| /* |
| * Intel XScale PXA255/270 processor support. |
| * |
| * Copyright (c) 2006 Openedhand Ltd. |
| * Written by Andrzej Zaborowski <balrog@zabor.org> |
| * |
| * This code is licenced under the GPL. |
| */ |
| |
| # include "vl.h" |
| |
| static struct { |
| target_phys_addr_t io_base; |
| int irqn; |
| } pxa255_serial[] = { |
| { 0x40100000, PXA2XX_PIC_FFUART }, |
| { 0x40200000, PXA2XX_PIC_BTUART }, |
| { 0x40700000, PXA2XX_PIC_STUART }, |
| { 0x41600000, PXA25X_PIC_HWUART }, |
| { 0, 0 } |
| }, pxa270_serial[] = { |
| { 0x40100000, PXA2XX_PIC_FFUART }, |
| { 0x40200000, PXA2XX_PIC_BTUART }, |
| { 0x40700000, PXA2XX_PIC_STUART }, |
| { 0, 0 } |
| }; |
| |
| static struct { |
| target_phys_addr_t io_base; |
| int irqn; |
| } pxa250_ssp[] = { |
| { 0x41000000, PXA2XX_PIC_SSP }, |
| { 0, 0 } |
| }, pxa255_ssp[] = { |
| { 0x41000000, PXA2XX_PIC_SSP }, |
| { 0x41400000, PXA25X_PIC_NSSP }, |
| { 0, 0 } |
| }, pxa26x_ssp[] = { |
| { 0x41000000, PXA2XX_PIC_SSP }, |
| { 0x41400000, PXA25X_PIC_NSSP }, |
| { 0x41500000, PXA26X_PIC_ASSP }, |
| { 0, 0 } |
| }, pxa27x_ssp[] = { |
| { 0x41000000, PXA2XX_PIC_SSP }, |
| { 0x41700000, PXA27X_PIC_SSP2 }, |
| { 0x41900000, PXA2XX_PIC_SSP3 }, |
| { 0, 0 } |
| }; |
| |
| #define PMCR 0x00 /* Power Manager Control register */ |
| #define PSSR 0x04 /* Power Manager Sleep Status register */ |
| #define PSPR 0x08 /* Power Manager Scratch-Pad register */ |
| #define PWER 0x0c /* Power Manager Wake-Up Enable register */ |
| #define PRER 0x10 /* Power Manager Rising-Edge Detect Enable register */ |
| #define PFER 0x14 /* Power Manager Falling-Edge Detect Enable register */ |
| #define PEDR 0x18 /* Power Manager Edge-Detect Status register */ |
| #define PCFR 0x1c /* Power Manager General Configuration register */ |
| #define PGSR0 0x20 /* Power Manager GPIO Sleep-State register 0 */ |
| #define PGSR1 0x24 /* Power Manager GPIO Sleep-State register 1 */ |
| #define PGSR2 0x28 /* Power Manager GPIO Sleep-State register 2 */ |
| #define PGSR3 0x2c /* Power Manager GPIO Sleep-State register 3 */ |
| #define RCSR 0x30 /* Reset Controller Status register */ |
| #define PSLR 0x34 /* Power Manager Sleep Configuration register */ |
| #define PTSR 0x38 /* Power Manager Standby Configuration register */ |
| #define PVCR 0x40 /* Power Manager Voltage Change Control register */ |
| #define PUCR 0x4c /* Power Manager USIM Card Control/Status register */ |
| #define PKWR 0x50 /* Power Manager Keyboard Wake-Up Enable register */ |
| #define PKSR 0x54 /* Power Manager Keyboard Level-Detect Status */ |
| #define PCMD0 0x80 /* Power Manager I2C Command register File 0 */ |
| #define PCMD31 0xfc /* Power Manager I2C Command register File 31 */ |
| |
| static uint32_t pxa2xx_pm_read(void *opaque, target_phys_addr_t addr) |
| { |
| struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; |
| addr -= s->pm_base; |
| |
| switch (addr) { |
| case PMCR ... PCMD31: |
| if (addr & 3) |
| goto fail; |
| |
| return s->pm_regs[addr >> 2]; |
| default: |
| fail: |
| printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); |
| break; |
| } |
| return 0; |
| } |
| |
| static void pxa2xx_pm_write(void *opaque, target_phys_addr_t addr, |
| uint32_t value) |
| { |
| struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; |
| addr -= s->pm_base; |
| |
| switch (addr) { |
| case PMCR: |
| s->pm_regs[addr >> 2] &= 0x15 & ~(value & 0x2a); |
| s->pm_regs[addr >> 2] |= value & 0x15; |
| break; |
| |
| case PSSR: /* Read-clean registers */ |
| case RCSR: |
| case PKSR: |
| s->pm_regs[addr >> 2] &= ~value; |
| break; |
| |
| default: /* Read-write registers */ |
| if (addr >= PMCR && addr <= PCMD31 && !(addr & 3)) { |
| s->pm_regs[addr >> 2] = value; |
| break; |
| } |
| |
| printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); |
| break; |
| } |
| } |
| |
| static CPUReadMemoryFunc *pxa2xx_pm_readfn[] = { |
| pxa2xx_pm_read, |
| pxa2xx_pm_read, |
| pxa2xx_pm_read, |
| }; |
| |
| static CPUWriteMemoryFunc *pxa2xx_pm_writefn[] = { |
| pxa2xx_pm_write, |
| pxa2xx_pm_write, |
| pxa2xx_pm_write, |
| }; |
| |
| #define CCCR 0x00 /* Core Clock Configuration register */ |
| #define CKEN 0x04 /* Clock Enable register */ |
| #define OSCC 0x08 /* Oscillator Configuration register */ |
| #define CCSR 0x0c /* Core Clock Status register */ |
| |
| static uint32_t pxa2xx_cm_read(void *opaque, target_phys_addr_t addr) |
| { |
| struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; |
| addr -= s->cm_base; |
| |
| switch (addr) { |
| case CCCR: |
| case CKEN: |
| case OSCC: |
| return s->cm_regs[addr >> 2]; |
| |
| case CCSR: |
| return s->cm_regs[CCCR >> 2] | (3 << 28); |
| |
| default: |
| printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); |
| break; |
| } |
| return 0; |
| } |
| |
| static void pxa2xx_cm_write(void *opaque, target_phys_addr_t addr, |
| uint32_t value) |
| { |
| struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; |
| addr -= s->cm_base; |
| |
| switch (addr) { |
| case CCCR: |
| case CKEN: |
| s->cm_regs[addr >> 2] = value; |
| break; |
| |
| case OSCC: |
| s->cm_regs[addr >> 2] &= ~0x6e; |
| s->cm_regs[addr >> 2] |= value & 0x6e; |
| break; |
| |
| default: |
| printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); |
| break; |
| } |
| } |
| |
| static CPUReadMemoryFunc *pxa2xx_cm_readfn[] = { |
| pxa2xx_cm_read, |
| pxa2xx_cm_read, |
| pxa2xx_cm_read, |
| }; |
| |
| static CPUWriteMemoryFunc *pxa2xx_cm_writefn[] = { |
| pxa2xx_cm_write, |
| pxa2xx_cm_write, |
| pxa2xx_cm_write, |
| }; |
| |
| static uint32_t pxa2xx_clkpwr_read(void *opaque, int op2, int reg, int crm) |
| { |
| struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; |
| |
| switch (reg) { |
| case 6: /* Clock Configuration register */ |
| return s->clkcfg; |
| |
| case 7: /* Power Mode register */ |
| return 0; |
| |
| default: |
| printf("%s: Bad register 0x%x\n", __FUNCTION__, reg); |
| break; |
| } |
| return 0; |
| } |
| |
| static void pxa2xx_clkpwr_write(void *opaque, int op2, int reg, int crm, |
| uint32_t value) |
| { |
| struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; |
| static const char *pwrmode[8] = { |
| "Normal", "Idle", "Deep-idle", "Standby", |
| "Sleep", "reserved (!)", "reserved (!)", "Deep-sleep", |
| }; |
| |
| switch (reg) { |
| case 6: /* Clock Configuration register */ |
| s->clkcfg = value & 0xf; |
| if (value & 2) |
| printf("%s: CPU frequency change attempt\n", __FUNCTION__); |
| break; |
| |
| case 7: /* Power Mode register */ |
| if (value & 8) |
| printf("%s: CPU voltage change attempt\n", __FUNCTION__); |
| switch (value & 7) { |
| case 0: |
| /* Do nothing */ |
| break; |
| |
| case 1: |
| /* Idle */ |
| if (!(s->cm_regs[CCCR] & (1 << 31))) { /* CPDIS */ |
| cpu_interrupt(s->env, CPU_INTERRUPT_HALT); |
| break; |
| } |
| /* Fall through. */ |
| |
| case 2: |
| /* Deep-Idle */ |
| cpu_interrupt(s->env, CPU_INTERRUPT_HALT); |
| s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */ |
| goto message; |
| |
| case 3: |
| s->env->uncached_cpsr = |
| ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I; |
| s->env->cp15.c1_sys = 0; |
| s->env->cp15.c1_coproc = 0; |
| s->env->cp15.c2_base = 0; |
| s->env->cp15.c3 = 0; |
| s->pm_regs[PSSR >> 2] |= 0x8; /* Set STS */ |
| s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */ |
| |
| /* |
| * The scratch-pad register is almost universally used |
| * for storing the return address on suspend. For the |
| * lack of a resuming bootloader, perform a jump |
| * directly to that address. |
| */ |
| memset(s->env->regs, 0, 4 * 15); |
| s->env->regs[15] = s->pm_regs[PSPR >> 2]; |
| |
| #if 0 |
| buffer = 0xe59ff000; /* ldr pc, [pc, #0] */ |
| cpu_physical_memory_write(0, &buffer, 4); |
| buffer = s->pm_regs[PSPR >> 2]; |
| cpu_physical_memory_write(8, &buffer, 4); |
| #endif |
| |
| /* Suspend */ |
| cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HALT); |
| |
| goto message; |
| |
| default: |
| message: |
| printf("%s: machine entered %s mode\n", __FUNCTION__, |
| pwrmode[value & 7]); |
| } |
| break; |
| |
| default: |
| printf("%s: Bad register 0x%x\n", __FUNCTION__, reg); |
| break; |
| } |
| } |
| |
| /* Performace Monitoring Registers */ |
| #define CPPMNC 0 /* Performance Monitor Control register */ |
| #define CPCCNT 1 /* Clock Counter register */ |
| #define CPINTEN 4 /* Interrupt Enable register */ |
| #define CPFLAG 5 /* Overflow Flag register */ |
| #define CPEVTSEL 8 /* Event Selection register */ |
| |
| #define CPPMN0 0 /* Performance Count register 0 */ |
| #define CPPMN1 1 /* Performance Count register 1 */ |
| #define CPPMN2 2 /* Performance Count register 2 */ |
| #define CPPMN3 3 /* Performance Count register 3 */ |
| |
| static uint32_t pxa2xx_perf_read(void *opaque, int op2, int reg, int crm) |
| { |
| struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; |
| |
| switch (reg) { |
| case CPPMNC: |
| return s->pmnc; |
| case CPCCNT: |
| if (s->pmnc & 1) |
| return qemu_get_clock(vm_clock); |
| else |
| return 0; |
| case CPINTEN: |
| case CPFLAG: |
| case CPEVTSEL: |
| return 0; |
| |
| default: |
| printf("%s: Bad register 0x%x\n", __FUNCTION__, reg); |
| break; |
| } |
| return 0; |
| } |
| |
| static void pxa2xx_perf_write(void *opaque, int op2, int reg, int crm, |
| uint32_t value) |
| { |
| struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; |
| |
| switch (reg) { |
| case CPPMNC: |
| s->pmnc = value; |
| break; |
| |
| case CPCCNT: |
| case CPINTEN: |
| case CPFLAG: |
| case CPEVTSEL: |
| break; |
| |
| default: |
| printf("%s: Bad register 0x%x\n", __FUNCTION__, reg); |
| break; |
| } |
| } |
| |
| static uint32_t pxa2xx_cp14_read(void *opaque, int op2, int reg, int crm) |
| { |
| switch (crm) { |
| case 0: |
| return pxa2xx_clkpwr_read(opaque, op2, reg, crm); |
| case 1: |
| return pxa2xx_perf_read(opaque, op2, reg, crm); |
| case 2: |
| switch (reg) { |
| case CPPMN0: |
| case CPPMN1: |
| case CPPMN2: |
| case CPPMN3: |
| return 0; |
| } |
| /* Fall through */ |
| default: |
| printf("%s: Bad register 0x%x\n", __FUNCTION__, reg); |
| break; |
| } |
| return 0; |
| } |
| |
| static void pxa2xx_cp14_write(void *opaque, int op2, int reg, int crm, |
| uint32_t value) |
| { |
| switch (crm) { |
| case 0: |
| pxa2xx_clkpwr_write(opaque, op2, reg, crm, value); |
| break; |
| case 1: |
| pxa2xx_perf_write(opaque, op2, reg, crm, value); |
| break; |
| case 2: |
| switch (reg) { |
| case CPPMN0: |
| case CPPMN1: |
| case CPPMN2: |
| case CPPMN3: |
| return; |
| } |
| /* Fall through */ |
| default: |
| printf("%s: Bad register 0x%x\n", __FUNCTION__, reg); |
| break; |
| } |
| } |
| |
| #define MDCNFG 0x00 /* SDRAM Configuration register */ |
| #define MDREFR 0x04 /* SDRAM Refresh Control register */ |
| #define MSC0 0x08 /* Static Memory Control register 0 */ |
| #define MSC1 0x0c /* Static Memory Control register 1 */ |
| #define MSC2 0x10 /* Static Memory Control register 2 */ |
| #define MECR 0x14 /* Expansion Memory Bus Config register */ |
| #define SXCNFG 0x1c /* Synchronous Static Memory Config register */ |
| #define MCMEM0 0x28 /* PC Card Memory Socket 0 Timing register */ |
| #define MCMEM1 0x2c /* PC Card Memory Socket 1 Timing register */ |
| #define MCATT0 0x30 /* PC Card Attribute Socket 0 register */ |
| #define MCATT1 0x34 /* PC Card Attribute Socket 1 register */ |
| #define MCIO0 0x38 /* PC Card I/O Socket 0 Timing register */ |
| #define MCIO1 0x3c /* PC Card I/O Socket 1 Timing register */ |
| #define MDMRS 0x40 /* SDRAM Mode Register Set Config register */ |
| #define BOOT_DEF 0x44 /* Boot-time Default Configuration register */ |
| #define ARB_CNTL 0x48 /* Arbiter Control register */ |
| #define BSCNTR0 0x4c /* Memory Buffer Strength Control register 0 */ |
| #define BSCNTR1 0x50 /* Memory Buffer Strength Control register 1 */ |
| #define LCDBSCNTR 0x54 /* LCD Buffer Strength Control register */ |
| #define MDMRSLP 0x58 /* Low Power SDRAM Mode Set Config register */ |
| #define BSCNTR2 0x5c /* Memory Buffer Strength Control register 2 */ |
| #define BSCNTR3 0x60 /* Memory Buffer Strength Control register 3 */ |
| #define SA1110 0x64 /* SA-1110 Memory Compatibility register */ |
