| /* |
| * ARM mach-virt emulation |
| * |
| * Copyright (c) 2013 Linaro Limited |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2 or later, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program. If not, see <http://www.gnu.org/licenses/>. |
| * |
| * Emulate a virtual board which works by passing Linux all the information |
| * it needs about what devices are present via the device tree. |
| * There are some restrictions about what we can do here: |
| * + we can only present devices whose Linux drivers will work based |
| * purely on the device tree with no platform data at all |
| * + we want to present a very stripped-down minimalist platform, |
| * both because this reduces the security attack surface from the guest |
| * and also because it reduces our exposure to being broken when |
| * the kernel updates its device tree bindings and requires further |
| * information in a device binding that we aren't providing. |
| * This is essentially the same approach kvmtool uses. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qapi/error.h" |
| #include "hw/sysbus.h" |
| #include "hw/arm/arm.h" |
| #include "hw/arm/primecell.h" |
| #include "hw/arm/virt.h" |
| #include "hw/vfio/vfio-calxeda-xgmac.h" |
| #include "hw/vfio/vfio-amd-xgbe.h" |
| #include "hw/display/ramfb.h" |
| #include "hw/devices.h" |
| #include "net/net.h" |
| #include "sysemu/device_tree.h" |
| #include "sysemu/numa.h" |
| #include "sysemu/sysemu.h" |
| #include "sysemu/kvm.h" |
| #include "hw/compat.h" |
| #include "hw/loader.h" |
| #include "exec/address-spaces.h" |
| #include "qemu/bitops.h" |
| #include "qemu/error-report.h" |
| #include "hw/pci-host/gpex.h" |
| #include "hw/arm/sysbus-fdt.h" |
| #include "hw/platform-bus.h" |
| #include "hw/arm/fdt.h" |
| #include "hw/intc/arm_gic.h" |
| #include "hw/intc/arm_gicv3_common.h" |
| #include "kvm_arm.h" |
| #include "hw/smbios/smbios.h" |
| #include "qapi/visitor.h" |
| #include "standard-headers/linux/input.h" |
| #include "hw/arm/smmuv3.h" |
| |
| #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \ |
| static void virt_##major##_##minor##_class_init(ObjectClass *oc, \ |
| void *data) \ |
| { \ |
| MachineClass *mc = MACHINE_CLASS(oc); \ |
| virt_machine_##major##_##minor##_options(mc); \ |
| mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \ |
| if (latest) { \ |
| mc->alias = "virt"; \ |
| } \ |
| } \ |
| static const TypeInfo machvirt_##major##_##minor##_info = { \ |
| .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \ |
| .parent = TYPE_VIRT_MACHINE, \ |
| .instance_init = virt_##major##_##minor##_instance_init, \ |
| .class_init = virt_##major##_##minor##_class_init, \ |
| }; \ |
| static void machvirt_machine_##major##_##minor##_init(void) \ |
| { \ |
| type_register_static(&machvirt_##major##_##minor##_info); \ |
| } \ |
| type_init(machvirt_machine_##major##_##minor##_init); |
| |
| #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \ |
| DEFINE_VIRT_MACHINE_LATEST(major, minor, true) |
| #define DEFINE_VIRT_MACHINE(major, minor) \ |
| DEFINE_VIRT_MACHINE_LATEST(major, minor, false) |
| |
| |
| /* Number of external interrupt lines to configure the GIC with */ |
| #define NUM_IRQS 256 |
| |
| #define PLATFORM_BUS_NUM_IRQS 64 |
| |
| /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means |
| * RAM can go up to the 256GB mark, leaving 256GB of the physical |
| * address space unallocated and free for future use between 256G and 512G. |
| * If we need to provide more RAM to VMs in the future then we need to: |
| * * allocate a second bank of RAM starting at 2TB and working up |
| * * fix the DT and ACPI table generation code in QEMU to correctly |
| * report two split lumps of RAM to the guest |
| * * fix KVM in the host kernel to allow guests with >40 bit address spaces |
| * (We don't want to fill all the way up to 512GB with RAM because |
| * we might want it for non-RAM purposes later. Conversely it seems |
| * reasonable to assume that anybody configuring a VM with a quarter |
| * of a terabyte of RAM will be doing it on a host with more than a |
| * terabyte of physical address space.) |
| */ |
| #define RAMLIMIT_GB 255 |
| #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024) |
| |
| /* Addresses and sizes of our components. |
| * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. |
| * 128MB..256MB is used for miscellaneous device I/O. |
| * 256MB..1GB is reserved for possible future PCI support (ie where the |
| * PCI memory window will go if we add a PCI host controller). |
| * 1GB and up is RAM (which may happily spill over into the |
| * high memory region beyond 4GB). |
| * This represents a compromise between how much RAM can be given to |
| * a 32 bit VM and leaving space for expansion and in particular for PCI. |
| * Note that devices should generally be placed at multiples of 0x10000, |
| * to accommodate guests using 64K pages. |
| */ |
| static const MemMapEntry a15memmap[] = { |
| /* Space up to 0x8000000 is reserved for a boot ROM */ |
| [VIRT_FLASH] = { 0, 0x08000000 }, |
| [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, |
| /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ |
| [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, |
| [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, |
| [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, |
| /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ |
| [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, |
| /* This redistributor space allows up to 2*64kB*123 CPUs */ |
| [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, |
| [VIRT_UART] = { 0x09000000, 0x00001000 }, |
| [VIRT_RTC] = { 0x09010000, 0x00001000 }, |
| [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, |
| [VIRT_GPIO] = { 0x09030000, 0x00001000 }, |
| [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 }, |
| [VIRT_SMMU] = { 0x09050000, 0x00020000 }, |
| [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, |
| /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ |
| [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, |
| [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, |
| [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, |
| [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, |
| [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, |
| [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES }, |
| /* Additional 64 MB redist region (can contain up to 512 redistributors) */ |
| [VIRT_GIC_REDIST2] = { 0x4000000000ULL, 0x4000000 }, |
| [VIRT_PCIE_ECAM_HIGH] = { 0x4010000000ULL, 0x10000000 }, |
| /* Second PCIe window, 512GB wide at the 512GB boundary */ |
| [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL }, |
| }; |
| |
| static const int a15irqmap[] = { |
| [VIRT_UART] = 1, |
| [VIRT_RTC] = 2, |
| [VIRT_PCIE] = 3, /* ... to 6 */ |
| [VIRT_GPIO] = 7, |
| [VIRT_SECURE_UART] = 8, |
| [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ |
| [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ |
| [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */ |
| [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ |
| }; |
| |
| static const char *valid_cpus[] = { |
| ARM_CPU_TYPE_NAME("cortex-a15"), |
| ARM_CPU_TYPE_NAME("cortex-a53"), |
| ARM_CPU_TYPE_NAME("cortex-a57"), |
| ARM_CPU_TYPE_NAME("host"), |
| ARM_CPU_TYPE_NAME("max"), |
| }; |
| |
| static bool cpu_type_valid(const char *cpu) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) { |
| if (strcmp(cpu, valid_cpus[i]) == 0) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static void create_fdt(VirtMachineState *vms) |
| { |
| void *fdt = create_device_tree(&vms->fdt_size); |
| |
| if (!fdt) { |
| error_report("create_device_tree() failed"); |
| exit(1); |
| } |
| |
| vms->fdt = fdt; |
| |
| /* Header */ |
| qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); |
| qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); |
| qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); |
| |
| /* |
| * /chosen and /memory nodes must exist for load_dtb |
| * to fill in necessary properties later |
| */ |
| qemu_fdt_add_subnode(fdt, "/chosen"); |
| qemu_fdt_add_subnode(fdt, "/memory"); |
| qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory"); |
| |
| /* Clock node, for the benefit of the UART. The kernel device tree |
| * binding documentation claims the PL011 node clock properties are |
