blob: 0c1f839d7b5a17b4c6b75e06bfbda818857fdc0e [file] [log] [blame]
/*
* QEMU PC System Emulator
*
* Copyright (c) 2003 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <ctype.h>
#include <getopt.h>
#include <inttypes.h>
#include <unistd.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <signal.h>
#include <time.h>
#include <sys/time.h>
#include <malloc.h>
#include <termios.h>
#include <sys/poll.h>
#include <errno.h>
#include <sys/wait.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <linux/if.h>
#include <linux/if_tun.h>
#include "cpu.h"
#include "disas.h"
#include "thunk.h"
#include "vl.h"
#define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
#define BIOS_FILENAME "bios.bin"
#define VGABIOS_FILENAME "vgabios.bin"
//#define DEBUG_UNUSED_IOPORT
//#define DEBUG_IRQ_LATENCY
/* output Bochs bios info messages */
//#define DEBUG_BIOS
//#define DEBUG_CMOS
/* debug PIC */
//#define DEBUG_PIC
/* debug NE2000 card */
//#define DEBUG_NE2000
/* debug PC keyboard */
//#define DEBUG_KBD
/* debug PC keyboard : only mouse */
//#define DEBUG_MOUSE
//#define DEBUG_SERIAL
#define PHYS_RAM_BASE 0xac000000
#if !defined(CONFIG_SOFTMMU)
#define PHYS_RAM_MAX_SIZE (256 * 1024 * 1024)
#else
#define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
#endif
#if defined (TARGET_I386)
#define KERNEL_LOAD_ADDR 0x00100000
#elif defined (TARGET_PPC)
//#define USE_OPEN_FIRMWARE
#if !defined (USE_OPEN_FIRMWARE)
#define KERNEL_LOAD_ADDR 0x01000000
#define KERNEL_STACK_ADDR 0x01200000
#else
#define KERNEL_LOAD_ADDR 0x00000000
#define KERNEL_STACK_ADDR 0x00400000
#endif
#endif
#define INITRD_LOAD_ADDR 0x00400000
#define KERNEL_PARAMS_ADDR 0x00090000
#define GUI_REFRESH_INTERVAL 30
/* from plex86 (BSD license) */
struct __attribute__ ((packed)) linux_params {
// For 0x00..0x3f, see 'struct screen_info' in linux/include/linux/tty.h.
// I just padded out the VESA parts, rather than define them.
/* 0x000 */ uint8_t orig_x;
/* 0x001 */ uint8_t orig_y;
/* 0x002 */ uint16_t ext_mem_k;
/* 0x004 */ uint16_t orig_video_page;
/* 0x006 */ uint8_t orig_video_mode;
/* 0x007 */ uint8_t orig_video_cols;
/* 0x008 */ uint16_t unused1;
/* 0x00a */ uint16_t orig_video_ega_bx;
/* 0x00c */ uint16_t unused2;
/* 0x00e */ uint8_t orig_video_lines;
/* 0x00f */ uint8_t orig_video_isVGA;
/* 0x010 */ uint16_t orig_video_points;
/* 0x012 */ uint8_t pad0[0x20 - 0x12]; // VESA info.
/* 0x020 */ uint16_t cl_magic; // Commandline magic number (0xA33F)
/* 0x022 */ uint16_t cl_offset; // Commandline offset. Address of commandline
// is calculated as 0x90000 + cl_offset, bu
// only if cl_magic == 0xA33F.
/* 0x024 */ uint8_t pad1[0x40 - 0x24]; // VESA info.
/* 0x040 */ uint8_t apm_bios_info[20]; // struct apm_bios_info
/* 0x054 */ uint8_t pad2[0x80 - 0x54];
// Following 2 from 'struct drive_info_struct' in drivers/block/cciss.h.
// Might be truncated?
/* 0x080 */ uint8_t hd0_info[16]; // hd0-disk-parameter from intvector 0x41
/* 0x090 */ uint8_t hd1_info[16]; // hd1-disk-parameter from intvector 0x46
// System description table truncated to 16 bytes
// From 'struct sys_desc_table_struct' in linux/arch/i386/kernel/setup.c.
/* 0x0a0 */ uint16_t sys_description_len;
/* 0x0a2 */ uint8_t sys_description_table[14];
// [0] machine id
// [1] machine submodel id
// [2] BIOS revision
// [3] bit1: MCA bus
/* 0x0b0 */ uint8_t pad3[0x1e0 - 0xb0];
/* 0x1e0 */ uint32_t alt_mem_k;
/* 0x1e4 */ uint8_t pad4[4];
/* 0x1e8 */ uint8_t e820map_entries;
/* 0x1e9 */ uint8_t eddbuf_entries; // EDD_NR
/* 0x1ea */ uint8_t pad5[0x1f1 - 0x1ea];
/* 0x1f1 */ uint8_t setup_sects; // size of setup.S, number of sectors
/* 0x1f2 */ uint16_t mount_root_rdonly; // MOUNT_ROOT_RDONLY (if !=0)
/* 0x1f4 */ uint16_t sys_size; // size of compressed kernel-part in the
// (b)zImage-file (in 16 byte units, rounded up)
/* 0x1f6 */ uint16_t swap_dev; // (unused AFAIK)
/* 0x1f8 */ uint16_t ramdisk_flags;
/* 0x1fa */ uint16_t vga_mode; // (old one)
/* 0x1fc */ uint16_t orig_root_dev; // (high=Major, low=minor)
/* 0x1fe */ uint8_t pad6[1];
/* 0x1ff */ uint8_t aux_device_info;
/* 0x200 */ uint16_t jump_setup; // Jump to start of setup code,
// aka "reserved" field.
/* 0x202 */ uint8_t setup_signature[4]; // Signature for SETUP-header, ="HdrS"
/* 0x206 */ uint16_t header_format_version; // Version number of header format;
/* 0x208 */ uint8_t setup_S_temp0[8]; // Used by setup.S for communication with
// boot loaders, look there.
/* 0x210 */ uint8_t loader_type;
// 0 for old one.
// else 0xTV:
// T=0: LILO
// T=1: Loadlin
// T=2: bootsect-loader
// T=3: SYSLINUX
// T=4: ETHERBOOT
// V=version
/* 0x211 */ uint8_t loadflags;
// bit0 = 1: kernel is loaded high (bzImage)
// bit7 = 1: Heap and pointer (see below) set by boot
// loader.
/* 0x212 */ uint16_t setup_S_temp1;
/* 0x214 */ uint32_t kernel_start;
/* 0x218 */ uint32_t initrd_start;
/* 0x21c */ uint32_t initrd_size;
/* 0x220 */ uint8_t setup_S_temp2[4];
/* 0x224 */ uint16_t setup_S_heap_end_pointer;
/* 0x226 */ uint8_t pad7[0x2d0 - 0x226];
/* 0x2d0 : Int 15, ax=e820 memory map. */
// (linux/include/asm-i386/e820.h, 'struct e820entry')
#define E820MAX 32
#define E820_RAM 1
#define E820_RESERVED 2
#define E820_ACPI 3 /* usable as RAM once ACPI tables have been read */
#define E820_NVS 4
struct {
uint64_t addr;
uint64_t size;
uint32_t type;
} e820map[E820MAX];
/* 0x550 */ uint8_t pad8[0x600 - 0x550];
// BIOS Enhanced Disk Drive Services.
// (From linux/include/asm-i386/edd.h, 'struct edd_info')
// Each 'struct edd_info is 78 bytes, times a max of 6 structs in array.
/* 0x600 */ uint8_t eddbuf[0x7d4 - 0x600];
/* 0x7d4 */ uint8_t pad9[0x800 - 0x7d4];
/* 0x800 */ uint8_t commandline[0x800];
/* 0x1000 */
uint64_t gdt_table[256];
uint64_t idt_table[48];
};
#define KERNEL_CS 0x10
#define KERNEL_DS 0x18
/* XXX: use a two level table to limit memory usage */
#define MAX_IOPORTS 65536
static const char *bios_dir = CONFIG_QEMU_SHAREDIR;
char phys_ram_file[1024];
CPUState *global_env;
CPUState *cpu_single_env;
IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
BlockDriverState *bs_table[MAX_DISKS], *fd_table[MAX_FD];
int vga_ram_size;
static DisplayState display_state;
int nographic;
int term_inited;
int64_t ticks_per_sec;
int boot_device = 'c';
static int ram_size;
/***********************************************************/
/* x86 io ports */
uint32_t default_ioport_readb(CPUState *env, uint32_t address)
{
#ifdef DEBUG_UNUSED_IOPORT
fprintf(stderr, "inb: port=0x%04x\n", address);
#endif
return 0xff;
}
void default_ioport_writeb(CPUState *env, uint32_t address, uint32_t data)
{
#ifdef DEBUG_UNUSED_IOPORT
fprintf(stderr, "outb: port=0x%04x data=0x%02x\n", address, data);
#endif
}
/* default is to make two byte accesses */
uint32_t default_ioport_readw(CPUState *env, uint32_t address)
{
uint32_t data;
data = ioport_read_table[0][address & (MAX_IOPORTS - 1)](env, address);
data |= ioport_read_table[0][(address + 1) & (MAX_IOPORTS - 1)](env, address + 1) << 8;
return data;
}
void default_ioport_writew(CPUState *env, uint32_t address, uint32_t data)
{
ioport_write_table[0][address & (MAX_IOPORTS - 1)](env, address, data & 0xff);
ioport_write_table[0][(address + 1) & (MAX_IOPORTS - 1)](env, address + 1, (data >> 8) & 0xff);
}
uint32_t default_ioport_readl(CPUState *env, uint32_t address)
{
#ifdef DEBUG_UNUSED_IOPORT
fprintf(stderr, "inl: port=0x%04x\n", address);
#endif
return 0xffffffff;
}
void default_ioport_writel(CPUState *env, uint32_t address, uint32_t data)
{
#ifdef DEBUG_UNUSED_IOPORT
fprintf(stderr, "outl: port=0x%04x data=0x%02x\n", address, data);
#endif
}
void init_ioports(void)
{
int i;
for(i = 0; i < MAX_IOPORTS; i++) {
ioport_read_table[0][i] = default_ioport_readb;
ioport_write_table[0][i] = default_ioport_writeb;
ioport_read_table[1][i] = default_ioport_readw;
ioport_write_table[1][i] = default_ioport_writew;
ioport_read_table[2][i] = default_ioport_readl;
ioport_write_table[2][i] = default_ioport_writel;
}
}
/* size is the word size in byte */
int register_ioport_read(int start, int length, IOPortReadFunc *func, int size)
{
int i, bsize;
if (size == 1)
bsize = 0;
else if (size == 2)
bsize = 1;
else if (size == 4)
bsize = 2;
else
return -1;
for(i = start; i < start + length; i += size)
ioport_read_table[bsize][i] = func;
return 0;
}
/* size is the word size in byte */
int register_ioport_write(int start, int length, IOPortWriteFunc *func, int size)
{
int i, bsize;
if (size == 1)
bsize = 0;
else if (size == 2)
bsize = 1;
else if (size == 4)
bsize = 2;
else
return -1;
for(i = start; i < start + length; i += size)
ioport_write_table[bsize][i] = func;
return 0;
}
void pstrcpy(char *buf, int buf_size, const char *str)
{
int c;
char *q = buf;
if (buf_size <= 0)
return;
for(;;) {
c = *str++;
if (c == 0 || q >= buf + buf_size - 1)
break;
*q++ = c;
}
*q = '\0';
}
/* strcat and truncate. */
char *pstrcat(char *buf, int buf_size, const char *s)
{
int len;
len = strlen(buf);
if (len < buf_size)
pstrcpy(buf + len, buf_size - len, s);
return buf;
}
int load_kernel(const char *filename, uint8_t *addr)
{
int fd, size;
#if defined (TARGET_I386)
int setup_sects;
uint8_t bootsect[512];
#endif
printf("Load kernel at %p (0x%08x)\n", addr,
(uint32_t)addr - (uint32_t)phys_ram_base);
fd = open(filename, O_RDONLY);
if (fd < 0)
return -1;
#if defined (TARGET_I386)
if (read(fd, bootsect, 512) != 512)
goto fail;
setup_sects = bootsect[0x1F1];
if (!setup_sects)
setup_sects = 4;
/* skip 16 bit setup code */
lseek(fd, (setup_sects + 1) * 512, SEEK_SET);
#endif
size = read(fd, addr, 16 * 1024 * 1024);
if (size < 0)
goto fail;
close(fd);
return size;
fail:
close(fd);
return -1;
}
/* return the size or -1 if error */
int load_image(const char *filename, uint8_t *addr)
{
int fd, size;
fd = open(filename, O_RDONLY);
if (fd < 0)
return -1;
size = lseek(fd, 0, SEEK_END);
lseek(fd, 0, SEEK_SET);
if (read(fd, addr, size) != size) {
close(fd);
return -1;
}
close(fd);
return size;
}
void cpu_outb(CPUState *env, int addr, int val)
{
ioport_write_table[0][addr & (MAX_IOPORTS - 1)](env, addr, val);
}
void cpu_outw(CPUState *env, int addr, int val)
{
ioport_write_table[1][addr & (MAX_IOPORTS - 1)](env, addr, val);
}
void cpu_outl(CPUState *env, int addr, int val)
{
ioport_write_table[2][addr & (MAX_IOPORTS - 1)](env, addr, val);
}
int cpu_inb(CPUState *env, int addr)
{
return ioport_read_table[0][addr & (MAX_IOPORTS - 1)](env, addr);
