| /* |
| * RISC-V Vector Extension Internals |
| * |
| * Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2 or later, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program. If not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #ifndef TARGET_RISCV_VECTOR_INTERNALS_H |
| #define TARGET_RISCV_VECTOR_INTERNALS_H |
| |
| #include "qemu/bitops.h" |
| #include "cpu.h" |
| #include "tcg/tcg-gvec-desc.h" |
| #include "internals.h" |
| |
| static inline uint32_t vext_nf(uint32_t desc) |
| { |
| return FIELD_EX32(simd_data(desc), VDATA, NF); |
| } |
| |
| /* |
| * Note that vector data is stored in host-endian 64-bit chunks, |
| * so addressing units smaller than that needs a host-endian fixup. |
| */ |
| #if HOST_BIG_ENDIAN |
| #define H1(x) ((x) ^ 7) |
| #define H1_2(x) ((x) ^ 6) |
| #define H1_4(x) ((x) ^ 4) |
| #define H2(x) ((x) ^ 3) |
| #define H4(x) ((x) ^ 1) |
| #define H8(x) ((x)) |
| #else |
| #define H1(x) (x) |
| #define H1_2(x) (x) |
| #define H1_4(x) (x) |
| #define H2(x) (x) |
| #define H4(x) (x) |
| #define H8(x) (x) |
| #endif |
| |
| /* |
| * Encode LMUL to lmul as following: |
| * LMUL vlmul lmul |
| * 1 000 0 |
| * 2 001 1 |
| * 4 010 2 |
| * 8 011 3 |
| * - 100 - |
| * 1/8 101 -3 |
| * 1/4 110 -2 |
| * 1/2 111 -1 |
| */ |
| static inline int32_t vext_lmul(uint32_t desc) |
| { |
| return sextract32(FIELD_EX32(simd_data(desc), VDATA, LMUL), 0, 3); |
| } |
| |
| static inline uint32_t vext_vm(uint32_t desc) |
| { |
| return FIELD_EX32(simd_data(desc), VDATA, VM); |
| } |
| |
| static inline uint32_t vext_vma(uint32_t desc) |
| { |
| return FIELD_EX32(simd_data(desc), VDATA, VMA); |
| } |
| |
| static inline uint32_t vext_vta(uint32_t desc) |
| { |
| return FIELD_EX32(simd_data(desc), VDATA, VTA); |
| } |
| |
| static inline uint32_t vext_vta_all_1s(uint32_t desc) |
| { |
| return FIELD_EX32(simd_data(desc), VDATA, VTA_ALL_1S); |
| } |
| |
| /* |
| * Earlier designs (pre-0.9) had a varying number of bits |
| * per mask value (MLEN). In the 0.9 design, MLEN=1. |
| * (Section 4.5) |
| */ |
| static inline int vext_elem_mask(void *v0, int index) |
| { |
| int idx = index / 64; |
| int pos = index % 64; |
| return (((uint64_t *)v0)[idx] >> pos) & 1; |
| } |
| |
| /* |
| * Get number of total elements, including prestart, body and tail elements. |
| * Note that when LMUL < 1, the tail includes the elements past VLMAX that |
| * are held in the same vector register. |
| */ |
| static inline uint32_t vext_get_total_elems(CPURISCVState *env, uint32_t desc, |
| uint32_t esz) |
| { |
| uint32_t vlenb = simd_maxsz(desc); |
| uint32_t sew = 1 << FIELD_EX64(env->vtype, VTYPE, VSEW); |
| int8_t emul = ctzl(esz) - ctzl(sew) + vext_lmul(desc) < 0 ? 0 : |
| ctzl(esz) - ctzl(sew) + vext_lmul(desc); |
| return (vlenb << emul) / esz; |
| } |
| |
| /* set agnostic elements to 1s */ |
| void vext_set_elems_1s(void *base, uint32_t is_agnostic, uint32_t cnt, |
| uint32_t tot); |
| |
| /* expand macro args before macro */ |
| #define RVVCALL(macro, ...) macro(__VA_ARGS__) |
| |
| /* (TD, T2, TX2) */ |
| #define OP_UU_B uint8_t, uint8_t, uint8_t |
| #define OP_UU_H uint16_t, uint16_t, uint16_t |
| #define OP_UU_W uint32_t, uint32_t, uint32_t |
| #define OP_UU_D uint64_t, uint64_t, uint64_t |
| |
| /* (TD, T1, T2, TX1, TX2) */ |