| * optional but in practice if you omit them the kernel refuses to |
| * probe for the device. |
| */ |
| vms->clock_phandle = qemu_fdt_alloc_phandle(fdt); |
| qemu_fdt_add_subnode(fdt, "/apb-pclk"); |
| qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); |
| qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); |
| qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); |
| qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", |
| "clk24mhz"); |
| qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle); |
| |
| if (have_numa_distance) { |
| int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); |
| uint32_t *matrix = g_malloc0(size); |
| int idx, i, j; |
| |
| for (i = 0; i < nb_numa_nodes; i++) { |
| for (j = 0; j < nb_numa_nodes; j++) { |
| idx = (i * nb_numa_nodes + j) * 3; |
| matrix[idx + 0] = cpu_to_be32(i); |
| matrix[idx + 1] = cpu_to_be32(j); |
| matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]); |
| } |
| } |
| |
| qemu_fdt_add_subnode(fdt, "/distance-map"); |
| qemu_fdt_setprop_string(fdt, "/distance-map", "compatible", |
| "numa-distance-map-v1"); |
| qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", |
| matrix, size); |
| g_free(matrix); |
| } |
| } |
| |
| static void fdt_add_timer_nodes(const VirtMachineState *vms) |
| { |
| /* On real hardware these interrupts are level-triggered. |
| * On KVM they were edge-triggered before host kernel version 4.4, |
| * and level-triggered afterwards. |
| * On emulated QEMU they are level-triggered. |
| * |
| * Getting the DTB info about them wrong is awkward for some |
| * guest kernels: |
| * pre-4.8 ignore the DT and leave the interrupt configured |
| * with whatever the GIC reset value (or the bootloader) left it at |
| * 4.8 before rc6 honour the incorrect data by programming it back |
| * into the GIC, causing problems |
| * 4.8rc6 and later ignore the DT and always write "level triggered" |
| * into the GIC |
| * |
| * For backwards-compatibility, virt-2.8 and earlier will continue |
| * to say these are edge-triggered, but later machines will report |
| * the correct information. |
| */ |
| ARMCPU *armcpu; |
| VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); |
| uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; |
| |
| if (vmc->claim_edge_triggered_timers) { |
| irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; |
| } |
| |
| if (vms->gic_version == 2) { |
| irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, |
| GIC_FDT_IRQ_PPI_CPU_WIDTH, |
| (1 << vms->smp_cpus) - 1); |
| } |
| |
| qemu_fdt_add_subnode(vms->fdt, "/timer"); |
| |
| armcpu = ARM_CPU(qemu_get_cpu(0)); |
| if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { |
| const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; |
| qemu_fdt_setprop(vms->fdt, "/timer", "compatible", |
| compat, sizeof(compat)); |
| } else { |
| qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible", |
| "arm,armv7-timer"); |
| } |
| qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0); |
| qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts", |
| GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags, |
| GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags, |
| GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags, |
| GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags); |
| } |
| |
| static void fdt_add_cpu_nodes(const VirtMachineState *vms) |
| { |
| int cpu; |
| int addr_cells = 1; |
| const MachineState *ms = MACHINE(vms); |
| |
| /* |
| * From Documentation/devicetree/bindings/arm/cpus.txt |
| * On ARM v8 64-bit systems value should be set to 2, |
| * that corresponds to the MPIDR_EL1 register size. |
| * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs |
| * in the system, #address-cells can be set to 1, since |
| * MPIDR_EL1[63:32] bits are not used for CPUs |
| * identification. |
| * |
| * Here we actually don't know whether our system is 32- or 64-bit one. |
| * The simplest way to go is to examine affinity IDs of all our CPUs. If |
| * at least one of them has Aff3 populated, we set #address-cells to 2. |
| */ |
| for (cpu = 0; cpu < vms->smp_cpus; cpu++) { |
| ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); |
| |
| if (armcpu->mp_affinity & ARM_AFF3_MASK) { |
| addr_cells = 2; |
| break; |
| } |
| } |
| |
| qemu_fdt_add_subnode(vms->fdt, "/cpus"); |
| qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells); |
| qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0); |
| |
| for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) { |
| char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); |
| ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); |
| CPUState *cs = CPU(armcpu); |
| |
| qemu_fdt_add_subnode(vms->fdt, nodename); |
| qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu"); |
| qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", |
| armcpu->dtb_compatible); |
| |
| if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED |
| && vms->smp_cpus > 1) { |
| qemu_fdt_setprop_string(vms->fdt, nodename, |
| "enable-method", "psci"); |
| } |
| |
| if (addr_cells == 2) { |
| qemu_fdt_setprop_u64(vms->fdt, nodename, "reg", |
| armcpu->mp_affinity); |
| } else { |
| qemu_fdt_setprop_cell(vms->fdt, nodename, "reg", |
| armcpu->mp_affinity); |
| } |
| |
| if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { |
| qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id", |
| ms->possible_cpus->cpus[cs->cpu_index].props.node_id); |
| } |
| |
| g_free(nodename); |
| } |
| } |
| |
| static void fdt_add_its_gic_node(VirtMachineState *vms) |
| { |
| vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt); |
| qemu_fdt_add_subnode(vms->fdt, "/intc/its"); |
| qemu_fdt_setprop_string(vms->fdt, "/intc/its", "compatible", |
| "arm,gic-v3-its"); |
| qemu_fdt_setprop(vms->fdt, "/intc/its", "msi-controller", NULL, 0); |
| qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/its", "reg", |
| 2, vms->memmap[VIRT_GIC_ITS].base, |
| 2, vms->memmap[VIRT_GIC_ITS].size); |
| qemu_fdt_setprop_cell(vms->fdt, "/intc/its", "phandle", vms->msi_phandle); |
| } |
| |
| static void fdt_add_v2m_gic_node(VirtMachineState *vms) |
| { |
| vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt); |
| qemu_fdt_add_subnode(vms->fdt, "/intc/v2m"); |
| qemu_fdt_setprop_string(vms->fdt, "/intc/v2m", "compatible", |
| "arm,gic-v2m-frame"); |
| qemu_fdt_setprop(vms->fdt, "/intc/v2m", "msi-controller", NULL, 0); |
| qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/v2m", "reg", |
| 2, vms->memmap[VIRT_GIC_V2M].base, |
| 2, vms->memmap[VIRT_GIC_V2M].size); |
| qemu_fdt_setprop_cell(vms->fdt, "/intc/v2m", "phandle", vms->msi_phandle); |
| } |
| |
| static void fdt_add_gic_node(VirtMachineState *vms) |
| { |
| vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt); |
| qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle); |
| |
| qemu_fdt_add_subnode(vms->fdt, "/intc"); |
| qemu_fdt_setprop_cell(vms->fdt, "/intc", "#interrupt-cells", 3); |
| qemu_fdt_setprop(vms->fdt, "/intc", "interrupt-controller", NULL, 0); |
| qemu_fdt_setprop_cell(vms->fdt, "/intc", "#address-cells", 0x2); |
| qemu_fdt_setprop_cell(vms->fdt, "/intc", "#size-cells", 0x2); |
| qemu_fdt_setprop(vms->fdt, "/intc", "ranges", NULL, 0); |
| if (vms->gic_version == 3) { |
| int nb_redist_regions = virt_gicv3_redist_region_count(vms); |
| |
| qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible", |
| "arm,gic-v3"); |
| |
| qemu_fdt_setprop_cell(vms->fdt, "/intc", |
| "#redistributor-regions", nb_redist_regions); |
| |
| if (nb_redist_regions == 1) { |
| qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg", |
| 2, vms->memmap[VIRT_GIC_DIST].base, |
| 2, vms->memmap[VIRT_GIC_DIST].size, |
| 2, vms->memmap[VIRT_GIC_REDIST].base, |
| 2, vms->memmap[VIRT_GIC_REDIST].size); |
| } else { |
| qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg", |
| 2, vms->memmap[VIRT_GIC_DIST].base, |
| 2, vms->memmap[VIRT_GIC_DIST].size, |
| 2, vms->memmap[VIRT_GIC_REDIST].base, |
| 2, vms->memmap[VIRT_GIC_REDIST].size, |
| 2, vms->memmap[VIRT_GIC_REDIST2].base, |
| 2, vms->memmap[VIRT_GIC_REDIST2].size); |
| } |
| |
| if (vms->virt) { |
| qemu_fdt_setprop_cells(vms->fdt, "/intc", "interrupts", |
| GIC_FDT_IRQ_TYPE_PPI, ARCH_GICV3_MAINT_IRQ, |
| GIC_FDT_IRQ_FLAGS_LEVEL_HI); |
| } |
| } else { |
| /* 'cortex-a15-gic' means 'GIC v2' */ |
| qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible", |
| "arm,cortex-a15-gic"); |
| qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg", |
| 2, vms->memmap[VIRT_GIC_DIST].base, |
| 2, vms->memmap[VIRT_GIC_DIST].size, |
| 2, vms->memmap[VIRT_GIC_CPU].base, |
| 2, vms->memmap[VIRT_GIC_CPU].size); |
| } |
| |
| qemu_fdt_setprop_cell(vms->fdt, "/intc", "phandle", vms->gic_phandle); |
| } |
| |
| static void fdt_add_pmu_nodes(const VirtMachineState *vms) |
| { |
| CPUState *cpu; |
| ARMCPU *armcpu; |
| uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; |
| |
| CPU_FOREACH(cpu) { |
| armcpu = ARM_CPU(cpu); |
| if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { |
| return; |
| } |
| if (kvm_enabled()) { |
| if (kvm_irqchip_in_kernel()) { |
| kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ)); |
| } |
| kvm_arm_pmu_init(cpu); |
| } |
| } |
| |
| if (vms->gic_version == 2) { |
| irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, |
| GIC_FDT_IRQ_PPI_CPU_WIDTH, |
| (1 << vms->smp_cpus) - 1); |
| } |
| |
| armcpu = ARM_CPU(qemu_get_cpu(0)); |
| qemu_fdt_add_subnode(vms->fdt, "/pmu"); |
| if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { |
| const char compat[] = "arm,armv8-pmuv3"; |
| qemu_fdt_setprop(vms->fdt, "/pmu", "compatible", |
| compat, sizeof(compat)); |
| qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts", |
| GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags); |
| } |
| } |
| |
| static void create_its(VirtMachineState *vms, DeviceState *gicdev) |
| { |
| const char *itsclass = its_class_name(); |
| DeviceState *dev; |
| |
| if (!itsclass) { |
| /* Do nothing if not supported */ |
| return; |
| } |
| |
| dev = qdev_create(NULL, itsclass); |
| |
| object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3", |
| &error_abort); |
| qdev_init_nofail(dev); |
| sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base); |
| |
| fdt_add_its_gic_node(vms); |
| } |
| |
| static void create_v2m(VirtMachineState *vms, qemu_irq *pic) |
| { |
| int i; |
| int irq = vms->irqmap[VIRT_GIC_V2M]; |
| DeviceState *dev; |
| |
| dev = qdev_create(NULL, "arm-gicv2m"); |
| sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base); |
| qdev_prop_set_uint32(dev, "base-spi", irq); |
| qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); |
| qdev_init_nofail(dev); |
| |
| for (i = 0; i < NUM_GICV2M_SPIS; i++) { |
| sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); |
| } |
| |
| fdt_add_v2m_gic_node(vms); |
| } |
| |
| static void create_gic(VirtMachineState *vms, qemu_irq *pic) |
| { |
| /* We create a standalone GIC */ |
| DeviceState *gicdev; |
| SysBusDevice *gicbusdev; |
| const char *gictype; |
| int type = vms->gic_version, i; |
| uint32_t nb_redist_regions = 0; |
| |
| gictype = (type == 3) ? gicv3_class_name() : gic_class_name(); |
| |
| gicdev = qdev_create(NULL, gictype); |
| qdev_prop_set_uint32(gicdev, "revision", type); |
| qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus); |
| /* Note that the num-irq property counts both internal and external |
| * interrupts; there are always 32 of the former (mandated by GIC spec). |
| */ |
| qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32); |
| if (!kvm_irqchip_in_kernel()) { |
| qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure); |
| } |
| |
| if (type == 3) { |
| uint32_t redist0_capacity = |
| vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE; |
| uint32_t redist0_count = MIN(smp_cpus, redist0_capacity); |
| |
| nb_redist_regions = virt_gicv3_redist_region_count(vms); |
| |
| qdev_prop_set_uint32(gicdev, "len-redist-region-count", |
| nb_redist_regions); |
| qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count); |
| |
| if (nb_redist_regions == 2) { |
| uint32_t redist1_capacity = |
| vms->memmap[VIRT_GIC_REDIST2].size / GICV3_REDIST_SIZE; |
| |
| qdev_prop_set_uint32(gicdev, "redist-region-count[1]", |
| MIN(smp_cpus - redist0_count, redist1_capacity)); |
| } |
| } |
| qdev_init_nofail(gicdev); |
| gicbusdev = SYS_BUS_DEVICE(gicdev); |
| sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base); |
| if (type == 3) { |
| sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base); |
| if (nb_redist_regions == 2) { |
| sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_REDIST2].base); |
| } |
| } else { |
| sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base); |
| } |
| |
| /* Wire the outputs from each CPU's generic timer and the GICv3 |
| * maintenance interrupt signal to the appropriate GIC PPI inputs, |
| * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs. |
| */ |
| for (i = 0; i < smp_cpus; i++) { |
| DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); |
| int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; |
| int irq; |
| /* Mapping from the output timer irq lines from the CPU to the |
| * GIC PPI inputs we use for the virt board. |
| */ |
| const int timer_irq[] = { |
| [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, |
| [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, |
| [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, |
| [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, |
| }; |
| |
| for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { |
| qdev_connect_gpio_out(cpudev, irq, |
| qdev_get_gpio_in(gicdev, |
| ppibase + timer_irq[irq])); |
| } |
| |
| qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0, |
| qdev_get_gpio_in(gicdev, ppibase |
| + ARCH_GICV3_MAINT_IRQ)); |
| qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, |
| qdev_get_gpio_in(gicdev, ppibase |
| + VIRTUAL_PMU_IRQ)); |
| |
| sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); |
| sysbus_connect_irq(gicbusdev, i + smp_cpus, |
| qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); |
| sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, |
| qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); |
| sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, |
| qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); |
| } |
| |
| for (i = 0; i < NUM_IRQS; i++) { |
| pic[i] = qdev_get_gpio_in(gicdev, i); |
| } |
| |
| fdt_add_gic_node(vms); |
| |
| if (type == 3 && vms->its) { |
| create_its(vms, gicdev); |
| } else if (type == 2) { |
| create_v2m(vms, pic); |
| } |
| } |
| |
| static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart, |
| MemoryRegion *mem, Chardev *chr) |
| { |
| char *nodename; |
| hwaddr base = vms->memmap[uart].base; |
| hwaddr size = vms->memmap[uart].size; |
| int irq = vms->irqmap[uart]; |
| const char compat[] = "arm,pl011\0arm,primecell"; |
| const char clocknames[] = "uartclk\0apb_pclk"; |
| DeviceState *dev = qdev_create(NULL, "pl011"); |
| SysBusDevice *s = SYS_BUS_DEVICE(dev); |
| |
| qdev_prop_set_chr(dev, "chardev", chr); |
| qdev_init_nofail(dev); |
| memory_region_add_subregion(mem, base, |
| sysbus_mmio_get_region(s, 0)); |
| sysbus_connect_irq(s, 0, pic[irq]); |
| |
| nodename = g_strdup_printf("/pl011@%" PRIx64, base); |
| qemu_fdt_add_subnode(vms->fdt, nodename); |
| /* Note that we can't use setprop_string because of the embedded NUL */ |
| qemu_fdt_setprop(vms->fdt, nodename, "compatible", |
| compat, sizeof(compat)); |
| qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", |
| 2, base, 2, size); |
| qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", |
| GIC_FDT_IRQ_TYPE_SPI, irq, |
| GIC_FDT_IRQ_FLAGS_LEVEL_HI); |
| qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks", |
| vms->clock_phandle, vms->clock_phandle); |
| qemu_fdt_setprop(vms->fdt, nodename, "clock-names", |
| clocknames, sizeof(clocknames)); |
| |
| if (uart == VIRT_UART) { |
| qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename); |
| } else { |
| /* Mark as not usable by the normal world */ |
| qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); |
| qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); |
| } |
| |
| g_free(nodename); |
| } |
| |
| static void create_rtc(const VirtMachineState *vms, qemu_irq *pic) |
| { |
| char *nodename; |
| hwaddr base = vms->memmap[VIRT_RTC].base; |
| hwaddr size = vms->memmap[VIRT_RTC].size; |
| int irq = vms->irqmap[VIRT_RTC]; |
| const char compat[] = "arm,pl031\0arm,primecell"; |
| |
| sysbus_create_simple("pl031", base, pic[irq]); |
| |
| nodename = g_strdup_printf("/pl031@%" PRIx64, base); |
| qemu_fdt_add_subnode(vms->fdt, nodename); |
| qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat)); |
| qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", |
| 2, base, 2, size); |
| qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", |
| GIC_FDT_IRQ_TYPE_SPI, irq, |
| GIC_FDT_IRQ_FLAGS_LEVEL_HI); |
| qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle); |
| qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk"); |
| g_free(nodename); |
| } |
| |
| static DeviceState *gpio_key_dev; |
| static void virt_powerdown_req(Notifier *n, void *opaque) |
| { |
| /* use gpio Pin 3 for power button event */ |
| qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); |
| } |
| |
| static Notifier virt_system_powerdown_notifier = { |
| .notify = virt_powerdown_req |
| }; |
| |
| static void create_gpio(const VirtMachineState *vms, qemu_irq *pic) |
| { |
| char *nodename; |
| DeviceState *pl061_dev; |
| hwaddr base = vms->memmap[VIRT_GPIO].base; |
| hwaddr size = vms->memmap[VIRT_GPIO].size; |
| int irq = vms->irqmap[VIRT_GPIO]; |
| const char compat[] = "arm,pl061\0arm,primecell"; |
| |
| pl061_dev = sysbus_create_simple("pl061", base, pic[irq]); |
| |
| uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt); |
| nodename = g_strdup_printf("/pl061@%" PRIx64, base); |
| qemu_fdt_add_subnode(vms->fdt, nodename); |
| qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", |
| 2, base, 2, size); |
| qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat)); |
| qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2); |
| qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0); |
| qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", |
| GIC_FDT_IRQ_TYPE_SPI, irq, |
| GIC_FDT_IRQ_FLAGS_LEVEL_HI); |
| qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle); |
| qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk"); |
| qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle); |
| |
| gpio_key_dev = sysbus_create_simple("gpio-key", -1, |
| qdev_get_gpio_in(pl061_dev, 3)); |
| qemu_fdt_add_subnode(vms->fdt, "/gpio-keys"); |
| qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys"); |
| qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0); |
| qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1); |
| |
| qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff"); |
| qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff", |
| "label", "GPIO Key Poweroff"); |
| qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code", |
| KEY_POWER); |
| qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff", |
| "gpios", phandle, 3, 0); |
| |
| /* connect powerdown request */ |
| qemu_register_powerdown_notifier(&virt_system_powerdown_notifier); |
| |
| g_free(nodename); |
| } |
| |
| static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic) |
| { |
| int i; |
| hwaddr size = vms->memmap[VIRT_MMIO].size; |
| |
| /* We create the transports in forwards order. Since qbus_realize() |
| * prepends (not appends) new child buses, the incrementing loop below will |
| * create a list of virtio-mmio buses with decreasing base addresses. |
| * |
| * When a -device option is processed from the command line, |
| * qbus_find_recursive() picks the next free virtio-mmio bus in forwards |
| * order. The upshot is that -device options in increasing command line |
| * order are mapped to virtio-mmio buses with decreasing base addresses. |
| * |
| * When this code was originally written, that arrangement ensured that the |
| * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to |
| * the first -device on the command line. (The end-to-end order is a |
| * function of this loop, qbus_realize(), qbus_find_recursive(), and the |
| * guest kernel's name-to-address assignment strategy.) |
| * |
| * Meanwhile, the kernel's traversal seems to have been reversed; see eg. |
| * the message, if not necessarily the code, of commit 70161ff336. |
| * Therefore the loop now establishes the inverse of the original intent. |
| * |
| * Unfortunately, we can't counteract the kernel change by reversing the |
| * loop; it would break existing command lines. |
| * |
| * In any case, the kernel makes no guarantee about the stability of |
| * enumeration order of virtio devices (as demonstrated by it changing |
| * between kernel versions). For reliable and stable identification |
| * of disks users must use UUIDs or similar mechanisms. |
| */ |
| for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { |
| int irq = vms->irqmap[VIRT_MMIO] + i; |
| hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; |
| |
| sysbus_create_simple("virtio-mmio", base, pic[irq]); |
| } |
| |
| /* We add dtb nodes in reverse order so that they appear in the finished |
| * device tree lowest address first. |
| * |
| * Note that this mapping is independent of the loop above. The previous |
| * loop influences virtio device to virtio transport assignment, whereas |
| * this loop controls how virtio transports are laid out in the dtb. |
| */ |
| for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { |
| char *nodename; |
| int irq = vms->irqmap[VIRT_MMIO] + i; |
| hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; |
| |
| nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); |
| qemu_fdt_add_subnode(vms->fdt, nodename); |
| qemu_fdt_setprop_string(vms->fdt, nodename, |
| "compatible", "virtio,mmio"); |
| qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", |
| 2, base, 2, size); |
| qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", |
| GIC_FDT_IRQ_TYPE_SPI, irq, |
| GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); |
| qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); |
| g_free(nodename); |
| } |
| } |
| |
| static void create_one_flash(const char *name, hwaddr flashbase, |
| hwaddr flashsize, const char *file, |
| MemoryRegion *sysmem) |
| { |
| /* Create and map a single flash device. We use the same |
| * parameters as the flash devices on the Versatile Express board. |
| */ |
| DriveInfo *dinfo = drive_get_next(IF_PFLASH); |
| DeviceState *dev = qdev_create(NULL, "cfi.pflash01"); |
| SysBusDevice *sbd = SYS_BUS_DEVICE(dev); |
| const uint64_t sectorlength = 256 * 1024; |
| |
| if (dinfo) { |
| qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), |
| &error_abort); |
| } |
| |
| qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength); |
| qdev_prop_set_uint64(dev, "sector-length", sectorlength); |
| qdev_prop_set_uint8(dev, "width", 4); |
| qdev_prop_set_uint8(dev, "device-width", 2); |
| qdev_prop_set_bit(dev, "big-endian", false); |
| qdev_prop_set_uint16(dev, "id0", 0x89); |
| qdev_prop_set_uint16(dev, "id1", 0x18); |
| qdev_prop_set_uint16(dev, "id2", 0x00); |
| qdev_prop_set_uint16(dev, "id3", 0x00); |
| qdev_prop_set_string(dev, "name", name); |
| qdev_init_nofail(dev); |
| |
| memory_region_add_subregion(sysmem, flashbase, |
| sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0)); |
| |
| if (file) { |
| char *fn; |
| int image_size; |
| |
| if (drive_get(IF_PFLASH, 0, 0)) { |
| error_report("The contents of the first flash device may be " |
| "specified with -bios or with -drive if=pflash... " |
| "but you cannot use both options at once"); |
| exit(1); |
| } |
| fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file); |
| if (!fn) { |
| error_report("Could not find ROM image '%s'", file); |
| exit(1); |
| } |
| image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0)); |
| g_free(fn); |
| if (image_size < 0) { |
| error_report("Could not load ROM image '%s'", file); |
| exit(1); |
| } |
| } |
| } |
| |
| static void create_flash(const VirtMachineState *vms, |
| MemoryRegion *sysmem, |
| MemoryRegion *secure_sysmem) |
| { |
| /* Create two flash devices to fill the VIRT_FLASH space in the memmap. |
| * Any file passed via -bios goes in the first of these. |
| * sysmem is the system memory space. secure_sysmem is the secure view |
| * of the system, and the first flash device should be made visible only |
| * there. The second flash device is visible to both secure and nonsecure. |
| * If sysmem == secure_sysmem this means there is no separate Secure |
| * address space and both flash devices are generally visible. |
| */ |
| hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; |
| hwaddr flashbase = vms->memmap[VIRT_FLASH].base; |
| char *nodename; |
| |
| create_one_flash("virt.flash0", flashbase, flashsize, |
| bios_name, secure_sysmem); |
