_decoded_buf = NULL; |
| } |
| |
| static void ram_migration_cleanup(void *opaque) |
| { |
| RAMState **rsp = opaque; |
| RAMBlock *block; |
| |
| /* caller have hold iothread lock or is in a bh, so there is |
| * no writing race against this migration_bitmap |
| */ |
| memory_global_dirty_log_stop(); |
| |
| QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
| g_free(block->bmap); |
| block->bmap = NULL; |
| g_free(block->unsentmap); |
| block->unsentmap = NULL; |
| } |
| |
| XBZRLE_cache_lock(); |
| if (XBZRLE.cache) { |
| cache_fini(XBZRLE.cache); |
| g_free(XBZRLE.encoded_buf); |
| g_free(XBZRLE.current_buf); |
| g_free(XBZRLE.zero_target_page); |
| XBZRLE.cache = NULL; |
| XBZRLE.encoded_buf = NULL; |
| XBZRLE.current_buf = NULL; |
| XBZRLE.zero_target_page = NULL; |
| } |
| XBZRLE_cache_unlock(); |
| migration_page_queue_free(*rsp); |
| g_free(*rsp); |
| *rsp = NULL; |
| } |
| |
| static void ram_state_reset(RAMState *rs) |
| { |
| rs->last_seen_block = NULL; |
| rs->last_sent_block = NULL; |
| rs->last_page = 0; |
| rs->last_version = ram_list.version; |
| rs->ram_bulk_stage = true; |
| } |
| |
| #define MAX_WAIT 50 /* ms, half buffered_file limit */ |
| |
| /* |
| * 'expected' is the value you expect the bitmap mostly to be full |
| * of; it won't bother printing lines that are all this value. |
| * If 'todump' is null the migration bitmap is dumped. |
| */ |
| void ram_debug_dump_bitmap(unsigned long *todump, bool expected, |
| unsigned long pages) |
| { |
| int64_t cur; |
| int64_t linelen = 128; |
| char linebuf[129]; |
| |
| for (cur = 0; cur < pages; cur += linelen) { |
| int64_t curb; |
| bool found = false; |
| /* |
| * Last line; catch the case where the line length |
| * is longer than remaining ram |
| */ |
| if (cur + linelen > pages) { |
| linelen = pages - cur; |
| } |
| for (curb = 0; curb < linelen; curb++) { |
| bool thisbit = test_bit(cur + curb, todump); |
| linebuf[curb] = thisbit ? '1' : '.'; |
| found = found || (thisbit != expected); |
| } |
| if (found) { |
| linebuf[curb] = '\0'; |
| fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf); |
| } |
| } |
| } |
| |
| /* **** functions for postcopy ***** */ |
| |
| void ram_postcopy_migrated_memory_release(MigrationState *ms) |
| { |
| struct RAMBlock *block; |
| |
| RAMBLOCK_FOREACH(block) { |
| unsigned long *bitmap = block->bmap; |
| unsigned long range = block->used_length >> TARGET_PAGE_BITS; |
| unsigned long run_start = find_next_zero_bit(bitmap, range, 0); |
| |
| while (run_start < range) { |
| unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); |
| ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS, |
| (run_end - run_start) << TARGET_PAGE_BITS); |
| run_start = find_next_zero_bit(bitmap, range, run_end + 1); |
| } |
| } |
| } |
| |
| /** |
| * postcopy_send_discard_bm_ram: discard a RAMBlock |
| * |
| * Returns zero on success |
| * |
| * Callback from postcopy_each_ram_send_discard for each RAMBlock |
| * Note: At this point the 'unsentmap' is the processed bitmap combined |
| * with the dirtymap; so a '1' means it's either dirty or unsent. |
| * |
| * @ms: current migration state |
| * @pds: state for postcopy |
| * @start: RAMBlock starting page |
| * @length: RAMBlock size |
| */ |
| static int postcopy_send_discard_bm_ram(MigrationState *ms, |
| PostcopyDiscardState *pds, |
| RAMBlock *block) |
| { |
| unsigned long end = block->used_length >> TARGET_PAGE_BITS; |
| unsigned long current; |
| unsigned long *unsentmap = block->unsentmap; |
| |
| for (current = 0; current < end; ) { |
| unsigned long one = find_next_bit(unsentmap, end, current); |
| |
| if (one <= end) { |
| unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1); |
| unsigned long discard_length; |
| |
| if (zero >= end) { |
| discard_length = end - one; |
| } else { |
| discard_length = zero - one; |
| } |
| if (discard_length) { |
| postcopy_discard_send_range(ms, pds, one, discard_length); |
| } |
| current = one + discard_length; |
| } else { |
| current = one; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * postcopy_each_ram_send_discard: discard all RAMBlocks |
| * |
| * Returns 0 for success or negative for error |
| * |
| * Utility for the outgoing postcopy code. |
| * Calls postcopy_send_discard_bm_ram for each RAMBlock |
| * passing it bitmap indexes and name. |
| * (qemu_ram_foreach_block ends up passing unscaled lengths |
