blob: 8a20dce3c8f249dfbf4e36c2bffdd7325cdf6673 [file] [log] [blame]
# AArch64 A64 allowed instruction decoding
#
# Copyright (c) 2023 Linaro, Ltd
#
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this library; if not, see <http://www.gnu.org/licenses/>.
#
# This file is processed by scripts/decodetree.py
#
&r rn
&ri rd imm
&rri_sf rd rn imm sf
&i imm
### Data Processing - Immediate
# PC-rel addressing
%imm_pcrel 5:s19 29:2
@pcrel . .. ..... ................... rd:5 &ri imm=%imm_pcrel
ADR 0 .. 10000 ................... ..... @pcrel
ADRP 1 .. 10000 ................... ..... @pcrel
# Add/subtract (immediate)
%imm12_sh12 10:12 !function=shl_12
@addsub_imm sf:1 .. ...... . imm:12 rn:5 rd:5
@addsub_imm12 sf:1 .. ...... . ............ rn:5 rd:5 imm=%imm12_sh12
ADD_i . 00 100010 0 ............ ..... ..... @addsub_imm
ADD_i . 00 100010 1 ............ ..... ..... @addsub_imm12
ADDS_i . 01 100010 0 ............ ..... ..... @addsub_imm
ADDS_i . 01 100010 1 ............ ..... ..... @addsub_imm12
SUB_i . 10 100010 0 ............ ..... ..... @addsub_imm
SUB_i . 10 100010 1 ............ ..... ..... @addsub_imm12
SUBS_i . 11 100010 0 ............ ..... ..... @addsub_imm
SUBS_i . 11 100010 1 ............ ..... ..... @addsub_imm12
# Add/subtract (immediate with tags)
&rri_tag rd rn uimm6 uimm4
@addsub_imm_tag . .. ...... . uimm6:6 .. uimm4:4 rn:5 rd:5 &rri_tag
ADDG_i 1 00 100011 0 ...... 00 .... ..... ..... @addsub_imm_tag
SUBG_i 1 10 100011 0 ...... 00 .... ..... ..... @addsub_imm_tag
# Logical (immediate)
&rri_log rd rn sf dbm
@logic_imm_64 1 .. ...... dbm:13 rn:5 rd:5 &rri_log sf=1
@logic_imm_32 0 .. ...... 0 dbm:12 rn:5 rd:5 &rri_log sf=0
AND_i . 00 100100 . ...... ...... ..... ..... @logic_imm_64
AND_i . 00 100100 . ...... ...... ..... ..... @logic_imm_32
ORR_i . 01 100100 . ...... ...... ..... ..... @logic_imm_64
ORR_i . 01 100100 . ...... ...... ..... ..... @logic_imm_32
EOR_i . 10 100100 . ...... ...... ..... ..... @logic_imm_64
EOR_i . 10 100100 . ...... ...... ..... ..... @logic_imm_32
ANDS_i . 11 100100 . ...... ...... ..... ..... @logic_imm_64
ANDS_i . 11 100100 . ...... ...... ..... ..... @logic_imm_32
# Move wide (immediate)
&movw rd sf imm hw
@movw_64 1 .. ...... hw:2 imm:16 rd:5 &movw sf=1
@movw_32 0 .. ...... 0 hw:1 imm:16 rd:5 &movw sf=0
MOVN . 00 100101 .. ................ ..... @movw_64
MOVN . 00 100101 .. ................ ..... @movw_32
MOVZ . 10 100101 .. ................ ..... @movw_64
MOVZ . 10 100101 .. ................ ..... @movw_32
MOVK . 11 100101 .. ................ ..... @movw_64
MOVK . 11 100101 .. ................ ..... @movw_32
# Bitfield
&bitfield rd rn sf immr imms
@bitfield_64 1 .. ...... 1 immr:6 imms:6 rn:5 rd:5 &bitfield sf=1
@bitfield_32 0 .. ...... 0 0 immr:5 0 imms:5 rn:5 rd:5 &bitfield sf=0
SBFM . 00 100110 . ...... ...... ..... ..... @bitfield_64
SBFM . 00 100110 . ...... ...... ..... ..... @bitfield_32
BFM . 01 100110 . ...... ...... ..... ..... @bitfield_64
BFM . 01 100110 . ...... ...... ..... ..... @bitfield_32
UBFM . 10 100110 . ...... ...... ..... ..... @bitfield_64
UBFM . 10 100110 . ...... ...... ..... ..... @bitfield_32
# Extract
&extract rd rn rm imm sf
EXTR 1 00 100111 1 0 rm:5 imm:6 rn:5 rd:5 &extract sf=1