| |
| static uint32_t pxa2xx_mm_read(void *opaque, target_phys_addr_t addr) |
| { |
| struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; |
| addr -= s->mm_base; |
| |
| switch (addr) { |
| case MDCNFG ... SA1110: |
| if ((addr & 3) == 0) |
| return s->mm_regs[addr >> 2]; |
| |
| default: |
| printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); |
| break; |
| } |
| return 0; |
| } |
| |
| static void pxa2xx_mm_write(void *opaque, target_phys_addr_t addr, |
| uint32_t value) |
| { |
| struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; |
| addr -= s->mm_base; |
| |
| switch (addr) { |
| case MDCNFG ... SA1110: |
| if ((addr & 3) == 0) { |
| s->mm_regs[addr >> 2] = value; |
| break; |
| } |
| |
| default: |
| printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); |
| break; |
| } |
| } |
| |
| static CPUReadMemoryFunc *pxa2xx_mm_readfn[] = { |
| pxa2xx_mm_read, |
| pxa2xx_mm_read, |
| pxa2xx_mm_read, |
| }; |
| |
| static CPUWriteMemoryFunc *pxa2xx_mm_writefn[] = { |
| pxa2xx_mm_write, |
| pxa2xx_mm_write, |
| pxa2xx_mm_write, |
| }; |
| |
| /* Synchronous Serial Ports */ |
| struct pxa2xx_ssp_s { |
| target_phys_addr_t base; |
| qemu_irq irq; |
| int enable; |
| |
| uint32_t sscr[2]; |
| uint32_t sspsp; |
| uint32_t ssto; |
| uint32_t ssitr; |
| uint32_t sssr; |
| uint8_t sstsa; |
| uint8_t ssrsa; |
| uint8_t ssacd; |
| |
| uint32_t rx_fifo[16]; |
| int rx_level; |
| int rx_start; |
| |
| uint32_t (*readfn)(void *opaque); |
| void (*writefn)(void *opaque, uint32_t value); |
| void *opaque; |
| }; |
| |
| #define SSCR0 0x00 /* SSP Control register 0 */ |
| #define SSCR1 0x04 /* SSP Control register 1 */ |
| #define SSSR 0x08 /* SSP Status register */ |
| #define SSITR 0x0c /* SSP Interrupt Test register */ |
| #define SSDR 0x10 /* SSP Data register */ |
| #define SSTO 0x28 /* SSP Time-Out register */ |
| #define SSPSP 0x2c /* SSP Programmable Serial Protocol register */ |
| #define SSTSA 0x30 /* SSP TX Time Slot Active register */ |
| #define SSRSA 0x34 /* SSP RX Time Slot Active register */ |
| #define SSTSS 0x38 /* SSP Time Slot Status register */ |
| #define SSACD 0x3c /* SSP Audio Clock Divider register */ |
| |
| /* Bitfields for above registers */ |
| #define SSCR0_SPI(x) (((x) & 0x30) == 0x00) |
| #define SSCR0_SSP(x) (((x) & 0x30) == 0x10) |
| #define SSCR0_UWIRE(x) (((x) & 0x30) == 0x20) |
| #define SSCR0_PSP(x) (((x) & 0x30) == 0x30) |
| #define SSCR0_SSE (1 << 7) |
| #define SSCR0_RIM (1 << 22) |
| #define SSCR0_TIM (1 << 23) |
| #define SSCR0_MOD (1 << 31) |
| #define SSCR0_DSS(x) (((((x) >> 16) & 0x10) | ((x) & 0xf)) + 1) |
| #define SSCR1_RIE (1 << 0) |
| #define SSCR1_TIE (1 << 1) |
| #define SSCR1_LBM (1 << 2) |
| #define SSCR1_MWDS (1 << 5) |
| #define SSCR1_TFT(x) ((((x) >> 6) & 0xf) + 1) |
| #define SSCR1_RFT(x) ((((x) >> 10) & 0xf) + 1) |
| #define SSCR1_EFWR (1 << 14) |
| #define SSCR1_PINTE (1 << 18) |
| #define SSCR1_TINTE (1 << 19) |
| #define SSCR1_RSRE (1 << 20) |
| #define SSCR1_TSRE (1 << 21) |
| #define SSCR1_EBCEI (1 << 29) |
| #define SSITR_INT (7 << 5) |
| #define SSSR_TNF (1 << 2) |
| #define SSSR_RNE (1 << 3) |
| #define SSSR_TFS (1 << 5) |
| #define SSSR_RFS (1 << 6) |
| #define SSSR_ROR (1 << 7) |
| #define SSSR_PINT (1 << 18) |
| #define SSSR_TINT (1 << 19) |
| #define SSSR_EOC (1 << 20) |
| #define SSSR_TUR (1 << 21) |
| #define SSSR_BCE (1 << 23) |
| #define SSSR_RW 0x00bc0080 |
| |
| static void pxa2xx_ssp_int_update(struct pxa2xx_ssp_s *s) |
| { |
| int level = 0; |
| |
| level |= s->ssitr & SSITR_INT; |
| level |= (s->sssr & SSSR_BCE) && (s->sscr[1] & SSCR1_EBCEI); |
| level |= (s->sssr & SSSR_TUR) && !(s->sscr[0] & SSCR0_TIM); |
| level |= (s->sssr & SSSR_EOC) && (s->sssr & (SSSR_TINT | SSSR_PINT)); |
| level |= (s->sssr & SSSR_TINT) && (s->sscr[1] & SSCR1_TINTE); |
| level |= (s->sssr & SSSR_PINT) && (s->sscr[1] & SSCR1_PINTE); |
| level |= (s->sssr & SSSR_ROR) && !(s->sscr[0] & SSCR0_RIM); |
| level |= (s->sssr & SSSR_RFS) && (s->sscr[1] & SSCR1_RIE); |
| level |= (s->sssr & SSSR_TFS) && (s->sscr[1] & SSCR1_TIE); |
| qemu_set_irq(s->irq, !!level); |
| } |
| |
| static void pxa2xx_ssp_fifo_update(struct pxa2xx_ssp_s *s) |
| { |
| s->sssr &= ~(0xf << 12); /* Clear RFL */ |
| s->sssr &= ~(0xf << 8); /* Clear TFL */ |
| s->sssr &= ~SSSR_TNF; |
| if (s->enable) { |
| s->sssr |= ((s->rx_level - 1) & 0xf) << 12; |
| if (s->rx_level >= SSCR1_RFT(s->sscr[1])) |
| s->sssr |= SSSR_RFS; |
| else |
| s->sssr &= ~SSSR_RFS; |
| if (0 <= SSCR1_TFT(s->sscr[1])) |
| s->sssr |= SSSR_TFS; |
| else |
| s->sssr &= ~SSSR_TFS; |
| if (s->rx_level) |
| s->sssr |= SSSR_RNE; |
| else |
| s->sssr &= ~SSSR_RNE; |
| s->sssr |= SSSR_TNF; |
| } |
| |
| pxa2xx_ssp_int_update(s); |
| } |
| |
| static uint32_t pxa2xx_ssp_read(void *opaque, target_phys_addr_t addr) |
| { |
| struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque; |
| uint32_t retval; |
| addr -= s->base; |
| |
| switch (addr) { |
| case SSCR0: |
| return s->sscr[0]; |
| case SSCR1: |
| return s->sscr[1]; |
| case SSPSP: |
| return s->sspsp; |
| case SSTO: |
| return s->ssto; |
| case SSITR: |
| return s->ssitr; |
| case SSSR: |
| return s->sssr | s->ssitr; |
| case SSDR: |
| if (!s->enable) |
| return 0xffffffff; |
| if (s->rx_level < 1) { |
| printf("%s: SSP Rx Underrun\n", __FUNCTION__); |
| return 0xffffffff; |
| } |
| s->rx_level --; |
| retval = s->rx_fifo[s->rx_start ++]; |
| s->rx_start &= 0xf; |
| pxa2xx_ssp_fifo_update(s); |
| return retval; |
| case SSTSA: |
| return s->sstsa; |
| case SSRSA: |
| return s->ssrsa; |
| case SSTSS: |
| return 0; |
| case SSACD: |
| return s->ssacd; |
| default: |
| printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); |
| break; |
| } |
| return 0; |
| } |
| |
| static void pxa2xx_ssp_write(void *opaque, target_phys_addr_t addr, |
| uint32_t value) |
| { |
| struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque; |
| addr -= s->base; |
| |
| switch (addr) { |
| case SSCR0: |
| s->sscr[0] = value & 0xc7ffffff; |
| s->enable = value & SSCR0_SSE; |
| if (value & SSCR0_MOD) |