}
int cpu_inw(CPUState *env, int addr)
{
return ioport_read_table[1][addr & (MAX_IOPORTS - 1)](env, addr);
}
int cpu_inl(CPUState *env, int addr)
{
return ioport_read_table[2][addr & (MAX_IOPORTS - 1)](env, addr);
}
/***********************************************************/
void ioport80_write(CPUState *env, uint32_t addr, uint32_t data)
{
}
void hw_error(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
fprintf(stderr, "qemu: hardware error: ");
vfprintf(stderr, fmt, ap);
fprintf(stderr, "\n");
#ifdef TARGET_I386
cpu_x86_dump_state(global_env, stderr, X86_DUMP_FPU | X86_DUMP_CCOP);
#else
cpu_dump_state(global_env, stderr, 0);
#endif
va_end(ap);
abort();
}
/***********************************************************/
/* cmos emulation */
#if defined (TARGET_I386)
#define RTC_SECONDS 0
#define RTC_SECONDS_ALARM 1
#define RTC_MINUTES 2
#define RTC_MINUTES_ALARM 3
#define RTC_HOURS 4
#define RTC_HOURS_ALARM 5
#define RTC_ALARM_DONT_CARE 0xC0
#define RTC_DAY_OF_WEEK 6
#define RTC_DAY_OF_MONTH 7
#define RTC_MONTH 8
#define RTC_YEAR 9
#define RTC_REG_A 10
#define RTC_REG_B 11
#define RTC_REG_C 12
#define RTC_REG_D 13
/* PC cmos mappings */
#define REG_EQUIPMENT_BYTE 0x14
#define REG_IBM_CENTURY_BYTE 0x32
uint8_t cmos_data[128];
uint8_t cmos_index;
void cmos_ioport_write(CPUState *env, uint32_t addr, uint32_t data)
{
if (addr == 0x70) {
cmos_index = data & 0x7f;
} else {
#ifdef DEBUG_CMOS
printf("cmos: write index=0x%02x val=0x%02x\n",
cmos_index, data);
#endif
switch(addr) {
case RTC_SECONDS_ALARM:
case RTC_MINUTES_ALARM:
case RTC_HOURS_ALARM:
/* XXX: not supported */
cmos_data[cmos_index] = data;
break;
case RTC_SECONDS:
case RTC_MINUTES:
case RTC_HOURS:
case RTC_DAY_OF_WEEK:
case RTC_DAY_OF_MONTH:
case RTC_MONTH:
case RTC_YEAR:
cmos_data[cmos_index] = data;
break;
case RTC_REG_A:
case RTC_REG_B:
cmos_data[cmos_index] = data;
break;
case RTC_REG_C:
case RTC_REG_D:
/* cannot write to them */
break;
default:
cmos_data[cmos_index] = data;
break;
}
}
}
static inline int to_bcd(int a)
{
return ((a / 10) << 4) | (a % 10);
}
static void cmos_update_time(void)
{
struct tm *tm;
time_t ti;
ti = time(NULL);
tm = gmtime(&ti);
cmos_data[RTC_SECONDS] = to_bcd(tm->tm_sec);
cmos_data[RTC_MINUTES] = to_bcd(tm->tm_min);
cmos_data[RTC_HOURS] = to_bcd(tm->tm_hour);
cmos_data[RTC_DAY_OF_WEEK] = to_bcd(tm->tm_wday);
cmos_data[RTC_DAY_OF_MONTH] = to_bcd(tm->tm_mday);
cmos_data[RTC_MONTH] = to_bcd(tm->tm_mon + 1);
cmos_data[RTC_YEAR] = to_bcd(tm->tm_year % 100);
cmos_data[REG_IBM_CENTURY_BYTE] = to_bcd((tm->tm_year / 100) + 19);
}
uint32_t cmos_ioport_read(CPUState *env, uint32_t addr)
{
int ret;
if (addr == 0x70) {
return 0xff;
} else {
switch(cmos_index) {
case RTC_SECONDS:
case RTC_MINUTES:
case RTC_HOURS:
case RTC_DAY_OF_WEEK:
case RTC_DAY_OF_MONTH:
case RTC_MONTH:
case RTC_YEAR:
case REG_IBM_CENTURY_BYTE:
cmos_update_time();
ret = cmos_data[cmos_index];
break;
case RTC_REG_A:
ret = cmos_data[cmos_index];
/* toggle update-in-progress bit for Linux (same hack as
plex86) */
cmos_data[RTC_REG_A] ^= 0x80;
break;
case RTC_REG_C:
ret = cmos_data[cmos_index];
pic_set_irq(8, 0);
cmos_data[RTC_REG_C] = 0x00;
break;
default:
ret = cmos_data[cmos_index];
break;
}
#ifdef DEBUG_CMOS
printf("cmos: read index=0x%02x val=0x%02x\n",
cmos_index, ret);
#endif
return ret;
}
}
void cmos_init(void)
{
int val;
cmos_update_time();
cmos_data[RTC_REG_A] = 0x26;
cmos_data[RTC_REG_B] = 0x02;
cmos_data[RTC_REG_C] = 0x00;
cmos_data[RTC_REG_D] = 0x80;
/* various important CMOS locations needed by PC/Bochs bios */
cmos_data[REG_EQUIPMENT_BYTE] = 0x02; /* FPU is there */
cmos_data[REG_EQUIPMENT_BYTE] |= 0x04; /* PS/2 mouse installed */
/* memory size */
val = (ram_size / 1024) - 1024;
if (val > 65535)
val = 65535;
cmos_data[0x17] = val;
cmos_data[0x18] = val >> 8;
cmos_data[0x30] = val;
cmos_data[0x31] = val >> 8;
val = (ram_size / 65536) - ((16 * 1024 * 1024) / 65536);
if (val > 65535)
val = 65535;
cmos_data[0x34] = val;
cmos_data[0x35] = val >> 8;
switch(boot_device) {
case 'a':
case 'b':
cmos_data[0x3d] = 0x01; /* floppy boot */
break;
default:
case 'c':
cmos_data[0x3d] = 0x02; /* hard drive boot */
break;
case 'd':
cmos_data[0x3d] = 0x03; /* CD-ROM boot */
break;
}
register_ioport_write(0x70, 2, cmos_ioport_write, 1);
register_ioport_read(0x70, 2, cmos_ioport_read, 1);
}
void cmos_register_fd (uint8_t fd0, uint8_t fd1)
{
int nb = 0;
cmos_data[0x10] = 0;
switch (fd0) {
case 0:
/* 1.44 Mb 3"5 drive */
cmos_data[0x10] |= 0x40;
break;
case 1:
/* 2.88 Mb 3"5 drive */
cmos_data[0x10] |= 0x60;
break;
case 2:
/* 1.2 Mb 5"5 drive */
cmos_data[0x10] |= 0x20;
break;
}
switch (fd1) {
case 0:
/* 1.44 Mb 3"5 drive */
cmos_data[0x10] |= 0x04;
break;
case 1:
/* 2.88 Mb 3"5 drive */
cmos_data[0x10] |= 0x06;
break;
case 2:
/* 1.2 Mb 5"5 drive */
cmos_data[0x10] |= 0x02;
break;
}
if (fd0 < 3)
nb++;
if (fd1 < 3)
nb++;
switch (nb) {
case 0:
break;
case 1:
cmos_data[REG_EQUIPMENT_BYTE] |= 0x01; /* 1 drive, ready for boot */
break;
case 2:
cmos_data[REG_EQUIPMENT_BYTE] |= 0x41; /* 2 drives, ready for boot */
break;
}
}
#endif /* TARGET_I386 */
/***********************************************************/
/* 8259 pic emulation */
typedef struct PicState {
uint8_t last_irr; /* edge detection */
uint8_t irr; /* interrupt request register */
uint8_t imr; /* interrupt mask register */
uint8_t isr; /* interrupt service register */
uint8_t priority_add; /* highest irq priority */
uint8_t irq_base;
uint8_t read_reg_select;
uint8_t poll;
uint8_t special_mask;
uint8_t init_state;
uint8_t auto_eoi;
uint8_t rotate_on_auto_eoi;
uint8_t special_fully_nested_mode;
uint8_t init4; /* true if 4 byte init */
} PicState;
/* 0 is master pic, 1 is slave pic */
PicState pics[2];
int pic_irq_requested;
/* set irq level. If an edge is detected, then the IRR is set to 1 */
static inline void pic_set_irq1(PicState *s, int irq, int level)
{
int mask;
mask = 1 << irq;
if (level) {
if ((s->last_irr & mask) == 0)
s->irr |= mask;
s->last_irr |= mask;
} else {
s->last_irr &= ~mask;
}
}
/* return the highest priority found in mask (highest = smallest
number). Return 8 if no irq */
static inline int get_priority(PicState *s, int mask)
{
int priority;
if (mask == 0)
return 8;
priority = 0;
while ((mask & (1 << ((priority + s->priority_add) & 7))) == 0)
priority++;
return priority;
}
/* return the pic wanted interrupt. return -1 if none */
static int pic_get_irq(PicState *s)
{
int mask, cur_priority, priority;
mask = s->irr & ~s->imr;
priority = get_priority(s, mask);
if (priority == 8)
return -1;
/* compute current priority. If special fully nested mode on the
master, the IRQ coming from the slave is not taken into account
for the priority computation. */
mask = s->isr;
if (s->special_fully_nested_mode && s == &pics[0])
mask &= ~(1 << 2);
cur_priority = get_priority(s, mask);
if (priority < cur_priority) {
/* higher priority found: an irq should be generated */
return (priority + s->priority_add) & 7;
} else {
return -1;
}
}
/* raise irq to CPU if necessary. must be called every time the active
irq may change */
void pic_update_irq(void)
{
int irq2, irq;
/* first look at slave pic */
irq2 = pic_get_irq(&pics[1]);
if (irq2 >= 0) {
/* if irq request by slave pic, signal master PIC */
pic_set_irq1(&pics[0], 2, 1);
pic_set_irq1(&pics[0], 2, 0);
}
/* look at requested irq */
irq = pic_get_irq(&pics[0]);
if (irq >= 0) {
if (irq == 2) {
/* from slave pic */
pic_irq_requested = 8 + irq2;
} else {
/* from master pic */
pic_irq_requested = irq;
}
#if defined(DEBUG_PIC)
{
int i;
for(i = 0; i < 2; i++) {
printf("pic%d: imr=%x irr=%x padd=%d\n",
i, pics[i].imr, pics[i].irr, pics[i].priority_add);
}
}
printf("pic: cpu_interrupt req=%d\n", pic_irq_requested);
#endif
cpu_interrupt(global_env, CPU_INTERRUPT_HARD);
}
}
#ifdef DEBUG_IRQ_LATENCY
int64_t irq_time[16];
int64_t cpu_get_ticks(void);
#endif
#if defined(DEBUG_PIC)
int irq_level[16];
#endif
void pic_set_irq(int irq, int level)
{
#if defined(DEBUG_PIC)
if (level != irq_level[irq]) {
printf("pic_set_irq: irq=%d level=%d\n", irq, level);
irq_level[irq] = level;
}
#endif
#ifdef DEBUG_IRQ_LATENCY
if (level) {
irq_time[irq] = cpu_get_ticks();
}
#endif
pic_set_irq1(&pics[irq >> 3], irq & 7, level);
pic_update_irq();
}
/* acknowledge interrupt 'irq' */
static inline void pic_intack(PicState *s, int irq)
{
if (s->auto_eoi) {
if (s->rotate_on_auto_eoi)
s->priority_add = (irq + 1) & 7;
} else {
s->isr |= (1 << irq);
}
s->irr &= ~(1 << irq);
}
int cpu_x86_get_pic_interrupt(CPUState *env)
{
int irq, irq2, intno;
/* signal the pic that the irq was acked by the CPU */
irq = pic_irq_requested;
#ifdef DEBUG_IRQ_LATENCY
printf("IRQ%d latency=%0.3fus\n",
irq,
(double)(cpu_get_ticks() - irq_time[irq]) * 1000000.0 / ticks_per_sec);
#endif
#if defined(DEBUG_PIC)
printf("pic_interrupt: irq=%d\n", irq);
#endif
if (irq >= 8) {
irq2 = irq & 7;
pic_intack(&pics[1], irq2);
irq = 2;
intno = pics[1].irq_base + irq2;
} else {
intno = pics[0].irq_base + irq;
}
pic_intack(&pics[0], irq);
return intno;
}
void pic_ioport_write(CPUState *env, uint32_t addr, uint32_t val)
{
PicState *s;
int priority, cmd, irq;
#ifdef DEBUG_PIC
printf("pic_write: addr=0x%02x val=0x%02x\n", addr, val);
#endif
s = &pics[addr >> 7];
addr &= 1;
if (addr == 0) {
if (val & 0x10) {
/* init */
memset(s, 0, sizeof(PicState));
s->init_state = 1;
s->init4 = val & 1;
if (val & 0x02)
hw_error("single mode not supported");
if (val & 0x08)
hw_error("level sensitive irq not supported");
} else if (val & 0x08) {
if (val & 0x04)
s->poll = 1;
if (val & 0x02)
s->read_reg_select = val & 1;
if (val & 0x40)
s->special_mask = (val >> 5) & 1;
} else {
cmd = val >> 5;
switch(cmd) {
case 0:
case 4:
s->rotate_on_auto_eoi = cmd >> 2;
break;
case 1: /* end of interrupt */
case 5:
priority = get_priority(s, s->isr);
if (priority != 8) {
irq = (priority + s->priority_add) & 7;
s->isr &= ~(1 << irq);
if (cmd == 5)
s->priority_add = (irq + 1) & 7;
pic_update_irq();
}
break;
case 3:
irq = val & 7;
s->isr &= ~(1 << irq);
pic_update_irq();
break;
case 6:
s->priority_add = (val + 1) & 7;
pic_update_irq();
break;
case 7:
irq = val & 7;
s->isr &= ~(1 << irq);
s->priority_add = (irq + 1) & 7;
pic_update_irq();
break;
default:
/* no operation */
break;
}
}
} else {
switch(s->init_state) {
case 0:
/* normal mode */
s->imr = val;
pic_update_irq();
break;
case 1:
s->irq_base = val & 0xf8;