EXTR 0 00 100111 0 0 rm:5 0 imm:5 rn:5 rd:5 &extract sf=0
# Branches
%imm26 0:s26 !function=times_4
@branch . ..... .......................... &i imm=%imm26
B 0 00101 .......................... @branch
BL 1 00101 .......................... @branch
%imm19 5:s19 !function=times_4
&cbz rt imm sf nz
CBZ sf:1 011010 nz:1 ................... rt:5 &cbz imm=%imm19
%imm14 5:s14 !function=times_4
%imm31_19 31:1 19:5
&tbz rt imm nz bitpos
TBZ . 011011 nz:1 ..... .............. rt:5 &tbz imm=%imm14 bitpos=%imm31_19
# B.cond and BC.cond
B_cond 0101010 0 ................... c:1 cond:4 imm=%imm19
BR 1101011 0000 11111 000000 rn:5 00000 &r
BLR 1101011 0001 11111 000000 rn:5 00000 &r
RET 1101011 0010 11111 000000 rn:5 00000 &r
&braz rn m
BRAZ 1101011 0000 11111 00001 m:1 rn:5 11111 &braz # BRAAZ, BRABZ
BLRAZ 1101011 0001 11111 00001 m:1 rn:5 11111 &braz # BLRAAZ, BLRABZ
&reta m
RETA 1101011 0010 11111 00001 m:1 11111 11111 &reta # RETAA, RETAB
&bra rn rm m
BRA 1101011 1000 11111 00001 m:1 rn:5 rm:5 &bra # BRAA, BRAB
BLRA 1101011 1001 11111 00001 m:1 rn:5 rm:5 &bra # BLRAA, BLRAB
ERET 1101011 0100 11111 000000 11111 00000
ERETA 1101011 0100 11111 00001 m:1 11111 11111 &reta # ERETAA, ERETAB
# We don't need to decode DRPS because it always UNDEFs except when
# the processor is in halting debug state (which we don't implement).
# The pattern is listed here as documentation.
# DRPS 1101011 0101 11111 000000 11111 00000
# Hint instruction group
{
[
YIELD 1101 0101 0000 0011 0010 0000 001 11111
WFE 1101 0101 0000 0011 0010 0000 010 11111
WFI 1101 0101 0000 0011 0010 0000 011 11111
# We implement WFE to never block, so our SEV/SEVL are NOPs
# SEV 1101 0101 0000 0011 0010 0000 100 11111
# SEVL 1101 0101 0000 0011 0010 0000 101 11111
# Our DGL is a NOP because we don't merge memory accesses anyway.
# DGL 1101 0101 0000 0011 0010 0000 110 11111
XPACLRI 1101 0101 0000 0011 0010 0000 111 11111
PACIA1716 1101 0101 0000 0011 0010 0001 000 11111
PACIB1716 1101 0101 0000 0011 0010 0001 010 11111
AUTIA1716 1101 0101 0000 0011 0010 0001 100 11111
AUTIB1716 1101 0101 0000 0011 0010 0001 110 11111
ESB 1101 0101 0000 0011 0010 0010 000 11111
PACIAZ 1101 0101 0000 0011 0010 0011 000 11111
PACIASP 1101 0101 0000 0011 0010 0011 001 11111
PACIBZ 1101 0101 0000 0011 0010 0011 010 11111
PACIBSP 1101 0101 0000 0011 0010 0011 011 11111
AUTIAZ 1101 0101 0000 0011 0010 0011 100 11111
AUTIASP 1101 0101 0000 0011 0010 0011 101 11111
AUTIBZ 1101 0101 0000 0011 0010 0011 110 11111
AUTIBSP 1101 0101 0000 0011 0010 0011 111 11111
]
# The canonical NOP has CRm == op2 == 0, but all of the space
# that isn't specifically allocated to an instruction must NOP
NOP 1101 0101 0000 0011 0010 ---- --- 11111
}
# Barriers
CLREX 1101 0101 0000 0011 0011 ---- 010 11111
DSB_DMB 1101 0101 0000 0011 0011 domain:2 types:2 10- 11111
ISB 1101 0101 0000 0011 0011 ---- 110 11111
SB 1101 0101 0000 0011 0011 0000 111 11111
# PSTATE
CFINV 1101 0101 0000 0 000 0100 0000 000 11111
XAFLAG 1101 0101 0000 0 000 0100 0000 001 11111
AXFLAG 1101 0101 0000 0 000 0100 0000 010 11111
# These are architecturally all "MSR (immediate)"; we decode the destination
# register too because there is no commonality in our implementation.
@msr_i .... .... .... . ... .... imm:4 ... .....