| #define OP_UUU_B uint8_t, uint8_t, uint8_t, uint8_t, uint8_t |
| #define OP_UUU_H uint16_t, uint16_t, uint16_t, uint16_t, uint16_t |
| #define OP_UUU_W uint32_t, uint32_t, uint32_t, uint32_t, uint32_t |
| #define OP_UUU_D uint64_t, uint64_t, uint64_t, uint64_t, uint64_t |
| |
| #define OPIVV1(NAME, TD, T2, TX2, HD, HS2, OP) \ |
| static void do_##NAME(void *vd, void *vs2, int i) \ |
| { \ |
| TX2 s2 = *((T2 *)vs2 + HS2(i)); \ |
| *((TD *)vd + HD(i)) = OP(s2); \ |
| } |
| |
| #define GEN_VEXT_V(NAME, ESZ) \ |
| void HELPER(NAME)(void *vd, void *v0, void *vs2, \ |
| CPURISCVState *env, uint32_t desc) \ |
| { \ |
| uint32_t vm = vext_vm(desc); \ |
| uint32_t vl = env->vl; \ |
| uint32_t total_elems = \ |
| vext_get_total_elems(env, desc, ESZ); \ |
| uint32_t vta = vext_vta(desc); \ |
| uint32_t vma = vext_vma(desc); \ |
| uint32_t i; \ |
| \ |
| for (i = env->vstart; i < vl; i++) { \ |
| if (!vm && !vext_elem_mask(v0, i)) { \ |
| /* set masked-off elements to 1s */ \ |
| vext_set_elems_1s(vd, vma, i * ESZ, \ |
| (i + 1) * ESZ); \ |
| continue; \ |
| } \ |
| do_##NAME(vd, vs2, i); \ |
| } \ |
| env->vstart = 0; \ |
| /* set tail elements to 1s */ \ |
| vext_set_elems_1s(vd, vta, vl * ESZ, \ |
| total_elems * ESZ); \ |
| } |
| |
| /* operation of two vector elements */ |
| typedef void opivv2_fn(void *vd, void *vs1, void *vs2, int i); |
| |
| #define OPIVV2(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \ |
| static void do_##NAME(void *vd, void *vs1, void *vs2, int i) \ |
| { \ |
| TX1 s1 = *((T1 *)vs1 + HS1(i)); \ |
| TX2 s2 = *((T2 *)vs2 + HS2(i)); \ |
| *((TD *)vd + HD(i)) = OP(s2, s1); \ |
| } |
| |
| void do_vext_vv(void *vd, void *v0, void *vs1, void *vs2, |
| CPURISCVState *env, uint32_t desc, |
| opivv2_fn *fn, uint32_t esz); |
| |
| /* generate the helpers for OPIVV */ |
| #define GEN_VEXT_VV(NAME, ESZ) \ |
| void HELPER(NAME)(void *vd, void *v0, void *vs1, \ |
| void *vs2, CPURISCVState *env, \ |
| uint32_t desc) \ |
| { \ |
| do_vext_vv(vd, v0, vs1, vs2, env, desc, \ |
| do_##NAME, ESZ); \ |
| } |
| |
| typedef void opivx2_fn(void *vd, target_long s1, void *vs2, int i); |
| |
| /* |
| * (T1)s1 gives the real operator type. |
| * (TX1)(T1)s1 expands the operator type of widen or narrow operations. |
| */ |
| #define OPIVX2(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \ |
| static void do_##NAME(void *vd, target_long s1, void *vs2, int i) \ |
| { \ |
| TX2 s2 = *((T2 *)vs2 + HS2(i)); \ |
| *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1); \ |
| } |
| |
| void do_vext_vx(void *vd, void *v0, target_long s1, void *vs2, |
| CPURISCVState *env, uint32_t desc, |
| opivx2_fn fn, uint32_t esz); |
| |
| /* generate the helpers for OPIVX */ |
| #define GEN_VEXT_VX(NAME, ESZ) \ |
| void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \ |
| void *vs2, CPURISCVState *env, \ |
| uint32_t desc) \ |
| { \ |
| do_vext_vx(vd, v0, s1, vs2, env, desc, \ |
| do_##NAME, ESZ); \ |
| } |
| |
| /* Three of the widening shortening macros: */ |
| /* (TD, T1, T2, TX1, TX2) */ |
| #define WOP_UUU_B uint16_t, uint8_t, uint8_t, uint16_t, uint16_t |
| #define WOP_UUU_H uint32_t, uint16_t, uint16_t, uint32_t, uint32_t |
| #define WOP_UUU_W uint64_t, uint32_t, uint32_t, uint64_t, uint64_t |
| |
| #endif /* TARGET_RISCV_VECTOR_INTERNALS_H */ |