| printf("%s: Attempt to use network mode\n", __FUNCTION__); |
| if (s->enable && SSCR0_DSS(value) < 4) |
| printf("%s: Wrong data size: %i bits\n", __FUNCTION__, |
| SSCR0_DSS(value)); |
| if (!(value & SSCR0_SSE)) { |
| s->sssr = 0; |
| s->ssitr = 0; |
| s->rx_level = 0; |
| } |
| pxa2xx_ssp_fifo_update(s); |
| break; |
| |
| case SSCR1: |
| s->sscr[1] = value; |
| if (value & (SSCR1_LBM | SSCR1_EFWR)) |
| printf("%s: Attempt to use SSP test mode\n", __FUNCTION__); |
| pxa2xx_ssp_fifo_update(s); |
| break; |
| |
| case SSPSP: |
| s->sspsp = value; |
| break; |
| |
| case SSTO: |
| s->ssto = value; |
| break; |
| |
| case SSITR: |
| s->ssitr = value & SSITR_INT; |
| pxa2xx_ssp_int_update(s); |
| break; |
| |
| case SSSR: |
| s->sssr &= ~(value & SSSR_RW); |
| pxa2xx_ssp_int_update(s); |
| break; |
| |
| case SSDR: |
| if (SSCR0_UWIRE(s->sscr[0])) { |
| if (s->sscr[1] & SSCR1_MWDS) |
| value &= 0xffff; |
| else |
| value &= 0xff; |
| } else |
| /* Note how 32bits overflow does no harm here */ |
| value &= (1 << SSCR0_DSS(s->sscr[0])) - 1; |
| |
| /* Data goes from here to the Tx FIFO and is shifted out from |
| * there directly to the slave, no need to buffer it. |
| */ |
| if (s->enable) { |
| if (s->writefn) |
| s->writefn(s->opaque, value); |
| |
| if (s->rx_level < 0x10) { |
| if (s->readfn) |
| s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] = |
| s->readfn(s->opaque); |
| else |
| s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] = 0x0; |
| } else |
| s->sssr |= SSSR_ROR; |
| } |
| pxa2xx_ssp_fifo_update(s); |
| break; |
| |
| case SSTSA: |
| s->sstsa = value; |
| break; |
| |
| case SSRSA: |
| s->ssrsa = value; |
| break; |
| |
| case SSACD: |
| s->ssacd = value; |
| break; |
| |
| default: |
| printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); |
| break; |
| } |
| } |
| |
| void pxa2xx_ssp_attach(struct pxa2xx_ssp_s *port, |
| uint32_t (*readfn)(void *opaque), |
| void (*writefn)(void *opaque, uint32_t value), void *opaque) |
| { |
| if (!port) { |
| printf("%s: no such SSP\n", __FUNCTION__); |
| exit(-1); |
| } |
| |
| port->opaque = opaque; |
| port->readfn = readfn; |
| port->writefn = writefn; |
| } |
| |
| static CPUReadMemoryFunc *pxa2xx_ssp_readfn[] = { |
| pxa2xx_ssp_read, |
| pxa2xx_ssp_read, |
| pxa2xx_ssp_read, |
| }; |
| |
| static CPUWriteMemoryFunc *pxa2xx_ssp_writefn[] = { |
| pxa2xx_ssp_write, |
| pxa2xx_ssp_write, |
| pxa2xx_ssp_write, |
| }; |
| |
| /* Real-Time Clock */ |
| #define RCNR 0x00 /* RTC Counter register */ |
| #define RTAR 0x04 /* RTC Alarm register */ |
| #define RTSR 0x08 /* RTC Status register */ |
| #define RTTR 0x0c /* RTC Timer Trim register */ |
| #define RDCR 0x10 /* RTC Day Counter register */ |
| #define RYCR 0x14 /* RTC Year Counter register */ |
| #define RDAR1 0x18 /* RTC Wristwatch Day Alarm register 1 */ |
| #define RYAR1 0x1c /* RTC Wristwatch Year Alarm register 1 */ |
| #define RDAR2 0x20 /* RTC Wristwatch Day Alarm register 2 */ |
| #define RYAR2 0x24 /* RTC Wristwatch Year Alarm register 2 */ |
| #define SWCR 0x28 /* RTC Stopwatch Counter register */ |
| #define SWAR1 0x2c /* RTC Stopwatch Alarm register 1 */ |
| #define SWAR2 0x30 /* RTC Stopwatch Alarm register 2 */ |
| #define RTCPICR 0x34 /* RTC Periodic Interrupt Counter register */ |
| #define PIAR 0x38 /* RTC Periodic Interrupt Alarm register */ |
| |
| static inline void pxa2xx_rtc_int_update(struct pxa2xx_state_s *s) |
| { |
| qemu_set_irq(s->pic[PXA2XX_PIC_RTCALARM], !!(s->rtsr & 0x2553)); |
| } |
| |
| static void pxa2xx_rtc_hzupdate(struct pxa2xx_state_s *s) |
| { |
| int64_t rt = qemu_get_clock(rt_clock); |
| s->last_rcnr += ((rt - s->last_hz) << 15) / |
| (1000 * ((s->rttr & 0xffff) + 1)); |
| s->last_rdcr += ((rt - s->last_hz) << 15) / |
| (1000 * ((s->rttr & 0xffff) + 1)); |
| s->last_hz = rt; |
| } |
| |
| static void pxa2xx_rtc_swupdate(struct pxa2xx_state_s *s) |
| { |
| int64_t rt = qemu_get_clock(rt_clock); |
| if (s->rtsr & (1 << 12)) |
| s->last_swcr += (rt - s->last_sw) / 10; |
| s->last_sw = rt; |
| } |
| |
| static void pxa2xx_rtc_piupdate(struct pxa2xx_state_s *s) |
| { |
| int64_t rt = qemu_get_clock(rt_clock); |
| if (s->rtsr & (1 << 15)) |
| s->last_swcr += rt - s->last_pi; |
| s->last_pi = rt; |
| } |
| |
| static inline void pxa2xx_rtc_alarm_update(struct pxa2xx_state_s *s, |
| uint32_t rtsr) |
| { |
| if ((rtsr & (1 << 2)) && !(rtsr & (1 << 0))) |
| qemu_mod_timer(s->rtc_hz, s->last_hz + |
| (((s->rtar - s->last_rcnr) * 1000 * |
| ((s->rttr & 0xffff) + 1)) >> 15)); |
| else |
| qemu_del_timer(s->rtc_hz); |
| |
| if ((rtsr & (1 << 5)) && !(rtsr & (1 << 4))) |
| qemu_mod_timer(s->rtc_rdal1, s->last_hz + |
| (((s->rdar1 - s->last_rdcr) * 1000 * |
| ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */ |
| else |
| qemu_del_timer(s->rtc_rdal1); |
| |
| if ((rtsr & (1 << 7)) && !(rtsr & (1 << 6))) |
| qemu_mod_timer(s->rtc_rdal2, s->last_hz + |
| (((s->rdar2 - s->last_rdcr) * 1000 * |
| ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */ |
| else |
| qemu_del_timer(s->rtc_rdal2); |
| |
| if ((rtsr & 0x1200) == 0x1200 && !(rtsr & (1 << 8))) |
| qemu_mod_timer(s->rtc_swal1, s->last_sw + |
| (s->swar1 - s->last_swcr) * 10); /* TODO: fixup */ |
| else |
| qemu_del_timer(s->rtc_swal1); |
| |
| if ((rtsr & 0x1800) == 0x1800 && !(rtsr & (1 << 10))) |
| qemu_mod_timer(s->rtc_swal2, s->last_sw + |
| (s->swar2 - s->last_swcr) * 10); /* TODO: fixup */ |
| else |
| qemu_del_timer(s->rtc_swal2); |
| |
| if ((rtsr & 0xc000) == 0xc000 && !(rtsr & (1 << 13))) |
| qemu_mod_timer(s->rtc_pi, s->last_pi + |
| (s->piar & 0xffff) - s->last_rtcpicr); |
| else |
| qemu_del_timer(s->rtc_pi); |
| } |
| |
| static inline void pxa2xx_rtc_hz_tick(void *opaque) |
| { |
| struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; |
| s->rtsr |= (1 << 0); |
| pxa2xx_rtc_alarm_update(s, s->rtsr); |
| pxa2xx_rtc_int_update(s); |
| } |
| |
| static inline void pxa2xx_rtc_rdal1_tick(void *opaque) |
| { |
| struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; |
| s->rtsr |= (1 << 4); |
| pxa2xx_rtc_alarm_update(s, s->rtsr); |
| pxa2xx_rtc_int_update(s); |