MSR_i_UAO 1101 0101 0000 0 000 0100 .... 011 11111 @msr_i
MSR_i_PAN 1101 0101 0000 0 000 0100 .... 100 11111 @msr_i
MSR_i_SPSEL 1101 0101 0000 0 000 0100 .... 101 11111 @msr_i
MSR_i_SBSS 1101 0101 0000 0 011 0100 .... 001 11111 @msr_i
MSR_i_DIT 1101 0101 0000 0 011 0100 .... 010 11111 @msr_i
MSR_i_TCO 1101 0101 0000 0 011 0100 .... 100 11111 @msr_i
MSR_i_DAIFSET 1101 0101 0000 0 011 0100 .... 110 11111 @msr_i
MSR_i_DAIFCLEAR 1101 0101 0000 0 011 0100 .... 111 11111 @msr_i
MSR_i_SVCR 1101 0101 0000 0 011 0100 0 mask:2 imm:1 011 11111
# MRS, MSR (register), SYS, SYSL. These are all essentially the
# same instruction as far as QEMU is concerned.
# NB: op0 is bits [20:19], but op0=0b00 is other insns, so we have
# to hand-decode it.
SYS 1101 0101 00 l:1 01 op1:3 crn:4 crm:4 op2:3 rt:5 op0=1
SYS 1101 0101 00 l:1 10 op1:3 crn:4 crm:4 op2:3 rt:5 op0=2
SYS 1101 0101 00 l:1 11 op1:3 crn:4 crm:4 op2:3 rt:5 op0=3
# Exception generation
@i16 .... .... ... imm:16 ... .. &i
SVC 1101 0100 000 ................ 000 01 @i16
HVC 1101 0100 000 ................ 000 10 @i16
SMC 1101 0100 000 ................ 000 11 @i16
BRK 1101 0100 001 ................ 000 00 @i16
HLT 1101 0100 010 ................ 000 00 @i16
# These insns always UNDEF unless in halting debug state, which
# we don't implement. So we don't need to decode them. The patterns
# are listed here as documentation.
# DCPS1 1101 0100 101 ................ 000 01 @i16
# DCPS2 1101 0100 101 ................ 000 10 @i16
# DCPS3 1101 0100 101 ................ 000 11 @i16
# Loads and stores
&stxr rn rt rt2 rs sz lasr
&stlr rn rt sz lasr
@stxr sz:2 ...... ... rs:5 lasr:1 rt2:5 rn:5 rt:5 &stxr
@stlr sz:2 ...... ... ..... lasr:1 ..... rn:5 rt:5 &stlr
%imm1_30_p2 30:1 !function=plus_2
@stxp .. ...... ... rs:5 lasr:1 rt2:5 rn:5 rt:5 &stxr sz=%imm1_30_p2
STXR .. 001000 000 ..... . ..... ..... ..... @stxr # inc STLXR
LDXR .. 001000 010 ..... . ..... ..... ..... @stxr # inc LDAXR
STLR .. 001000 100 11111 . 11111 ..... ..... @stlr # inc STLLR
LDAR .. 001000 110 11111 . 11111 ..... ..... @stlr # inc LDLAR
STXP 1 . 001000 001 ..... . ..... ..... ..... @stxp # inc STLXP
LDXP 1 . 001000 011 ..... . ..... ..... ..... @stxp # inc LDAXP
# CASP, CASPA, CASPAL, CASPL (we don't decode the bits that determine
# acquire/release semantics because QEMU's cmpxchg always has those)
CASP 0 . 001000 0 - 1 rs:5 - 11111 rn:5 rt:5 sz=%imm1_30_p2
# CAS, CASA, CASAL, CASL
CAS sz:2 001000 1 - 1 rs:5 - 11111 rn:5 rt:5
&ldlit rt imm sz sign
@ldlit .. ... . .. ................... rt:5 &ldlit imm=%imm19
LD_lit 00 011 0 00 ................... ..... @ldlit sz=2 sign=0
LD_lit 01 011 0 00 ................... ..... @ldlit sz=3 sign=0
LD_lit 10 011 0 00 ................... ..... @ldlit sz=2 sign=1
LD_lit_v 00 011 1 00 ................... ..... @ldlit sz=2 sign=0
LD_lit_v 01 011 1 00 ................... ..... @ldlit sz=3 sign=0
LD_lit_v 10 011 1 00 ................... ..... @ldlit sz=4 sign=0
# PRFM
NOP 11 011 0 00 ------------------- -----
&ldstpair rt2 rt rn imm sz sign w p
@ldstpair .. ... . ... . imm:s7 rt2:5 rn:5 rt:5 &ldstpair
# STNP, LDNP: Signed offset, non-temporal hint. We don't emulate caches
# so we ignore hints about data access patterns, and handle these like
# plain signed offset.
STP 00 101 0 000 0 ....... ..... ..... ..... @ldstpair sz=2 sign=0 p=0 w=0
LDP 00 101 0 000 1 ....... ..... ..... ..... @ldstpair sz=2 sign=0 p=0 w=0
STP 10 101 0 000 0 ....... ..... ..... ..... @ldstpair sz=3 sign=0 p=0 w=0
LDP 10 101 0 000 1 ....... ..... ..... ..... @ldstpair sz=3 sign=0 p=0 w=0
STP_v 00 101 1 000 0 ....... ..... ..... ..... @ldstpair sz=2 sign=0 p=0 w=0
LDP_v 00 101 1 000 1 ....... ..... ..... ..... @ldstpair sz=2 sign=0 p=0 w=0
STP_v 01 101 1 000 0 ....... ..... ..... ..... @ldstpair sz=3 sign=0 p=0 w=0
LDP_v 01 101 1 000 1 ....... ..... ..... ..... @ldstpair sz=3 sign=0 p=0 w=0
