| /* | 
 |  * Copyright (c) 2003-2004 Fabrice Bellard | 
 |  * Copyright (c) 2019, 2024 Red Hat, Inc. | 
 |  * | 
 |  * Permission is hereby granted, free of charge, to any person obtaining a copy | 
 |  * of this software and associated documentation files (the "Software"), to deal | 
 |  * in the Software without restriction, including without limitation the rights | 
 |  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | 
 |  * copies of the Software, and to permit persons to whom the Software is | 
 |  * furnished to do so, subject to the following conditions: | 
 |  * | 
 |  * The above copyright notice and this permission notice shall be included in | 
 |  * all copies or substantial portions of the Software. | 
 |  * | 
 |  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
 |  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
 |  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | 
 |  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
 |  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | 
 |  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | 
 |  * THE SOFTWARE. | 
 |  */ | 
 | #include "qemu/osdep.h" | 
 | #include "qemu/error-report.h" | 
 | #include "qemu/cutils.h" | 
 | #include "qemu/units.h" | 
 | #include "qemu/datadir.h" | 
 | #include "qapi/error.h" | 
 | #include "system/numa.h" | 
 | #include "system/system.h" | 
 | #include "system/xen.h" | 
 | #include "trace.h" | 
 |  | 
 | #include "hw/i386/x86.h" | 
 | #include "target/i386/cpu.h" | 
 | #include "hw/rtc/mc146818rtc.h" | 
 | #include "target/i386/sev.h" | 
 |  | 
 | #include "hw/acpi/cpu_hotplug.h" | 
 | #include "hw/irq.h" | 
 | #include "hw/loader.h" | 
 | #include "multiboot.h" | 
 | #include "elf.h" | 
 | #include "standard-headers/asm-x86/bootparam.h" | 
 | #include CONFIG_DEVICES | 
 | #include "kvm/kvm_i386.h" | 
 |  | 
 | #ifdef CONFIG_XEN_EMU | 
 | #include "hw/xen/xen.h" | 
 | #include "hw/i386/kvm/xen_evtchn.h" | 
 | #endif | 
 |  | 
 | /* Physical Address of PVH entry point read from kernel ELF NOTE */ | 
 | static size_t pvh_start_addr; | 
 |  | 
 | static void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp) | 
 | { | 
 |     Object *cpu = object_new(MACHINE(x86ms)->cpu_type); | 
 |  | 
 |     if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) { | 
 |         goto out; | 
 |     } | 
 |     qdev_realize(DEVICE(cpu), NULL, errp); | 
 |  | 
 | out: | 
 |     object_unref(cpu); | 
 | } | 
 |  | 
 | void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version) | 
 | { | 
 |     int i; | 
 |     const CPUArchIdList *possible_cpus; | 
 |     MachineState *ms = MACHINE(x86ms); | 
 |     MachineClass *mc = MACHINE_GET_CLASS(x86ms); | 
 |  | 
 |     x86_cpu_set_default_version(default_cpu_version); | 
 |  | 
 |     /* | 
 |      * Calculates the limit to CPU APIC ID values | 
 |      * | 
 |      * Limit for the APIC ID value, so that all | 
 |      * CPU APIC IDs are < x86ms->apic_id_limit. | 
 |      * | 
 |      * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create(). | 
 |      */ | 
 |     x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms, | 
 |                                                       ms->smp.max_cpus - 1) + 1; | 
 |  | 
 |     /* | 
 |      * Can we support APIC ID 255 or higher?  With KVM, that requires | 
 |      * both in-kernel lapic and X2APIC userspace API. | 
 |      * | 
 |      * kvm_enabled() must go first to ensure that kvm_* references are | 
 |      * not emitted for the linker to consume (kvm_enabled() is | 
 |      * a literal `0` in configurations where kvm_* aren't defined) | 
 |      */ | 
 |     if (kvm_enabled() && x86ms->apic_id_limit > 255 && | 
 |         kvm_irqchip_in_kernel() && !kvm_enable_x2apic()) { | 
 |         error_report("current -smp configuration requires kernel " | 
 |                      "irqchip and X2APIC API support."); | 
 |         exit(EXIT_FAILURE); | 
 |     } | 
 |  | 
 |     if (kvm_enabled()) { | 
 |         kvm_set_max_apic_id(x86ms->apic_id_limit); | 
 |     } | 
 |  | 
 |     if (!kvm_irqchip_in_kernel()) { | 
 |         apic_set_max_apic_id(x86ms->apic_id_limit); | 
 |     } | 
 |  | 
 |     possible_cpus = mc->possible_cpu_arch_ids(ms); | 
 |     for (i = 0; i < ms->smp.cpus; i++) { | 
 |         x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal); | 
 |     } | 
 | } | 
 |  | 
 | void x86_rtc_set_cpus_count(ISADevice *s, uint16_t cpus_count) | 
 | { | 
 |     MC146818RtcState *rtc = MC146818_RTC(s); | 
 |  | 
 |     if (cpus_count > 0xff) { | 
 |         /* | 
 |          * If the number of CPUs can't be represented in 8 bits, the | 
 |          * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just | 
 |          * to make old BIOSes fail more predictably. | 
 |          */ | 
 |         mc146818rtc_set_cmos_data(rtc, 0x5f, 0); | 
 |     } else { | 
 |         mc146818rtc_set_cmos_data(rtc, 0x5f, cpus_count - 1); | 
 |     } | 
 | } | 
 |  | 
 | static int x86_apic_cmp(const void *a, const void *b) | 
 | { | 
 |    CPUArchId *apic_a = (CPUArchId *)a; | 
 |    CPUArchId *apic_b = (CPUArchId *)b; | 
 |  | 
 |    return apic_a->arch_id - apic_b->arch_id; | 
 | } | 
 |  | 
 | /* | 
 |  * returns pointer to CPUArchId descriptor that matches CPU's apic_id | 
 |  * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no | 