| create_one_flash("virt.flash1", flashbase + flashsize, flashsize, |
| NULL, sysmem); |
| |
| if (sysmem == secure_sysmem) { |
| /* Report both flash devices as a single node in the DT */ |
| nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); |
| qemu_fdt_add_subnode(vms->fdt, nodename); |
| qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); |
| qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", |
| 2, flashbase, 2, flashsize, |
| 2, flashbase + flashsize, 2, flashsize); |
| qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); |
| g_free(nodename); |
| } else { |
| /* Report the devices as separate nodes so we can mark one as |
| * only visible to the secure world. |
| */ |
| nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); |
| qemu_fdt_add_subnode(vms->fdt, nodename); |
| qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); |
| qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", |
| 2, flashbase, 2, flashsize); |
| qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); |
| qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); |
| qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); |
| g_free(nodename); |
| |
| nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); |
| qemu_fdt_add_subnode(vms->fdt, nodename); |
| qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); |
| qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", |
| 2, flashbase + flashsize, 2, flashsize); |
| qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); |
| g_free(nodename); |
| } |
| } |
| |
| static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as) |
| { |
| hwaddr base = vms->memmap[VIRT_FW_CFG].base; |
| hwaddr size = vms->memmap[VIRT_FW_CFG].size; |
| FWCfgState *fw_cfg; |
| char *nodename; |
| |
| fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); |
| fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus); |
| |
| nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); |
| qemu_fdt_add_subnode(vms->fdt, nodename); |
| qemu_fdt_setprop_string(vms->fdt, nodename, |
| "compatible", "qemu,fw-cfg-mmio"); |
| qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", |
| 2, base, 2, size); |
| qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); |
| g_free(nodename); |
| return fw_cfg; |
| } |
| |
| static void create_pcie_irq_map(const VirtMachineState *vms, |
| uint32_t gic_phandle, |
| int first_irq, const char *nodename) |
| { |
| int devfn, pin; |
| uint32_t full_irq_map[4 * 4 * 10] = { 0 }; |
| uint32_t *irq_map = full_irq_map; |
| |
| for (devfn = 0; devfn <= 0x18; devfn += 0x8) { |
| for (pin = 0; pin < 4; pin++) { |
| int irq_type = GIC_FDT_IRQ_TYPE_SPI; |
| int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); |
| int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; |
| int i; |
| |
| uint32_t map[] = { |
| devfn << 8, 0, 0, /* devfn */ |
| pin + 1, /* PCI pin */ |
| gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ |
| |
| /* Convert map to big endian */ |
| for (i = 0; i < 10; i++) { |
| irq_map[i] = cpu_to_be32(map[i]); |
| } |
| irq_map += 10; |
| } |
| } |
| |
| qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map", |
| full_irq_map, sizeof(full_irq_map)); |
| |
| qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask", |
| 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */ |
| 0x7 /* PCI irq */); |
| } |
| |
| static void create_smmu(const VirtMachineState *vms, qemu_irq *pic, |
| PCIBus *bus) |
| { |
| char *node; |
| const char compat[] = "arm,smmu-v3"; |
| int irq = vms->irqmap[VIRT_SMMU]; |
| int i; |
| hwaddr base = vms->memmap[VIRT_SMMU].base; |
| hwaddr size = vms->memmap[VIRT_SMMU].size; |
| const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror"; |
| DeviceState *dev; |
| |
| if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) { |
| return; |
| } |
| |
| dev = qdev_create(NULL, "arm-smmuv3"); |
| |
| object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus", |
| &error_abort); |
| qdev_init_nofail(dev); |
| sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); |
| for (i = 0; i < NUM_SMMU_IRQS; i++) { |
| sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); |
| } |
| |
| node = g_strdup_printf("/smmuv3@%" PRIx64, base); |
| qemu_fdt_add_subnode(vms->fdt, node); |
| qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat)); |
| qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size); |
| |
| qemu_fdt_setprop_cells(vms->fdt, node, "interrupts", |
| GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, |
| GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, |
| GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, |
| GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); |
| |
| qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names, |
| sizeof(irq_names)); |
| |
| qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle); |
| qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk"); |
| qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0); |
| |
| qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1); |
| |
| qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle); |
| g_free(node); |
| } |
| |
| static void create_pcie(VirtMachineState *vms, qemu_irq *pic) |
| { |
| hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base; |
| hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size; |
| hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base; |
| hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size; |
| hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base; |
| hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size; |
| hwaddr base_ecam, size_ecam; |
| hwaddr base = base_mmio; |
| int nr_pcie_buses; |
| int irq = vms->irqmap[VIRT_PCIE]; |
| MemoryRegion *mmio_alias; |
| MemoryRegion *mmio_reg; |
| MemoryRegion *ecam_alias; |
| MemoryRegion *ecam_reg; |
| DeviceState *dev; |
| char *nodename; |
| int i, ecam_id; |
| PCIHostState *pci; |
| |
| dev = qdev_create(NULL, TYPE_GPEX_HOST); |
| qdev_init_nofail(dev); |
| |
| ecam_id = VIRT_ECAM_ID(vms->highmem_ecam); |
| base_ecam = vms->memmap[ecam_id].base; |
| size_ecam = vms->memmap[ecam_id].size; |
| nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; |
| /* Map only the first size_ecam bytes of ECAM space */ |
| ecam_alias = g_new0(MemoryRegion, 1); |
| ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); |
| memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", |
| ecam_reg, 0, size_ecam); |
| memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); |
| |
| /* Map the MMIO window into system address space so as to expose |
| * the section of PCI MMIO space which starts at the same base address |
| * (ie 1:1 mapping for that part of PCI MMIO space visible through |
| * the window). |
| */ |
| mmio_alias = g_new0(MemoryRegion, 1); |
| mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); |
| memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", |
| mmio_reg, base_mmio, size_mmio); |
| memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); |
| |
| if (vms->highmem) { |
| /* Map high MMIO space */ |
| MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); |
| |
| memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", |
| mmio_reg, base_mmio_high, size_mmio_high); |
| memory_region_add_subregion(get_system_memory(), base_mmio_high, |
| high_mmio_alias); |
| } |
| |
| /* Map IO port space */ |
| sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); |
| |
| for (i = 0; i < GPEX_NUM_IRQS; i++) { |
| sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); |
| gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); |
| } |
| |
| pci = PCI_HOST_BRIDGE(dev); |
| if (pci->bus) { |
| for (i = 0; i < nb_nics; i++) { |
| NICInfo *nd = &nd_table[i]; |
| |
| if (!nd->model) { |
| nd->model = g_strdup("virtio"); |
| } |
| |
| pci_nic_init_nofail(nd, pci->bus, nd->model, NULL); |
| } |
| } |
| |
| nodename = g_strdup_printf("/pcie@%" PRIx64, base); |
| qemu_fdt_add_subnode(vms->fdt, nodename); |
| qemu_fdt_setprop_string(vms->fdt, nodename, |
| "compatible", "pci-host-ecam-generic"); |
| qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci"); |
| qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3); |
| qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2); |
| qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0); |
| qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0, |
| nr_pcie_buses - 1); |
| qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); |
| |
| if (vms->msi_phandle) { |
| qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent", |
| vms->msi_phandle); |
| } |
| |
| qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", |
| 2, base_ecam, 2, size_ecam); |
| |
| if (vms->highmem) { |
| qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges", |
| 1, FDT_PCI_RANGE_IOPORT, 2, 0, |
| 2, base_pio, 2, size_pio, |
| 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, |
| 2, base_mmio, 2, size_mmio, |
| 1, FDT_PCI_RANGE_MMIO_64BIT, |
| 2, base_mmio_high, |
| 2, base_mmio_high, 2, size_mmio_high); |
| } else { |
| qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges", |
| 1, FDT_PCI_RANGE_IOPORT, 2, 0, |
| 2, base_pio, 2, size_pio, |
| 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, |
| 2, base_mmio, 2, size_mmio); |
| } |
| |
| qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1); |
| create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename); |
| |
| if (vms->iommu) { |
| vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt); |
| |
| create_smmu(vms, pic, pci->bus); |
| |
| qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map", |
| 0x0, vms->iommu_phandle, 0x0, 0x10000); |
| } |
| |
| g_free(nodename); |
| } |
| |
| static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic) |
| { |
| DeviceState *dev; |
| SysBusDevice *s; |
| int i; |
| MemoryRegion *sysmem = get_system_memory(); |
| |
| dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE); |
| dev->id = TYPE_PLATFORM_BUS_DEVICE; |
| qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS); |
| qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size); |
| qdev_init_nofail(dev); |
| vms->platform_bus_dev = dev; |
| |
| s = SYS_BUS_DEVICE(dev); |
| for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) { |
| int irqn = vms->irqmap[VIRT_PLATFORM_BUS] + i; |
| sysbus_connect_irq(s, i, pic[irqn]); |
| } |
| |
| memory_region_add_subregion(sysmem, |
| vms->memmap[VIRT_PLATFORM_BUS].base, |
| sysbus_mmio_get_region(s, 0)); |
| } |
| |
| static void create_secure_ram(VirtMachineState *vms, |
| MemoryRegion *secure_sysmem) |
| { |
| MemoryRegion *secram = g_new(MemoryRegion, 1); |
| char *nodename; |
| hwaddr base = vms->memmap[VIRT_SECURE_MEM].base; |
| hwaddr size = vms->memmap[VIRT_SECURE_MEM].size; |
| |
| memory_region_init_ram(secram, NULL, "virt.secure-ram", size, |
| &error_fatal); |
| memory_region_add_subregion(secure_sysmem, base, secram); |
| |
| nodename = g_strdup_printf("/secram@%" PRIx64, base); |
| qemu_fdt_add_subnode(vms->fdt, nodename); |
| qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory"); |
| qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size); |
| qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); |
| qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); |
| |
| g_free(nodename); |
| } |
| |
| static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) |
| { |
| const VirtMachineState *board = container_of(binfo, VirtMachineState, |
| bootinfo); |
| |
| *fdt_size = board->fdt_size; |
| return board->fdt; |
| } |
| |
| static void virt_build_smbios(VirtMachineState *vms) |
| { |
| MachineClass *mc = MACHINE_GET_CLASS(vms); |
| VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); |
| uint8_t *smbios_tables, *smbios_anchor; |
| size_t smbios_tables_len, smbios_anchor_len; |
| const char *product = "QEMU Virtual Machine"; |
| |
| if (!vms->fw_cfg) { |
| return; |
| } |
| |
| if (kvm_enabled()) { |
| product = "KVM Virtual Machine"; |
| } |
| |
| smbios_set_defaults("QEMU", product, |
| vmc->smbios_old_sys_ver ? "1.0" : mc->name, false, |
| true, SMBIOS_ENTRY_POINT_30); |
| |
| smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len, |
| &smbios_anchor, &smbios_anchor_len); |
| |
| if (smbios_anchor) { |
| fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables", |
| smbios_tables, smbios_tables_len); |
| fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor", |
| smbios_anchor, smbios_anchor_len); |
| } |
| } |
| |
| static |
| void virt_machine_done(Notifier *notifier, void *data) |
| { |
| VirtMachineState *vms = container_of(notifier, VirtMachineState, |
| machine_done); |
| ARMCPU *cpu = ARM_CPU(first_cpu); |
| struct arm_boot_info *info = &vms->bootinfo; |
| AddressSpace *as = arm_boot_address_space(cpu, info); |
| |
| /* |
| * If the user provided a dtb, we assume the dynamic sysbus nodes |
| * already are integrated there. This corresponds to a use case where |
| * the dynamic sysbus nodes are complex and their generation is not yet |
| * supported. In that case the user can take charge of the guest dt |
| * while qemu takes charge of the qom stuff. |
| */ |
| if (info->dtb_filename == NULL) { |
| platform_bus_add_all_fdt_nodes(vms->fdt, "/intc", |
| vms->memmap[VIRT_PLATFORM_BUS].base, |
| vms->memmap[VIRT_PLATFORM_BUS].size, |
| vms->irqmap[VIRT_PLATFORM_BUS]); |
| } |
| if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) { |
| exit(1); |
| } |
| |
| virt_acpi_setup(vms); |
| virt_build_smbios(vms); |
| } |
| |
| static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx) |
| { |
| uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; |
| VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); |
| |
| if (!vmc->disallow_affinity_adjustment) { |
| /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the |
| * GIC's target-list limitations. 32-bit KVM hosts currently |
| * always create clusters of 4 CPUs, but that is expected to |
| * change when they gain support for gicv3. When KVM is enabled |
| * it will override the changes we make here, therefore our |
| * purposes are to make TCG consistent (with 64-bit KVM hosts) |
| * and to improve SGI efficiency. |
| */ |
| if (vms->gic_version == 3) { |
| clustersz = GICV3_TARGETLIST_BITS; |
| } else { |
| clustersz = GIC_TARGETLIST_BITS; |
| } |
| } |
| return arm_cpu_mp_affinity(idx, clustersz); |
| } |
| |
| static void machvirt_init(MachineState *machine) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(machine); |
| VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine); |
| MachineClass *mc = MACHINE_GET_CLASS(machine); |
| const CPUArchIdList *possible_cpus; |
| qemu_irq pic[NUM_IRQS]; |
| MemoryRegion *sysmem = get_system_memory(); |
| MemoryRegion *secure_sysmem = NULL; |
| int n, virt_max_cpus; |
| MemoryRegion *ram = g_new(MemoryRegion, 1); |
| bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0); |
| bool aarch64 = true; |
| |
| /* We can probe only here because during property set |
| * KVM is not available yet |
| */ |
| if (vms->gic_version <= 0) { |
| /* "host" or "max" */ |
| if (!kvm_enabled()) { |
| if (vms->gic_version == 0) { |
| error_report("gic-version=host requires KVM"); |
| exit(1); |
| } else { |
| /* "max": currently means 3 for TCG */ |
| vms->gic_version = 3; |
| } |
| } else { |
| vms->gic_version = kvm_arm_vgic_probe(); |
| if (!vms->gic_version) { |
| error_report( |
| "Unable to determine GIC version supported by host"); |
| exit(1); |
| } |
| } |
| } |
| |
| if (!cpu_type_valid(machine->cpu_type)) { |
| error_report("mach-virt: CPU type %s not supported", machine->cpu_type); |
| exit(1); |
| } |
| |
| /* If we have an EL3 boot ROM then the assumption is that it will |
| * implement PSCI itself, so disable QEMU's internal implementation |
| * so it doesn't get in the way. Instead of starting secondary |
| * CPUs in PSCI powerdown state we will start them all running and |
| * let the boot ROM sort them out. |
| * The usual case is that we do use QEMU's PSCI implementation; |
| * if the guest has EL2 then we will use SMC as the conduit, |
| * and otherwise we will use HVC (for backwards compatibility and |
| * because if we're using KVM then we must use HVC). |
| */ |
| if (vms->secure && firmware_loaded) { |
| vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; |
| } else if (vms->virt) { |
| vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC; |
| } else { |
| vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC; |
| } |
| |
| /* The maximum number of CPUs depends on the GIC version, or on how |
| * many redistributors we can fit into the memory map. |
| */ |
| if (vms->gic_version == 3) { |
| virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE; |
| virt_max_cpus += vms->memmap[VIRT_GIC_REDIST2].size / GICV3_REDIST_SIZE; |