STP_v 10 101 1 000 0 ....... ..... ..... ..... @ldstpair sz=4 sign=0 p=0 w=0
LDP_v 10 101 1 000 1 ....... ..... ..... ..... @ldstpair sz=4 sign=0 p=0 w=0
# STP and LDP: post-indexed
STP 00 101 0 001 0 ....... ..... ..... ..... @ldstpair sz=2 sign=0 p=1 w=1
LDP 00 101 0 001 1 ....... ..... ..... ..... @ldstpair sz=2 sign=0 p=1 w=1
LDP 01 101 0 001 1 ....... ..... ..... ..... @ldstpair sz=2 sign=1 p=1 w=1
STP 10 101 0 001 0 ....... ..... ..... ..... @ldstpair sz=3 sign=0 p=1 w=1
LDP 10 101 0 001 1 ....... ..... ..... ..... @ldstpair sz=3 sign=0 p=1 w=1
STP_v 00 101 1 001 0 ....... ..... ..... ..... @ldstpair sz=2 sign=0 p=1 w=1
LDP_v 00 101 1 001 1 ....... ..... ..... ..... @ldstpair sz=2 sign=0 p=1 w=1
STP_v 01 101 1 001 0 ....... ..... ..... ..... @ldstpair sz=3 sign=0 p=1 w=1
LDP_v 01 101 1 001 1 ....... ..... ..... ..... @ldstpair sz=3 sign=0 p=1 w=1
STP_v 10 101 1 001 0 ....... ..... ..... ..... @ldstpair sz=4 sign=0 p=1 w=1
LDP_v 10 101 1 001 1 ....... ..... ..... ..... @ldstpair sz=4 sign=0 p=1 w=1
# STP and LDP: offset
STP 00 101 0 010 0 ....... ..... ..... ..... @ldstpair sz=2 sign=0 p=0 w=0
LDP 00 101 0 010 1 ....... ..... ..... ..... @ldstpair sz=2 sign=0 p=0 w=0
LDP 01 101 0 010 1 ....... ..... ..... ..... @ldstpair sz=2 sign=1 p=0 w=0
STP 10 101 0 010 0 ....... ..... ..... ..... @ldstpair sz=3 sign=0 p=0 w=0
LDP 10 101 0 010 1 ....... ..... ..... ..... @ldstpair sz=3 sign=0 p=0 w=0
STP_v 00 101 1 010 0 ....... ..... ..... ..... @ldstpair sz=2 sign=0 p=0 w=0
LDP_v 00 101 1 010 1 ....... ..... ..... ..... @ldstpair sz=2 sign=0 p=0 w=0
STP_v 01 101 1 010 0 ....... ..... ..... ..... @ldstpair sz=3 sign=0 p=0 w=0
LDP_v 01 101 1 010 1 ....... ..... ..... ..... @ldstpair sz=3 sign=0 p=0 w=0
STP_v 10 101 1 010 0 ....... ..... ..... ..... @ldstpair sz=4 sign=0 p=0 w=0
LDP_v 10 101 1 010 1 ....... ..... ..... ..... @ldstpair sz=4 sign=0 p=0 w=0
# STP and LDP: pre-indexed
STP 00 101 0 011 0 ....... ..... ..... ..... @ldstpair sz=2 sign=0 p=0 w=1
LDP 00 101 0 011 1 ....... ..... ..... ..... @ldstpair sz=2 sign=0 p=0 w=1
LDP 01 101 0 011 1 ....... ..... ..... ..... @ldstpair sz=2 sign=1 p=0 w=1
STP 10 101 0 011 0 ....... ..... ..... ..... @ldstpair sz=3 sign=0 p=0 w=1
LDP 10 101 0 011 1 ....... ..... ..... ..... @ldstpair sz=3 sign=0 p=0 w=1
STP_v 00 101 1 011 0 ....... ..... ..... ..... @ldstpair sz=2 sign=0 p=0 w=1
LDP_v 00 101 1 011 1 ....... ..... ..... ..... @ldstpair sz=2 sign=0 p=0 w=1
STP_v 01 101 1 011 0 ....... ..... ..... ..... @ldstpair sz=3 sign=0 p=0 w=1
LDP_v 01 101 1 011 1 ....... ..... ..... ..... @ldstpair sz=3 sign=0 p=0 w=1
STP_v 10 101 1 011 0 ....... ..... ..... ..... @ldstpair sz=4 sign=0 p=0 w=1
LDP_v 10 101 1 011 1 ....... ..... ..... ..... @ldstpair sz=4 sign=0 p=0 w=1
# STGP: store tag and pair
STGP 01 101 0 001 0 ....... ..... ..... ..... @ldstpair sz=3 sign=0 p=1 w=1
STGP 01 101 0 010 0 ....... ..... ..... ..... @ldstpair sz=3 sign=0 p=0 w=0
STGP 01 101 0 011 0 ....... ..... ..... ..... @ldstpair sz=3 sign=0 p=0 w=1
# Load/store register (unscaled immediate)
&ldst_imm rt rn imm sz sign w p unpriv ext
@ldst_imm .. ... . .. .. . imm:s9 .. rn:5 rt:5 &ldst_imm unpriv=0 p=0 w=0
@ldst_imm_pre .. ... . .. .. . imm:s9 .. rn:5 rt:5 &ldst_imm unpriv=0 p=0 w=1
@ldst_imm_post .. ... . .. .. . imm:s9 .. rn:5 rt:5 &ldst_imm unpriv=0 p=1 w=1
@ldst_imm_user .. ... . .. .. . imm:s9 .. rn:5 rt:5 &ldst_imm unpriv=1 p=0 w=0
STR_i sz:2 111 0 00 00 0 ......... 00 ..... ..... @ldst_imm sign=0 ext=0
LDR_i 00 111 0 00 01 0 ......... 00 ..... ..... @ldst_imm sign=0 ext=1 sz=0
LDR_i 01 111 0 00 01 0 ......... 00 ..... ..... @ldst_imm sign=0 ext=1 sz=1
LDR_i 10 111 0 00 01 0 ......... 00 ..... ..... @ldst_imm sign=0 ext=1 sz=2
LDR_i 11 111 0 00 01 0 ......... 00 ..... ..... @ldst_imm sign=0 ext=0 sz=3