 |  * entry corresponding to CPU's apic_id returns NULL. | 
 |  */ | 
 | static CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) | 
 | { | 
 |     CPUArchId apic_id, *found_cpu; | 
 |  | 
 |     apic_id.arch_id = id; | 
 |     found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus, | 
 |         ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus), | 
 |         x86_apic_cmp); | 
 |     if (found_cpu && idx) { | 
 |         *idx = found_cpu - ms->possible_cpus->cpus; | 
 |     } | 
 |     return found_cpu; | 
 | } | 
 |  | 
 | void x86_cpu_plug(HotplugHandler *hotplug_dev, | 
 |                   DeviceState *dev, Error **errp) | 
 | { | 
 |     CPUArchId *found_cpu; | 
 |     Error *local_err = NULL; | 
 |     X86CPU *cpu = X86_CPU(dev); | 
 |     X86MachineState *x86ms = X86_MACHINE(hotplug_dev); | 
 |  | 
 |     if (x86ms->acpi_dev) { | 
 |         hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err); | 
 |         if (local_err) { | 
 |             goto out; | 
 |         } | 
 |     } | 
 |  | 
 |     /* increment the number of CPUs */ | 
 |     x86ms->boot_cpus++; | 
 |     if (x86ms->rtc) { | 
 |         x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus); | 
 |     } | 
 |     if (x86ms->fw_cfg) { | 
 |         fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus); | 
 |     } | 
 |  | 
 |     found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL); | 
 |     found_cpu->cpu = CPU(dev); | 
 | out: | 
 |     error_propagate(errp, local_err); | 
 | } | 
 |  | 
 | void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, | 
 |                                DeviceState *dev, Error **errp) | 
 | { | 
 |     int idx = -1; | 
 |     X86CPU *cpu = X86_CPU(dev); | 
 |     X86MachineState *x86ms = X86_MACHINE(hotplug_dev); | 
 |  | 
 |     if (!x86ms->acpi_dev) { | 
 |         error_setg(errp, "CPU hot unplug not supported without ACPI"); | 
 |         return; | 
 |     } | 
 |  | 
 |     x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx); | 
 |     assert(idx != -1); | 
 |     if (idx == 0) { | 
 |         error_setg(errp, "Boot CPU is unpluggable"); | 
 |         return; | 
 |     } | 
 |  | 
 |     hotplug_handler_unplug_request(x86ms->acpi_dev, dev, | 
 |                                    errp); | 
 | } | 
 |  | 
 | void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev, | 
 |                        DeviceState *dev, Error **errp) | 
 | { | 
 |     CPUArchId *found_cpu; | 
 |     Error *local_err = NULL; | 
 |     X86CPU *cpu = X86_CPU(dev); | 
 |     X86MachineState *x86ms = X86_MACHINE(hotplug_dev); | 
 |  | 
 |     hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err); | 
 |     if (local_err) { | 
 |         goto out; | 
 |     } | 
 |  | 
 |     found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL); | 
 |     found_cpu->cpu = NULL; | 
 |     qdev_unrealize(dev); | 
 |  | 
 |     /* decrement the number of CPUs */ | 
 |     x86ms->boot_cpus--; | 
 |     /* Update the number of CPUs in CMOS */ | 
 |     x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus); | 
 |     fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus); | 
 |  out: | 
 |     error_propagate(errp, local_err); | 
 | } | 
 |  | 
 | void x86_cpu_pre_plug(HotplugHandler *hotplug_dev, | 
 |                       DeviceState *dev, Error **errp) | 
 | { | 
 |     int idx; | 
 |     CPUState *cs; | 
 |     CPUArchId *cpu_slot; | 
 |     X86CPUTopoIDs topo_ids; | 
 |     X86CPU *cpu = X86_CPU(dev); | 
 |     CPUX86State *env = &cpu->env; | 
 |     MachineState *ms = MACHINE(hotplug_dev); | 
 |     X86MachineState *x86ms = X86_MACHINE(hotplug_dev); | 
 |     X86CPUTopoInfo *topo_info = &env->topo_info; | 
 |  | 
 |     if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) { | 
 |         error_setg(errp, "Invalid CPU type, expected cpu type: '%s'", | 
 |                    ms->cpu_type); | 
 |         return; | 
 |     } | 
 |  | 
 |     if (x86ms->acpi_dev) { | 
 |         Error *local_err = NULL; | 
 |  | 
 |         hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms->acpi_dev), dev, | 
 |                                  &local_err); | 
 |         if (local_err) { | 
 |             error_propagate(errp, local_err); | 
 |             return; | 
 |         } | 
 |     } | 
 |  | 
 |     init_topo_info(topo_info, x86ms); | 
 |  | 
 |     if (ms->smp.modules > 1) { | 
 |         set_bit(CPU_TOPOLOGY_LEVEL_MODULE, env->avail_cpu_topo); | 
 |     } | 
 |  | 
 |     if (ms->smp.dies > 1) { | 
 |         set_bit(CPU_TOPOLOGY_LEVEL_DIE, env->avail_cpu_topo); | 
 |     } | 
 |  | 
 |     /* | 
 |      * If APIC ID is not set, | 
 |      * set it based on socket/die/module/core/thread properties. | 
 |      */ | 
 |     if (cpu->apic_id == UNASSIGNED_APIC_ID) { | 
 |         /* | 
 |          * die-id was optional in QEMU 4.0 and older, so keep it optional | 
 |          * if there's only one die per socket. | 
 |          */ | 
 |         if (cpu->die_id < 0 && ms->smp.dies == 1) { | 
 |             cpu->die_id = 0; | 
 |         } | 
 |  | 
 |         /* | 
 |          * module-id was optional in QEMU 9.0 and older, so keep it optional | 
 |          * if there's only one module per die. | 
 |          */ | 
 |         if (cpu->module_id < 0 && ms->smp.modules == 1) { | 
 |             cpu->module_id = 0; | 