s->init_state = 2;
break;
case 2:
if (s->init4) {
s->init_state = 3;
} else {
s->init_state = 0;
}
break;
case 3:
s->special_fully_nested_mode = (val >> 4) & 1;
s->auto_eoi = (val >> 1) & 1;
s->init_state = 0;
break;
}
}
}
static uint32_t pic_poll_read (PicState *s, uint32_t addr1)
{
int ret;
ret = pic_get_irq(s);
if (ret >= 0) {
if (addr1 >> 7) {
pics[0].isr &= ~(1 << 2);
pics[0].irr &= ~(1 << 2);
}
s->irr &= ~(1 << ret);
s->isr &= ~(1 << ret);
if (addr1 >> 7 || ret != 2)
pic_update_irq();
} else {
ret = 0x07;
pic_update_irq();
}
return ret;
}
uint32_t pic_ioport_read(CPUState *env, uint32_t addr1)
{
PicState *s;
unsigned int addr;
int ret;
addr = addr1;
s = &pics[addr >> 7];
addr &= 1;
if (s->poll) {
ret = pic_poll_read(s, addr1);
s->poll = 0;
} else {
if (addr == 0) {
if (s->read_reg_select)
ret = s->isr;
else
ret = s->irr;
} else {
ret = s->imr;
}
}
#ifdef DEBUG_PIC
printf("pic_read: addr=0x%02x val=0x%02x\n", addr1, ret);
#endif
return ret;
}
/* memory mapped interrupt status */
uint32_t pic_intack_read(CPUState *env)
{
int ret;
ret = pic_poll_read(&pics[0], 0x00);
if (ret == 2)
ret = pic_poll_read(&pics[1], 0x80) + 8;
/* Prepare for ISR read */
pics[0].read_reg_select = 1;
return ret;
}
void pic_init(void)
{
#if defined (TARGET_I386) || defined (TARGET_PPC)
register_ioport_write(0x20, 2, pic_ioport_write, 1);
register_ioport_read(0x20, 2, pic_ioport_read, 1);
register_ioport_write(0xa0, 2, pic_ioport_write, 1);
register_ioport_read(0xa0, 2, pic_ioport_read, 1);
#endif
}
/***********************************************************/
/* 8253 PIT emulation */
#define PIT_FREQ 1193182
#define RW_STATE_LSB 0
#define RW_STATE_MSB 1
#define RW_STATE_WORD0 2
#define RW_STATE_WORD1 3
#define RW_STATE_LATCHED_WORD0 4
#define RW_STATE_LATCHED_WORD1 5
typedef struct PITChannelState {
int count; /* can be 65536 */
uint16_t latched_count;
uint8_t rw_state;
uint8_t mode;
uint8_t bcd; /* not supported */
uint8_t gate; /* timer start */
int64_t count_load_time;
int64_t count_last_edge_check_time;
} PITChannelState;
PITChannelState pit_channels[3];
int speaker_data_on;
int dummy_refresh_clock;
int pit_min_timer_count = 0;
#if defined(__powerpc__)
static inline uint32_t get_tbl(void)
{
uint32_t tbl;
asm volatile("mftb %0" : "=r" (tbl));
return tbl;
}
static inline uint32_t get_tbu(void)
{
uint32_t tbl;
asm volatile("mftbu %0" : "=r" (tbl));
return tbl;
}
int64_t cpu_get_real_ticks(void)
{
uint32_t l, h, h1;
/* NOTE: we test if wrapping has occurred */
do {
h = get_tbu();
l = get_tbl();
h1 = get_tbu();
} while (h != h1);
return ((int64_t)h << 32) | l;
}
#elif defined(__i386__)
int64_t cpu_get_real_ticks(void)
{
int64_t val;
asm("rdtsc" : "=A" (val));
return val;
}
#else
#error unsupported CPU
#endif
static int64_t cpu_ticks_offset;
static int64_t cpu_ticks_last;
int64_t cpu_get_ticks(void)
{
return cpu_get_real_ticks() + cpu_ticks_offset;
}
/* enable cpu_get_ticks() */
void cpu_enable_ticks(void)
{
cpu_ticks_offset = cpu_ticks_last - cpu_get_real_ticks();
}
/* disable cpu_get_ticks() : the clock is stopped. You must not call
cpu_get_ticks() after that. */
void cpu_disable_ticks(void)
{
cpu_ticks_last = cpu_get_ticks();
}
int64_t get_clock(void)
{
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_sec * 1000000LL + tv.tv_usec;
}
void cpu_calibrate_ticks(void)
{
int64_t usec, ticks;
usec = get_clock();
ticks = cpu_get_ticks();
usleep(50 * 1000);
usec = get_clock() - usec;
ticks = cpu_get_ticks() - ticks;
ticks_per_sec = (ticks * 1000000LL + (usec >> 1)) / usec;
}
/* compute with 96 bit intermediate result: (a*b)/c */
static uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
{
union {
uint64_t ll;
struct {
#ifdef WORDS_BIGENDIAN
uint32_t high, low;
#else
uint32_t low, high;
#endif
} l;
} u, res;
uint64_t rl, rh;
u.ll = a;
rl = (uint64_t)u.l.low * (uint64_t)b;
rh = (uint64_t)u.l.high * (uint64_t)b;
rh += (rl >> 32);
res.l.high = rh / c;
res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
return res.ll;
}
static int pit_get_count(PITChannelState *s)
{
uint64_t d;
int counter;
d = muldiv64(cpu_get_ticks() - s->count_load_time, PIT_FREQ, ticks_per_sec);
switch(s->mode) {
case 0:
case 1:
case 4:
case 5:
counter = (s->count - d) & 0xffff;
break;
case 3:
/* XXX: may be incorrect for odd counts */
counter = s->count - ((2 * d) % s->count);
break;
default:
counter = s->count - (d % s->count);
break;
}
return counter;
}
/* get pit output bit */
static int pit_get_out(PITChannelState *s)
{
uint64_t d;
int out;
d = muldiv64(cpu_get_ticks() - s->count_load_time, PIT_FREQ, ticks_per_sec);
switch(s->mode) {
default:
case 0:
out = (d >= s->count);
break;
case 1:
out = (d < s->count);
break;
case 2:
if ((d % s->count) == 0 && d != 0)
out = 1;
else
out = 0;
break;
case 3:
out = (d % s->count) < ((s->count + 1) >> 1);
break;
case 4:
case 5:
out = (d == s->count);
break;
}
return out;
}
/* get the number of 0 to 1 transitions we had since we call this
function */
/* XXX: maybe better to use ticks precision to avoid getting edges
twice if checks are done at very small intervals */
static int pit_get_out_edges(PITChannelState *s)
{
uint64_t d1, d2;
int64_t ticks;
int ret, v;
ticks = cpu_get_ticks();
d1 = muldiv64(s->count_last_edge_check_time - s->count_load_time,
PIT_FREQ, ticks_per_sec);
d2 = muldiv64(ticks - s->count_load_time,
PIT_FREQ, ticks_per_sec);
s->count_last_edge_check_time = ticks;
switch(s->mode) {
default:
case 0:
if (d1 < s->count && d2 >= s->count)
ret = 1;
else
ret = 0;
break;
case 1:
ret = 0;
break;
case 2:
d1 /= s->count;
d2 /= s->count;
ret = d2 - d1;
break;
case 3:
v = s->count - ((s->count + 1) >> 1);
d1 = (d1 + v) / s->count;
d2 = (d2 + v) / s->count;
ret = d2 - d1;
break;
case 4:
case 5:
if (d1 < s->count && d2 >= s->count)
ret = 1;
else
ret = 0;
break;
}
return ret;
}
/* val must be 0 or 1 */
static inline void pit_set_gate(PITChannelState *s, int val)
{
switch(s->mode) {
default:
case 0:
case 4:
/* XXX: just disable/enable counting */
break;
case 1:
case 5:
if (s->gate < val) {
/* restart counting on rising edge */
s->count_load_time = cpu_get_ticks();
s->count_last_edge_check_time = s->count_load_time;
}
break;
case 2:
case 3:
if (s->gate < val) {
/* restart counting on rising edge */
s->count_load_time = cpu_get_ticks();
s->count_last_edge_check_time = s->count_load_time;
}
/* XXX: disable/enable counting */
break;
}
s->gate = val;
}
static inline void pit_load_count(PITChannelState *s, int val)
{
if (val == 0)
val = 0x10000;
s->count_load_time = cpu_get_ticks();
s->count_last_edge_check_time = s->count_load_time;
s->count = val;
if (s == &pit_channels[0] && val <= pit_min_timer_count) {
fprintf(stderr,
"\nWARNING: qemu: on your system, accurate timer emulation is impossible if its frequency is more than %d Hz. If using a 2.6 guest Linux kernel, you must patch asm/param.h to change HZ from 1000 to 100.\n\n",
PIT_FREQ / pit_min_timer_count);
}
}
void pit_ioport_write(CPUState *env, uint32_t addr, uint32_t val)
{
int channel, access;
PITChannelState *s;
addr &= 3;
if (addr == 3) {
channel = val >> 6;
if (channel == 3)
return;
s = &pit_channels[channel];
access = (val >> 4) & 3;
switch(access) {
case 0:
s->latched_count = pit_get_count(s);
s->rw_state = RW_STATE_LATCHED_WORD0;
break;
default:
s->mode = (val >> 1) & 7;
s->bcd = val & 1;
s->rw_state = access - 1 + RW_STATE_LSB;
break;
}
} else {
s = &pit_channels[addr];
switch(s->rw_state) {
case RW_STATE_LSB:
pit_load_count(s, val);
break;
case RW_STATE_MSB:
pit_load_count(s, val << 8);
break;
case RW_STATE_WORD0:
case RW_STATE_WORD1:
if (s->rw_state & 1) {
pit_load_count(s, (s->latched_count & 0xff) | (val << 8));
} else {
s->latched_count = val;
}
s->rw_state ^= 1;
break;
}
}
}
uint32_t pit_ioport_read(CPUState *env, uint32_t addr)
{
int ret, count;
PITChannelState *s;
addr &= 3;
s = &pit_channels[addr];
switch(s->rw_state) {
case RW_STATE_LSB:
case RW_STATE_MSB:
case RW_STATE_WORD0:
case RW_STATE_WORD1:
count = pit_get_count(s);
if (s->rw_state & 1)
ret = (count >> 8) & 0xff;
else
ret = count & 0xff;
if (s->rw_state & 2)
s->rw_state ^= 1;
break;
default:
case RW_STATE_LATCHED_WORD0:
case RW_STATE_LATCHED_WORD1:
if (s->rw_state & 1)
ret = s->latched_count >> 8;
else
ret = s->latched_count & 0xff;
s->rw_state ^= 1;
break;
}
return ret;
}
#if defined (TARGET_I386)
void speaker_ioport_write(CPUState *env, uint32_t addr, uint32_t val)
{
speaker_data_on = (val >> 1) & 1;
pit_set_gate(&pit_channels[2], val & 1);
}
uint32_t speaker_ioport_read(CPUState *env, uint32_t addr)
{
int out;
out = pit_get_out(&pit_channels[2]);
dummy_refresh_clock ^= 1;
return (speaker_data_on << 1) | pit_channels[2].gate | (out << 5) |
(dummy_refresh_clock << 4);
}
#endif
void pit_init(void)
{
PITChannelState *s;
int i;
cpu_calibrate_ticks();
for(i = 0;i < 3; i++) {
s = &pit_channels[i];
s->mode = 3;
s->gate = (i != 2);
pit_load_count(s, 0);
}
register_ioport_write(0x40, 4, pit_ioport_write, 1);
register_ioport_read(0x40, 3, pit_ioport_read, 1);
#if defined (TARGET_I386)
register_ioport_read(0x61, 1, speaker_ioport_read, 1);
register_ioport_write(0x61, 1, speaker_ioport_write, 1);
#endif
}
/***********************************************************/
/* serial port emulation */
#define UART_IRQ 4
#define UART_LCR_DLAB 0x80 /* Divisor latch access bit */
#define UART_IER_MSI 0x08 /* Enable Modem status interrupt */
#define UART_IER_RLSI 0x04 /* Enable receiver line status interrupt */
#define UART_IER_THRI 0x02 /* Enable Transmitter holding register int. */
#define UART_IER_RDI 0x01 /* Enable receiver data interrupt */
#define UART_IIR_NO_INT 0x01 /* No interrupts pending */
#define UART_IIR_ID 0x06 /* Mask for the interrupt ID */
#define UART_IIR_MSI 0x00 /* Modem status interrupt */
#define UART_IIR_THRI 0x02 /* Transmitter holding register empty */
#define UART_IIR_RDI 0x04 /* Receiver data interrupt */
#define UART_IIR_RLSI 0x06 /* Receiver line status interrupt */
/*
* These are the definitions for the Modem Control Register
*/
#define UART_MCR_LOOP 0x10 /* Enable loopback test mode */
#define UART_MCR_OUT2 0x08 /* Out2 complement */
#define UART_MCR_OUT1 0x04 /* Out1 complement */
#define UART_MCR_RTS 0x02 /* RTS complement */
#define UART_MCR_DTR 0x01 /* DTR complement */
/*
* These are the definitions for the Modem Status Register
*/
#define UART_MSR_DCD 0x80 /* Data Carrier Detect */
#define UART_MSR_RI 0x40 /* Ring Indicator */