LDR_i 00 111 0 00 10 0 ......... 00 ..... ..... @ldst_imm sign=1 ext=0 sz=0
LDR_i 01 111 0 00 10 0 ......... 00 ..... ..... @ldst_imm sign=1 ext=0 sz=1
LDR_i 10 111 0 00 10 0 ......... 00 ..... ..... @ldst_imm sign=1 ext=0 sz=2
LDR_i 00 111 0 00 11 0 ......... 00 ..... ..... @ldst_imm sign=1 ext=1 sz=0
LDR_i 01 111 0 00 11 0 ......... 00 ..... ..... @ldst_imm sign=1 ext=1 sz=1
STR_i sz:2 111 0 00 00 0 ......... 01 ..... ..... @ldst_imm_post sign=0 ext=0
LDR_i 00 111 0 00 01 0 ......... 01 ..... ..... @ldst_imm_post sign=0 ext=1 sz=0
LDR_i 01 111 0 00 01 0 ......... 01 ..... ..... @ldst_imm_post sign=0 ext=1 sz=1
LDR_i 10 111 0 00 01 0 ......... 01 ..... ..... @ldst_imm_post sign=0 ext=1 sz=2
LDR_i 11 111 0 00 01 0 ......... 01 ..... ..... @ldst_imm_post sign=0 ext=0 sz=3
LDR_i 00 111 0 00 10 0 ......... 01 ..... ..... @ldst_imm_post sign=1 ext=0 sz=0
LDR_i 01 111 0 00 10 0 ......... 01 ..... ..... @ldst_imm_post sign=1 ext=0 sz=1
LDR_i 10 111 0 00 10 0 ......... 01 ..... ..... @ldst_imm_post sign=1 ext=0 sz=2
LDR_i 00 111 0 00 11 0 ......... 01 ..... ..... @ldst_imm_post sign=1 ext=1 sz=0
LDR_i 01 111 0 00 11 0 ......... 01 ..... ..... @ldst_imm_post sign=1 ext=1 sz=1
STR_i sz:2 111 0 00 00 0 ......... 10 ..... ..... @ldst_imm_user sign=0 ext=0
LDR_i 00 111 0 00 01 0 ......... 10 ..... ..... @ldst_imm_user sign=0 ext=1 sz=0
LDR_i 01 111 0 00 01 0 ......... 10 ..... ..... @ldst_imm_user sign=0 ext=1 sz=1
LDR_i 10 111 0 00 01 0 ......... 10 ..... ..... @ldst_imm_user sign=0 ext=1 sz=2
LDR_i 11 111 0 00 01 0 ......... 10 ..... ..... @ldst_imm_user sign=0 ext=0 sz=3
LDR_i 00 111 0 00 10 0 ......... 10 ..... ..... @ldst_imm_user sign=1 ext=0 sz=0
LDR_i 01 111 0 00 10 0 ......... 10 ..... ..... @ldst_imm_user sign=1 ext=0 sz=1
LDR_i 10 111 0 00 10 0 ......... 10 ..... ..... @ldst_imm_user sign=1 ext=0 sz=2
LDR_i 00 111 0 00 11 0 ......... 10 ..... ..... @ldst_imm_user sign=1 ext=1 sz=0
LDR_i 01 111 0 00 11 0 ......... 10 ..... ..... @ldst_imm_user sign=1 ext=1 sz=1
STR_i sz:2 111 0 00 00 0 ......... 11 ..... ..... @ldst_imm_pre sign=0 ext=0
LDR_i 00 111 0 00 01 0 ......... 11 ..... ..... @ldst_imm_pre sign=0 ext=1 sz=0
LDR_i 01 111 0 00 01 0 ......... 11 ..... ..... @ldst_imm_pre sign=0 ext=1 sz=1
LDR_i 10 111 0 00 01 0 ......... 11 ..... ..... @ldst_imm_pre sign=0 ext=1 sz=2
LDR_i 11 111 0 00 01 0 ......... 11 ..... ..... @ldst_imm_pre sign=0 ext=0 sz=3
LDR_i 00 111 0 00 10 0 ......... 11 ..... ..... @ldst_imm_pre sign=1 ext=0 sz=0
LDR_i 01 111 0 00 10 0 ......... 11 ..... ..... @ldst_imm_pre sign=1 ext=0 sz=1
LDR_i 10 111 0 00 10 0 ......... 11 ..... ..... @ldst_imm_pre sign=1 ext=0 sz=2
LDR_i 00 111 0 00 11 0 ......... 11 ..... ..... @ldst_imm_pre sign=1 ext=1 sz=0
LDR_i 01 111 0 00 11 0 ......... 11 ..... ..... @ldst_imm_pre sign=1 ext=1 sz=1
# PRFM : prefetch memory: a no-op for QEMU
NOP 11 111 0 00 10 0 --------- 00 ----- -----
STR_v_i sz:2 111 1 00 00 0 ......... 00 ..... ..... @ldst_imm sign=0 ext=0
STR_v_i 00 111 1 00 10 0 ......... 00 ..... ..... @ldst_imm sign=0 ext=0 sz=4
LDR_v_i sz:2 111 1 00 01 0 ......... 00 ..... ..... @ldst_imm sign=0 ext=0
LDR_v_i 00 111 1 00 11 0 ......... 00 ..... ..... @ldst_imm sign=0 ext=0 sz=4
STR_v_i sz:2 111 1 00 00 0 ......... 01 ..... ..... @ldst_imm_post sign=0 ext=0
STR_v_i 00 111 1 00 10 0 ......... 01 ..... ..... @ldst_imm_post sign=0 ext=0 sz=4
LDR_v_i sz:2 111 1 00 01 0 ......... 01 ..... ..... @ldst_imm_post sign=0 ext=0
LDR_v_i 00 111 1 00 11 0 ......... 01 ..... ..... @ldst_imm_post sign=0 ext=0 sz=4
STR_v_i sz:2 111 1 00 00 0 ......... 11 ..... ..... @ldst_imm_pre sign=0 ext=0
STR_v_i 00 111 1 00 10 0 ......... 11 ..... ..... @ldst_imm_pre sign=0 ext=0 sz=4
LDR_v_i sz:2 111 1 00 01 0 ......... 11 ..... ..... @ldst_imm_pre sign=0 ext=0
LDR_v_i 00 111 1 00 11 0 ......... 11 ..... ..... @ldst_imm_pre sign=0 ext=0 sz=4