 |         } | 
 |  | 
 |         if (cpu->socket_id < 0) { | 
 |             error_setg(errp, "CPU socket-id is not set"); | 
 |             return; | 
 |         } else if (cpu->socket_id > ms->smp.sockets - 1) { | 
 |             error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u", | 
 |                        cpu->socket_id, ms->smp.sockets - 1); | 
 |             return; | 
 |         } | 
 |         if (cpu->die_id < 0) { | 
 |             error_setg(errp, "CPU die-id is not set"); | 
 |             return; | 
 |         } else if (cpu->die_id > ms->smp.dies - 1) { | 
 |             error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u", | 
 |                        cpu->die_id, ms->smp.dies - 1); | 
 |             return; | 
 |         } | 
 |         if (cpu->module_id < 0) { | 
 |             error_setg(errp, "CPU module-id is not set"); | 
 |             return; | 
 |         } else if (cpu->module_id > ms->smp.modules - 1) { | 
 |             error_setg(errp, "Invalid CPU module-id: %u must be in range 0:%u", | 
 |                        cpu->module_id, ms->smp.modules - 1); | 
 |             return; | 
 |         } | 
 |         if (cpu->core_id < 0) { | 
 |             error_setg(errp, "CPU core-id is not set"); | 
 |             return; | 
 |         } else if (cpu->core_id > (ms->smp.cores - 1)) { | 
 |             error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u", | 
 |                        cpu->core_id, ms->smp.cores - 1); | 
 |             return; | 
 |         } | 
 |         if (cpu->thread_id < 0) { | 
 |             error_setg(errp, "CPU thread-id is not set"); | 
 |             return; | 
 |         } else if (cpu->thread_id > (ms->smp.threads - 1)) { | 
 |             error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u", | 
 |                        cpu->thread_id, ms->smp.threads - 1); | 
 |             return; | 
 |         } | 
 |  | 
 |         topo_ids.pkg_id = cpu->socket_id; | 
 |         topo_ids.die_id = cpu->die_id; | 
 |         topo_ids.module_id = cpu->module_id; | 
 |         topo_ids.core_id = cpu->core_id; | 
 |         topo_ids.smt_id = cpu->thread_id; | 
 |         cpu->apic_id = x86_apicid_from_topo_ids(topo_info, &topo_ids); | 
 |     } | 
 |  | 
 |     cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx); | 
 |     if (!cpu_slot) { | 
 |         x86_topo_ids_from_apicid(cpu->apic_id, topo_info, &topo_ids); | 
 |  | 
 |         error_setg(errp, | 
 |             "Invalid CPU [socket: %u, die: %u, module: %u, core: %u, thread: %u]" | 
 |             " with APIC ID %" PRIu32 ", valid index range 0:%d", | 
 |             topo_ids.pkg_id, topo_ids.die_id, topo_ids.module_id, | 
 |             topo_ids.core_id, topo_ids.smt_id, cpu->apic_id, | 
 |             ms->possible_cpus->len - 1); | 
 |         return; | 
 |     } | 
 |  | 
 |     if (cpu_slot->cpu) { | 
 |         error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists", | 
 |                    idx, cpu->apic_id); | 
 |         return; | 
 |     } | 
 |  | 
 |     /* if 'address' properties socket-id/core-id/thread-id are not set, set them | 
 |      * so that machine_query_hotpluggable_cpus would show correct values | 
 |      */ | 
 |     /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn() | 
 |      * once -smp refactoring is complete and there will be CPU private | 
 |      * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */ | 
 |     x86_topo_ids_from_apicid(cpu->apic_id, topo_info, &topo_ids); | 
 |     if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) { | 
 |         error_setg(errp, "property socket-id: %u doesn't match set apic-id:" | 
 |             " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, | 
 |             topo_ids.pkg_id); | 
 |         return; | 
 |     } | 
 |     cpu->socket_id = topo_ids.pkg_id; | 
 |  | 
 |     if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) { | 
 |         error_setg(errp, "property die-id: %u doesn't match set apic-id:" | 
 |             " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id); | 
 |         return; | 
 |     } | 
 |     cpu->die_id = topo_ids.die_id; | 
 |  | 
 |     if (cpu->module_id != -1 && cpu->module_id != topo_ids.module_id) { | 
 |         error_setg(errp, "property module-id: %u doesn't match set apic-id:" | 
 |             " 0x%x (module-id: %u)", cpu->module_id, cpu->apic_id, | 
 |             topo_ids.module_id); | 
 |         return; | 
 |     } | 
 |     cpu->module_id = topo_ids.module_id; | 
 |  | 
 |     if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) { | 
 |         error_setg(errp, "property core-id: %u doesn't match set apic-id:" | 
 |             " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, | 
 |             topo_ids.core_id); | 
 |         return; | 
 |     } | 
 |     cpu->core_id = topo_ids.core_id; | 
 |  | 
 |     if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) { | 
 |         error_setg(errp, "property thread-id: %u doesn't match set apic-id:" | 
 |             " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, | 
 |             topo_ids.smt_id); | 
 |         return; | 
 |     } | 
 |     cpu->thread_id = topo_ids.smt_id; | 
 |  | 
 |     /* | 
 |     * kvm_enabled() must go first to ensure that kvm_* references are | 