| } |
| |
| static inline void pxa2xx_rtc_rdal2_tick(void *opaque) |
| { |
| struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; |
| s->rtsr |= (1 << 6); |
| pxa2xx_rtc_alarm_update(s, s->rtsr); |
| pxa2xx_rtc_int_update(s); |
| } |
| |
| static inline void pxa2xx_rtc_swal1_tick(void *opaque) |
| { |
| struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; |
| s->rtsr |= (1 << 8); |
| pxa2xx_rtc_alarm_update(s, s->rtsr); |
| pxa2xx_rtc_int_update(s); |
| } |
| |
| static inline void pxa2xx_rtc_swal2_tick(void *opaque) |
| { |
| struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; |
| s->rtsr |= (1 << 10); |
| pxa2xx_rtc_alarm_update(s, s->rtsr); |
| pxa2xx_rtc_int_update(s); |
| } |
| |
| static inline void pxa2xx_rtc_pi_tick(void *opaque) |
| { |
| struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; |
| s->rtsr |= (1 << 13); |
| pxa2xx_rtc_piupdate(s); |
| s->last_rtcpicr = 0; |
| pxa2xx_rtc_alarm_update(s, s->rtsr); |
| pxa2xx_rtc_int_update(s); |
| } |
| |
| static uint32_t pxa2xx_rtc_read(void *opaque, target_phys_addr_t addr) |
| { |
| struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; |
| addr -= s->rtc_base; |
| |
| switch (addr) { |
| case RTTR: |
| return s->rttr; |
| case RTSR: |
| return s->rtsr; |
| case RTAR: |
| return s->rtar; |
| case RDAR1: |
| return s->rdar1; |
| case RDAR2: |
| return s->rdar2; |
| case RYAR1: |
| return s->ryar1; |
| case RYAR2: |
| return s->ryar2; |
| case SWAR1: |
| return s->swar1; |
| case SWAR2: |
| return s->swar2; |
| case PIAR: |
| return s->piar; |
| case RCNR: |
| return s->last_rcnr + ((qemu_get_clock(rt_clock) - s->last_hz) << 15) / |
| (1000 * ((s->rttr & 0xffff) + 1)); |
| case RDCR: |
| return s->last_rdcr + ((qemu_get_clock(rt_clock) - s->last_hz) << 15) / |
| (1000 * ((s->rttr & 0xffff) + 1)); |
| case RYCR: |
| return s->last_rycr; |
| case SWCR: |
| if (s->rtsr & (1 << 12)) |
| return s->last_swcr + (qemu_get_clock(rt_clock) - s->last_sw) / 10; |
| else |
| return s->last_swcr; |
| default: |
| printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); |
| break; |
| } |
| return 0; |
| } |
| |
| static void pxa2xx_rtc_write(void *opaque, target_phys_addr_t addr, |
| uint32_t value) |
| { |
| struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; |
| addr -= s->rtc_base; |
| |
| switch (addr) { |
| case RTTR: |
| if (!(s->rttr & (1 << 31))) { |
| pxa2xx_rtc_hzupdate(s); |
| s->rttr = value; |
| pxa2xx_rtc_alarm_update(s, s->rtsr); |
| } |
| break; |
| |
| case RTSR: |
| if ((s->rtsr ^ value) & (1 << 15)) |
| pxa2xx_rtc_piupdate(s); |
| |
| if ((s->rtsr ^ value) & (1 << 12)) |
| pxa2xx_rtc_swupdate(s); |
| |
| if (((s->rtsr ^ value) & 0x4aac) | (value & ~0xdaac)) |
| pxa2xx_rtc_alarm_update(s, value); |
| |
| s->rtsr = (value & 0xdaac) | (s->rtsr & ~(value & ~0xdaac)); |
| pxa2xx_rtc_int_update(s); |
| break; |
| |
| case RTAR: |
| s->rtar = value; |
| pxa2xx_rtc_alarm_update(s, s->rtsr); |
| break; |
| |
| case RDAR1: |
| s->rdar1 = value; |
| pxa2xx_rtc_alarm_update(s, s->rtsr); |
| break; |
| |
| case RDAR2: |
| s->rdar2 = value; |
| pxa2xx_rtc_alarm_update(s, s->rtsr); |
| break; |
| |
| case RYAR1: |
| s->ryar1 = value; |
| pxa2xx_rtc_alarm_update(s, s->rtsr); |
| break; |
| |
| case RYAR2: |
| s->ryar2 = value; |
| pxa2xx_rtc_alarm_update(s, s->rtsr); |
| break; |
| |
| case SWAR1: |
| pxa2xx_rtc_swupdate(s); |
| s->swar1 = value; |
| s->last_swcr = 0; |
| pxa2xx_rtc_alarm_update(s, s->rtsr); |
| break; |
| |
| case SWAR2: |
| s->swar2 = value; |
| pxa2xx_rtc_alarm_update(s, s->rtsr); |
| break; |
| |
| case PIAR: |
| s->piar = value; |
| pxa2xx_rtc_alarm_update(s, s->rtsr); |
| break; |
| |
| case RCNR: |
| pxa2xx_rtc_hzupdate(s); |
| s->last_rcnr = value; |
| pxa2xx_rtc_alarm_update(s, s->rtsr); |
| break; |
| |
| case RDCR: |
| pxa2xx_rtc_hzupdate(s); |
| s->last_rdcr = value; |
| pxa2xx_rtc_alarm_update(s, s->rtsr); |
| break; |
| |
| case RYCR: |
| s->last_rycr = value; |
| break; |
| |
| case SWCR: |
| pxa2xx_rtc_swupdate(s); |
| s->last_swcr = value; |
| pxa2xx_rtc_alarm_update(s, s->rtsr); |
| break; |
| |
| case RTCPICR: |
| pxa2xx_rtc_piupdate(s); |
| s->last_rtcpicr = value & 0xffff; |
| pxa2xx_rtc_alarm_update(s, s->rtsr); |
| break; |
| |
| default: |
| printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); |
| } |
| } |
| |
| static void pxa2xx_rtc_reset(struct pxa2xx_state_s *s) |
| { |
| struct tm *tm; |
| time_t ti; |
| int wom; |
| |
| s->rttr = 0x7fff; |
| s->rtsr = 0; |
| |
| time(&ti); |
| if (rtc_utc) |
| tm = gmtime(&ti); |
| else |
| tm = localtime(&ti); |
| wom = ((tm->tm_mday - 1) / 7) + 1; |
| |
| s->last_rcnr = (uint32_t) ti; |
| s->last_rdcr = (wom << 20) | ((tm->tm_wday + 1) << 17) | |
| (tm->tm_hour << 12) | (tm->tm_min << 6) | tm->tm_sec; |
| s->last_rycr = ((tm->tm_year + 1900) << 9) | |
| ((tm->tm_mon + 1) << 5) | tm->tm_mday; |
| s->last_swcr = (tm->tm_hour << 19) | |
| (tm->tm_min << 13) | (tm->tm_sec << 7); |
| s->last_rtcpicr = 0; |
| s->last_hz = s->last_sw = s->last_pi = qemu_get_clock(rt_clock); |
| |
| s->rtc_hz = qemu_new_timer(rt_clock, pxa2xx_rtc_hz_tick, s); |
| s->rtc_rdal1 = qemu_new_timer(rt_clock, pxa2xx_rtc_rdal1_tick, s); |
| s->rtc_rdal2 = qemu_new_timer(rt_clock, pxa2xx_rtc_rdal2_tick, s); |
| s->rtc_swal1 = qemu_new_timer(rt_clock, pxa2xx_rtc_swal1_tick, s); |
| s->rtc_swal2 = qemu_new_timer(rt_clock, pxa2xx_rtc_swal2_tick, s); |
| s->rtc_pi = qemu_new_timer(rt_clock, pxa2xx_rtc_pi_tick, s); |
| } |
| |
| static CPUReadMemoryFunc *pxa2xx_rtc_readfn[] = { |
| pxa2xx_rtc_read, |
| pxa2xx_rtc_read, |
| pxa2xx_rtc_read, |
| }; |
| |
| static CPUWriteMemoryFunc *pxa2xx_rtc_writefn[] = { |
| pxa2xx_rtc_write, |
| pxa2xx_rtc_write, |
| pxa2xx_rtc_write, |
| }; |
| |
| /* PXA Inter-IC Sound Controller */ |
| static void pxa2xx_i2s_reset(struct pxa2xx_i2s_s *i2s) |
| { |
| i2s->rx_len = 0; |
| i2s->tx_len = 0; |
| i2s->fifo_len = 0; |
| i2s->clk = 0x1a; |
| i2s->control[0] = 0x00; |
| i2s->control[1] = 0x00; |
| i2s->status = 0x00; |
| i2s->mask = 0x00; |
| } |
| |
| #define SACR_TFTH(val) ((val >> 8) & 0xf) |