#define UART_MSR_DSR 0x20 /* Data Set Ready */
#define UART_MSR_CTS 0x10 /* Clear to Send */
#define UART_MSR_DDCD 0x08 /* Delta DCD */
#define UART_MSR_TERI 0x04 /* Trailing edge ring indicator */
#define UART_MSR_DDSR 0x02 /* Delta DSR */
#define UART_MSR_DCTS 0x01 /* Delta CTS */
#define UART_MSR_ANY_DELTA 0x0F /* Any of the delta bits! */
#define UART_LSR_TEMT 0x40 /* Transmitter empty */
#define UART_LSR_THRE 0x20 /* Transmit-hold-register empty */
#define UART_LSR_BI 0x10 /* Break interrupt indicator */
#define UART_LSR_FE 0x08 /* Frame error indicator */
#define UART_LSR_PE 0x04 /* Parity error indicator */
#define UART_LSR_OE 0x02 /* Overrun error indicator */
#define UART_LSR_DR 0x01 /* Receiver data ready */
typedef struct SerialState {
uint8_t divider;
uint8_t rbr; /* receive register */
uint8_t ier;
uint8_t iir; /* read only */
uint8_t lcr;
uint8_t mcr;
uint8_t lsr; /* read only */
uint8_t msr;
uint8_t scr;
/* NOTE: this hidden state is necessary for tx irq generation as
it can be reset while reading iir */
int thr_ipending;
} SerialState;
SerialState serial_ports[1];
void serial_update_irq(void)
{
SerialState *s = &serial_ports[0];
if ((s->lsr & UART_LSR_DR) && (s->ier & UART_IER_RDI)) {
s->iir = UART_IIR_RDI;
} else if (s->thr_ipending && (s->ier & UART_IER_THRI)) {
s->iir = UART_IIR_THRI;
} else {
s->iir = UART_IIR_NO_INT;
}
if (s->iir != UART_IIR_NO_INT) {
pic_set_irq(UART_IRQ, 1);
} else {
pic_set_irq(UART_IRQ, 0);
}
}
void serial_ioport_write(CPUState *env, uint32_t addr, uint32_t val)
{
SerialState *s = &serial_ports[0];
unsigned char ch;
int ret;
addr &= 7;
#ifdef DEBUG_SERIAL
printf("serial: write addr=0x%02x val=0x%02x\n", addr, val);
#endif
switch(addr) {
default:
case 0:
if (s->lcr & UART_LCR_DLAB) {
s->divider = (s->divider & 0xff00) | val;
} else {
s->thr_ipending = 0;
s->lsr &= ~UART_LSR_THRE;
serial_update_irq();
ch = val;
do {
ret = write(1, &ch, 1);
} while (ret != 1);
s->thr_ipending = 1;
s->lsr |= UART_LSR_THRE;
s->lsr |= UART_LSR_TEMT;
serial_update_irq();
}
break;
case 1:
if (s->lcr & UART_LCR_DLAB) {
s->divider = (s->divider & 0x00ff) | (val << 8);
} else {
s->ier = val;
serial_update_irq();
}
break;
case 2:
break;
case 3:
s->lcr = val;
break;
case 4:
s->mcr = val;
break;
case 5:
break;
case 6:
s->msr = val;
break;
case 7:
s->scr = val;
break;
}
}
uint32_t serial_ioport_read(CPUState *env, uint32_t addr)
{
SerialState *s = &serial_ports[0];
uint32_t ret;
addr &= 7;
switch(addr) {
default:
case 0:
if (s->lcr & UART_LCR_DLAB) {
ret = s->divider & 0xff;
} else {
ret = s->rbr;
s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
serial_update_irq();
}
break;
case 1:
if (s->lcr & UART_LCR_DLAB) {
ret = (s->divider >> 8) & 0xff;
} else {
ret = s->ier;
}
break;
case 2:
ret = s->iir;
/* reset THR pending bit */
if ((ret & 0x7) == UART_IIR_THRI)
s->thr_ipending = 0;
serial_update_irq();
break;
case 3:
ret = s->lcr;
break;
case 4:
ret = s->mcr;
break;
case 5:
ret = s->lsr;
break;
case 6:
if (s->mcr & UART_MCR_LOOP) {
/* in loopback, the modem output pins are connected to the
inputs */
ret = (s->mcr & 0x0c) << 4;
ret |= (s->mcr & 0x02) << 3;
ret |= (s->mcr & 0x01) << 5;
} else {
ret = s->msr;
}
break;
case 7:
ret = s->scr;
break;
}
#ifdef DEBUG_SERIAL
printf("serial: read addr=0x%02x val=0x%02x\n", addr, ret);
#endif
return ret;
}
#define TERM_ESCAPE 0x01 /* ctrl-a is used for escape */
static int term_got_escape, term_command;
static unsigned char term_cmd_buf[128];
typedef struct term_cmd_t {
const unsigned char *name;
void (*handler)(unsigned char *params);
} term_cmd_t;
static void do_change_cdrom (unsigned char *params);
static void do_change_fd0 (unsigned char *params);
static void do_change_fd1 (unsigned char *params);
static term_cmd_t term_cmds[] = {
{ "changecd", &do_change_cdrom, },
{ "changefd0", &do_change_fd0, },
{ "changefd1", &do_change_fd1, },
{ NULL, NULL, },
};
void term_print_help(void)
{
printf("\n"
"C-a h print this help\n"
"C-a x exit emulatior\n"
"C-a d switch on/off debug log\n"
"C-a s save disk data back to file (if -snapshot)\n"
"C-a b send break (magic sysrq)\n"
"C-a c send qemu internal command\n"
"C-a C-a send C-a\n"
);
}
static void do_change_cdrom (unsigned char *params)
{
/* Dunno how to do it... */
}
static void do_change_fd (int fd, unsigned char *params)
{
unsigned char *name_start, *name_end, *ros;
int ro;
for (name_start = params;
isspace(*name_start); name_start++)
continue;
if (*name_start == '\0')
return;
for (name_end = name_start;
!isspace(*name_end) && *name_end != '\0'; name_end++)
continue;
for (ros = name_end + 1; isspace(*ros); ros++)
continue;
if (ros[0] == 'r' && ros[1] == 'o')
ro = 1;
else
ro = 0;
*name_end = '\0';
printf("Change fd %d to %s (%s)\n", fd, name_start, params);
fdctrl_disk_change(fd, name_start, ro);
}
static void do_change_fd0 (unsigned char *params)
{
do_change_fd(0, params);
}
static void do_change_fd1 (unsigned char *params)
{
do_change_fd(1, params);
}
static void serial_treat_command ()
{
unsigned char *cmd_start, *cmd_end;
int i;
for (cmd_start = term_cmd_buf; isspace(*cmd_start); cmd_start++)
continue;
for (cmd_end = cmd_start;
!isspace(*cmd_end) && *cmd_end != '\0'; cmd_end++)
continue;
for (i = 0; term_cmds[i].name != NULL; i++) {
if (strlen(term_cmds[i].name) == (cmd_end - cmd_start) &&
memcmp(term_cmds[i].name, cmd_start, cmd_end - cmd_start) == 0) {
(*term_cmds[i].handler)(cmd_end + 1);
return;
}
}
*cmd_end = '\0';
printf("Unknown term command: %s\n", cmd_start);
}
extern FILE *logfile;
/* called when a char is received */
void serial_received_byte(SerialState *s, int ch)
{
if (term_command) {
if (ch == '\n' || ch == '\r' || term_command == 127) {
printf("\n");
serial_treat_command();
term_command = 0;
} else {
if (ch == 0x7F || ch == 0x08) {
if (term_command > 1) {
term_cmd_buf[--term_command - 1] = '\0';
printf("\r "
" ");
printf("\r> %s", term_cmd_buf);
}
} else if (ch > 0x1f) {
term_cmd_buf[term_command++ - 1] = ch;
term_cmd_buf[term_command - 1] = '\0';
printf("\r> %s", term_cmd_buf);
}
fflush(stdout);
}
} else if (term_got_escape) {
term_got_escape = 0;
switch(ch) {
case 'h':
term_print_help();
break;
case 'x':
exit(0);
break;
case 's':
{
int i;
for (i = 0; i < MAX_DISKS; i++) {
if (bs_table[i])
bdrv_commit(bs_table[i]);
}
}
break;
case 'b':
/* send break */
s->rbr = 0;
s->lsr |= UART_LSR_BI | UART_LSR_DR;
serial_update_irq();
break;
case 'c':
printf("> ");
fflush(stdout);
term_command = 1;
break;
case 'd':
cpu_set_log(CPU_LOG_ALL);
break;
case TERM_ESCAPE:
goto send_char;
}
} else if (ch == TERM_ESCAPE) {
term_got_escape = 1;
} else {
send_char:
s->rbr = ch;
s->lsr |= UART_LSR_DR;
serial_update_irq();
}
}
void serial_init(void)
{
SerialState *s = &serial_ports[0];
s->lsr = UART_LSR_TEMT | UART_LSR_THRE;
s->iir = UART_IIR_NO_INT;
#if defined(TARGET_I386) || defined (TARGET_PPC)
register_ioport_write(0x3f8, 8, serial_ioport_write, 1);
register_ioport_read(0x3f8, 8, serial_ioport_read, 1);
#endif
}
/***********************************************************/
/* ne2000 emulation */
#if defined (TARGET_I386)
#define NE2000_IOPORT 0x300
#define NE2000_IRQ 9
#define MAX_ETH_FRAME_SIZE 1514
#define E8390_CMD 0x00 /* The command register (for all pages) */
/* Page 0 register offsets. */
#define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
#define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
#define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
#define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
#define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
#define EN0_TSR 0x04 /* Transmit status reg RD */
#define EN0_TPSR 0x04 /* Transmit starting page WR */
#define EN0_NCR 0x05 /* Number of collision reg RD */
#define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
#define EN0_FIFO 0x06 /* FIFO RD */
#define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
#define EN0_ISR 0x07 /* Interrupt status reg RD WR */
#define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
#define EN0_RSARLO 0x08 /* Remote start address reg 0 */
#define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
#define EN0_RSARHI 0x09 /* Remote start address reg 1 */
#define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
#define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
#define EN0_RSR 0x0c /* rx status reg RD */
#define EN0_RXCR 0x0c /* RX configuration reg WR */
#define EN0_TXCR 0x0d /* TX configuration reg WR */
#define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
#define EN0_DCFG 0x0e /* Data configuration reg WR */
#define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
#define EN0_IMR 0x0f /* Interrupt mask reg WR */
#define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
#define EN1_PHYS 0x11
#define EN1_CURPAG 0x17
#define EN1_MULT 0x18
/* Register accessed at EN_CMD, the 8390 base addr. */
#define E8390_STOP 0x01 /* Stop and reset the chip */
#define E8390_START 0x02 /* Start the chip, clear reset */
#define E8390_TRANS 0x04 /* Transmit a frame */
#define E8390_RREAD 0x08 /* Remote read */
#define E8390_RWRITE 0x10 /* Remote write */
#define E8390_NODMA 0x20 /* Remote DMA */
#define E8390_PAGE0 0x00 /* Select page chip registers */
#define E8390_PAGE1 0x40 /* using the two high-order bits */
#define E8390_PAGE2 0x80 /* Page 3 is invalid. */
/* Bits in EN0_ISR - Interrupt status register */
#define ENISR_RX 0x01 /* Receiver, no error */
#define ENISR_TX 0x02 /* Transmitter, no error */
#define ENISR_RX_ERR 0x04 /* Receiver, with error */
#define ENISR_TX_ERR 0x08 /* Transmitter, with error */
#define ENISR_OVER 0x10 /* Receiver overwrote the ring */
#define ENISR_COUNTERS 0x20 /* Counters need emptying */
#define ENISR_RDC 0x40 /* remote dma complete */
#define ENISR_RESET 0x80 /* Reset completed */
#define ENISR_ALL 0x3f /* Interrupts we will enable */
/* Bits in received packet status byte and EN0_RSR*/
#define ENRSR_RXOK 0x01 /* Received a good packet */
#define ENRSR_CRC 0x02 /* CRC error */
#define ENRSR_FAE 0x04 /* frame alignment error */
#define ENRSR_FO 0x08 /* FIFO overrun */
#define ENRSR_MPA 0x10 /* missed pkt */
#define ENRSR_PHY 0x20 /* physical/multicast address */
#define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
#define ENRSR_DEF 0x80 /* deferring */
/* Transmitted packet status, EN0_TSR. */
#define ENTSR_PTX 0x01 /* Packet transmitted without error */