# Load/store with an unsigned 12 bit immediate, which is scaled by the
# element size. The function gets the sz:imm and returns the scaled immediate.
%uimm_scaled 10:12 sz:3 !function=uimm_scaled
@ldst_uimm .. ... . .. .. ............ rn:5 rt:5 &ldst_imm unpriv=0 p=0 w=0 imm=%uimm_scaled
STR_i sz:2 111 0 01 00 ............ ..... ..... @ldst_uimm sign=0 ext=0
LDR_i 00 111 0 01 01 ............ ..... ..... @ldst_uimm sign=0 ext=1 sz=0
LDR_i 01 111 0 01 01 ............ ..... ..... @ldst_uimm sign=0 ext=1 sz=1
LDR_i 10 111 0 01 01 ............ ..... ..... @ldst_uimm sign=0 ext=1 sz=2
LDR_i 11 111 0 01 01 ............ ..... ..... @ldst_uimm sign=0 ext=0 sz=3
LDR_i 00 111 0 01 10 ............ ..... ..... @ldst_uimm sign=1 ext=0 sz=0
LDR_i 01 111 0 01 10 ............ ..... ..... @ldst_uimm sign=1 ext=0 sz=1
LDR_i 10 111 0 01 10 ............ ..... ..... @ldst_uimm sign=1 ext=0 sz=2
LDR_i 00 111 0 01 11 ............ ..... ..... @ldst_uimm sign=1 ext=1 sz=0
LDR_i 01 111 0 01 11 ............ ..... ..... @ldst_uimm sign=1 ext=1 sz=1
# PRFM
NOP 11 111 0 01 10 ------------ ----- -----
STR_v_i sz:2 111 1 01 00 ............ ..... ..... @ldst_uimm sign=0 ext=0
STR_v_i 00 111 1 01 10 ............ ..... ..... @ldst_uimm sign=0 ext=0 sz=4
LDR_v_i sz:2 111 1 01 01 ............ ..... ..... @ldst_uimm sign=0 ext=0
LDR_v_i 00 111 1 01 11 ............ ..... ..... @ldst_uimm sign=0 ext=0 sz=4
# Load/store with register offset
&ldst rm rn rt sign ext sz opt s
@ldst .. ... . .. .. . rm:5 opt:3 s:1 .. rn:5 rt:5 &ldst
STR sz:2 111 0 00 00 1 ..... ... . 10 ..... ..... @ldst sign=0 ext=0
LDR 00 111 0 00 01 1 ..... ... . 10 ..... ..... @ldst sign=0 ext=1 sz=0
LDR 01 111 0 00 01 1 ..... ... . 10 ..... ..... @ldst sign=0 ext=1 sz=1
LDR 10 111 0 00 01 1 ..... ... . 10 ..... ..... @ldst sign=0 ext=1 sz=2
LDR 11 111 0 00 01 1 ..... ... . 10 ..... ..... @ldst sign=0 ext=0 sz=3
LDR 00 111 0 00 10 1 ..... ... . 10 ..... ..... @ldst sign=1 ext=0 sz=0
LDR 01 111 0 00 10 1 ..... ... . 10 ..... ..... @ldst sign=1 ext=0 sz=1
LDR 10 111 0 00 10 1 ..... ... . 10 ..... ..... @ldst sign=1 ext=0 sz=2
LDR 00 111 0 00 11 1 ..... ... . 10 ..... ..... @ldst sign=1 ext=1 sz=0
LDR 01 111 0 00 11 1 ..... ... . 10 ..... ..... @ldst sign=1 ext=1 sz=1
# PRFM
NOP 11 111 0 00 10 1 ----- -1- - 10 ----- -----
STR_v sz:2 111 1 00 00 1 ..... ... . 10 ..... ..... @ldst sign=0 ext=0
STR_v 00 111 1 00 10 1 ..... ... . 10 ..... ..... @ldst sign=0 ext=0 sz=4
LDR_v sz:2 111 1 00 01 1 ..... ... . 10 ..... ..... @ldst sign=0 ext=0
LDR_v 00 111 1 00 11 1 ..... ... . 10 ..... ..... @ldst sign=0 ext=0 sz=4
# Atomic memory operations
&atomic rs rn rt a r sz
@atomic sz:2 ... . .. a:1 r:1 . rs:5 . ... .. rn:5 rt:5 &atomic
LDADD .. 111 0 00 . . 1 ..... 0000 00 ..... ..... @atomic
LDCLR .. 111 0 00 . . 1 ..... 0001 00 ..... ..... @atomic
LDEOR .. 111 0 00 . . 1 ..... 0010 00 ..... ..... @atomic
LDSET .. 111 0 00 . . 1 ..... 0011 00 ..... ..... @atomic
LDSMAX .. 111 0 00 . . 1 ..... 0100 00 ..... ..... @atomic
LDSMIN .. 111 0 00 . . 1 ..... 0101 00 ..... ..... @atomic
LDUMAX .. 111 0 00 . . 1 ..... 0110 00 ..... ..... @atomic
LDUMIN .. 111 0 00 . . 1 ..... 0111 00 ..... ..... @atomic