| } else { |
| virt_max_cpus = GIC_NCPU; |
| } |
| |
| if (max_cpus > virt_max_cpus) { |
| error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " |
| "supported by machine 'mach-virt' (%d)", |
| max_cpus, virt_max_cpus); |
| exit(1); |
| } |
| |
| vms->smp_cpus = smp_cpus; |
| |
| if (machine->ram_size > vms->memmap[VIRT_MEM].size) { |
| error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB); |
| exit(1); |
| } |
| |
| if (vms->virt && kvm_enabled()) { |
| error_report("mach-virt: KVM does not support providing " |
| "Virtualization extensions to the guest CPU"); |
| exit(1); |
| } |
| |
| if (vms->secure) { |
| if (kvm_enabled()) { |
| error_report("mach-virt: KVM does not support Security extensions"); |
| exit(1); |
| } |
| |
| /* The Secure view of the world is the same as the NonSecure, |
| * but with a few extra devices. Create it as a container region |
| * containing the system memory at low priority; any secure-only |
| * devices go in at higher priority and take precedence. |
| */ |
| secure_sysmem = g_new(MemoryRegion, 1); |
| memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", |
| UINT64_MAX); |
| memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); |
| } |
| |
| create_fdt(vms); |
| |
| possible_cpus = mc->possible_cpu_arch_ids(machine); |
| for (n = 0; n < possible_cpus->len; n++) { |
| Object *cpuobj; |
| CPUState *cs; |
| |
| if (n >= smp_cpus) { |
| break; |
| } |
| |
| cpuobj = object_new(possible_cpus->cpus[n].type); |
| object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id, |
| "mp-affinity", NULL); |
| |
| cs = CPU(cpuobj); |
| cs->cpu_index = n; |
| |
| numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), |
| &error_fatal); |
| |
| aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL); |
| |
| if (!vms->secure) { |
| object_property_set_bool(cpuobj, false, "has_el3", NULL); |
| } |
| |
| if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) { |
| object_property_set_bool(cpuobj, false, "has_el2", NULL); |
| } |
| |
| if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) { |
| object_property_set_int(cpuobj, vms->psci_conduit, |
| "psci-conduit", NULL); |
| |
| /* Secondary CPUs start in PSCI powered-down state */ |
| if (n > 0) { |
| object_property_set_bool(cpuobj, true, |
| "start-powered-off", NULL); |
| } |
| } |
| |
| if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) { |
| object_property_set_bool(cpuobj, false, "pmu", NULL); |
| } |
| |
| if (object_property_find(cpuobj, "reset-cbar", NULL)) { |
| object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base, |
| "reset-cbar", &error_abort); |
| } |
| |
| object_property_set_link(cpuobj, OBJECT(sysmem), "memory", |
| &error_abort); |
| if (vms->secure) { |
| object_property_set_link(cpuobj, OBJECT(secure_sysmem), |
| "secure-memory", &error_abort); |
| } |
| |
| object_property_set_bool(cpuobj, true, "realized", &error_fatal); |
| object_unref(cpuobj); |
| } |
| fdt_add_timer_nodes(vms); |
| fdt_add_cpu_nodes(vms); |
| |
| memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram", |
| machine->ram_size); |
| memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram); |
| |
| create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem); |
| |
| create_gic(vms, pic); |
| |
| fdt_add_pmu_nodes(vms); |
| |
| create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0)); |
| |
| if (vms->secure) { |
| create_secure_ram(vms, secure_sysmem); |
| create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1)); |
| } |
| |
| vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64); |
| |
| create_rtc(vms, pic); |
| |
| create_pcie(vms, pic); |
| |
| create_gpio(vms, pic); |
| |
| /* Create mmio transports, so the user can create virtio backends |
| * (which will be automatically plugged in to the transports). If |
| * no backend is created the transport will just sit harmlessly idle. |
| */ |
| create_virtio_devices(vms, pic); |
| |
| vms->fw_cfg = create_fw_cfg(vms, &address_space_memory); |
| rom_set_fw(vms->fw_cfg); |
| |
| create_platform_bus(vms, pic); |
| |
| vms->bootinfo.ram_size = machine->ram_size; |
| vms->bootinfo.kernel_filename = machine->kernel_filename; |
| vms->bootinfo.kernel_cmdline = machine->kernel_cmdline; |
| vms->bootinfo.initrd_filename = machine->initrd_filename; |
| vms->bootinfo.nb_cpus = smp_cpus; |
| vms->bootinfo.board_id = -1; |
| vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base; |
| vms->bootinfo.get_dtb = machvirt_dtb; |
| vms->bootinfo.skip_dtb_autoload = true; |
| vms->bootinfo.firmware_loaded = firmware_loaded; |
| arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo); |
| |
| vms->machine_done.notify = virt_machine_done; |
| qemu_add_machine_init_done_notifier(&vms->machine_done); |
| } |
| |
| static bool virt_get_secure(Object *obj, Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(obj); |
| |
| return vms->secure; |
| } |
| |
| static void virt_set_secure(Object *obj, bool value, Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(obj); |
| |
| vms->secure = value; |
| } |
| |
| static bool virt_get_virt(Object *obj, Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(obj); |
| |
| return vms->virt; |
| } |
| |
| static void virt_set_virt(Object *obj, bool value, Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(obj); |
| |
| vms->virt = value; |
| } |
| |
| static bool virt_get_highmem(Object *obj, Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(obj); |
| |
| return vms->highmem; |
| } |
| |
| static void virt_set_highmem(Object *obj, bool value, Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(obj); |
| |
| vms->highmem = value; |
| } |
| |
| static bool virt_get_its(Object *obj, Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(obj); |
| |
| return vms->its; |
| } |
| |
| static void virt_set_its(Object *obj, bool value, Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(obj); |
| |
| vms->its = value; |
| } |
| |
| static char *virt_get_gic_version(Object *obj, Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(obj); |
| const char *val = vms->gic_version == 3 ? "3" : "2"; |
| |
| return g_strdup(val); |
| } |
| |
| static void virt_set_gic_version(Object *obj, const char *value, Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(obj); |
| |
| if (!strcmp(value, "3")) { |
| vms->gic_version = 3; |
| } else if (!strcmp(value, "2")) { |
| vms->gic_version = 2; |
| } else if (!strcmp(value, "host")) { |
| vms->gic_version = 0; /* Will probe later */ |
| } else if (!strcmp(value, "max")) { |
| vms->gic_version = -1; /* Will probe later */ |
| } else { |
| error_setg(errp, "Invalid gic-version value"); |
| error_append_hint(errp, "Valid values are 3, 2, host, max.\n"); |
| } |
| } |
| |
| static char *virt_get_iommu(Object *obj, Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(obj); |
| |
| switch (vms->iommu) { |
| case VIRT_IOMMU_NONE: |
| return g_strdup("none"); |
| case VIRT_IOMMU_SMMUV3: |
| return g_strdup("smmuv3"); |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static void virt_set_iommu(Object *obj, const char *value, Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(obj); |
| |
| if (!strcmp(value, "smmuv3")) { |
| vms->iommu = VIRT_IOMMU_SMMUV3; |
| } else if (!strcmp(value, "none")) { |
| vms->iommu = VIRT_IOMMU_NONE; |
| } else { |
| error_setg(errp, "Invalid iommu value"); |
| error_append_hint(errp, "Valid values are none, smmuv3.\n"); |
| } |
| } |
| |
| static CpuInstanceProperties |
| virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index) |
| { |
| MachineClass *mc = MACHINE_GET_CLASS(ms); |
| const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); |
| |
| assert(cpu_index < possible_cpus->len); |
| return possible_cpus->cpus[cpu_index].props; |
| } |
| |
| static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx) |
| { |
| return idx % nb_numa_nodes; |
| } |
| |
| static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms) |
| { |
| int n; |
| VirtMachineState *vms = VIRT_MACHINE(ms); |
| |
| if (ms->possible_cpus) { |
| assert(ms->possible_cpus->len == max_cpus); |
| return ms->possible_cpus; |
| } |
| |
| ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + |
| sizeof(CPUArchId) * max_cpus); |
| ms->possible_cpus->len = max_cpus; |
| for (n = 0; n < ms->possible_cpus->len; n++) { |
| ms->possible_cpus->cpus[n].type = ms->cpu_type; |
| ms->possible_cpus->cpus[n].arch_id = |