| * which would mean postcopy code would have to deal with target page) |
| * |
| * @ms: current migration state |
| */ |
| static int postcopy_each_ram_send_discard(MigrationState *ms) |
| { |
| struct RAMBlock *block; |
| int ret; |
| |
| RAMBLOCK_FOREACH(block) { |
| PostcopyDiscardState *pds = |
| postcopy_discard_send_init(ms, block->idstr); |
| |
| /* |
| * Postcopy sends chunks of bitmap over the wire, but it |
| * just needs indexes at this point, avoids it having |
| * target page specific code. |
| */ |
| ret = postcopy_send_discard_bm_ram(ms, pds, block); |
| postcopy_discard_send_finish(ms, pds); |
| if (ret) { |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages |
| * |
| * Helper for postcopy_chunk_hostpages; it's called twice to |
| * canonicalize the two bitmaps, that are similar, but one is |
| * inverted. |
| * |
| * Postcopy requires that all target pages in a hostpage are dirty or |
| * clean, not a mix. This function canonicalizes the bitmaps. |
| * |
| * @ms: current migration state |
| * @unsent_pass: if true we need to canonicalize partially unsent host pages |
| * otherwise we need to canonicalize partially dirty host pages |
| * @block: block that contains the page we want to canonicalize |
| * @pds: state for postcopy |
| */ |
| static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass, |
| RAMBlock *block, |
| PostcopyDiscardState *pds) |
| { |
| RAMState *rs = ram_state; |
| unsigned long *bitmap = block->bmap; |
| unsigned long *unsentmap = block->unsentmap; |
| unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; |
| unsigned long pages = block->used_length >> TARGET_PAGE_BITS; |
| unsigned long run_start; |
| |
| if (block->page_size == TARGET_PAGE_SIZE) { |
| /* Easy case - TPS==HPS for a non-huge page RAMBlock */ |
| return; |
| } |
| |
| if (unsent_pass) { |
| /* Find a sent page */ |
| run_start = find_next_zero_bit(unsentmap, pages, 0); |
| } else { |
| /* Find a dirty page */ |
| run_start = find_next_bit(bitmap, pages, 0); |
| } |
| |
| while (run_start < pages) { |
| bool do_fixup = false; |
| unsigned long fixup_start_addr; |
| unsigned long host_offset; |
| |
| /* |
| * If the start of this run of pages is in the middle of a host |
| * page, then we need to fixup this host page. |
| */ |
| host_offset = run_start % host_ratio; |
| if (host_offset) { |
| do_fixup = true; |
| run_start -= host_offset; |
| fixup_start_addr = run_start; |
| /* For the next pass */ |
| run_start = run_start + host_ratio; |
| } else { |
| /* Find the end of this run */ |
| unsigned long run_end; |
| if (unsent_pass) { |
| run_end = find_next_bit(unsentmap, pages, run_start + 1); |
| } else { |
| run_end = find_next_zero_bit(bitmap, pages, run_start + 1); |
| } |
| /* |
| * If the end isn't at the start of a host page, then the |
| * run doesn't finish at the end of a host page |
| * and we need to discard. |
| */ |
| host_offset = run_end % host_ratio; |
| if (host_offset) { |
| do_fixup = true; |
| fixup_start_addr = run_end - host_offset; |
| /* |
| * This host page has gone, the next loop iteration starts |
| * from after the fixup |
| */ |
| run_start = fixup_start_addr + host_ratio; |
| } else { |
| /* |
| * No discards on this iteration, next loop starts from |
| * next sent/dirty page |
| */ |
| run_start = run_end + 1; |
| } |
| } |
| |
| if (do_fixup) { |
| unsigned long page; |
| |
| /* Tell the destination to discard this page */ |
| if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) { |
| /* For the unsent_pass we: |
| * discard partially sent pages |
| * For the !unsent_pass (dirty) we: |
| * discard partially dirty pages that were sent |
| * (any partially sent pages were already discarded |
| * by the previous unsent_pass) |
| */ |
| postcopy_discard_send_range(ms, pds, fixup_start_addr, |
| host_ratio); |
| } |
| |
| /* Clean up the bitmap */ |
| for (page = fixup_start_addr; |
| page < fixup_start_addr + host_ratio; page++) { |
| /* All pages in this host page are now not sent */ |
| set_bit(page, unsentmap); |
| |
| /* |
| * Remark them as dirty, updating the count for any pages |
| * that weren't previously dirty. |
| */ |
| rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); |
| } |
| } |
| |
| if (unsent_pass) { |
| /* Find the next sent page for the next iteration */ |
| run_start = find_next_zero_bit(unsentmap, pages, run_start); |