#define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
#define ENTSR_COL 0x04 /* The transmit collided at least once. */
#define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
#define ENTSR_CRS 0x10 /* The carrier sense was lost. */
#define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
#define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
#define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
#define NE2000_MEM_SIZE 32768
typedef struct NE2000State {
uint8_t cmd;
uint32_t start;
uint32_t stop;
uint8_t boundary;
uint8_t tsr;
uint8_t tpsr;
uint16_t tcnt;
uint16_t rcnt;
uint32_t rsar;
uint8_t isr;
uint8_t dcfg;
uint8_t imr;
uint8_t phys[6]; /* mac address */
uint8_t curpag;
uint8_t mult[8]; /* multicast mask array */
uint8_t mem[NE2000_MEM_SIZE];
} NE2000State;
NE2000State ne2000_state;
int net_fd = -1;
char network_script[1024];
void ne2000_reset(void)
{
NE2000State *s = &ne2000_state;
int i;
s->isr = ENISR_RESET;
s->mem[0] = 0x52;
s->mem[1] = 0x54;
s->mem[2] = 0x00;
s->mem[3] = 0x12;
s->mem[4] = 0x34;
s->mem[5] = 0x56;
s->mem[14] = 0x57;
s->mem[15] = 0x57;
/* duplicate prom data */
for(i = 15;i >= 0; i--) {
s->mem[2 * i] = s->mem[i];
s->mem[2 * i + 1] = s->mem[i];
}
}
void ne2000_update_irq(NE2000State *s)
{
int isr;
isr = s->isr & s->imr;
if (isr)
pic_set_irq(NE2000_IRQ, 1);
else
pic_set_irq(NE2000_IRQ, 0);
}
int net_init(void)
{
struct ifreq ifr;
int fd, ret, pid, status;
fd = open("/dev/net/tun", O_RDWR);
if (fd < 0) {
fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
return -1;
}
memset(&ifr, 0, sizeof(ifr));
ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
pstrcpy(ifr.ifr_name, IFNAMSIZ, "tun%d");
ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
if (ret != 0) {
fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
close(fd);
return -1;
}
printf("Connected to host network interface: %s\n", ifr.ifr_name);
fcntl(fd, F_SETFL, O_NONBLOCK);
net_fd = fd;
/* try to launch network init script */
pid = fork();
if (pid >= 0) {
if (pid == 0) {
execl(network_script, network_script, ifr.ifr_name, NULL);
exit(1);
}
while (waitpid(pid, &status, 0) != pid);
if (!WIFEXITED(status) ||
WEXITSTATUS(status) != 0) {
fprintf(stderr, "%s: could not launch network script for '%s'\n",
network_script, ifr.ifr_name);
}
}
return 0;
}
void net_send_packet(NE2000State *s, const uint8_t *buf, int size)
{
#ifdef DEBUG_NE2000
printf("NE2000: sending packet size=%d\n", size);
#endif
write(net_fd, buf, size);
}
/* return true if the NE2000 can receive more data */
int ne2000_can_receive(NE2000State *s)
{
int avail, index, boundary;
if (s->cmd & E8390_STOP)
return 0;
index = s->curpag << 8;
boundary = s->boundary << 8;
if (index < boundary)
avail = boundary - index;
else
avail = (s->stop - s->start) - (index - boundary);
if (avail < (MAX_ETH_FRAME_SIZE + 4))
return 0;
return 1;
}
void ne2000_receive(NE2000State *s, uint8_t *buf, int size)
{
uint8_t *p;
int total_len, next, avail, len, index;
#if defined(DEBUG_NE2000)
printf("NE2000: received len=%d\n", size);
#endif
index = s->curpag << 8;
/* 4 bytes for header */
total_len = size + 4;
/* address for next packet (4 bytes for CRC) */
next = index + ((total_len + 4 + 255) & ~0xff);
if (next >= s->stop)
next -= (s->stop - s->start);
/* prepare packet header */
p = s->mem + index;
p[0] = ENRSR_RXOK; /* receive status */
p[1] = next >> 8;
p[2] = total_len;
p[3] = total_len >> 8;
index += 4;
/* write packet data */
while (size > 0) {
avail = s->stop - index;
len = size;
if (len > avail)
len = avail;
memcpy(s->mem + index, buf, len);
buf += len;
index += len;
if (index == s->stop)
index = s->start;
size -= len;
}
s->curpag = next >> 8;
/* now we can signal we have receive something */
s->isr |= ENISR_RX;
ne2000_update_irq(s);
}
void ne2000_ioport_write(CPUState *env, uint32_t addr, uint32_t val)
{
NE2000State *s = &ne2000_state;
int offset, page;
addr &= 0xf;
#ifdef DEBUG_NE2000
printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
#endif
if (addr == E8390_CMD) {
/* control register */
s->cmd = val;
if (val & E8390_START) {
/* test specific case: zero length transfert */
if ((val & (E8390_RREAD | E8390_RWRITE)) &&
s->rcnt == 0) {
s->isr |= ENISR_RDC;
ne2000_update_irq(s);
}
if (val & E8390_TRANS) {
net_send_packet(s, s->mem + (s->tpsr << 8), s->tcnt);
/* signal end of transfert */
s->tsr = ENTSR_PTX;
s->isr |= ENISR_TX;
ne2000_update_irq(s);
}
}
} else {
page = s->cmd >> 6;
offset = addr | (page << 4);
switch(offset) {
case EN0_STARTPG:
s->start = val << 8;
break;
case EN0_STOPPG:
s->stop = val << 8;
break;
case EN0_BOUNDARY:
s->boundary = val;
break;
case EN0_IMR:
s->imr = val;
ne2000_update_irq(s);
break;
case EN0_TPSR:
s->tpsr = val;
break;
case EN0_TCNTLO:
s->tcnt = (s->tcnt & 0xff00) | val;
break;
case EN0_TCNTHI:
s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
break;
case EN0_RSARLO:
s->rsar = (s->rsar & 0xff00) | val;
break;
case EN0_RSARHI:
s->rsar = (s->rsar & 0x00ff) | (val << 8);
break;
case EN0_RCNTLO:
s->rcnt = (s->rcnt & 0xff00) | val;
break;
case EN0_RCNTHI:
s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
break;
case EN0_DCFG:
s->dcfg = val;
break;
case EN0_ISR:
s->isr &= ~val;
ne2000_update_irq(s);
break;
case EN1_PHYS ... EN1_PHYS + 5:
s->phys[offset - EN1_PHYS] = val;
break;
case EN1_CURPAG:
s->curpag = val;
break;
case EN1_MULT ... EN1_MULT + 7:
s->mult[offset - EN1_MULT] = val;
break;
}
}
}
uint32_t ne2000_ioport_read(CPUState *env, uint32_t addr)
{
NE2000State *s = &ne2000_state;
int offset, page, ret;
addr &= 0xf;
if (addr == E8390_CMD) {
ret = s->cmd;
} else {
page = s->cmd >> 6;
offset = addr | (page << 4);
switch(offset) {
case EN0_TSR:
ret = s->tsr;
break;
case EN0_BOUNDARY:
ret = s->boundary;
break;
case EN0_ISR:
ret = s->isr;
break;
case EN1_PHYS ... EN1_PHYS + 5:
ret = s->phys[offset - EN1_PHYS];
break;
case EN1_CURPAG:
ret = s->curpag;
break;
case EN1_MULT ... EN1_MULT + 7:
ret = s->mult[offset - EN1_MULT];
break;
default:
ret = 0x00;
break;
}
}
#ifdef DEBUG_NE2000
printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
#endif
return ret;
}
void ne2000_asic_ioport_write(CPUState *env, uint32_t addr, uint32_t val)
{
NE2000State *s = &ne2000_state;
uint8_t *p;
#ifdef DEBUG_NE2000
printf("NE2000: asic write val=0x%04x\n", val);
#endif
p = s->mem + s->rsar;
if (s->dcfg & 0x01) {
/* 16 bit access */
p[0] = val;
p[1] = val >> 8;
s->rsar += 2;
s->rcnt -= 2;
} else {
/* 8 bit access */
p[0] = val;
s->rsar++;
s->rcnt--;
}
/* wrap */
if (s->rsar == s->stop)
s->rsar = s->start;
if (s->rcnt == 0) {
/* signal end of transfert */
s->isr |= ENISR_RDC;
ne2000_update_irq(s);
}
}
uint32_t ne2000_asic_ioport_read(CPUState *env, uint32_t addr)
{
NE2000State *s = &ne2000_state;
uint8_t *p;
int ret;
p = s->mem + s->rsar;
if (s->dcfg & 0x01) {
/* 16 bit access */
ret = p[0] | (p[1] << 8);
s->rsar += 2;
s->rcnt -= 2;
} else {
/* 8 bit access */
ret = p[0];
s->rsar++;
s->rcnt--;
}
/* wrap */
if (s->rsar == s->stop)
s->rsar = s->start;
if (s->rcnt == 0) {
/* signal end of transfert */
s->isr |= ENISR_RDC;
ne2000_update_irq(s);
}
#ifdef DEBUG_NE2000
printf("NE2000: asic read val=0x%04x\n", ret);
#endif
return ret;
}
void ne2000_reset_ioport_write(CPUState *env, uint32_t addr, uint32_t val)
{
/* nothing to do (end of reset pulse) */
}
uint32_t ne2000_reset_ioport_read(CPUState *env, uint32_t addr)
{
ne2000_reset();
return 0;
}
void ne2000_init(void)
{
register_ioport_write(NE2000_IOPORT, 16, ne2000_ioport_write, 1);
register_ioport_read(NE2000_IOPORT, 16, ne2000_ioport_read, 1);
register_ioport_write(NE2000_IOPORT + 0x10, 1, ne2000_asic_ioport_write, 1);
register_ioport_read(NE2000_IOPORT + 0x10, 1, ne2000_asic_ioport_read, 1);
register_ioport_write(NE2000_IOPORT + 0x10, 2, ne2000_asic_ioport_write, 2);
register_ioport_read(NE2000_IOPORT + 0x10, 2, ne2000_asic_ioport_read, 2);
register_ioport_write(NE2000_IOPORT + 0x1f, 1, ne2000_reset_ioport_write, 1);
register_ioport_read(NE2000_IOPORT + 0x1f, 1, ne2000_reset_ioport_read, 1);
ne2000_reset();
}
#endif
/***********************************************************/
/* PC floppy disk controler emulation glue */
#define PC_FDC_DMA 0x2
#define PC_FDC_IRQ 0x6
#define PC_FDC_BASE 0x3F0
static void fdctrl_register (unsigned char **disknames, int ro,
char boot_device)
{
int i;
fdctrl_init(PC_FDC_IRQ, PC_FDC_DMA, 0, PC_FDC_BASE, boot_device);
for (i = 0; i < MAX_FD; i++) {
if (disknames[i] != NULL)
fdctrl_disk_change(i, disknames[i], ro);
}
}
/***********************************************************/
/* keyboard emulation */
/* Keyboard Controller Commands */
#define KBD_CCMD_READ_MODE 0x20 /* Read mode bits */
#define KBD_CCMD_WRITE_MODE 0x60 /* Write mode bits */
#define KBD_CCMD_GET_VERSION 0xA1 /* Get controller version */
#define KBD_CCMD_MOUSE_DISABLE 0xA7 /* Disable mouse interface */
#define KBD_CCMD_MOUSE_ENABLE 0xA8 /* Enable mouse interface */
#define KBD_CCMD_TEST_MOUSE 0xA9 /* Mouse interface test */
#define KBD_CCMD_SELF_TEST 0xAA /* Controller self test */
#define KBD_CCMD_KBD_TEST 0xAB /* Keyboard interface test */
#define KBD_CCMD_KBD_DISABLE 0xAD /* Keyboard interface disable */
#define KBD_CCMD_KBD_ENABLE 0xAE /* Keyboard interface enable */
#define KBD_CCMD_READ_INPORT 0xC0 /* read input port */
#define KBD_CCMD_READ_OUTPORT 0xD0 /* read output port */
#define KBD_CCMD_WRITE_OUTPORT 0xD1 /* write output port */
#define KBD_CCMD_WRITE_OBUF 0xD2
#define KBD_CCMD_WRITE_AUX_OBUF 0xD3 /* Write to output buffer as if
initiated by the auxiliary device */
#define KBD_CCMD_WRITE_MOUSE 0xD4 /* Write the following byte to the mouse */
#define KBD_CCMD_DISABLE_A20 0xDD /* HP vectra only ? */
#define KBD_CCMD_ENABLE_A20 0xDF /* HP vectra only ? */
#define KBD_CCMD_RESET 0xFE
/* Keyboard Commands */
#define KBD_CMD_SET_LEDS 0xED /* Set keyboard leds */
#define KBD_CMD_ECHO 0xEE
#define KBD_CMD_GET_ID 0xF2 /* get keyboard ID */
#define KBD_CMD_SET_RATE 0xF3 /* Set typematic rate */
#define KBD_CMD_ENABLE 0xF4 /* Enable scanning */
#define KBD_CMD_RESET_DISABLE 0xF5 /* reset and disable scanning */
#define KBD_CMD_RESET_ENABLE 0xF6 /* reset and enable scanning */
#define KBD_CMD_RESET 0xFF /* Reset */
/* Keyboard Replies */
#define KBD_REPLY_POR 0xAA /* Power on reset */
#define KBD_REPLY_ACK 0xFA /* Command ACK */
#define KBD_REPLY_RESEND 0xFE /* Command NACK, send the cmd again */