SWP .. 111 0 00 . . 1 ..... 1000 00 ..... ..... @atomic
LDAPR sz:2 111 0 00 1 0 1 11111 1100 00 rn:5 rt:5
# Load/store register (pointer authentication)
# LDRA immediate is 10 bits signed and scaled, but the bits aren't all contiguous
%ldra_imm 22:s1 12:9 !function=times_8
LDRA 11 111 0 00 m:1 . 1 ......... w:1 1 rn:5 rt:5 imm=%ldra_imm
&ldapr_stlr_i rn rt imm sz sign ext
@ldapr_stlr_i .. ...... .. . imm:9 .. rn:5 rt:5 &ldapr_stlr_i
STLR_i sz:2 011001 00 0 ......... 00 ..... ..... @ldapr_stlr_i sign=0 ext=0
LDAPR_i sz:2 011001 01 0 ......... 00 ..... ..... @ldapr_stlr_i sign=0 ext=0
LDAPR_i 00 011001 10 0 ......... 00 ..... ..... @ldapr_stlr_i sign=1 ext=0 sz=0
LDAPR_i 01 011001 10 0 ......... 00 ..... ..... @ldapr_stlr_i sign=1 ext=0 sz=1
LDAPR_i 10 011001 10 0 ......... 00 ..... ..... @ldapr_stlr_i sign=1 ext=0 sz=2
LDAPR_i 00 011001 11 0 ......... 00 ..... ..... @ldapr_stlr_i sign=1 ext=1 sz=0
LDAPR_i 01 011001 11 0 ......... 00 ..... ..... @ldapr_stlr_i sign=1 ext=1 sz=1
# Load/store multiple structures
# The 4-bit opcode in [15:12] encodes repeat count and structure elements
&ldst_mult rm rn rt sz q p rpt selem
@ldst_mult . q:1 ...... p:1 . . rm:5 .... sz:2 rn:5 rt:5 &ldst_mult
ST_mult 0 . 001100 . 0 0 ..... 0000 .. ..... ..... @ldst_mult rpt=1 selem=4
ST_mult 0 . 001100 . 0 0 ..... 0010 .. ..... ..... @ldst_mult rpt=4 selem=1
ST_mult 0 . 001100 . 0 0 ..... 0100 .. ..... ..... @ldst_mult rpt=1 selem=3
ST_mult 0 . 001100 . 0 0 ..... 0110 .. ..... ..... @ldst_mult rpt=3 selem=1
ST_mult 0 . 001100 . 0 0 ..... 0111 .. ..... ..... @ldst_mult rpt=1 selem=1
ST_mult 0 . 001100 . 0 0 ..... 1000 .. ..... ..... @ldst_mult rpt=1 selem=2
ST_mult 0 . 001100 . 0 0 ..... 1010 .. ..... ..... @ldst_mult rpt=2 selem=1
LD_mult 0 . 001100 . 1 0 ..... 0000 .. ..... ..... @ldst_mult rpt=1 selem=4
LD_mult 0 . 001100 . 1 0 ..... 0010 .. ..... ..... @ldst_mult rpt=4 selem=1
LD_mult 0 . 001100 . 1 0 ..... 0100 .. ..... ..... @ldst_mult rpt=1 selem=3
LD_mult 0 . 001100 . 1 0 ..... 0110 .. ..... ..... @ldst_mult rpt=3 selem=1
LD_mult 0 . 001100 . 1 0 ..... 0111 .. ..... ..... @ldst_mult rpt=1 selem=1
LD_mult 0 . 001100 . 1 0 ..... 1000 .. ..... ..... @ldst_mult rpt=1 selem=2
LD_mult 0 . 001100 . 1 0 ..... 1010 .. ..... ..... @ldst_mult rpt=2 selem=1
# Load/store single structure
&ldst_single rm rn rt p selem index scale
%ldst_single_selem 13:1 21:1 !function=plus_1
%ldst_single_index_b 30:1 10:3
%ldst_single_index_h 30:1 11:2
%ldst_single_index_s 30:1 12:1
@ldst_single_b .. ...... p:1 .. rm:5 ...... rn:5 rt:5 \
&ldst_single scale=0 selem=%ldst_single_selem \
index=%ldst_single_index_b
@ldst_single_h .. ...... p:1 .. rm:5 ...... rn:5 rt:5 \
&ldst_single scale=1 selem=%ldst_single_selem \
index=%ldst_single_index_h
@ldst_single_s .. ...... p:1 .. rm:5 ...... rn:5 rt:5 \
&ldst_single scale=2 selem=%ldst_single_selem \
index=%ldst_single_index_s
@ldst_single_d . index:1 ...... p:1 .. rm:5 ...... rn:5 rt:5 \
&ldst_single scale=3 selem=%ldst_single_selem
ST_single 0 . 001101 . 0 . ..... 00 . ... ..... ..... @ldst_single_b
ST_single 0 . 001101 . 0 . ..... 01 . ..0 ..... ..... @ldst_single_h