| } else { |
| /* Find the next dirty page for the next iteration */ |
| run_start = find_next_bit(bitmap, pages, run_start); |
| } |
| } |
| } |
| |
| /** |
| * postcopy_chuck_hostpages: discrad any partially sent host page |
| * |
| * Utility for the outgoing postcopy code. |
| * |
| * Discard any partially sent host-page size chunks, mark any partially |
| * dirty host-page size chunks as all dirty. In this case the host-page |
| * is the host-page for the particular RAMBlock, i.e. it might be a huge page |
| * |
| * Returns zero on success |
| * |
| * @ms: current migration state |
| * @block: block we want to work with |
| */ |
| static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block) |
| { |
| PostcopyDiscardState *pds = |
| postcopy_discard_send_init(ms, block->idstr); |
| |
| /* First pass: Discard all partially sent host pages */ |
| postcopy_chunk_hostpages_pass(ms, true, block, pds); |
| /* |
| * Second pass: Ensure that all partially dirty host pages are made |
| * fully dirty. |
| */ |
| postcopy_chunk_hostpages_pass(ms, false, block, pds); |
| |
| postcopy_discard_send_finish(ms, pds); |
| return 0; |
| } |
| |
| /** |
| * ram_postcopy_send_discard_bitmap: transmit the discard bitmap |
| * |
| * Returns zero on success |
| * |
| * Transmit the set of pages to be discarded after precopy to the target |
| * these are pages that: |
| * a) Have been previously transmitted but are now dirty again |
| * b) Pages that have never been transmitted, this ensures that |
| * any pages on the destination that have been mapped by background |
| * tasks get discarded (transparent huge pages is the specific concern) |
| * Hopefully this is pretty sparse |
| * |
| * @ms: current migration state |
| */ |
| int ram_postcopy_send_discard_bitmap(MigrationState *ms) |
| { |
| RAMState *rs = ram_state; |
| RAMBlock *block; |
| int ret; |
| |
| rcu_read_lock(); |
| |
| /* This should be our last sync, the src is now paused */ |
| migration_bitmap_sync(rs); |
| |
| /* Easiest way to make sure we don't resume in the middle of a host-page */ |
| rs->last_seen_block = NULL; |
| rs->last_sent_block = NULL; |
| rs->last_page = 0; |
| |
| QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
| unsigned long pages = block->used_length >> TARGET_PAGE_BITS; |
| unsigned long *bitmap = block->bmap; |
| unsigned long *unsentmap = block->unsentmap; |
| |
| if (!unsentmap) { |
| /* We don't have a safe way to resize the sentmap, so |
| * if the bitmap was resized it will be NULL at this |
| * point. |
| */ |
| error_report("migration ram resized during precopy phase"); |
| rcu_read_unlock(); |
| return -EINVAL; |
| } |
| /* Deal with TPS != HPS and huge pages */ |
| ret = postcopy_chunk_hostpages(ms, block); |
| if (ret) { |
| rcu_read_unlock(); |
| return ret; |
| } |
| |
| /* |
| * Update the unsentmap to be unsentmap = unsentmap | dirty |
| */ |
| bitmap_or(unsentmap, unsentmap, bitmap, pages); |
| #ifdef DEBUG_POSTCOPY |
| ram_debug_dump_bitmap(unsentmap, true, pages); |
| #endif |
| } |
| trace_ram_postcopy_send_discard_bitmap(); |
| |
| ret = postcopy_each_ram_send_discard(ms); |
| rcu_read_unlock(); |
| |
| return ret; |
| } |
| |
| /** |
| * ram_discard_range: discard dirtied pages at the beginning of postcopy |
| * |
| * Returns zero on success |
| * |
| * @rbname: name of the RAMBlock of the request. NULL means the |
| * same that last one. |
| * @start: RAMBlock starting page |
| * @length: RAMBlock size |
| */ |
| int ram_discard_range(const char *rbname, uint64_t start, size_t length) |
| { |
| int ret = -1; |
| |
| trace_ram_discard_range(rbname, start, length); |
| |
| rcu_read_lock(); |
| RAMBlock *rb = qemu_ram_block_by_name(rbname); |
| |
| if (!rb) { |
| error_report("ram_discard_range: Failed to find block '%s'", rbname); |
| goto err; |
| } |
| |
| ret = ram_block_discard_range(rb, start, length); |
| |
| err: |
| rcu_read_unlock(); |
| |
| return ret; |
| } |
| |
| static int ram_state_init(RAMState **rsp) |
| { |
| *rsp = g_new0(RAMState, 1); |
| |
| qemu_mutex_init(&(*rsp)->bitmap_mutex); |
| qemu_mutex_init(&(*rsp)->src_page_req_mutex); |
| QSIMPLEQ_INIT(&(*rsp)->src_page_requests); |
| |
| if (migrate_use_xbzrle()) { |
| XBZRLE_cache_lock(); |
| XBZRLE.zero_target_page = g_malloc0(TARGET_PAGE_SIZE); |
| XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() / |