/* Status Register Bits */
#define KBD_STAT_OBF 0x01 /* Keyboard output buffer full */
#define KBD_STAT_IBF 0x02 /* Keyboard input buffer full */
#define KBD_STAT_SELFTEST 0x04 /* Self test successful */
#define KBD_STAT_CMD 0x08 /* Last write was a command write (0=data) */
#define KBD_STAT_UNLOCKED 0x10 /* Zero if keyboard locked */
#define KBD_STAT_MOUSE_OBF 0x20 /* Mouse output buffer full */
#define KBD_STAT_GTO 0x40 /* General receive/xmit timeout */
#define KBD_STAT_PERR 0x80 /* Parity error */
/* Controller Mode Register Bits */
#define KBD_MODE_KBD_INT 0x01 /* Keyboard data generate IRQ1 */
#define KBD_MODE_MOUSE_INT 0x02 /* Mouse data generate IRQ12 */
#define KBD_MODE_SYS 0x04 /* The system flag (?) */
#define KBD_MODE_NO_KEYLOCK 0x08 /* The keylock doesn't affect the keyboard if set */
#define KBD_MODE_DISABLE_KBD 0x10 /* Disable keyboard interface */
#define KBD_MODE_DISABLE_MOUSE 0x20 /* Disable mouse interface */
#define KBD_MODE_KCC 0x40 /* Scan code conversion to PC format */
#define KBD_MODE_RFU 0x80
/* Mouse Commands */
#define AUX_SET_SCALE11 0xE6 /* Set 1:1 scaling */
#define AUX_SET_SCALE21 0xE7 /* Set 2:1 scaling */
#define AUX_SET_RES 0xE8 /* Set resolution */
#define AUX_GET_SCALE 0xE9 /* Get scaling factor */
#define AUX_SET_STREAM 0xEA /* Set stream mode */
#define AUX_POLL 0xEB /* Poll */
#define AUX_RESET_WRAP 0xEC /* Reset wrap mode */
#define AUX_SET_WRAP 0xEE /* Set wrap mode */
#define AUX_SET_REMOTE 0xF0 /* Set remote mode */
#define AUX_GET_TYPE 0xF2 /* Get type */
#define AUX_SET_SAMPLE 0xF3 /* Set sample rate */
#define AUX_ENABLE_DEV 0xF4 /* Enable aux device */
#define AUX_DISABLE_DEV 0xF5 /* Disable aux device */
#define AUX_SET_DEFAULT 0xF6
#define AUX_RESET 0xFF /* Reset aux device */
#define AUX_ACK 0xFA /* Command byte ACK. */
#define MOUSE_STATUS_REMOTE 0x40
#define MOUSE_STATUS_ENABLED 0x20
#define MOUSE_STATUS_SCALE21 0x10
#define KBD_QUEUE_SIZE 256
typedef struct {
uint8_t data[KBD_QUEUE_SIZE];
int rptr, wptr, count;
} KBDQueue;
typedef struct KBDState {
KBDQueue queues[2];
uint8_t write_cmd; /* if non zero, write data to port 60 is expected */
uint8_t status;
uint8_t mode;
/* keyboard state */
int kbd_write_cmd;
int scan_enabled;
/* mouse state */
int mouse_write_cmd;
uint8_t mouse_status;
uint8_t mouse_resolution;
uint8_t mouse_sample_rate;
uint8_t mouse_wrap;
uint8_t mouse_type; /* 0 = PS2, 3 = IMPS/2, 4 = IMEX */
uint8_t mouse_detect_state;
int mouse_dx; /* current values, needed for 'poll' mode */
int mouse_dy;
int mouse_dz;
uint8_t mouse_buttons;
} KBDState;
KBDState kbd_state;
int reset_requested;
/* update irq and KBD_STAT_[MOUSE_]OBF */
/* XXX: not generating the irqs if KBD_MODE_DISABLE_KBD is set may be
incorrect, but it avoids having to simulate exact delays */
static void kbd_update_irq(KBDState *s)
{
int irq12_level, irq1_level;
irq1_level = 0;
irq12_level = 0;
s->status &= ~(KBD_STAT_OBF | KBD_STAT_MOUSE_OBF);
if (s->queues[0].count != 0 ||
s->queues[1].count != 0) {
s->status |= KBD_STAT_OBF;
if (s->queues[1].count != 0) {
s->status |= KBD_STAT_MOUSE_OBF;
if (s->mode & KBD_MODE_MOUSE_INT)
irq12_level = 1;
} else {
if ((s->mode & KBD_MODE_KBD_INT) &&
!(s->mode & KBD_MODE_DISABLE_KBD))
irq1_level = 1;
}
}
pic_set_irq(1, irq1_level);
pic_set_irq(12, irq12_level);
}
static void kbd_queue(KBDState *s, int b, int aux)
{
KBDQueue *q = &kbd_state.queues[aux];
#if defined(DEBUG_MOUSE) || defined(DEBUG_KBD)
if (aux)
printf("mouse event: 0x%02x\n", b);
#ifdef DEBUG_KBD
else
printf("kbd event: 0x%02x\n", b);
#endif
#endif
if (q->count >= KBD_QUEUE_SIZE)
return;
q->data[q->wptr] = b;
if (++q->wptr == KBD_QUEUE_SIZE)
q->wptr = 0;
q->count++;
kbd_update_irq(s);
}
void kbd_put_keycode(int keycode)
{
KBDState *s = &kbd_state;
kbd_queue(s, keycode, 0);
}
uint32_t kbd_read_status(CPUState *env, uint32_t addr)
{
KBDState *s = &kbd_state;
int val;
val = s->status;
#if defined(DEBUG_KBD)
printf("kbd: read status=0x%02x\n", val);
#endif
return val;
}
void kbd_write_command(CPUState *env, uint32_t addr, uint32_t val)
{
KBDState *s = &kbd_state;
#ifdef DEBUG_KBD
printf("kbd: write cmd=0x%02x\n", val);
#endif
switch(val) {
case KBD_CCMD_READ_MODE:
kbd_queue(s, s->mode, 0);
break;
case KBD_CCMD_WRITE_MODE:
case KBD_CCMD_WRITE_OBUF:
case KBD_CCMD_WRITE_AUX_OBUF:
case KBD_CCMD_WRITE_MOUSE:
case KBD_CCMD_WRITE_OUTPORT:
s->write_cmd = val;
break;
case KBD_CCMD_MOUSE_DISABLE:
s->mode |= KBD_MODE_DISABLE_MOUSE;
break;
case KBD_CCMD_MOUSE_ENABLE:
s->mode &= ~KBD_MODE_DISABLE_MOUSE;
break;
case KBD_CCMD_TEST_MOUSE:
kbd_queue(s, 0x00, 0);
break;
case KBD_CCMD_SELF_TEST:
s->status |= KBD_STAT_SELFTEST;
kbd_queue(s, 0x55, 0);
break;
case KBD_CCMD_KBD_TEST:
kbd_queue(s, 0x00, 0);
break;
case KBD_CCMD_KBD_DISABLE:
s->mode |= KBD_MODE_DISABLE_KBD;
kbd_update_irq(s);
break;
case KBD_CCMD_KBD_ENABLE:
s->mode &= ~KBD_MODE_DISABLE_KBD;
kbd_update_irq(s);
break;
case KBD_CCMD_READ_INPORT:
kbd_queue(s, 0x00, 0);
break;
case KBD_CCMD_READ_OUTPORT:
/* XXX: check that */
#ifdef TARGET_I386
val = 0x01 | (((cpu_single_env->a20_mask >> 20) & 1) << 1);
#else
val = 0x01;
#endif
if (s->status & KBD_STAT_OBF)
val |= 0x10;
if (s->status & KBD_STAT_MOUSE_OBF)
val |= 0x20;
kbd_queue(s, val, 0);
break;
#ifdef TARGET_I386
case KBD_CCMD_ENABLE_A20:
cpu_x86_set_a20(env, 1);
break;
case KBD_CCMD_DISABLE_A20:
cpu_x86_set_a20(env, 0);
break;
#endif
case KBD_CCMD_RESET:
reset_requested = 1;
cpu_interrupt(global_env, CPU_INTERRUPT_EXIT);
break;
case 0xff:
/* ignore that - I don't know what is its use */
break;
default:
fprintf(stderr, "qemu: unsupported keyboard cmd=0x%02x\n", val);
break;
}
}
uint32_t kbd_read_data(CPUState *env, uint32_t addr)
{
KBDState *s = &kbd_state;
KBDQueue *q;
int val, index;
q = &s->queues[0]; /* first check KBD data */
if (q->count == 0)
q = &s->queues[1]; /* then check AUX data */
if (q->count == 0) {
/* NOTE: if no data left, we return the last keyboard one
(needed for EMM386) */
/* XXX: need a timer to do things correctly */
q = &s->queues[0];
index = q->rptr - 1;
if (index < 0)
index = KBD_QUEUE_SIZE - 1;
val = q->data[index];
} else {
val = q->data[q->rptr];
if (++q->rptr == KBD_QUEUE_SIZE)
q->rptr = 0;
q->count--;
/* reading deasserts IRQ */
if (q == &s->queues[0])
pic_set_irq(1, 0);
else
pic_set_irq(12, 0);
}
/* reassert IRQs if data left */
kbd_update_irq(s);
#ifdef DEBUG_KBD
printf("kbd: read data=0x%02x\n", val);
#endif
return val;
}
static void kbd_reset_keyboard(KBDState *s)
{
s->scan_enabled = 1;
}
static void kbd_write_keyboard(KBDState *s, int val)
{
switch(s->kbd_write_cmd) {
default:
case -1:
switch(val) {
case 0x00:
kbd_queue(s, KBD_REPLY_ACK, 0);
break;
case 0x05:
kbd_queue(s, KBD_REPLY_RESEND, 0);
break;
case KBD_CMD_GET_ID:
kbd_queue(s, KBD_REPLY_ACK, 0);
kbd_queue(s, 0xab, 0);
kbd_queue(s, 0x83, 0);
break;
case KBD_CMD_ECHO:
kbd_queue(s, KBD_CMD_ECHO, 0);
break;
case KBD_CMD_ENABLE:
s->scan_enabled = 1;
kbd_queue(s, KBD_REPLY_ACK, 0);
break;
case KBD_CMD_SET_LEDS:
case KBD_CMD_SET_RATE:
s->kbd_write_cmd = val;
kbd_queue(s, KBD_REPLY_ACK, 0);
break;
case KBD_CMD_RESET_DISABLE:
kbd_reset_keyboard(s);
s->scan_enabled = 0;
kbd_queue(s, KBD_REPLY_ACK, 0);
break;
case KBD_CMD_RESET_ENABLE:
kbd_reset_keyboard(s);
s->scan_enabled = 1;
kbd_queue(s, KBD_REPLY_ACK, 0);
break;
case KBD_CMD_RESET:
kbd_reset_keyboard(s);
kbd_queue(s, KBD_REPLY_ACK, 0);
kbd_queue(s, KBD_REPLY_POR, 0);
break;
default:
kbd_queue(s, KBD_REPLY_ACK, 0);
break;
}
break;
case KBD_CMD_SET_LEDS:
kbd_queue(s, KBD_REPLY_ACK, 0);
s->kbd_write_cmd = -1;
break;
case KBD_CMD_SET_RATE:
kbd_queue(s, KBD_REPLY_ACK, 0);
s->kbd_write_cmd = -1;
break;
}
}
static void kbd_mouse_send_packet(KBDState *s)
{
unsigned int b;
int dx1, dy1, dz1;
dx1 = s->mouse_dx;
dy1 = s->mouse_dy;
dz1 = s->mouse_dz;
/* XXX: increase range to 8 bits ? */
if (dx1 > 127)
dx1 = 127;
else if (dx1 < -127)
dx1 = -127;
if (dy1 > 127)
dy1 = 127;
else if (dy1 < -127)
dy1 = -127;
b = 0x08 | ((dx1 < 0) << 4) | ((dy1 < 0) << 5) | (s->mouse_buttons & 0x07);
kbd_queue(s, b, 1);
kbd_queue(s, dx1 & 0xff, 1);
kbd_queue(s, dy1 & 0xff, 1);
/* extra byte for IMPS/2 or IMEX */
switch(s->mouse_type) {
default:
break;
case 3:
if (dz1 > 127)
dz1 = 127;
else if (dz1 < -127)
dz1 = -127;
kbd_queue(s, dz1 & 0xff, 1);
break;
case 4:
if (dz1 > 7)
dz1 = 7;
else if (dz1 < -7)
dz1 = -7;
b = (dz1 & 0x0f) | ((s->mouse_buttons & 0x18) << 1);
kbd_queue(s, b, 1);
break;
}
/* update deltas */
s->mouse_dx -= dx1;
s->mouse_dy -= dy1;
s->mouse_dz -= dz1;
}
void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
{
KBDState *s = &kbd_state;
/* check if deltas are recorded when disabled */
if (!(s->mouse_status & MOUSE_STATUS_ENABLED))
return;
s->mouse_dx += dx;
s->mouse_dy -= dy;
s->mouse_dz += dz;
s->mouse_buttons = buttons_state;
if (!(s->mouse_status & MOUSE_STATUS_REMOTE) &&
(s->queues[1].count < (KBD_QUEUE_SIZE - 16))) {
for(;;) {
/* if not remote, send event. Multiple events are sent if
too big deltas */
kbd_mouse_send_packet(s);
if (s->mouse_dx == 0 && s->mouse_dy == 0 && s->mouse_dz == 0)
break;
}
}
}
static void kbd_write_mouse(KBDState *s, int val)
{
#ifdef DEBUG_MOUSE
printf("kbd: write mouse 0x%02x\n", val);
#endif
switch(s->mouse_write_cmd) {
default:
case -1:
/* mouse command */
if (s->mouse_wrap) {
if (val == AUX_RESET_WRAP) {
s->mouse_wrap = 0;
kbd_queue(s, AUX_ACK, 1);
return;
} else if (val != AUX_RESET) {
kbd_queue(s, val, 1);
return;
}
}
switch(val) {
case AUX_SET_SCALE11:
s->mouse_status &= ~MOUSE_STATUS_SCALE21;
kbd_queue(s, AUX_ACK, 1);
break;
case AUX_SET_SCALE21:
s->mouse_status |= MOUSE_STATUS_SCALE21;
kbd_queue(s, AUX_ACK, 1);
break;
case AUX_SET_STREAM:
s->mouse_status &= ~MOUSE_STATUS_REMOTE;
kbd_queue(s, AUX_ACK, 1);
break;
case AUX_SET_WRAP:
s->mouse_wrap = 1;
kbd_queue(s, AUX_ACK, 1);
break;
case AUX_SET_REMOTE:
s->mouse_status |= MOUSE_STATUS_REMOTE;
kbd_queue(s, AUX_ACK, 1);
break;
case AUX_GET_TYPE:
kbd_queue(s, AUX_ACK, 1);
kbd_queue(s, s->mouse_type, 1);
break;
case AUX_SET_RES:
case AUX_SET_SAMPLE:
s->mouse_write_cmd = val;
kbd_queue(s, AUX_ACK, 1);
break;
case AUX_GET_SCALE:
kbd_queue(s, AUX_ACK, 1);
kbd_queue(s, s->mouse_status, 1);
kbd_queue(s, s->mouse_resolution, 1);
kbd_queue(s, s->mouse_sample_rate, 1);
break;
case AUX_POLL:
kbd_queue(s, AUX_ACK, 1);
kbd_mouse_send_packet(s);
break;
case AUX_ENABLE_DEV:
s->mouse_status |= MOUSE_STATUS_ENABLED;
kbd_queue(s, AUX_ACK, 1);
break;