 |     * not emitted for the linker to consume (kvm_enabled() is | 
 |     * a literal `0` in configurations where kvm_* aren't defined) | 
 |     */ | 
 |     if (kvm_enabled() && hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && | 
 |         !kvm_hv_vpindex_settable()) { | 
 |         error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX"); | 
 |         return; | 
 |     } | 
 |  | 
 |     cs = CPU(cpu); | 
 |     cs->cpu_index = idx; | 
 |  | 
 |     numa_cpu_pre_plug(cpu_slot, dev, errp); | 
 | } | 
 |  | 
 | static long get_file_size(FILE *f) | 
 | { | 
 |     long where, size; | 
 |  | 
 |     /* XXX: on Unix systems, using fstat() probably makes more sense */ | 
 |  | 
 |     where = ftell(f); | 
 |     fseek(f, 0, SEEK_END); | 
 |     size = ftell(f); | 
 |     fseek(f, where, SEEK_SET); | 
 |  | 
 |     return size; | 
 | } | 
 |  | 
 | void gsi_handler(void *opaque, int n, int level) | 
 | { | 
 |     GSIState *s = opaque; | 
 |     bool bypass_ioapic = false; | 
 |  | 
 |     trace_x86_gsi_interrupt(n, level); | 
 |  | 
 | #ifdef CONFIG_XEN_EMU | 
 |     /* | 
 |      * Xen delivers the GSI to the Legacy PIC (not that Legacy PIC | 
 |      * routing actually works properly under Xen). And then to | 
 |      * *either* the PIRQ handling or the I/OAPIC depending on whether | 
 |      * the former wants it. | 
 |      * | 
 |      * Additionally, this hook allows the Xen event channel GSI to | 
 |      * work around QEMU's lack of support for shared level interrupts, | 
 |      * by keeping track of the externally driven state of the pin and | 
 |      * implementing a logical OR with the state of the evtchn GSI. | 
 |      */ | 
 |     if (xen_mode == XEN_EMULATE) { | 
 |         bypass_ioapic = xen_evtchn_set_gsi(n, &level); | 
 |     } | 
 | #endif | 
 |  | 
 |     switch (n) { | 
 |     case 0 ... ISA_NUM_IRQS - 1: | 
 |         if (s->i8259_irq[n]) { | 
 |             /* Under KVM, Kernel will forward to both PIC and IOAPIC */ | 
 |             qemu_set_irq(s->i8259_irq[n], level); | 
 |         } | 
 |         /* fall through */ | 
 |     case ISA_NUM_IRQS ... IOAPIC_NUM_PINS - 1: | 
 |         if (!bypass_ioapic) { | 
 |             qemu_set_irq(s->ioapic_irq[n], level); | 
 |         } | 
 |         break; | 
 |     case IO_APIC_SECONDARY_IRQBASE | 
 |         ... IO_APIC_SECONDARY_IRQBASE + IOAPIC_NUM_PINS - 1: | 
 |         qemu_set_irq(s->ioapic2_irq[n - IO_APIC_SECONDARY_IRQBASE], level); | 
 |         break; | 
 |     } | 
 | } | 
 |  | 
 | void ioapic_init_gsi(GSIState *gsi_state, Object *parent) | 
 | { | 
 |     DeviceState *dev; | 
 |     SysBusDevice *d; | 
 |     unsigned int i; | 
 |  | 
 |     assert(parent); | 
 |     if (kvm_ioapic_in_kernel()) { | 
 |         dev = qdev_new(TYPE_KVM_IOAPIC); | 
 |     } else { | 
 |         dev = qdev_new(TYPE_IOAPIC); | 
 |     } | 
 |     object_property_add_child(parent, "ioapic", OBJECT(dev)); | 
 |     d = SYS_BUS_DEVICE(dev); | 
 |     sysbus_realize_and_unref(d, &error_fatal); | 
 |     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); | 
 |  | 
 |     for (i = 0; i < IOAPIC_NUM_PINS; i++) { | 
 |         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); | 
 |     } | 
 | } | 
 |  | 
 | DeviceState *ioapic_init_secondary(GSIState *gsi_state) | 
 | { | 
 |     DeviceState *dev; | 
 |     SysBusDevice *d; | 
 |     unsigned int i; | 
 |  | 
 |     dev = qdev_new(TYPE_IOAPIC); | 
 |     d = SYS_BUS_DEVICE(dev); | 
 |     sysbus_realize_and_unref(d, &error_fatal); | 
 |     sysbus_mmio_map(d, 0, IO_APIC_SECONDARY_ADDRESS); | 
 |  | 
 |     for (i = 0; i < IOAPIC_NUM_PINS; i++) { | 
 |         gsi_state->ioapic2_irq[i] = qdev_get_gpio_in(dev, i); | 
 |     } | 
 |     return dev; | 
 | } | 
 |  | 
 | /* | 
 |  * The entry point into the kernel for PVH boot is different from | 
 |  * the native entry point.  The PVH entry is defined by the x86/HVM | 
 |  * direct boot ABI and is available in an ELFNOTE in the kernel binary. | 
 |  * | 
 |  * This function is passed to load_elf() when it is called from | 
 |  * load_elfboot() which then additionally checks for an ELF Note of | 
 |  * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to | 
 |  * parse the PVH entry address from the ELF Note. | 
 |  * | 
 |  * Due to trickery in elf_opts.h, load_elf() is actually available as | 
 |  * load_elf32() or load_elf64() and this routine needs to be able | 
 |  * to deal with being called as 32 or 64 bit. | 
 |  * | 
 |  * The address of the PVH entry point is saved to the 'pvh_start_addr' | 
 |  * global variable.  (although the entry point is 32-bit, the kernel | 
 |  * binary can be either 32-bit or 64-bit). | 
 |  */ | 
 | static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64) | 
 | { | 
 |     size_t *elf_note_data_addr; | 
 |  | 
 |     /* Check if ELF Note header passed in is valid */ | 
 |     if (arg1 == NULL) { | 
 |         return 0; | 
 |     } | 
 |  | 
 |     if (is64) { | 
 |         struct elf64_note *nhdr64 = (struct elf64_note *)arg1; | 
 |         uint64_t nhdr_size64 = sizeof(struct elf64_note); | 
 |         uint64_t phdr_align = *(uint64_t *)arg2; | 
 |         uint64_t nhdr_namesz = nhdr64->n_namesz; | 
 |  | 
 |         elf_note_data_addr = | 
 |             ((void *)nhdr64) + nhdr_size64 + | 
 |             QEMU_ALIGN_UP(nhdr_namesz, phdr_align); | 