ST_single 0 . 001101 . 0 . ..... 10 . .00 ..... ..... @ldst_single_s
ST_single 0 . 001101 . 0 . ..... 10 . 001 ..... ..... @ldst_single_d
LD_single 0 . 001101 . 1 . ..... 00 . ... ..... ..... @ldst_single_b
LD_single 0 . 001101 . 1 . ..... 01 . ..0 ..... ..... @ldst_single_h
LD_single 0 . 001101 . 1 . ..... 10 . .00 ..... ..... @ldst_single_s
LD_single 0 . 001101 . 1 . ..... 10 . 001 ..... ..... @ldst_single_d
# Replicating load case
LD_single_repl 0 q:1 001101 p:1 1 . rm:5 11 . 0 scale:2 rn:5 rt:5 selem=%ldst_single_selem
%tag_offset 12:s9 !function=scale_by_log2_tag_granule
&ldst_tag rn rt imm p w
@ldst_tag ........ .. . ......... .. rn:5 rt:5 &ldst_tag imm=%tag_offset
@ldst_tag_mult ........ .. . 000000000 .. rn:5 rt:5 &ldst_tag imm=0
STZGM 11011001 00 1 ......... 00 ..... ..... @ldst_tag_mult p=0 w=0
STG 11011001 00 1 ......... 01 ..... ..... @ldst_tag p=1 w=1
STG 11011001 00 1 ......... 10 ..... ..... @ldst_tag p=0 w=0
STG 11011001 00 1 ......... 11 ..... ..... @ldst_tag p=0 w=1
LDG 11011001 01 1 ......... 00 ..... ..... @ldst_tag p=0 w=0
STZG 11011001 01 1 ......... 01 ..... ..... @ldst_tag p=1 w=1
STZG 11011001 01 1 ......... 10 ..... ..... @ldst_tag p=0 w=0
STZG 11011001 01 1 ......... 11 ..... ..... @ldst_tag p=0 w=1
STGM 11011001 10 1 ......... 00 ..... ..... @ldst_tag_mult p=0 w=0
ST2G 11011001 10 1 ......... 01 ..... ..... @ldst_tag p=1 w=1
ST2G 11011001 10 1 ......... 10 ..... ..... @ldst_tag p=0 w=0
ST2G 11011001 10 1 ......... 11 ..... ..... @ldst_tag p=0 w=1
LDGM 11011001 11 1 ......... 00 ..... ..... @ldst_tag_mult p=0 w=0
STZ2G 11011001 11 1 ......... 01 ..... ..... @ldst_tag p=1 w=1
STZ2G 11011001 11 1 ......... 10 ..... ..... @ldst_tag p=0 w=0
STZ2G 11011001 11 1 ......... 11 ..... ..... @ldst_tag p=0 w=1
# Memory operations (memset, memcpy, memmove)
# Each of these comes in a set of three, eg SETP (prologue), SETM (main),
# SETE (epilogue), and each of those has different flavours to
# indicate whether memory accesses should be unpriv or non-temporal.
# We don't distinguish temporal and non-temporal accesses, but we
# do need to report it in syndrome register values.
# Memset
&set rs rn rd unpriv nontemp
# op2 bit 1 is nontemporal bit
@set .. ......... rs:5 .. nontemp:1 unpriv:1 .. rn:5 rd:5 &set
SETP 00 011001110 ..... 00 . . 01 ..... ..... @set
SETM 00 011001110 ..... 01 . . 01 ..... ..... @set
SETE 00 011001110 ..... 10 . . 01 ..... ..... @set
# Like SET, but also setting MTE tags
SETGP 00 011101110 ..... 00 . . 01 ..... ..... @set
SETGM 00 011101110 ..... 01 . . 01 ..... ..... @set
SETGE 00 011101110 ..... 10 . . 01 ..... ..... @set
# Memmove/Memcopy: the CPY insns allow overlapping src/dest and
# copy in the correct direction; the CPYF insns always copy forwards.
#
# options has the nontemporal and unpriv bits for src and dest
&cpy rs rn rd options
@cpy .. ... . ..... rs:5 options:4 .. rn:5 rd:5 &cpy
CPYFP 00 011 0 01000 ..... .... 01 ..... ..... @cpy
CPYFM 00 011 0 01010 ..... .... 01 ..... ..... @cpy
CPYFE 00 011 0 01100 ..... .... 01 ..... ..... @cpy
CPYP 00 011 1 01000 ..... .... 01 ..... ..... @cpy
CPYM 00 011 1 01010 ..... .... 01 ..... ..... @cpy
CPYE 00 011 1 01100 ..... .... 01 ..... ..... @cpy