| TARGET_PAGE_SIZE, |
| TARGET_PAGE_SIZE); |
| if (!XBZRLE.cache) { |
| XBZRLE_cache_unlock(); |
| error_report("Error creating cache"); |
| g_free(*rsp); |
| *rsp = NULL; |
| return -1; |
| } |
| XBZRLE_cache_unlock(); |
| |
| /* We prefer not to abort if there is no memory */ |
| XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); |
| if (!XBZRLE.encoded_buf) { |
| error_report("Error allocating encoded_buf"); |
| g_free(*rsp); |
| *rsp = NULL; |
| return -1; |
| } |
| |
| XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); |
| if (!XBZRLE.current_buf) { |
| error_report("Error allocating current_buf"); |
| g_free(XBZRLE.encoded_buf); |
| XBZRLE.encoded_buf = NULL; |
| g_free(*rsp); |
| *rsp = NULL; |
| return -1; |
| } |
| } |
| |
| /* For memory_global_dirty_log_start below. */ |
| qemu_mutex_lock_iothread(); |
| |
| qemu_mutex_lock_ramlist(); |
| rcu_read_lock(); |
| ram_state_reset(*rsp); |
| |
| /* Skip setting bitmap if there is no RAM */ |
| if (ram_bytes_total()) { |
| RAMBlock *block; |
| |
| QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
| unsigned long pages = block->max_length >> TARGET_PAGE_BITS; |
| |
| block->bmap = bitmap_new(pages); |
| bitmap_set(block->bmap, 0, pages); |
| if (migrate_postcopy_ram()) { |
| block->unsentmap = bitmap_new(pages); |
| bitmap_set(block->unsentmap, 0, pages); |
| } |
| } |
| } |
| |
| /* |
| * Count the total number of pages used by ram blocks not including any |
| * gaps due to alignment or unplugs. |
| */ |
| (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS; |
| |
| memory_global_dirty_log_start(); |
| migration_bitmap_sync(*rsp); |
| qemu_mutex_unlock_ramlist(); |
| qemu_mutex_unlock_iothread(); |
| rcu_read_unlock(); |
| |
| return 0; |
| } |
| |
| /* |
| * Each of ram_save_setup, ram_save_iterate and ram_save_complete has |
| * long-running RCU critical section. When rcu-reclaims in the code |
| * start to become numerous it will be necessary to reduce the |
| * granularity of these critical sections. |
| */ |
| |
| /** |
| * ram_save_setup: Setup RAM for migration |
| * |
| * Returns zero to indicate success and negative for error |
| * |
| * @f: QEMUFile where to send the data |
| * @opaque: RAMState pointer |
| */ |
| static int ram_save_setup(QEMUFile *f, void *opaque) |
| { |
| RAMState **rsp = opaque; |
| RAMBlock *block; |
| |
| /* migration has already setup the bitmap, reuse it. */ |
| if (!migration_in_colo_state()) { |
| if (ram_state_init(rsp) != 0) { |
| return -1; |
| } |
| } |
| (*rsp)->f = f; |
| |
| rcu_read_lock(); |
| |
| qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE); |
| |
| RAMBLOCK_FOREACH(block) { |
| qemu_put_byte(f, strlen(block->idstr)); |
| qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); |
| qemu_put_be64(f, block->used_length); |
| if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) { |
| qemu_put_be64(f, block->page_size); |
| } |
| } |
| |
| rcu_read_unlock(); |
| |
| ram_control_before_iterate(f, RAM_CONTROL_SETUP); |
| ram_control_after_iterate(f, RAM_CONTROL_SETUP); |
| |
| qemu_put_be64(f, RAM_SAVE_FLAG_EOS); |
| |
| return 0; |
| } |
| |
| /** |
| * ram_save_iterate: iterative stage for migration |
| * |
| * Returns zero to indicate success and negative for error |
| * |
| * @f: QEMUFile where to send the data |
| * @opaque: RAMState pointer |
| */ |
| static int ram_save_iterate(QEMUFile *f, void *opaque) |
| { |
| RAMState **temp = opaque; |
| RAMState *rs = *temp; |
| int ret; |
| int i; |
| int64_t t0; |
| int done = 0; |
| |
| rcu_read_lock(); |
| if (ram_list.version != rs->last_version) { |
| ram_state_reset(rs); |
| } |
| |
| /* Read version before ram_list.blocks */ |
| smp_rmb(); |
| |
| ram_control_before_iterate(f, RAM_CONTROL_ROUND); |
| |
| t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); |
| i = 0; |
| while ((ret = qemu_file_rate_limit(f)) == 0) { |
| int pages; |
| |
| pages = ram_find_and_save_block(rs, false); |
| /* no more pages to sent */ |
| if (pages == 0) { |
| done = 1; |
| break; |
| } |
| rs->iterations++; |
| |
| /* we want to check in the 1st loop, just in case it was the 1st time |
| and we had to sync the dirty bitmap. |
| qemu_get_clock_ns() is a bit expensive, so we only check each some |
| iterations |
| */ |
| if ((i & 63) == 0) { |
| uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000; |
| if (t1 > MAX_WAIT) { |