 |  | 
 |         pvh_start_addr = *elf_note_data_addr; | 
 |     } else { | 
 |         struct elf32_note *nhdr32 = (struct elf32_note *)arg1; | 
 |         uint32_t nhdr_size32 = sizeof(struct elf32_note); | 
 |         uint32_t phdr_align = *(uint32_t *)arg2; | 
 |         uint32_t nhdr_namesz = nhdr32->n_namesz; | 
 |  | 
 |         elf_note_data_addr = | 
 |             ((void *)nhdr32) + nhdr_size32 + | 
 |             QEMU_ALIGN_UP(nhdr_namesz, phdr_align); | 
 |  | 
 |         pvh_start_addr = *(uint32_t *)elf_note_data_addr; | 
 |     } | 
 |  | 
 |     return pvh_start_addr; | 
 | } | 
 |  | 
 | static bool load_elfboot(const char *kernel_filename, | 
 |                          int kernel_file_size, | 
 |                          uint8_t *header, | 
 |                          size_t pvh_xen_start_addr, | 
 |                          FWCfgState *fw_cfg) | 
 | { | 
 |     uint32_t flags = 0; | 
 |     uint32_t mh_load_addr = 0; | 
 |     uint32_t elf_kernel_size = 0; | 
 |     uint64_t elf_entry; | 
 |     uint64_t elf_low, elf_high; | 
 |     int kernel_size; | 
 |  | 
 |     if (ldl_le_p(header) != 0x464c457f) { | 
 |         return false; /* no elfboot */ | 
 |     } | 
 |  | 
 |     bool elf_is64 = header[EI_CLASS] == ELFCLASS64; | 
 |     flags = elf_is64 ? | 
 |         ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags; | 
 |  | 
 |     if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */ | 
 |         error_report("elfboot unsupported flags = %x", flags); | 
 |         exit(1); | 
 |     } | 
 |  | 
 |     uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY; | 
 |     kernel_size = load_elf(kernel_filename, read_pvh_start_addr, | 
 |                            NULL, &elf_note_type, &elf_entry, | 
 |                            &elf_low, &elf_high, NULL, | 
 |                            ELFDATA2LSB, I386_ELF_MACHINE, 0, 0); | 
 |  | 
 |     if (kernel_size < 0) { | 
 |         error_report("Error while loading elf kernel"); | 
 |         exit(1); | 
 |     } | 
 |     mh_load_addr = elf_low; | 
 |     elf_kernel_size = elf_high - elf_low; | 
 |  | 
 |     if (pvh_start_addr == 0) { | 
 |         error_report("Error loading uncompressed kernel without PVH ELF Note"); | 
 |         exit(1); | 
 |     } | 
 |     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr); | 
 |     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr); | 
 |     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size); | 
 |  | 
 |     return true; | 
 | } | 
 |  | 
 | void x86_load_linux(X86MachineState *x86ms, | 
 |                     FWCfgState *fw_cfg, | 
 |                     int acpi_data_size, | 
 |                     bool pvh_enabled) | 
 | { | 
 |     bool linuxboot_dma_enabled = X86_MACHINE_GET_CLASS(x86ms)->fwcfg_dma_enabled; | 
 |     uint16_t protocol; | 
 |     int setup_size, kernel_size, cmdline_size; | 
 |     int dtb_size, setup_data_offset; | 
 |     uint32_t initrd_max; | 
 |     uint8_t header[8192], *setup, *kernel; | 
 |     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; | 
 |     FILE *f; | 
 |     char *vmode; | 
 |     MachineState *machine = MACHINE(x86ms); | 
 |     struct setup_data *setup_data; | 
 |     const char *kernel_filename = machine->kernel_filename; | 
 |     const char *initrd_filename = machine->initrd_filename; | 
 |     const char *dtb_filename = machine->dtb; | 
 |     const char *kernel_cmdline = machine->kernel_cmdline; | 
 |     SevKernelLoaderContext sev_load_ctx = {}; | 
 |  | 
 |     /* Align to 16 bytes as a paranoia measure */ | 
 |     cmdline_size = (strlen(kernel_cmdline) + 16) & ~15; | 
 |  | 
 |     /* load the kernel header */ | 
 |     f = fopen(kernel_filename, "rb"); | 
 |     if (!f) { | 
 |         fprintf(stderr, "qemu: could not open kernel file '%s': %s\n", | 
 |                 kernel_filename, strerror(errno)); | 
 |         exit(1); | 
 |     } | 
 |  | 
 |     kernel_size = get_file_size(f); | 
 |     if (!kernel_size || | 
 |         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != | 
 |         MIN(ARRAY_SIZE(header), kernel_size)) { | 
 |         fprintf(stderr, "qemu: could not load kernel '%s': %s\n", | 
 |                 kernel_filename, strerror(errno)); | 
 |         exit(1); | 
 |     } | 
 |  | 
 |     /* | 
 |      * kernel protocol version. | 
 |      * Please see https://www.kernel.org/doc/Documentation/x86/boot.txt | 
 |      */ | 
 |     if (ldl_le_p(header + 0x202) == 0x53726448) /* Magic signature "HdrS" */ { | 
 |         protocol = lduw_le_p(header + 0x206); | 
 |     } else { | 
 |         /* | 
 |          * This could be a multiboot kernel. If it is, let's stop treating it | 
 |          * like a Linux kernel. | 
 |          * Note: some multiboot images could be in the ELF format (the same of | 
 |          * PVH), so we try multiboot first since we check the multiboot magic | 
 |          * header before to load it. | 
 |          */ | 
 |         if (load_multiboot(x86ms, fw_cfg, f, kernel_filename, initrd_filename, | 
 |                            kernel_cmdline, kernel_size, header)) { | 
 |             return; | 
 |         } | 
 |         /* | 
 |          * Check if the file is an uncompressed kernel file (ELF) and load it, | 
 |          * saving the PVH entry point used by the x86/HVM direct boot ABI. | 