| #define SACR_RFTH(val) ((val >> 12) & 0xf) |
| #define SACR_DREC(val) (val & (1 << 3)) |
| #define SACR_DPRL(val) (val & (1 << 4)) |
| |
| static inline void pxa2xx_i2s_update(struct pxa2xx_i2s_s *i2s) |
| { |
| int rfs, tfs; |
| rfs = SACR_RFTH(i2s->control[0]) < i2s->rx_len && |
| !SACR_DREC(i2s->control[1]); |
| tfs = (i2s->tx_len || i2s->fifo_len < SACR_TFTH(i2s->control[0])) && |
| i2s->enable && !SACR_DPRL(i2s->control[1]); |
| |
| pxa2xx_dma_request(i2s->dma, PXA2XX_RX_RQ_I2S, rfs); |
| pxa2xx_dma_request(i2s->dma, PXA2XX_TX_RQ_I2S, tfs); |
| |
| i2s->status &= 0xe0; |
| if (i2s->rx_len) |
| i2s->status |= 1 << 1; /* RNE */ |
| if (i2s->enable) |
| i2s->status |= 1 << 2; /* BSY */ |
| if (tfs) |
| i2s->status |= 1 << 3; /* TFS */ |
| if (rfs) |
| i2s->status |= 1 << 4; /* RFS */ |
| if (!(i2s->tx_len && i2s->enable)) |
| i2s->status |= i2s->fifo_len << 8; /* TFL */ |
| i2s->status |= MAX(i2s->rx_len, 0xf) << 12; /* RFL */ |
| |
| qemu_set_irq(i2s->irq, i2s->status & i2s->mask); |
| } |
| |
| #define SACR0 0x00 /* Serial Audio Global Control register */ |
| #define SACR1 0x04 /* Serial Audio I2S/MSB-Justified Control register */ |
| #define SASR0 0x0c /* Serial Audio Interface and FIFO Status register */ |
| #define SAIMR 0x14 /* Serial Audio Interrupt Mask register */ |
| #define SAICR 0x18 /* Serial Audio Interrupt Clear register */ |
| #define SADIV 0x60 /* Serial Audio Clock Divider register */ |
| #define SADR 0x80 /* Serial Audio Data register */ |
| |
| static uint32_t pxa2xx_i2s_read(void *opaque, target_phys_addr_t addr) |
| { |
| struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque; |
| addr -= s->base; |
| |
| switch (addr) { |
| case SACR0: |
| return s->control[0]; |
| case SACR1: |
| return s->control[1]; |
| case SASR0: |
| return s->status; |
| case SAIMR: |
| return s->mask; |
| case SAICR: |
| return 0; |
| case SADIV: |
| return s->clk; |
| case SADR: |
| if (s->rx_len > 0) { |
| s->rx_len --; |
| pxa2xx_i2s_update(s); |
| return s->codec_in(s->opaque); |
| } |
| return 0; |
| default: |
| printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); |
| break; |
| } |
| return 0; |
| } |
| |
| static void pxa2xx_i2s_write(void *opaque, target_phys_addr_t addr, |
| uint32_t value) |
| { |
| struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque; |
| uint32_t *sample; |
| addr -= s->base; |
| |
| switch (addr) { |
| case SACR0: |
| if (value & (1 << 3)) /* RST */ |
| pxa2xx_i2s_reset(s); |
| s->control[0] = value & 0xff3d; |
| if (!s->enable && (value & 1) && s->tx_len) { /* ENB */ |
| for (sample = s->fifo; s->fifo_len > 0; s->fifo_len --, sample ++) |
| s->codec_out(s->opaque, *sample); |
| s->status &= ~(1 << 7); /* I2SOFF */ |
| } |
| if (value & (1 << 4)) /* EFWR */ |
| printf("%s: Attempt to use special function\n", __FUNCTION__); |
| s->enable = ((value ^ 4) & 5) == 5; /* ENB && !RST*/ |
| pxa2xx_i2s_update(s); |
| break; |
| case SACR1: |
| s->control[1] = value & 0x0039; |
| if (value & (1 << 5)) /* ENLBF */ |
| printf("%s: Attempt to use loopback function\n", __FUNCTION__); |
| if (value & (1 << 4)) /* DPRL */ |
| s->fifo_len = 0; |
| pxa2xx_i2s_update(s); |
| break; |
| case SAIMR: |
| s->mask = value & 0x0078; |
| pxa2xx_i2s_update(s); |
| break; |
| case SAICR: |
| s->status &= ~(value & (3 << 5)); |
| pxa2xx_i2s_update(s); |
| break; |
| case SADIV: |
| s->clk = value & 0x007f; |
| break; |
| case SADR: |
| if (s->tx_len && s->enable) { |
| s->tx_len --; |
| pxa2xx_i2s_update(s); |
| s->codec_out(s->opaque, value); |
| } else if (s->fifo_len < 16) { |
| s->fifo[s->fifo_len ++] = value; |
| pxa2xx_i2s_update(s); |
| } |
| break; |
| default: |
| printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); |
| } |
| } |
| |
| static CPUReadMemoryFunc *pxa2xx_i2s_readfn[] = { |
| pxa2xx_i2s_read, |
| pxa2xx_i2s_read, |
| pxa2xx_i2s_read, |
| }; |
| |
| static CPUWriteMemoryFunc *pxa2xx_i2s_writefn[] = { |
| pxa2xx_i2s_write, |
| pxa2xx_i2s_write, |
| pxa2xx_i2s_write, |
| }; |
| |
| static void pxa2xx_i2s_data_req(void *opaque, int tx, int rx) |
| { |
| struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque; |
| uint32_t *sample; |
| |
| /* Signal FIFO errors */ |
| if (s->enable && s->tx_len) |
| s->status |= 1 << 5; /* TUR */ |
| if (s->enable && s->rx_len) |
| s->status |= 1 << 6; /* ROR */ |
| |
| /* Should be tx - MIN(tx, s->fifo_len) but we don't really need to |
| * handle the cases where it makes a difference. */ |
| s->tx_len = tx - s->fifo_len; |
| s->rx_len = rx; |
| /* Note that is s->codec_out wasn't set, we wouldn't get called. */ |
| if (s->enable) |
| for (sample = s->fifo; s->fifo_len; s->fifo_len --, sample ++) |
| s->codec_out(s->opaque, *sample); |
| pxa2xx_i2s_update(s); |
| } |
| |
| static struct pxa2xx_i2s_s *pxa2xx_i2s_init(target_phys_addr_t base, |
| qemu_irq irq, struct pxa2xx_dma_state_s *dma) |
| { |
| int iomemtype; |
| struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) |
| qemu_mallocz(sizeof(struct pxa2xx_i2s_s)); |
| |
| s->base = base; |
| s->irq = irq; |
| s->dma = dma; |
| s->data_req = pxa2xx_i2s_data_req; |
| |
| pxa2xx_i2s_reset(s); |
| |
| iomemtype = cpu_register_io_memory(0, pxa2xx_i2s_readfn, |
| pxa2xx_i2s_writefn, s); |
| cpu_register_physical_memory(s->base & 0xfff00000, 0xfffff, iomemtype); |
| |
| return s; |
| } |
| |
| /* PXA Fast Infra-red Communications Port */ |
| struct pxa2xx_fir_s { |
| target_phys_addr_t base; |
| qemu_irq irq; |
| struct pxa2xx_dma_state_s *dma; |
| int enable; |
| CharDriverState *chr; |
| |
| uint8_t control[3]; |
| uint8_t status[2]; |
| |
| int rx_len; |
| int rx_start; |
| uint8_t rx_fifo[64]; |
| }; |
| |
| static void pxa2xx_fir_reset(struct pxa2xx_fir_s *s) |
| { |
| s->control[0] = 0x00; |
| s->control[1] = 0x00; |
| s->control[2] = 0x00; |
| s->status[0] = 0x00; |
| s->status[1] = 0x00; |
| s->enable = 0; |
| } |
| |
| static inline void pxa2xx_fir_update(struct pxa2xx_fir_s *s) |
| { |
| static const int tresh[4] = { 8, 16, 32, 0 }; |
| int intr = 0; |
| if ((s->control[0] & (1 << 4)) && /* RXE */ |