case AUX_DISABLE_DEV:
s->mouse_status &= ~MOUSE_STATUS_ENABLED;
kbd_queue(s, AUX_ACK, 1);
break;
case AUX_SET_DEFAULT:
s->mouse_sample_rate = 100;
s->mouse_resolution = 2;
s->mouse_status = 0;
kbd_queue(s, AUX_ACK, 1);
break;
case AUX_RESET:
s->mouse_sample_rate = 100;
s->mouse_resolution = 2;
s->mouse_status = 0;
kbd_queue(s, AUX_ACK, 1);
kbd_queue(s, 0xaa, 1);
kbd_queue(s, s->mouse_type, 1);
break;
default:
break;
}
break;
case AUX_SET_SAMPLE:
s->mouse_sample_rate = val;
#if 0
/* detect IMPS/2 or IMEX */
switch(s->mouse_detect_state) {
default:
case 0:
if (val == 200)
s->mouse_detect_state = 1;
break;
case 1:
if (val == 100)
s->mouse_detect_state = 2;
else if (val == 200)
s->mouse_detect_state = 3;
else
s->mouse_detect_state = 0;
break;
case 2:
if (val == 80)
s->mouse_type = 3; /* IMPS/2 */
s->mouse_detect_state = 0;
break;
case 3:
if (val == 80)
s->mouse_type = 4; /* IMEX */
s->mouse_detect_state = 0;
break;
}
#endif
kbd_queue(s, AUX_ACK, 1);
s->mouse_write_cmd = -1;
break;
case AUX_SET_RES:
s->mouse_resolution = val;
kbd_queue(s, AUX_ACK, 1);
s->mouse_write_cmd = -1;
break;
}
}
void kbd_write_data(CPUState *env, uint32_t addr, uint32_t val)
{
KBDState *s = &kbd_state;
#ifdef DEBUG_KBD
printf("kbd: write data=0x%02x\n", val);
#endif
switch(s->write_cmd) {
case 0:
kbd_write_keyboard(s, val);
break;
case KBD_CCMD_WRITE_MODE:
s->mode = val;
kbd_update_irq(s);
break;
case KBD_CCMD_WRITE_OBUF:
kbd_queue(s, val, 0);
break;
case KBD_CCMD_WRITE_AUX_OBUF:
kbd_queue(s, val, 1);
break;
case KBD_CCMD_WRITE_OUTPORT:
#ifdef TARGET_I386
cpu_x86_set_a20(env, (val >> 1) & 1);
#endif
if (!(val & 1)) {
reset_requested = 1;
cpu_interrupt(global_env, CPU_INTERRUPT_EXIT);
}
break;
case KBD_CCMD_WRITE_MOUSE:
kbd_write_mouse(s, val);
break;
default:
break;
}
s->write_cmd = 0;
}
void kbd_reset(KBDState *s)
{
KBDQueue *q;
int i;
s->kbd_write_cmd = -1;
s->mouse_write_cmd = -1;
s->mode = KBD_MODE_KBD_INT | KBD_MODE_MOUSE_INT;
s->status = KBD_STAT_CMD | KBD_STAT_UNLOCKED;
for(i = 0; i < 2; i++) {
q = &s->queues[i];
q->rptr = 0;
q->wptr = 0;
q->count = 0;
}
}
void kbd_init(void)
{
kbd_reset(&kbd_state);
#if defined (TARGET_I386) || defined (TARGET_PPC)
register_ioport_read(0x60, 1, kbd_read_data, 1);
register_ioport_write(0x60, 1, kbd_write_data, 1);
register_ioport_read(0x64, 1, kbd_read_status, 1);
register_ioport_write(0x64, 1, kbd_write_command, 1);
#endif
}
/***********************************************************/
/* Bochs BIOS debug ports */
#ifdef TARGET_I386
void bochs_bios_write(CPUX86State *env, uint32_t addr, uint32_t val)
{
switch(addr) {
/* Bochs BIOS messages */
case 0x400:
case 0x401:
fprintf(stderr, "BIOS panic at rombios.c, line %d\n", val);
exit(1);
case 0x402:
case 0x403:
#ifdef DEBUG_BIOS
fprintf(stderr, "%c", val);
#endif
break;
/* LGPL'ed VGA BIOS messages */
case 0x501:
case 0x502:
fprintf(stderr, "VGA BIOS panic, line %d\n", val);
exit(1);
case 0x500:
case 0x503:
#ifdef DEBUG_BIOS
fprintf(stderr, "%c", val);
#endif
break;
}
}
void bochs_bios_init(void)
{
register_ioport_write(0x400, 1, bochs_bios_write, 2);
register_ioport_write(0x401, 1, bochs_bios_write, 2);
register_ioport_write(0x402, 1, bochs_bios_write, 1);
register_ioport_write(0x403, 1, bochs_bios_write, 1);
register_ioport_write(0x501, 1, bochs_bios_write, 2);
register_ioport_write(0x502, 1, bochs_bios_write, 2);
register_ioport_write(0x500, 1, bochs_bios_write, 1);
register_ioport_write(0x503, 1, bochs_bios_write, 1);
}
#endif
/***********************************************************/
/* dumb display */
/* init terminal so that we can grab keys */
static struct termios oldtty;
static void term_exit(void)
{
tcsetattr (0, TCSANOW, &oldtty);
}
static void term_init(void)
{
struct termios tty;
tcgetattr (0, &tty);
oldtty = tty;
tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
|INLCR|IGNCR|ICRNL|IXON);
tty.c_oflag |= OPOST;
tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
/* if graphical mode, we allow Ctrl-C handling */
if (nographic)
tty.c_lflag &= ~ISIG;
tty.c_cflag &= ~(CSIZE|PARENB);
tty.c_cflag |= CS8;
tty.c_cc[VMIN] = 1;
tty.c_cc[VTIME] = 0;
tcsetattr (0, TCSANOW, &tty);
atexit(term_exit);
fcntl(0, F_SETFL, O_NONBLOCK);
}
static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
{
}
static void dumb_resize(DisplayState *ds, int w, int h)
{
}
static void dumb_refresh(DisplayState *ds)
{
vga_update_display();
}
void dumb_display_init(DisplayState *ds)
{
ds->data = NULL;
ds->linesize = 0;
ds->depth = 0;
ds->dpy_update = dumb_update;
ds->dpy_resize = dumb_resize;
ds->dpy_refresh = dumb_refresh;
}
#if !defined(CONFIG_SOFTMMU)
/***********************************************************/
/* cpu signal handler */
static void host_segv_handler(int host_signum, siginfo_t *info,
void *puc)
{
if (cpu_signal_handler(host_signum, info, puc))
return;
term_exit();
abort();
}
#endif
static int timer_irq_pending;
static int timer_irq_count;
static int timer_ms;
static int gui_refresh_pending, gui_refresh_count;
static void host_alarm_handler(int host_signum, siginfo_t *info,
void *puc)
{
/* NOTE: since usually the OS asks a 100 Hz clock, there can be
some drift between cpu_get_ticks() and the interrupt time. So
we queue some interrupts to avoid missing some */
timer_irq_count += pit_get_out_edges(&pit_channels[0]);
if (timer_irq_count) {
if (timer_irq_count > 2)
timer_irq_count = 2;
timer_irq_count--;
timer_irq_pending = 1;
}
gui_refresh_count += timer_ms;
if (gui_refresh_count >= GUI_REFRESH_INTERVAL) {
gui_refresh_count = 0;
gui_refresh_pending = 1;
}
/* XXX: seems dangerous to run that here. */
DMA_run();
SB16_run();
if (gui_refresh_pending || timer_irq_pending) {
/* just exit from the cpu to have a chance to handle timers */
cpu_interrupt(global_env, CPU_INTERRUPT_EXIT);
}
}
#ifdef CONFIG_SOFTMMU
void *get_mmap_addr(unsigned long size)
{
return NULL;
}
#else
unsigned long mmap_addr = PHYS_RAM_BASE;
void *get_mmap_addr(unsigned long size)
{
unsigned long addr;
addr = mmap_addr;
mmap_addr += ((size + 4095) & ~4095) + 4096;
return (void *)addr;
}
#endif
/* main execution loop */
CPUState *cpu_gdbstub_get_env(void *opaque)
{
return global_env;
}
int main_loop(void *opaque)
{
struct pollfd ufds[3], *pf, *serial_ufd, *gdb_ufd;
#if defined (TARGET_I386)
struct pollfd *net_ufd;
#endif
int ret, n, timeout, serial_ok;
uint8_t ch;
CPUState *env = global_env;
if (!term_inited) {
/* initialize terminal only there so that the user has a
chance to stop QEMU with Ctrl-C before the gdb connection
is launched */
term_inited = 1;
term_init();
}
serial_ok = 1;
cpu_enable_ticks();
for(;;) {
#if defined (DO_TB_FLUSH)
tb_flush();
#endif
ret = cpu_exec(env);
if (reset_requested) {
ret = EXCP_INTERRUPT;
break;
}
if (ret == EXCP_DEBUG) {
ret = EXCP_DEBUG;
break;
}
/* if hlt instruction, we wait until the next IRQ */
if (ret == EXCP_HLT)
timeout = 10;
else
timeout = 0;
/* poll any events */
serial_ufd = NULL;
pf = ufds;
if (serial_ok && !(serial_ports[0].lsr & UART_LSR_DR)) {
serial_ufd = pf;
pf->fd = 0;
pf->events = POLLIN;
pf++;
}
#if defined (TARGET_I386)
net_ufd = NULL;
if (net_fd > 0 && ne2000_can_receive(&ne2000_state)) {
net_ufd = pf;
pf->fd = net_fd;
pf->events = POLLIN;
pf++;
}
#endif
gdb_ufd = NULL;
if (gdbstub_fd > 0) {
gdb_ufd = pf;
pf->fd = gdbstub_fd;
pf->events = POLLIN;
pf++;
}
ret = poll(ufds, pf - ufds, timeout);
if (ret > 0) {
if (serial_ufd && (serial_ufd->revents & POLLIN)) {
n = read(0, &ch, 1);
if (n == 1) {
serial_received_byte(&serial_ports[0], ch);
} else {
/* Closed, stop polling. */
serial_ok = 0;
}
}
#if defined (TARGET_I386)
if (net_ufd && (net_ufd->revents & POLLIN)) {
uint8_t buf[MAX_ETH_FRAME_SIZE];
n = read(net_fd, buf, MAX_ETH_FRAME_SIZE);
if (n > 0) {
if (n < 60) {
memset(buf + n, 0, 60 - n);
n = 60;
}
ne2000_receive(&ne2000_state, buf, n);
}
}
#endif
if (gdb_ufd && (gdb_ufd->revents & POLLIN)) {
uint8_t buf[1];
/* stop emulation if requested by gdb */
n = read(gdbstub_fd, buf, 1);
if (n == 1) {
ret = EXCP_INTERRUPT;
break;
}
}
}
/* timer IRQ */
if (timer_irq_pending) {
#if defined (TARGET_I386)
pic_set_irq(0, 1);
pic_set_irq(0, 0);
timer_irq_pending = 0;
/* XXX: RTC test */
if (cmos_data[RTC_REG_B] & 0x50) {
pic_set_irq(8, 1);
}
#endif
}
/* VGA */
if (gui_refresh_pending) {
display_state.dpy_refresh(&display_state);
gui_refresh_pending = 0;
}
}
cpu_disable_ticks();
return ret;
}
void help(void)
{
printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003 Fabrice Bellard\n"
"usage: %s [options] [disk_image]\n"
"\n"
"'disk_image' is a raw hard image image for IDE hard disk 0\n"
"\n"
"Standard options:\n"
"-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
"-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
"-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
"-cdrom file use 'file' as IDE cdrom 2 image\n"
"-boot [a|b|c|d] boot on floppy (a, b), hard disk (c) or CD-ROM (d)\n"
"-snapshot write to temporary files instead of disk image files\n"
"-m megs set virtual RAM size to megs MB\n"
"-n script set network init script [default=%s]\n"
"-tun-fd fd this fd talks to tap/tun, use it.\n"
"-nographic disable graphical output\n"
"\n"
"Linux boot specific (does not require PC BIOS):\n"
"-kernel bzImage use 'bzImage' as kernel image\n"
"-append cmdline use 'cmdline' as kernel command line\n"
"-initrd file use 'file' as initial ram disk\n"
"\n"
"Debug/Expert options:\n"
"-s wait gdb connection to port %d\n"
"-p port change gdb connection port\n"
"-d output log to %s\n"
"-hdachs c,h,s force hard disk 0 geometry (usually qemu can guess it)\n"
"-L path set the directory for the BIOS and VGA BIOS\n"
"\n"
"During emulation, use C-a h to get terminal commands:\n",
#ifdef CONFIG_SOFTMMU
"qemu",
#else
"qemu-fast",
#endif
DEFAULT_NETWORK_SCRIPT,
DEFAULT_GDBSTUB_PORT,
"/tmp/qemu.log");
term_print_help();
#ifndef CONFIG_SOFTMMU
printf("\n"
"NOTE: this version of QEMU is faster but it needs slightly patched OSes to\n"
"work. Please use the 'qemu' executable to have a more accurate (but slower)\n"
"PC emulation.\n");
#endif
exit(1);
}
struct option long_options[] = {
{ "initrd", 1, NULL, 0, },
{ "hda", 1, NULL, 0, },
{ "hdb", 1, NULL, 0, },
{ "snapshot", 0, NULL, 0, },
{ "hdachs", 1, NULL, 0, },
{ "nographic", 0, NULL, 0, },
{ "kernel", 1, NULL, 0, },
{ "append", 1, NULL, 0, },
{ "tun-fd", 1, NULL, 0, },
{ "hdc", 1, NULL, 0, },
{ "hdd", 1, NULL, 0, },
{ "cdrom", 1, NULL, 0, },