 |          * If load_elfboot() is successful, populate the fw_cfg info. | 
 |          */ | 
 |         if (pvh_enabled && | 
 |             load_elfboot(kernel_filename, kernel_size, | 
 |                          header, pvh_start_addr, fw_cfg)) { | 
 |             fclose(f); | 
 |  | 
 |             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, | 
 |                 strlen(kernel_cmdline) + 1); | 
 |             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); | 
 |  | 
 |             setup = g_memdup2(header, sizeof(header)); | 
 |  | 
 |             fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header)); | 
 |             fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, | 
 |                              setup, sizeof(header)); | 
 |  | 
 |             /* load initrd */ | 
 |             if (initrd_filename) { | 
 |                 GMappedFile *mapped_file; | 
 |                 gsize initrd_size; | 
 |                 gchar *initrd_data; | 
 |                 GError *gerr = NULL; | 
 |  | 
 |                 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); | 
 |                 if (!mapped_file) { | 
 |                     fprintf(stderr, "qemu: error reading initrd %s: %s\n", | 
 |                             initrd_filename, gerr->message); | 
 |                     exit(1); | 
 |                 } | 
 |                 x86ms->initrd_mapped_file = mapped_file; | 
 |  | 
 |                 initrd_data = g_mapped_file_get_contents(mapped_file); | 
 |                 initrd_size = g_mapped_file_get_length(mapped_file); | 
 |                 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; | 
 |                 if (initrd_size >= initrd_max) { | 
 |                     fprintf(stderr, "qemu: initrd is too large, cannot support." | 
 |                             "(max: %"PRIu32", need %"PRId64")\n", | 
 |                             initrd_max, (uint64_t)initrd_size); | 
 |                     exit(1); | 
 |                 } | 
 |  | 
 |                 initrd_addr = (initrd_max - initrd_size) & ~4095; | 
 |  | 
 |                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); | 
 |                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); | 
 |                 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, | 
 |                                  initrd_size); | 
 |             } | 
 |  | 
 |             option_rom[nb_option_roms].bootindex = 0; | 
 |             option_rom[nb_option_roms].name = "pvh.bin"; | 
 |             nb_option_roms++; | 
 |  | 
 |             return; | 
 |         } | 
 |         protocol = 0; | 
 |     } | 
 |  | 
 |     if (protocol < 0x200 || !(header[0x211] & 0x01)) { | 
 |         /* Low kernel */ | 
 |         real_addr    = 0x90000; | 
 |         cmdline_addr = 0x9a000 - cmdline_size; | 
 |         prot_addr    = 0x10000; | 
 |     } else if (protocol < 0x202) { | 
 |         /* High but ancient kernel */ | 
 |         real_addr    = 0x90000; | 
 |         cmdline_addr = 0x9a000 - cmdline_size; | 
 |         prot_addr    = 0x100000; | 
 |     } else { | 
 |         /* High and recent kernel */ | 
 |         real_addr    = 0x10000; | 
 |         cmdline_addr = 0x20000; | 
 |         prot_addr    = 0x100000; | 
 |     } | 
 |  | 
 |     /* highest address for loading the initrd */ | 
 |     if (protocol >= 0x20c && | 
 |         lduw_le_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) { | 
 |         /* | 
 |          * Linux has supported initrd up to 4 GB for a very long time (2007, | 
 |          * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013), | 
 |          * though it only sets initrd_max to 2 GB to "work around bootloader | 
 |          * bugs". Luckily, QEMU firmware(which does something like bootloader) | 
 |          * has supported this. | 
 |          * | 
 |          * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can | 
 |          * be loaded into any address. | 
 |          * | 
 |          * In addition, initrd_max is uint32_t simply because QEMU doesn't | 
 |          * support the 64-bit boot protocol (specifically the ext_ramdisk_image | 
 |          * field). | 
 |          * | 
 |          * Therefore here just limit initrd_max to UINT32_MAX simply as well. | 
 |          */ | 
 |         initrd_max = UINT32_MAX; | 
 |     } else if (protocol >= 0x203) { | 
 |         initrd_max = ldl_le_p(header + 0x22c); | 
 |     } else { | 
 |         initrd_max = 0x37ffffff; | 
 |     } | 
 |  | 
 |     if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) { | 
 |         initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; | 
 |     } | 
 |  | 
 |     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); | 
 |     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1); | 
 |     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); | 
 |     sev_load_ctx.cmdline_data = (char *)kernel_cmdline; | 
 |     sev_load_ctx.cmdline_size = strlen(kernel_cmdline) + 1; | 
 |  | 
 |     if (protocol >= 0x202) { | 
 |         stl_le_p(header + 0x228, cmdline_addr); | 
 |     } else { | 
 |         stw_le_p(header + 0x20, 0xA33F); | 
 |         stw_le_p(header + 0x22, cmdline_addr - real_addr); | 
 |     } | 
 |  | 
 |     /* handle vga= parameter */ | 
 |     vmode = strstr(kernel_cmdline, "vga="); | 