| s->rx_len >= tresh[s->control[2] & 3]) /* TRIG */ |
| s->status[0] |= 1 << 4; /* RFS */ |
| else |
| s->status[0] &= ~(1 << 4); /* RFS */ |
| if (s->control[0] & (1 << 3)) /* TXE */ |
| s->status[0] |= 1 << 3; /* TFS */ |
| else |
| s->status[0] &= ~(1 << 3); /* TFS */ |
| if (s->rx_len) |
| s->status[1] |= 1 << 2; /* RNE */ |
| else |
| s->status[1] &= ~(1 << 2); /* RNE */ |
| if (s->control[0] & (1 << 4)) /* RXE */ |
| s->status[1] |= 1 << 0; /* RSY */ |
| else |
| s->status[1] &= ~(1 << 0); /* RSY */ |
| |
| intr |= (s->control[0] & (1 << 5)) && /* RIE */ |
| (s->status[0] & (1 << 4)); /* RFS */ |
| intr |= (s->control[0] & (1 << 6)) && /* TIE */ |
| (s->status[0] & (1 << 3)); /* TFS */ |
| intr |= (s->control[2] & (1 << 4)) && /* TRAIL */ |
| (s->status[0] & (1 << 6)); /* EOC */ |
| intr |= (s->control[0] & (1 << 2)) && /* TUS */ |
| (s->status[0] & (1 << 1)); /* TUR */ |
| intr |= s->status[0] & 0x25; /* FRE, RAB, EIF */ |
| |
| pxa2xx_dma_request(s->dma, PXA2XX_RX_RQ_ICP, (s->status[0] >> 4) & 1); |
| pxa2xx_dma_request(s->dma, PXA2XX_TX_RQ_ICP, (s->status[0] >> 3) & 1); |
| |
| qemu_set_irq(s->irq, intr && s->enable); |
| } |
| |
| #define ICCR0 0x00 /* FICP Control register 0 */ |
| #define ICCR1 0x04 /* FICP Control register 1 */ |
| #define ICCR2 0x08 /* FICP Control register 2 */ |
| #define ICDR 0x0c /* FICP Data register */ |
| #define ICSR0 0x14 /* FICP Status register 0 */ |
| #define ICSR1 0x18 /* FICP Status register 1 */ |
| #define ICFOR 0x1c /* FICP FIFO Occupancy Status register */ |
| |
| static uint32_t pxa2xx_fir_read(void *opaque, target_phys_addr_t addr) |
| { |
| struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque; |
| uint8_t ret; |
| addr -= s->base; |
| |
| switch (addr) { |
| case ICCR0: |
| return s->control[0]; |
| case ICCR1: |
| return s->control[1]; |
| case ICCR2: |
| return s->control[2]; |
| case ICDR: |
| s->status[0] &= ~0x01; |
| s->status[1] &= ~0x72; |
| if (s->rx_len) { |
| s->rx_len --; |
| ret = s->rx_fifo[s->rx_start ++]; |
| s->rx_start &= 63; |
| pxa2xx_fir_update(s); |
| return ret; |
| } |
| printf("%s: Rx FIFO underrun.\n", __FUNCTION__); |
| break; |
| case ICSR0: |
| return s->status[0]; |
| case ICSR1: |
| return s->status[1] | (1 << 3); /* TNF */ |
| case ICFOR: |
| return s->rx_len; |
| default: |
| printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); |
| break; |
| } |
| return 0; |
| } |
| |
| static void pxa2xx_fir_write(void *opaque, target_phys_addr_t addr, |
| uint32_t value) |
| { |
| struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque; |
| uint8_t ch; |
| addr -= s->base; |
| |
| switch (addr) { |
| case ICCR0: |
| s->control[0] = value; |
| if (!(value & (1 << 4))) /* RXE */ |
| s->rx_len = s->rx_start = 0; |
| if (!(value & (1 << 3))) /* TXE */ |
| /* Nop */; |
| s->enable = value & 1; /* ITR */ |
| if (!s->enable) |
| s->status[0] = 0; |
| pxa2xx_fir_update(s); |
| break; |
| case ICCR1: |
| s->control[1] = value; |
| break; |
| case ICCR2: |
| s->control[2] = value & 0x3f; |
| pxa2xx_fir_update(s); |
| break; |
| case ICDR: |
| if (s->control[2] & (1 << 2)) /* TXP */ |
| ch = value; |
| else |
| ch = ~value; |
| if (s->chr && s->enable && (s->control[0] & (1 << 3))) /* TXE */ |
| qemu_chr_write(s->chr, &ch, 1); |
| break; |
| case ICSR0: |
| s->status[0] &= ~(value & 0x66); |
| pxa2xx_fir_update(s); |
| break; |
| case ICFOR: |
| break; |
| default: |
| printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); |
| } |
| } |
| |
| static CPUReadMemoryFunc *pxa2xx_fir_readfn[] = { |
| pxa2xx_fir_read, |
| pxa2xx_fir_read, |
| pxa2xx_fir_read, |
| }; |
| |
| static CPUWriteMemoryFunc *pxa2xx_fir_writefn[] = { |
| pxa2xx_fir_write, |
| pxa2xx_fir_write, |
| pxa2xx_fir_write, |
| }; |
| |
| static int pxa2xx_fir_is_empty(void *opaque) |
| { |
| struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque; |
| return (s->rx_len < 64); |
| } |
| |
| static void pxa2xx_fir_rx(void *opaque, const uint8_t *buf, int size) |
| { |
| struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque; |
| if (!(s->control[0] & (1 << 4))) /* RXE */ |
| return; |
| |
| while (size --) { |
| s->status[1] |= 1 << 4; /* EOF */ |
| if (s->rx_len >= 64) { |
| s->status[1] |= 1 << 6; /* ROR */ |
| break; |
| } |
| |
| if (s->control[2] & (1 << 3)) /* RXP */ |
| s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = *(buf ++); |
| else |
| s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = ~*(buf ++); |
| } |
| |
| pxa2xx_fir_update(s); |
| } |
| |
| static void pxa2xx_fir_event(void *opaque, int event) |
| { |
| } |
| |
| static struct pxa2xx_fir_s *pxa2xx_fir_init(target_phys_addr_t base, |
| qemu_irq irq, struct pxa2xx_dma_state_s *dma, |
| CharDriverState *chr) |
| { |
| int iomemtype; |
| struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) |
| qemu_mallocz(sizeof(struct pxa2xx_fir_s)); |
| |
| s->base = base; |
| s->irq = irq; |
| s->dma = dma; |
| s->chr = chr; |
| |
| pxa2xx_fir_reset(s); |
| |
| iomemtype = cpu_register_io_memory(0, pxa2xx_fir_readfn, |
| pxa2xx_fir_writefn, s); |
| cpu_register_physical_memory(s->base, 0xfff, iomemtype); |
| |
| if (chr) |
| qemu_chr_add_handlers(chr, pxa2xx_fir_is_empty, |
| pxa2xx_fir_rx, pxa2xx_fir_event, s); |
| |
| return s; |
| } |
| |
| void pxa2xx_reset(int line, int level, void *opaque) |
| { |
| struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; |
| if (level && (s->pm_regs[PCFR >> 2] & 0x10)) { /* GPR_EN */ |
| cpu_reset(s->env); |
| /* TODO: reset peripherals */ |
| } |
| } |
| |
| /* Initialise a PXA270 integrated chip (ARM based core). */ |
| struct pxa2xx_state_s *pxa270_init(DisplayState *ds, const char *revision) |
| { |
| struct pxa2xx_state_s *s; |
| struct pxa2xx_ssp_s *ssp; |
| int iomemtype, i; |
| s = (struct pxa2xx_state_s *) qemu_mallocz(sizeof(struct pxa2xx_state_s)); |
| |
| if (revision && strncmp(revision, "pxa27", 5)) { |
| fprintf(stderr, "Machine requires a PXA27x processor.\n"); |
| exit(1); |
| } |
| |
| s->env = cpu_init(); |
| cpu_arm_set_model(s->env, revision ?: "pxa270"); |
| |