| trace_ram_save_iterate_big_wait(t1, i); |
| break; |
| } |
| } |
| i++; |
| } |
| flush_compressed_data(rs); |
| rcu_read_unlock(); |
| |
| /* |
| * Must occur before EOS (or any QEMUFile operation) |
| * because of RDMA protocol. |
| */ |
| ram_control_after_iterate(f, RAM_CONTROL_ROUND); |
| |
| qemu_put_be64(f, RAM_SAVE_FLAG_EOS); |
| ram_counters.transferred += 8; |
| |
| ret = qemu_file_get_error(f); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| return done; |
| } |
| |
| /** |
| * ram_save_complete: function called to send the remaining amount of ram |
| * |
| * Returns zero to indicate success |
| * |
| * Called with iothread lock |
| * |
| * @f: QEMUFile where to send the data |
| * @opaque: RAMState pointer |
| */ |
| static int ram_save_complete(QEMUFile *f, void *opaque) |
| { |
| RAMState **temp = opaque; |
| RAMState *rs = *temp; |
| |
| rcu_read_lock(); |
| |
| if (!migration_in_postcopy()) { |
| migration_bitmap_sync(rs); |
| } |
| |
| ram_control_before_iterate(f, RAM_CONTROL_FINISH); |
| |
| /* try transferring iterative blocks of memory */ |
| |
| /* flush all remaining blocks regardless of rate limiting */ |
| while (true) { |
| int pages; |
| |
| pages = ram_find_and_save_block(rs, !migration_in_colo_state()); |
| /* no more blocks to sent */ |
| if (pages == 0) { |
| break; |
| } |
| } |
| |
| flush_compressed_data(rs); |
| ram_control_after_iterate(f, RAM_CONTROL_FINISH); |
| |
| rcu_read_unlock(); |
| |
| qemu_put_be64(f, RAM_SAVE_FLAG_EOS); |
| |
| return 0; |
| } |
| |
| static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size, |
| uint64_t *non_postcopiable_pending, |
| uint64_t *postcopiable_pending) |
| { |
| RAMState **temp = opaque; |
| RAMState *rs = *temp; |
| uint64_t remaining_size; |
| |
| remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; |
| |
| if (!migration_in_postcopy() && |
| remaining_size < max_size) { |
| qemu_mutex_lock_iothread(); |
| rcu_read_lock(); |
| migration_bitmap_sync(rs); |
| rcu_read_unlock(); |
| qemu_mutex_unlock_iothread(); |
| remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; |
| } |
| |
| /* We can do postcopy, and all the data is postcopiable */ |
| *postcopiable_pending += remaining_size; |
| } |
| |
| static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) |
| { |
| unsigned int xh_len; |
| int xh_flags; |
| uint8_t *loaded_data; |
| |
| if (!xbzrle_decoded_buf) { |
| xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE); |
| } |
| loaded_data = xbzrle_decoded_buf; |
| |
| /* extract RLE header */ |
| xh_flags = qemu_get_byte(f); |
| xh_len = qemu_get_be16(f); |
| |
| if (xh_flags != ENCODING_FLAG_XBZRLE) { |
| error_report("Failed to load XBZRLE page - wrong compression!"); |
| return -1; |
| } |
| |
| if (xh_len > TARGET_PAGE_SIZE) { |
| error_report("Failed to load XBZRLE page - len overflow!"); |
| return -1; |
| } |
| /* load data and decode */ |
| qemu_get_buffer_in_place(f, &loaded_data, xh_len); |
| |
| /* decode RLE */ |
| if (xbzrle_decode_buffer(loaded_data, xh_len, host, |
| TARGET_PAGE_SIZE) == -1) { |
| error_report("Failed to load XBZRLE page - decode error!"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ram_block_from_stream: read a RAMBlock id from the migration stream |
| * |
| * Must be called from within a rcu critical section. |
| * |
| * Returns a pointer from within the RCU-protected ram_list. |
| * |
| * @f: QEMUFile where to read the data from |
| * @flags: Page flags (mostly to see if it's a continuation of previous block) |
| */ |
| static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags) |
| { |
| static RAMBlock *block = NULL; |
| char id[256]; |
| uint8_t len; |
| |
| if (flags & RAM_SAVE_FLAG_CONTINUE) { |
| if (!block) { |
| error_report("Ack, bad migration stream!"); |
| return NULL; |
| } |
| return block; |
| } |
| |
| len = qemu_get_byte(f); |
| qemu_get_buffer(f, (uint8_t *)id, len); |
| id[len] = 0; |
| |
| block = qemu_ram_block_by_name(id); |
| if (!block) { |
| error_report("Can't find block %s", id); |
| return NULL; |
| } |
| |
| return block; |
| } |
| |
| static inline void *host_from_ram_block_offset(RAMBlock *block, |
| ram_addr_t offset) |
| { |
| if (!offset_in_ramblock(block, offset)) { |
| return NULL; |
| } |
| |
| return block->host + offset; |
| } |
| |
| /** |
| * ram_handle_compressed: handle the zero page case |