 |     if (vmode) { | 
 |         unsigned int video_mode; | 
 |         const char *end; | 
 |         int ret; | 
 |         /* skip "vga=" */ | 
 |         vmode += 4; | 
 |         if (!strncmp(vmode, "normal", 6)) { | 
 |             video_mode = 0xffff; | 
 |         } else if (!strncmp(vmode, "ext", 3)) { | 
 |             video_mode = 0xfffe; | 
 |         } else if (!strncmp(vmode, "ask", 3)) { | 
 |             video_mode = 0xfffd; | 
 |         } else { | 
 |             ret = qemu_strtoui(vmode, &end, 0, &video_mode); | 
 |             if (ret != 0 || (*end && *end != ' ')) { | 
 |                 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n"); | 
 |                 exit(1); | 
 |             } | 
 |         } | 
 |         stw_le_p(header + 0x1fa, video_mode); | 
 |     } | 
 |  | 
 |     /* loader type */ | 
 |     /* | 
 |      * High nybble = B reserved for QEMU; low nybble is revision number. | 
 |      * If this code is substantially changed, you may want to consider | 
 |      * incrementing the revision. | 
 |      */ | 
 |     if (protocol >= 0x200) { | 
 |         header[0x210] = 0xB0; | 
 |     } | 
 |     /* heap */ | 
 |     if (protocol >= 0x201) { | 
 |         header[0x211] |= 0x80; /* CAN_USE_HEAP */ | 
 |         stw_le_p(header + 0x224, cmdline_addr - real_addr - 0x200); | 
 |     } | 
 |  | 
 |     /* load initrd */ | 
 |     if (initrd_filename) { | 
 |         GMappedFile *mapped_file; | 
 |         gsize initrd_size; | 
 |         gchar *initrd_data; | 
 |         GError *gerr = NULL; | 
 |  | 
 |         if (protocol < 0x200) { | 
 |             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); | 
 |             exit(1); | 
 |         } | 
 |  | 
 |         mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); | 
 |         if (!mapped_file) { | 
 |             fprintf(stderr, "qemu: error reading initrd %s: %s\n", | 
 |                     initrd_filename, gerr->message); | 
 |             exit(1); | 
 |         } | 
 |         x86ms->initrd_mapped_file = mapped_file; | 
 |  | 
 |         initrd_data = g_mapped_file_get_contents(mapped_file); | 
 |         initrd_size = g_mapped_file_get_length(mapped_file); | 
 |         if (initrd_size >= initrd_max) { | 
 |             fprintf(stderr, "qemu: initrd is too large, cannot support." | 
 |                     "(max: %"PRIu32", need %"PRId64")\n", | 
 |                     initrd_max, (uint64_t)initrd_size); | 
 |             exit(1); | 
 |         } | 
 |  | 
 |         initrd_addr = (initrd_max - initrd_size) & ~4095; | 
 |  | 
 |         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); | 
 |         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); | 
 |         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); | 
 |         sev_load_ctx.initrd_data = initrd_data; | 
 |         sev_load_ctx.initrd_size = initrd_size; | 
 |  | 
 |         stl_le_p(header + 0x218, initrd_addr); | 
 |         stl_le_p(header + 0x21c, initrd_size); | 
 |     } | 
 |  | 
 |     /* load kernel and setup */ | 
 |     setup_size = header[0x1f1]; | 
 |     if (setup_size == 0) { | 
 |         setup_size = 4; | 
 |     } | 
 |     setup_size = (setup_size + 1) * 512; | 
 |     if (setup_size > kernel_size) { | 
 |         fprintf(stderr, "qemu: invalid kernel header\n"); | 
 |         exit(1); | 
 |     } | 
 |  | 
 |     setup  = g_malloc(setup_size); | 
 |     kernel = g_malloc(kernel_size); | 
 |     fseek(f, 0, SEEK_SET); | 
 |     if (fread(setup, 1, setup_size, f) != setup_size) { | 
 |         fprintf(stderr, "fread() failed\n"); | 
 |         exit(1); | 
 |     } | 
 |     fseek(f, 0, SEEK_SET); | 
 |     if (fread(kernel, 1, kernel_size, f) != kernel_size) { | 
 |         fprintf(stderr, "fread() failed\n"); | 
 |         exit(1); | 
 |     } | 
 |     fclose(f); | 
 |  | 
 |     /* append dtb to kernel */ | 
 |     if (dtb_filename) { | 
 |         if (protocol < 0x209) { | 
 |             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); | 
 |             exit(1); | 
 |         } | 
 |  | 
 |         dtb_size = get_image_size(dtb_filename); | 
 |         if (dtb_size <= 0) { | 
 |             fprintf(stderr, "qemu: error reading dtb %s: %s\n", | 
 |                     dtb_filename, strerror(errno)); | 
 |             exit(1); | 
 |         } | 
 |  | 
 |         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); | 
 |         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; | 
 |         kernel = g_realloc(kernel, kernel_size); | 
 |  | 
 |         stq_le_p(header + 0x250, prot_addr + setup_data_offset); | 
 |  | 
 |         setup_data = (struct setup_data *)(kernel + setup_data_offset); | 
 |         setup_data->next = 0; | 
 |         setup_data->type = cpu_to_le32(SETUP_DTB); | 
 |         setup_data->len = cpu_to_le32(dtb_size); | 
 |  | 
 |         load_image_size(dtb_filename, setup_data->data, dtb_size); | 
 |     } | 
 |  | 
 |     /* | 
 |      * If we're starting an encrypted VM, it will be OVMF based, which uses the | 
 |      * efi stub for booting and doesn't require any values to be placed in the | 
 |      * kernel header.  We therefore don't update the header so the hash of the | 
 |      * kernel on the other side of the fw_cfg interface matches the hash of the | 
 |      * file the user passed in. | 