| s->pic = pxa2xx_pic_init(0x40d00000, s->env); |
| |
| s->dma = pxa27x_dma_init(0x40000000, s->pic[PXA2XX_PIC_DMA]); |
| |
| pxa27x_timer_init(0x40a00000, &s->pic[PXA2XX_PIC_OST_0], |
| s->pic[PXA27X_PIC_OST_4_11], s->env); |
| |
| s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 121); |
| |
| s->mmc = pxa2xx_mmci_init(0x41100000, s->pic[PXA2XX_PIC_MMC], s->dma); |
| |
| for (i = 0; pxa270_serial[i].io_base; i ++) |
| if (serial_hds[i]) |
| serial_mm_init(pxa270_serial[i].io_base, 2, |
| s->pic[pxa270_serial[i].irqn], serial_hds[i], 1); |
| else |
| break; |
| if (serial_hds[i]) |
| s->fir = pxa2xx_fir_init(0x40800000, s->pic[PXA2XX_PIC_ICP], |
| s->dma, serial_hds[i]); |
| |
| if (ds) |
| s->lcd = pxa2xx_lcdc_init(0x44000000, s->pic[PXA2XX_PIC_LCD], ds); |
| |
| s->cm_base = 0x41300000; |
| s->cm_regs[CCCR >> 4] = 0x02000210; /* 416.0 MHz */ |
| s->clkcfg = 0x00000009; /* Turbo mode active */ |
| iomemtype = cpu_register_io_memory(0, pxa2xx_cm_readfn, |
| pxa2xx_cm_writefn, s); |
| cpu_register_physical_memory(s->cm_base, 0xfff, iomemtype); |
| |
| cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s); |
| |
| s->mm_base = 0x48000000; |
| s->mm_regs[MDMRS >> 2] = 0x00020002; |
| s->mm_regs[MDREFR >> 2] = 0x03ca4000; |
| s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */ |
| iomemtype = cpu_register_io_memory(0, pxa2xx_mm_readfn, |
| pxa2xx_mm_writefn, s); |
| cpu_register_physical_memory(s->mm_base, 0xfff, iomemtype); |
| |
| for (i = 0; pxa27x_ssp[i].io_base; i ++); |
| s->ssp = (struct pxa2xx_ssp_s **) |
| qemu_mallocz(sizeof(struct pxa2xx_ssp_s *) * i); |
| ssp = (struct pxa2xx_ssp_s *) |
| qemu_mallocz(sizeof(struct pxa2xx_ssp_s) * i); |
| for (i = 0; pxa27x_ssp[i].io_base; i ++) { |
| s->ssp[i] = &ssp[i]; |
| ssp[i].base = pxa27x_ssp[i].io_base; |
| ssp[i].irq = s->pic[pxa27x_ssp[i].irqn]; |
| |
| iomemtype = cpu_register_io_memory(0, pxa2xx_ssp_readfn, |
| pxa2xx_ssp_writefn, &ssp[i]); |
| cpu_register_physical_memory(ssp[i].base, 0xfff, iomemtype); |
| } |
| |
| if (usb_enabled) { |
| usb_ohci_init_pxa(0x4c000000, 3, -1, s->pic[PXA2XX_PIC_USBH1]); |
| } |
| |
| s->pcmcia[0] = pxa2xx_pcmcia_init(0x20000000); |
| s->pcmcia[1] = pxa2xx_pcmcia_init(0x30000000); |
| |
| s->rtc_base = 0x40900000; |
| iomemtype = cpu_register_io_memory(0, pxa2xx_rtc_readfn, |
| pxa2xx_rtc_writefn, s); |
| cpu_register_physical_memory(s->rtc_base, 0xfff, iomemtype); |
| pxa2xx_rtc_reset(s); |
| |
| s->pm_base = 0x40f00000; |
| iomemtype = cpu_register_io_memory(0, pxa2xx_pm_readfn, |
| pxa2xx_pm_writefn, s); |
| cpu_register_physical_memory(s->pm_base, 0xfff, iomemtype); |
| |
| s->i2s = pxa2xx_i2s_init(0x40400000, s->pic[PXA2XX_PIC_I2S], s->dma); |
| |
| /* GPIO1 resets the processor */ |
| /* The handler can be overriden by board-specific code */ |
| pxa2xx_gpio_handler_set(s->gpio, 1, pxa2xx_reset, s); |
| return s; |
| } |
| |
| /* Initialise a PXA255 integrated chip (ARM based core). */ |
| struct pxa2xx_state_s *pxa255_init(DisplayState *ds) |
| { |
| struct pxa2xx_state_s *s; |
| struct pxa2xx_ssp_s *ssp; |
| int iomemtype, i; |
| s = (struct pxa2xx_state_s *) qemu_mallocz(sizeof(struct pxa2xx_state_s)); |
| |
| s->env = cpu_init(); |
| cpu_arm_set_model(s->env, "pxa255"); |
| |
| s->pic = pxa2xx_pic_init(0x40d00000, s->env); |
| |
| s->dma = pxa255_dma_init(0x40000000, s->pic[PXA2XX_PIC_DMA]); |
| |
| pxa25x_timer_init(0x40a00000, &s->pic[PXA2XX_PIC_OST_0], s->env); |
| |
| s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 121); |
| |
| s->mmc = pxa2xx_mmci_init(0x41100000, s->pic[PXA2XX_PIC_MMC], s->dma); |
| |
| for (i = 0; pxa255_serial[i].io_base; i ++) |
| if (serial_hds[i]) |
| serial_mm_init(pxa255_serial[i].io_base, 2, |
| s->pic[pxa255_serial[i].irqn], serial_hds[i], 1); |
| else |
| break; |
| if (serial_hds[i]) |
| s->fir = pxa2xx_fir_init(0x40800000, s->pic[PXA2XX_PIC_ICP], |
| s->dma, serial_hds[i]); |
| |
| if (ds) |
| s->lcd = pxa2xx_lcdc_init(0x44000000, s->pic[PXA2XX_PIC_LCD], ds); |
| |
| s->cm_base = 0x41300000; |
| s->cm_regs[CCCR >> 4] = 0x02000210; /* 416.0 MHz */ |
| s->clkcfg = 0x00000009; /* Turbo mode active */ |
| iomemtype = cpu_register_io_memory(0, pxa2xx_cm_readfn, |
| pxa2xx_cm_writefn, s); |
| cpu_register_physical_memory(s->cm_base, 0xfff, iomemtype); |
| |
| cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s); |
| |
| s->mm_base = 0x48000000; |
| s->mm_regs[MDMRS >> 2] = 0x00020002; |
| s->mm_regs[MDREFR >> 2] = 0x03ca4000; |
| s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */ |
| iomemtype = cpu_register_io_memory(0, pxa2xx_mm_readfn, |
| pxa2xx_mm_writefn, s); |
| cpu_register_physical_memory(s->mm_base, 0xfff, iomemtype); |
| |
| for (i = 0; pxa255_ssp[i].io_base; i ++); |
| s->ssp = (struct pxa2xx_ssp_s **) |
| qemu_mallocz(sizeof(struct pxa2xx_ssp_s *) * i); |
| ssp = (struct pxa2xx_ssp_s *) |
| qemu_mallocz(sizeof(struct pxa2xx_ssp_s) * i); |
| for (i = 0; pxa255_ssp[i].io_base; i ++) { |
| s->ssp[i] = &ssp[i]; |
| ssp[i].base = pxa255_ssp[i].io_base; |
| ssp[i].irq = s->pic[pxa255_ssp[i].irqn]; |
| |
| iomemtype = cpu_register_io_memory(0, pxa2xx_ssp_readfn, |
| pxa2xx_ssp_writefn, &ssp[i]); |
| cpu_register_physical_memory(ssp[i].base, 0xfff, iomemtype); |
| } |
| |
| if (usb_enabled) { |
| usb_ohci_init_pxa(0x4c000000, 3, -1, s->pic[PXA2XX_PIC_USBH1]); |
| } |
| |
| s->pcmcia[0] = pxa2xx_pcmcia_init(0x20000000); |
| s->pcmcia[1] = pxa2xx_pcmcia_init(0x30000000); |
| |
| s->rtc_base = 0x40900000; |
| iomemtype = cpu_register_io_memory(0, pxa2xx_rtc_readfn, |
| pxa2xx_rtc_writefn, s); |
| cpu_register_physical_memory(s->rtc_base, 0xfff, iomemtype); |
| pxa2xx_rtc_reset(s); |
| |
| s->pm_base = 0x40f00000; |
| iomemtype = cpu_register_io_memory(0, pxa2xx_pm_readfn, |
| pxa2xx_pm_writefn, s); |
| cpu_register_physical_memory(s->pm_base, 0xfff, iomemtype); |
| |
| s->i2s = pxa2xx_i2s_init(0x40400000, s->pic[PXA2XX_PIC_I2S], s->dma); |
| |
| /* GPIO1 resets the processor */ |
| /* The handler can be overriden by board-specific code */ |
| pxa2xx_gpio_handler_set(s->gpio, 1, pxa2xx_reset, s); |
| return s; |
| } |