| virt_cpu_mp_affinity(vms, n); |
| ms->possible_cpus->cpus[n].props.has_thread_id = true; |
| ms->possible_cpus->cpus[n].props.thread_id = n; |
| } |
| return ms->possible_cpus; |
| } |
| |
| static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev, |
| DeviceState *dev, Error **errp) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); |
| |
| if (vms->platform_bus_dev) { |
| if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) { |
| platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev), |
| SYS_BUS_DEVICE(dev)); |
| } |
| } |
| } |
| |
| static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine, |
| DeviceState *dev) |
| { |
| if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) { |
| return HOTPLUG_HANDLER(machine); |
| } |
| |
| return NULL; |
| } |
| |
| static void virt_machine_class_init(ObjectClass *oc, void *data) |
| { |
| MachineClass *mc = MACHINE_CLASS(oc); |
| HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); |
| |
| mc->init = machvirt_init; |
| /* Start with max_cpus set to 512, which is the maximum supported by KVM. |
| * The value may be reduced later when we have more information about the |
| * configuration of the particular instance. |
| */ |
| mc->max_cpus = 512; |
| machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC); |
| machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE); |
| machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE); |
| mc->block_default_type = IF_VIRTIO; |
| mc->no_cdrom = 1; |
| mc->pci_allow_0_address = true; |
| /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */ |
| mc->minimum_page_bits = 12; |
| mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids; |
| mc->cpu_index_to_instance_props = virt_cpu_index_to_props; |
| mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15"); |
| mc->get_default_cpu_node_id = virt_get_default_cpu_node_id; |
| assert(!mc->get_hotplug_handler); |
| mc->get_hotplug_handler = virt_machine_get_hotplug_handler; |
| hc->plug = virt_machine_device_plug_cb; |
| } |
| |
| static const TypeInfo virt_machine_info = { |
| .name = TYPE_VIRT_MACHINE, |
| .parent = TYPE_MACHINE, |
| .abstract = true, |
| .instance_size = sizeof(VirtMachineState), |
| .class_size = sizeof(VirtMachineClass), |
| .class_init = virt_machine_class_init, |
| .interfaces = (InterfaceInfo[]) { |
| { TYPE_HOTPLUG_HANDLER }, |
| { } |
| }, |
| }; |
| |
| static void machvirt_machine_init(void) |
| { |
| type_register_static(&virt_machine_info); |
| } |
| type_init(machvirt_machine_init); |
| |
| #define VIRT_COMPAT_2_12 \ |
| HW_COMPAT_2_12 |
| |
| static void virt_3_0_instance_init(Object *obj) |
| { |
| VirtMachineState *vms = VIRT_MACHINE(obj); |
| VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); |
| |
| /* EL3 is disabled by default on virt: this makes us consistent |
| * between KVM and TCG for this board, and it also allows us to |
| * boot UEFI blobs which assume no TrustZone support. |
| */ |
| vms->secure = false; |
| object_property_add_bool(obj, "secure", virt_get_secure, |
| virt_set_secure, NULL); |
| object_property_set_description(obj, "secure", |
| "Set on/off to enable/disable the ARM " |
| "Security Extensions (TrustZone)", |
| NULL); |
| |
| /* EL2 is also disabled by default, for similar reasons */ |
| vms->virt = false; |
| object_property_add_bool(obj, "virtualization", virt_get_virt, |
| virt_set_virt, NULL); |
| object_property_set_description(obj, "virtualization", |
| "Set on/off to enable/disable emulating a " |
| "guest CPU which implements the ARM " |
| "Virtualization Extensions", |
| NULL); |
| |
| /* High memory is enabled by default */ |
| vms->highmem = true; |
| object_property_add_bool(obj, "highmem", virt_get_highmem, |
| virt_set_highmem, NULL); |
| object_property_set_description(obj, "highmem", |
| "Set on/off to enable/disable using " |
| "physical address space above 32 bits", |
| NULL); |
| /* Default GIC type is v2 */ |
| vms->gic_version = 2; |
| object_property_add_str(obj, "gic-version", virt_get_gic_version, |
| virt_set_gic_version, NULL); |
| object_property_set_description(obj, "gic-version", |
| "Set GIC version. " |
| "Valid values are 2, 3 and host", NULL); |
| |
| vms->highmem_ecam = !vmc->no_highmem_ecam; |
| |
| if (vmc->no_its) { |
| vms->its = false; |
| } else { |
| /* Default allows ITS instantiation */ |
| vms->its = true; |
| object_property_add_bool(obj, "its", virt_get_its, |
| virt_set_its, NULL); |
| object_property_set_description(obj, "its", |
| "Set on/off to enable/disable " |
| "ITS instantiation", |
| NULL); |
| } |
| |
| /* Default disallows iommu instantiation */ |
| vms->iommu = VIRT_IOMMU_NONE; |
| object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL); |
| object_property_set_description(obj, "iommu", |
| "Set the IOMMU type. " |
| "Valid values are none and smmuv3", |
| NULL); |
| |
| vms->memmap = a15memmap; |
| vms->irqmap = a15irqmap; |
| } |
| |
| static void virt_machine_3_0_options(MachineClass *mc) |
| { |
| } |
| DEFINE_VIRT_MACHINE_AS_LATEST(3, 0) |
| |
| static void virt_2_12_instance_init(Object *obj) |
| { |
| virt_3_0_instance_init(obj); |
| } |
| |
| static void virt_machine_2_12_options(MachineClass *mc) |
| { |
| VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); |
| |
| virt_machine_3_0_options(mc); |
| SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_12); |
| vmc->no_highmem_ecam = true; |
| mc->max_cpus = 255; |
| } |
| DEFINE_VIRT_MACHINE(2, 12) |
| |
| #define VIRT_COMPAT_2_11 \ |
| HW_COMPAT_2_11 |
| |
| static void virt_2_11_instance_init(Object *obj) |
| { |
| virt_2_12_instance_init(obj); |
| } |
| |
| static void virt_machine_2_11_options(MachineClass *mc) |
| { |
| VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); |
| |
| virt_machine_2_12_options(mc); |
| SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_11); |
| vmc->smbios_old_sys_ver = true; |
| } |
| DEFINE_VIRT_MACHINE(2, 11) |
| |
| #define VIRT_COMPAT_2_10 \ |
| HW_COMPAT_2_10 |
| |
| static void virt_2_10_instance_init(Object *obj) |
| { |
| virt_2_11_instance_init(obj); |
| } |
| |
| static void virt_machine_2_10_options(MachineClass *mc) |
| { |
| virt_machine_2_11_options(mc); |
| SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_10); |
| } |
| DEFINE_VIRT_MACHINE(2, 10) |
| |
| #define VIRT_COMPAT_2_9 \ |
| HW_COMPAT_2_9 |
| |
| static void virt_2_9_instance_init(Object *obj) |
| { |
| virt_2_10_instance_init(obj); |
| } |
| |
| static void virt_machine_2_9_options(MachineClass *mc) |
| { |
| virt_machine_2_10_options(mc); |
| SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_9); |
| } |
| DEFINE_VIRT_MACHINE(2, 9) |
| |
| #define VIRT_COMPAT_2_8 \ |
| HW_COMPAT_2_8 |
| |
| static void virt_2_8_instance_init(Object *obj) |
| { |
| virt_2_9_instance_init(obj); |
| } |
| |
| static void virt_machine_2_8_options(MachineClass *mc) |
| { |
| VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); |
| |
| virt_machine_2_9_options(mc); |
| SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8); |
| /* For 2.8 and earlier we falsely claimed in the DT that |
| * our timers were edge-triggered, not level-triggered. |
| */ |
| vmc->claim_edge_triggered_timers = true; |
| } |
| DEFINE_VIRT_MACHINE(2, 8) |
| |
| #define VIRT_COMPAT_2_7 \ |
| HW_COMPAT_2_7 |
| |
| static void virt_2_7_instance_init(Object *obj) |
| { |
| virt_2_8_instance_init(obj); |
| } |
| |
| static void virt_machine_2_7_options(MachineClass *mc) |
| { |
| VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); |
| |
| virt_machine_2_8_options(mc); |
| SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7); |
| /* ITS was introduced with 2.8 */ |
| vmc->no_its = true; |
| /* Stick with 1K pages for migration compatibility */ |
| mc->minimum_page_bits = 0; |
| } |
| DEFINE_VIRT_MACHINE(2, 7) |
| |
| #define VIRT_COMPAT_2_6 \ |
| HW_COMPAT_2_6 |
| |
| static void virt_2_6_instance_init(Object *obj) |
| { |
| virt_2_7_instance_init(obj); |
| } |
| |
| static void virt_machine_2_6_options(MachineClass *mc) |
| { |
| VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); |
| |
| virt_machine_2_7_options(mc); |
| SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6); |
| vmc->disallow_affinity_adjustment = true; |
| /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */ |
| vmc->no_pmu = true; |
| } |
| DEFINE_VIRT_MACHINE(2, 6) |