 |      */ | 
 |     if (!sev_enabled() && protocol > 0) { | 
 |         memcpy(setup, header, MIN(sizeof(header), setup_size)); | 
 |     } | 
 |  | 
 |     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); | 
 |     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size - setup_size); | 
 |     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, | 
 |                      kernel + setup_size, kernel_size - setup_size); | 
 |     sev_load_ctx.kernel_data = (char *)kernel + setup_size; | 
 |     sev_load_ctx.kernel_size = kernel_size - setup_size; | 
 |  | 
 |     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); | 
 |     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); | 
 |     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); | 
 |     sev_load_ctx.setup_data = (char *)setup; | 
 |     sev_load_ctx.setup_size = setup_size; | 
 |  | 
 |     /* kernel without setup header patches */ | 
 |     fw_cfg_add_file(fw_cfg, "etc/boot/kernel", kernel, kernel_size); | 
 |  | 
 |     if (machine->shim_filename) { | 
 |         GMappedFile *mapped_file; | 
 |         GError *gerr = NULL; | 
 |  | 
 |         mapped_file = g_mapped_file_new(machine->shim_filename, false, &gerr); | 
 |         if (!mapped_file) { | 
 |             fprintf(stderr, "qemu: error reading shim %s: %s\n", | 
 |                     machine->shim_filename, gerr->message); | 
 |             exit(1); | 
 |         } | 
 |  | 
 |         fw_cfg_add_file(fw_cfg, "etc/boot/shim", | 
 |                         g_mapped_file_get_contents(mapped_file), | 
 |                         g_mapped_file_get_length(mapped_file)); | 
 |     } | 
 |  | 
 |     if (sev_enabled()) { | 
 |         sev_add_kernel_loader_hashes(&sev_load_ctx, &error_fatal); | 
 |     } | 
 |  | 
 |     option_rom[nb_option_roms].bootindex = 0; | 
 |     option_rom[nb_option_roms].name = "linuxboot.bin"; | 
 |     if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { | 
 |         option_rom[nb_option_roms].name = "linuxboot_dma.bin"; | 
 |     } | 
 |     nb_option_roms++; | 
 | } | 
 |  | 
 | void x86_isa_bios_init(MemoryRegion *isa_bios, MemoryRegion *isa_memory, | 
 |                        MemoryRegion *bios, bool read_only) | 
 | { | 
 |     uint64_t bios_size = memory_region_size(bios); | 
 |     uint64_t isa_bios_size = MIN(bios_size, 128 * KiB); | 
 |  | 
 |     memory_region_init_alias(isa_bios, NULL, "isa-bios", bios, | 
 |                              bios_size - isa_bios_size, isa_bios_size); | 
 |     memory_region_add_subregion_overlap(isa_memory, 1 * MiB - isa_bios_size, | 
 |                                         isa_bios, 1); | 
 |     memory_region_set_readonly(isa_bios, read_only); | 
 | } | 
 |  | 
 | void x86_bios_rom_init(X86MachineState *x86ms, const char *default_firmware, | 
 |                        MemoryRegion *rom_memory, bool isapc_ram_fw) | 
 | { | 
 |     const char *bios_name; | 
 |     char *filename; | 
 |     int bios_size; | 
 |     ssize_t ret; | 
 |  | 
 |     /* BIOS load */ | 
 |     bios_name = MACHINE(x86ms)->firmware ?: default_firmware; | 
 |     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); | 
 |     if (filename) { | 
 |         bios_size = get_image_size(filename); | 
 |     } else { | 
 |         bios_size = -1; | 
 |     } | 
 |     if (bios_size <= 0 || | 
 |         (bios_size % 65536) != 0) { | 
 |         goto bios_error; | 
 |     } | 
 |     if (machine_require_guest_memfd(MACHINE(x86ms))) { | 
 |         memory_region_init_ram_guest_memfd(&x86ms->bios, NULL, "pc.bios", | 
 |                                            bios_size, &error_fatal); | 
 |     } else { | 
 |         memory_region_init_ram(&x86ms->bios, NULL, "pc.bios", | 
 |                                bios_size, &error_fatal); | 
 |     } | 
 |     if (sev_enabled()) { | 
 |         /* | 
 |          * The concept of a "reset" simply doesn't exist for | 
 |          * confidential computing guests, we have to destroy and | 
 |          * re-launch them instead.  So there is no need to register | 
 |          * the firmware as rom to properly re-initialize on reset. | 
 |          * Just go for a straight file load instead. | 
 |          */ | 
 |         void *ptr = memory_region_get_ram_ptr(&x86ms->bios); | 
 |         load_image_size(filename, ptr, bios_size); | 
 |         x86_firmware_configure(0x100000000ULL - bios_size, ptr, bios_size); | 
 |     } else { | 
 |         memory_region_set_readonly(&x86ms->bios, !isapc_ram_fw); | 
 |         ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1); | 
 |         if (ret != 0) { | 
 |             goto bios_error; | 
 |         } | 
 |     } | 
 |     g_free(filename); | 
 |  | 
 |     if (!machine_require_guest_memfd(MACHINE(x86ms))) { | 
 |         /* map the last 128KB of the BIOS in ISA space */ | 
 |         x86_isa_bios_init(&x86ms->isa_bios, rom_memory, &x86ms->bios, | 
 |                           !isapc_ram_fw); | 
 |     } | 
 |  | 
 |     /* map all the bios at the top of memory */ | 
 |     memory_region_add_subregion(rom_memory, | 
 |                                 (uint32_t)(-bios_size), | 
 |                                 &x86ms->bios); | 
 |     return; | 
 |  | 
 | bios_error: | 
 |     fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name); | 
 |     exit(1); | 
 | } |