{ "boot", 1, NULL, 0, },
{ "fda", 1, NULL, 0, },
{ "fdb", 1, NULL, 0, },
{ NULL, 0, NULL, 0 },
};
#ifdef CONFIG_SDL
/* SDL use the pthreads and they modify sigaction. We don't
want that. */
#if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 2)
extern void __libc_sigaction();
#define sigaction(sig, act, oact) __libc_sigaction(sig, act, oact)
#else
extern void __sigaction();
#define sigaction(sig, act, oact) __sigaction(sig, act, oact)
#endif
#endif /* CONFIG_SDL */
int main(int argc, char **argv)
{
int c, ret, initrd_size, i, use_gdbstub, gdbstub_port, long_index;
int snapshot, linux_boot;
#if defined (TARGET_I386)
struct linux_params *params;
#endif
struct sigaction act;
struct itimerval itv;
CPUState *env;
const char *initrd_filename;
const char *hd_filename[MAX_DISKS], *fd_filename[MAX_FD];
const char *kernel_filename, *kernel_cmdline;
DisplayState *ds = &display_state;
/* we never want that malloc() uses mmap() */
mallopt(M_MMAP_THRESHOLD, 4096 * 1024);
initrd_filename = NULL;
for(i = 0; i < MAX_FD; i++)
fd_filename[i] = NULL;
for(i = 0; i < MAX_DISKS; i++)
hd_filename[i] = NULL;
ram_size = 32 * 1024 * 1024;
vga_ram_size = VGA_RAM_SIZE;
#if defined (TARGET_I386)
pstrcpy(network_script, sizeof(network_script), DEFAULT_NETWORK_SCRIPT);
#endif
use_gdbstub = 0;
gdbstub_port = DEFAULT_GDBSTUB_PORT;
snapshot = 0;
nographic = 0;
kernel_filename = NULL;
kernel_cmdline = "";
for(;;) {
c = getopt_long_only(argc, argv, "hm:dn:sp:L:", long_options, &long_index);
if (c == -1)
break;
switch(c) {
case 0:
switch(long_index) {
case 0:
initrd_filename = optarg;
break;
case 1:
hd_filename[0] = optarg;
break;
case 2:
hd_filename[1] = optarg;
break;
case 3:
snapshot = 1;
break;
case 4:
{
int cyls, heads, secs;
const char *p;
p = optarg;
cyls = strtol(p, (char **)&p, 0);
if (*p != ',')
goto chs_fail;
p++;
heads = strtol(p, (char **)&p, 0);
if (*p != ',')
goto chs_fail;
p++;
secs = strtol(p, (char **)&p, 0);
if (*p != '\0')
goto chs_fail;
ide_set_geometry(0, cyls, heads, secs);
chs_fail: ;
}
break;
case 5:
nographic = 1;
break;
case 6:
kernel_filename = optarg;
break;
case 7:
kernel_cmdline = optarg;
break;
#if defined (TARGET_I386)
case 8:
net_fd = atoi(optarg);
break;
#endif
case 9:
hd_filename[2] = optarg;
break;
case 10:
hd_filename[3] = optarg;
break;
case 11:
hd_filename[2] = optarg;
ide_set_cdrom(2, 1);
break;
case 12:
boot_device = optarg[0];
if (boot_device != 'a' && boot_device != 'b' &&
boot_device != 'c' && boot_device != 'd') {
fprintf(stderr, "qemu: invalid boot device '%c'\n", boot_device);
exit(1);
}
break;
case 13:
fd_filename[0] = optarg;
break;
case 14:
fd_filename[1] = optarg;
break;
}
break;
case 'h':
help();
break;
case 'm':
ram_size = atoi(optarg) * 1024 * 1024;
if (ram_size <= 0)
help();
if (ram_size > PHYS_RAM_MAX_SIZE) {
fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
PHYS_RAM_MAX_SIZE / (1024 * 1024));
exit(1);
}
break;
case 'd':
cpu_set_log(CPU_LOG_ALL);
break;
#if defined (TARGET_I386)
case 'n':
pstrcpy(network_script, sizeof(network_script), optarg);
break;
#endif
case 's':
use_gdbstub = 1;
break;
case 'p':
gdbstub_port = atoi(optarg);
break;
case 'L':
bios_dir = optarg;
break;
}
}
if (optind < argc) {
hd_filename[0] = argv[optind++];
}
linux_boot = (kernel_filename != NULL);
if (!linux_boot && hd_filename[0] == '\0' && hd_filename[2] == '\0' &&
fd_filename[0] == '\0')
help();
/* boot to cd by default if no hard disk */
if (hd_filename[0] == '\0' && boot_device == 'c') {
if (fd_filename[0] != '\0')
boot_device = 'a';
else
boot_device = 'd';
}
#if !defined(CONFIG_SOFTMMU)
/* must avoid mmap() usage of glibc by setting a buffer "by hand" */
{
static uint8_t stdout_buf[4096];
setvbuf(stdout, stdout_buf, _IOLBF, sizeof(stdout_buf));
}
#else
setvbuf(stdout, NULL, _IOLBF, 0);
#endif
/* init network tun interface */
#if defined (TARGET_I386)
if (net_fd < 0)
net_init();
#endif
/* init the memory */
phys_ram_size = ram_size + vga_ram_size;
#ifdef CONFIG_SOFTMMU
phys_ram_base = memalign(TARGET_PAGE_SIZE, phys_ram_size);
if (!phys_ram_base) {
fprintf(stderr, "Could not allocate physical memory\n");
exit(1);
}
#else
/* as we must map the same page at several addresses, we must use
a fd */
{
const char *tmpdir;
tmpdir = getenv("QEMU_TMPDIR");
if (!tmpdir)
tmpdir = "/tmp";
snprintf(phys_ram_file, sizeof(phys_ram_file), "%s/vlXXXXXX", tmpdir);
if (mkstemp(phys_ram_file) < 0) {
fprintf(stderr, "Could not create temporary memory file '%s'\n",
phys_ram_file);
exit(1);
}
phys_ram_fd = open(phys_ram_file, O_CREAT | O_TRUNC | O_RDWR, 0600);
if (phys_ram_fd < 0) {
fprintf(stderr, "Could not open temporary memory file '%s'\n",
phys_ram_file);
exit(1);
}
ftruncate(phys_ram_fd, phys_ram_size);
unlink(phys_ram_file);
phys_ram_base = mmap(get_mmap_addr(phys_ram_size),
phys_ram_size,
PROT_WRITE | PROT_READ, MAP_SHARED | MAP_FIXED,
phys_ram_fd, 0);
if (phys_ram_base == MAP_FAILED) {
fprintf(stderr, "Could not map physical memory\n");
exit(1);
}
}
#endif
/* open the virtual block devices */
for(i = 0; i < MAX_DISKS; i++) {
if (hd_filename[i]) {
bs_table[i] = bdrv_open(hd_filename[i], snapshot);
if (!bs_table[i]) {
fprintf(stderr, "qemu: could not open hard disk image '%s\n",
hd_filename[i]);
exit(1);
}
}
}
/* init CPU state */
env = cpu_init();
global_env = env;
cpu_single_env = env;
init_ioports();
/* allocate RAM */
cpu_register_physical_memory(0, ram_size, 0);
if (linux_boot) {
/* now we can load the kernel */
ret = load_kernel(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
if (ret < 0) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
kernel_filename);
exit(1);
}
/* load initrd */
initrd_size = 0;
if (initrd_filename) {
initrd_size = load_image(initrd_filename, phys_ram_base + INITRD_LOAD_ADDR);
if (initrd_size < 0) {
fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
initrd_filename);
exit(1);
}
}
/* init kernel params */
#ifdef TARGET_I386
params = (void *)(phys_ram_base + KERNEL_PARAMS_ADDR);
memset(params, 0, sizeof(struct linux_params));
params->mount_root_rdonly = 0;
stw_raw(&params->cl_magic, 0xA33F);
stw_raw(&params->cl_offset, params->commandline - (uint8_t *)params);
stl_raw(&params->alt_mem_k, (ram_size / 1024) - 1024);
pstrcat(params->commandline, sizeof(params->commandline), kernel_cmdline);
params->loader_type = 0x01;
if (initrd_size > 0) {
stl_raw(&params->initrd_start, INITRD_LOAD_ADDR);
stl_raw(&params->initrd_size, initrd_size);
}
params->orig_video_lines = 25;
params->orig_video_cols = 80;
/* setup basic memory access */
cpu_x86_update_cr0(env, 0x00000033);
memset(params->idt_table, 0, sizeof(params->idt_table));
stq_raw(&params->gdt_table[2], 0x00cf9a000000ffffLL); /* KERNEL_CS */
stq_raw(&params->gdt_table[3], 0x00cf92000000ffffLL); /* KERNEL_DS */
/* for newer kernels (2.6.0) CS/DS are at different addresses */
stq_raw(&params->gdt_table[12], 0x00cf9a000000ffffLL); /* KERNEL_CS */
stq_raw(&params->gdt_table[13], 0x00cf92000000ffffLL); /* KERNEL_DS */
env->idt.base = (void *)((uint8_t *)params->idt_table - phys_ram_base);
env->idt.limit = sizeof(params->idt_table) - 1;
env->gdt.base = (void *)((uint8_t *)params->gdt_table - phys_ram_base);
env->gdt.limit = sizeof(params->gdt_table) - 1;
cpu_x86_load_seg_cache(env, R_CS, KERNEL_CS, NULL, 0xffffffff, 0x00cf9a00);
cpu_x86_load_seg_cache(env, R_DS, KERNEL_DS, NULL, 0xffffffff, 0x00cf9200);
cpu_x86_load_seg_cache(env, R_ES, KERNEL_DS, NULL, 0xffffffff, 0x00cf9200);
cpu_x86_load_seg_cache(env, R_SS, KERNEL_DS, NULL, 0xffffffff, 0x00cf9200);
cpu_x86_load_seg_cache(env, R_FS, KERNEL_DS, NULL, 0xffffffff, 0x00cf9200);
cpu_x86_load_seg_cache(env, R_GS, KERNEL_DS, NULL, 0xffffffff, 0x00cf9200);
env->eip = KERNEL_LOAD_ADDR;
env->regs[R_ESI] = KERNEL_PARAMS_ADDR;
env->eflags = 0x2;
#elif defined (TARGET_PPC)
PPC_init_hw(env, ram_size, KERNEL_LOAD_ADDR, ret,
KERNEL_STACK_ADDR, boot_device);
#endif
} else {
char buf[1024];
/* RAW PC boot */
#if defined(TARGET_I386)
/* BIOS load */
snprintf(buf, sizeof(buf), "%s/%s", bios_dir, BIOS_FILENAME);
ret = load_image(buf, phys_ram_base + 0x000f0000);
if (ret != 0x10000) {
fprintf(stderr, "qemu: could not load PC bios '%s'\n", buf);
exit(1);
}
/* VGA BIOS load */
snprintf(buf, sizeof(buf), "%s/%s", bios_dir, VGABIOS_FILENAME);
ret = load_image(buf, phys_ram_base + 0x000c0000);
/* setup basic memory access */
cpu_register_physical_memory(0xc0000, 0x10000, 0xc0000 | IO_MEM_ROM);
cpu_register_physical_memory(0xf0000, 0x10000, 0xf0000 | IO_MEM_ROM);
bochs_bios_init();
#elif defined(TARGET_PPC)
/* allocate ROM */
// snprintf(buf, sizeof(buf), "%s/%s", bios_dir, BIOS_FILENAME);
snprintf(buf, sizeof(buf), "%s", BIOS_FILENAME);
printf("load BIOS at %p\n", phys_ram_base + 0x000f0000);
ret = load_image(buf, phys_ram_base + 0x000f0000);
if (ret != 0x10000) {
fprintf(stderr, "qemu: could not load PPC bios '%s' (%d)\n%m\n",
buf, ret);
exit(1);
}
#endif
}
/* terminal init */
if (nographic) {
dumb_display_init(ds);
} else {
#ifdef CONFIG_SDL
sdl_display_init(ds);
#else
dumb_display_init(ds);
#endif
}
/* init basic PC hardware */
register_ioport_write(0x80, 1, ioport80_write, 1);
vga_initialize(ds, phys_ram_base + ram_size, ram_size,
vga_ram_size);
#if defined (TARGET_I386)
cmos_init();
#endif
pic_init();
pit_init();
serial_init();
#if defined (TARGET_I386)
ne2000_init();
#endif
ide_init();
kbd_init();
AUD_init();
DMA_init();
#if defined (TARGET_I386)
SB16_init();
#endif
#if defined (TARGET_PPC)
PPC_end_init();
#endif
fdctrl_register((unsigned char **)fd_filename, snapshot, boot_device);
/* setup cpu signal handlers for MMU / self modifying code handling */
sigfillset(&act.sa_mask);
act.sa_flags = SA_SIGINFO;
#if !defined(CONFIG_SOFTMMU)
act.sa_sigaction = host_segv_handler;
sigaction(SIGSEGV, &act, NULL);
sigaction(SIGBUS, &act, NULL);
#endif
act.sa_sigaction = host_alarm_handler;
sigaction(SIGALRM, &act, NULL);
itv.it_interval.tv_sec = 0;
itv.it_interval.tv_usec = 1000;
itv.it_value.tv_sec = 0;
itv.it_value.tv_usec = 10 * 1000;
setitimer(ITIMER_REAL, &itv, NULL);
/* we probe the tick duration of the kernel to inform the user if
the emulated kernel requested a too high timer frequency */
getitimer(ITIMER_REAL, &itv);
timer_ms = itv.it_interval.tv_usec / 1000;
pit_min_timer_count = ((uint64_t)itv.it_interval.tv_usec * PIT_FREQ) /
1000000;
if (use_gdbstub) {
cpu_gdbstub(NULL, main_loop, gdbstub_port);
} else {
main_loop(NULL);
}
return 0;
}