| * |
| * If a page (or a whole RDMA chunk) has been |
| * determined to be zero, then zap it. |
| * |
| * @host: host address for the zero page |
| * @ch: what the page is filled from. We only support zero |
| * @size: size of the zero page |
| */ |
| void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) |
| { |
| if (ch != 0 || !is_zero_range(host, size)) { |
| memset(host, ch, size); |
| } |
| } |
| |
| static void *do_data_decompress(void *opaque) |
| { |
| DecompressParam *param = opaque; |
| unsigned long pagesize; |
| uint8_t *des; |
| int len; |
| |
| qemu_mutex_lock(¶m->mutex); |
| while (!param->quit) { |
| if (param->des) { |
| des = param->des; |
| len = param->len; |
| param->des = 0; |
| qemu_mutex_unlock(¶m->mutex); |
| |
| pagesize = TARGET_PAGE_SIZE; |
| /* uncompress() will return failed in some case, especially |
| * when the page is dirted when doing the compression, it's |
| * not a problem because the dirty page will be retransferred |
| * and uncompress() won't break the data in other pages. |
| */ |
| uncompress((Bytef *)des, &pagesize, |
| (const Bytef *)param->compbuf, len); |
| |
| qemu_mutex_lock(&decomp_done_lock); |
| param->done = true; |
| qemu_cond_signal(&decomp_done_cond); |
| qemu_mutex_unlock(&decomp_done_lock); |
| |
| qemu_mutex_lock(¶m->mutex); |
| } else { |
| qemu_cond_wait(¶m->cond, ¶m->mutex); |
| } |
| } |
| qemu_mutex_unlock(¶m->mutex); |
| |
| return NULL; |
| } |
| |
| static void wait_for_decompress_done(void) |
| { |
| int idx, thread_count; |
| |
| if (!migrate_use_compression()) { |
| return; |
| } |
| |
| thread_count = migrate_decompress_threads(); |
| qemu_mutex_lock(&decomp_done_lock); |
| for (idx = 0; idx < thread_count; idx++) { |
| while (!decomp_param[idx].done) { |
| qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); |
| } |
| } |
| qemu_mutex_unlock(&decomp_done_lock); |
| } |
| |
| void migrate_decompress_threads_create(void) |
| { |
| int i, thread_count; |
| |
| thread_count = migrate_decompress_threads(); |
| decompress_threads = g_new0(QemuThread, thread_count); |
| decomp_param = g_new0(DecompressParam, thread_count); |
| qemu_mutex_init(&decomp_done_lock); |
| qemu_cond_init(&decomp_done_cond); |
| for (i = 0; i < thread_count; i++) { |
| qemu_mutex_init(&decomp_param[i].mutex); |
| qemu_cond_init(&decomp_param[i].cond); |
| decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); |
| decomp_param[i].done = true; |
| decomp_param[i].quit = false; |
| qemu_thread_create(decompress_threads + i, "decompress", |
| do_data_decompress, decomp_param + i, |
| QEMU_THREAD_JOINABLE); |
| } |
| } |
| |
| void migrate_decompress_threads_join(void) |
| { |
| int i, thread_count; |
| |
| thread_count = migrate_decompress_threads(); |
| for (i = 0; i < thread_count; i++) { |
| qemu_mutex_lock(&decomp_param[i].mutex); |
| decomp_param[i].quit = true; |
| qemu_cond_signal(&decomp_param[i].cond); |
| qemu_mutex_unlock(&decomp_param[i].mutex); |
| } |
| for (i = 0; i < thread_count; i++) { |
| qemu_thread_join(decompress_threads + i); |
| qemu_mutex_destroy(&decomp_param[i].mutex); |
| qemu_cond_destroy(&decomp_param[i].cond); |
| g_free(decomp_param[i].compbuf); |
| } |
| g_free(decompress_threads); |
| g_free(decomp_param); |
| decompress_threads = NULL; |
| decomp_param = NULL; |
| } |
| |
| static void decompress_data_with_multi_threads(QEMUFile *f, |
| void *host, int len) |
| { |
| int idx, thread_count; |
| |
| thread_count = migrate_decompress_threads(); |
| qemu_mutex_lock(&decomp_done_lock); |
| while (true) { |
| for (idx = 0; idx < thread_count; idx++) { |
| if (decomp_param[idx].done) { |
| decomp_param[idx].done = false; |
| qemu_mutex_lock(&decomp_param[idx].mutex); |
| qemu_get_buffer(f, decomp_param[idx].compbuf, len); |
| decomp_param[idx].des = host; |
| decomp_param[idx].len = len; |
| qemu_cond_signal(&decomp_param[idx].cond); |
| qemu_mutex_unlock(&decomp_param[idx].mutex); |
| break; |
| } |
| } |
| if (idx < thread_count) { |
| break; |
| } else { |
| qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); |
| } |
| } |
| qemu_mutex_unlock(&decomp_done_lock); |
| } |
| |
| /** |
| * ram_postcopy_incoming_init: allocate postcopy data structures |
| * |
| * Returns 0 for success and negative if there was one error |
| * |
| * @mis: current migration incoming state |
| * |
| * Allocate data structures etc needed by incoming migration with |
| * postcopy-ram. postcopy-ram's similarly names |
| * postcopy_ram_incoming_init does the work. |
| */ |
| int ram_postcopy_incoming_init(MigrationIncomingState *mis) |
| { |
| unsigned long ram_pages = last_ram_page(); |
| |
| return postcopy_ram_incoming_init(mis, ram_pages); |
| } |
| |
| /** |
| * ram_load_postcopy: load a page in postcopy case |
| * |
| * Returns 0 for success or -errno in case of error |
| * |
| * Called in postcopy mode by ram_load(). |
| * rcu_read_lock is taken prior to this being called. |
| * |
| * @f: QEMUFile where to send the data |
| */ |
| static int ram_load_postcopy(QEMUFile *f) |
| { |
| int flags = 0, ret = 0; |
| bool place_needed = false; |
| bool matching_page_sizes = false; |
| MigrationIncomingState *mis = migration_incoming_get_current(); |
| /* Temporary page that is later 'placed' */ |
| void *postcopy_host_page = postcopy_get_tmp_page(mis); |
| void *last_host = NULL; |
| bool all_zero = false; |
| |
| while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { |
| ram_addr_t addr; |
| void *host = NULL; |
| void *page_buffer = NULL; |
| void *place_source = NULL; |
| RAMBlock *block = NULL; |
| uint8_t ch; |
| |
| addr = qemu_get_be64(f); |
| flags = addr & ~TARGET_PAGE_MASK; |
| addr &= TARGET_PAGE_MASK; |
| |
| trace_ram_load_postcopy_loop((uint64_t)addr, flags); |
| place_needed = false; |
| if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) { |
| block = ram_block_from_stream(f, flags); |
| |
| host = host_from_ram_block_offset(block, addr); |
| if (!host) { |
| error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); |
| ret = -EINVAL; |
| break; |
| } |
| matching_page_sizes = block->page_size == TARGET_PAGE_SIZE; |
| /* |
| * Postcopy requires that we place whole host pages atomically; |
| * these may be huge pages for RAMBlocks that are backed by |
| * hugetlbfs. |
| * To make it atomic, the data is read into a temporary page |
| * that's moved into place later. |
| * The migration protocol uses, possibly smaller, target-pages |
| * however the source ensures it always sends all the components |
| * of a host page in order. |
| */ |
| page_buffer = postcopy_host_page + |
| ((uintptr_t)host & (block->page_size - 1)); |
| /* If all TP are zero then we can optimise the place */ |
| if (!((uintptr_t)host & (block->page_size - 1))) { |
| all_zero = true; |
| } else { |
| /* not the 1st TP within the HP */ |
| if (host != (last_host + TARGET_PAGE_SIZE)) { |
| error_report("Non-sequential target page %p/%p", |
| host, last_host); |
| ret = -EINVAL; |
| break; |
| } |
| } |
| |
| |
| /* |
| * If it's the last part of a host page then we place the host |
| * page |
| */ |
| place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) & |
| (block->page_size - 1)) == 0; |
| place_source = postcopy_host_page; |
| } |
| last_host = host; |
| |
| switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { |
| case RAM_SAVE_FLAG_ZERO: |
| ch = qemu_get_byte(f); |
| memset(page_buffer, ch, TARGET_PAGE_SIZE); |
| if (ch) { |
| all_zero = false; |
| } |
| break; |
| |
| case RAM_SAVE_FLAG_PAGE: |
| all_zero = false; |
| if (!place_needed || !matching_page_sizes) { |
| qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); |
| } else { |
| /* Avoids the qemu_file copy during postcopy, which is |
| * going to do a copy later; can only do it when we |
| * do this read in one go (matching page sizes) |
| */ |
| qemu_get_buffer_in_place(f, (uint8_t **)&place_source, |
| TARGET_PAGE_SIZE); |
| } |
| break; |
| case RAM_SAVE_FLAG_EOS: |
| /* normal exit */ |
| break; |
| default: |
| error_report("Unknown combination of migration flags: %#x" |
| " (postcopy mode)", flags); |
| ret = -EINVAL; |
| } |
| |
| if (place_needed) { |
| /* This gets called at the last target page in the host page */ |
| void *place_dest = host + TARGET_PAGE_SIZE - block->page_size; |
| |
| if (all_zero) { |
| ret = postcopy_place_page_zero(mis, place_dest, |
| block->page_size); |
| } else { |
| ret = postcopy_place_page(mis, place_dest, |
| place_source, block->page_size); |
| } |
| } |
| if (!ret) { |
| ret = qemu_file_get_error(f); |
| } |
| } |
| |
| return ret; |
| } |
| |
| static int ram_load(QEMUFile *f, void *opaque, int version_id) |
| { |
| int flags = 0, ret = 0; |
| static uint64_t seq_iter; |
| int len = 0; |
| /* |
| * If system is running in postcopy mode, page inserts to host memory must |
| * be atomic |
| */ |
| bool postcopy_running = postcopy_state_get() >= POSTCOPY_INCOMING_LISTENING; |
| /* ADVISE is earlier, it shows the source has the postcopy capability on */ |
| bool postcopy_advised = postcopy_state_get() >= POSTCOPY_INCOMING_ADVISE; |
| |
| seq_iter++; |
| |
| if (version_id != 4) { |
| ret = -EINVAL; |
| } |
| |
| /* This RCU critical section can be very long running. |
| * When RCU reclaims in the code start to become numerous, |
| * it will be necessary to reduce the granularity of this |
| * critical section. |
| */ |
| rcu_read_lock(); |
| |
| if (postcopy_running) { |
| ret = ram_load_postcopy(f); |
| } |
| |
| while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) { |
| ram_addr_t addr, total_ram_bytes; |
| void *host = NULL; |
| uint8_t ch; |
| |
| addr = qemu_get_be64(f); |
| flags = addr & ~TARGET_PAGE_MASK; |
| addr &= TARGET_PAGE_MASK; |
| |
| if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | |
| RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { |
| RAMBlock *block = ram_block_from_stream(f, flags); |
| |
| host = host_from_ram_block_offset(block, addr); |
| if (!host) { |
| error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); |
| ret = -EINVAL; |
| break; |
| } |
| trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); |
| } |
| |
| switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { |
| case RAM_SAVE_FLAG_MEM_SIZE: |
| /* Synchronize RAM block list */ |
| total_ram_bytes = addr; |
| while (!ret && total_ram_bytes) { |
| RAMBlock *block; |
| char id[256]; |
| ram_addr_t length; |
| |
| len = qemu_get_byte(f); |
| qemu_get_buffer(f, (uint8_t *)id, len); |
| id[len] = 0; |
| length = qemu_get_be64(f); |
| |
| block = qemu_ram_block_by_name(id); |
| if (block) { |
| if (length != block->used_length) { |
| Error *local_err = NULL; |
| |
| ret = qemu_ram_resize(block, length, |
| &local_err); |
| if (local_err) { |
| error_report_err(local_err); |
| } |
| } |
| /* For postcopy we need to check hugepage sizes match */ |
| if (postcopy_advised && |
| block->page_size != qemu_host_page_size) { |
| uint64_t remote_page_size = qemu_get_be64(f); |
| if (remote_page_size != block->page_size) { |
| error_report("Mismatched RAM page size %s " |
| "(local) %zd != %" PRId64, |
| id, block->page_size, |
| remote_page_size); |
| ret = -EINVAL; |
| } |
| } |
| ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG, |
| block->idstr); |
| } else { |
| error_report("Unknown ramblock \"%s\", cannot " |
| "accept migration", id); |
| ret = -EINVAL; |
| } |
| |
| total_ram_bytes -= length; |
| } |
| break; |
| |
| case RAM_SAVE_FLAG_ZERO: |
| ch = qemu_get_byte(f); |
| ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); |
| break; |
| |
| case RAM_SAVE_FLAG_PAGE: |
| qemu_get_buffer(f, host, TARGET_PAGE_SIZE); |
| break; |
| |
| case RAM_SAVE_FLAG_COMPRESS_PAGE: |
| len = qemu_get_be32(f); |
| if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { |
| error_report("Invalid compressed data length: %d", len); |
| ret = -EINVAL; |
| break; |
| } |
| decompress_data_with_multi_threads(f, host, len); |
| break; |
| |
| case RAM_SAVE_FLAG_XBZRLE: |
| if (load_xbzrle(f, addr, host) < 0) { |
| error_report("Failed to decompress XBZRLE page at " |
| RAM_ADDR_FMT, addr); |
| ret = -EINVAL; |
| break; |
| } |
| break; |
| case RAM_SAVE_FLAG_EOS: |
| /* normal exit */ |
| break; |
| default: |
| if (flags & RAM_SAVE_FLAG_HOOK) { |
| ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL); |
| } else { |
| error_report("Unknown combination of migration flags: %#x", |
| flags); |
| ret = -EINVAL; |
| } |
| } |
| if (!ret) { |
| ret = qemu_file_get_error(f); |
| } |
| } |
| |
| wait_for_decompress_done(); |
| rcu_read_unlock(); |
| trace_ram_load_complete(ret, seq_iter); |
| return ret; |
| } |
| |
| static SaveVMHandlers savevm_ram_handlers = { |
| .save_live_setup = ram_save_setup, |
| .save_live_iterate = ram_save_iterate, |
| .save_live_complete_postcopy = ram_save_complete, |
| .save_live_complete_precopy = ram_save_complete, |
| .save_live_pending = ram_save_pending, |
| .load_state = ram_load, |
| .cleanup = ram_migration_cleanup, |
| }; |
| |
| void ram_mig_init(void) |
| { |
| qemu_mutex_init(&XBZRLE.lock); |
| register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state); |
| } |