| /* |
| * ucontext coroutine initialization code |
| * |
| * Copyright (C) 2006 Anthony Liguori <anthony@codemonkey.ws> |
| * Copyright (C) 2011 Kevin Wolf <kwolf@redhat.com> |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.0 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| /* XXX Is there a nicer way to disable glibc's stack check for longjmp? */ |
| #ifdef _FORTIFY_SOURCE |
| #undef _FORTIFY_SOURCE |
| #endif |
| #include "qemu/osdep.h" |
| #include <ucontext.h> |
| #include "qemu/coroutine_int.h" |
| #include "qemu/coroutine-tls.h" |
| |
| #ifdef CONFIG_VALGRIND_H |
| #include <valgrind/valgrind.h> |
| #endif |
| |
| #ifdef QEMU_SANITIZE_ADDRESS |
| #ifdef CONFIG_ASAN_IFACE_FIBER |
| #define CONFIG_ASAN 1 |
| #include <sanitizer/asan_interface.h> |
| #endif |
| #endif |
| |
| #ifdef CONFIG_TSAN |
| #include <sanitizer/tsan_interface.h> |
| #endif |
| |
| typedef struct { |
| Coroutine base; |
| void *stack; |
| size_t stack_size; |
| #ifdef CONFIG_SAFESTACK |
| /* Need an unsafe stack for each coroutine */ |
| void *unsafe_stack; |
| size_t unsafe_stack_size; |
| #endif |
| sigjmp_buf env; |
| |
| #ifdef CONFIG_TSAN |
| void *tsan_co_fiber; |
| void *tsan_caller_fiber; |
| #endif |
| |
| #ifdef CONFIG_VALGRIND_H |
| unsigned int valgrind_stack_id; |
| #endif |
| |
| } CoroutineUContext; |
| |
| /** |
| * Per-thread coroutine bookkeeping |
| */ |
| QEMU_DEFINE_STATIC_CO_TLS(Coroutine *, current); |
| QEMU_DEFINE_STATIC_CO_TLS(CoroutineUContext, leader); |
| |
| /* |
| * va_args to makecontext() must be type 'int', so passing |
| * the pointer we need may require several int args. This |
| * union is a quick hack to let us do that |
| */ |
| union cc_arg { |
| void *p; |
| int i[2]; |
| }; |
| |
| /* |
| * QEMU_ALWAYS_INLINE only does so if __OPTIMIZE__, so we cannot use it. |
| * always_inline is required to avoid TSan runtime fatal errors. |
| */ |
| static inline __attribute__((always_inline)) |
| void on_new_fiber(CoroutineUContext *co) |
| { |
| #ifdef CONFIG_TSAN |
| co->tsan_co_fiber = __tsan_create_fiber(0); /* flags: sync on switch */ |
| co->tsan_caller_fiber = __tsan_get_current_fiber(); |
| #endif |
| } |
| |
| /* always_inline is required to avoid TSan runtime fatal errors. */ |
| static inline __attribute__((always_inline)) |
| void finish_switch_fiber(void *fake_stack_save) |
| { |
| #ifdef CONFIG_ASAN |
| CoroutineUContext *leaderp = get_ptr_leader(); |
| const void *bottom_old; |
| size_t size_old; |
| |
| __sanitizer_finish_switch_fiber(fake_stack_save, &bottom_old, &size_old); |
| |
| if (!leaderp->stack) { |
| leaderp->stack = (void *)bottom_old; |
| leaderp->stack_size = size_old; |
| } |
| #endif |
| #ifdef CONFIG_TSAN |
| if (fake_stack_save) { |
| __tsan_release(fake_stack_save); |
| __tsan_switch_to_fiber(fake_stack_save, 0); /* 0=synchronize */ |
| } |
| #endif |
| } |
| |
| /* always_inline is required to avoid TSan runtime fatal errors. */ |
| static inline __attribute__((always_inline)) |
| void start_switch_fiber_asan(CoroutineAction action, void **fake_stack_save, |
| const void *bottom, size_t size) |
| { |
| #ifdef CONFIG_ASAN |
| __sanitizer_start_switch_fiber( |
| action == COROUTINE_TERMINATE ? NULL : fake_stack_save, |
| bottom, size); |
| #endif |
| } |
| |
| /* always_inline is required to avoid TSan runtime fatal errors. */ |
| static inline __attribute__((always_inline)) |
| void start_switch_fiber_tsan(void **fake_stack_save, |
| CoroutineUContext *co, |
| bool caller) |
| { |
| #ifdef CONFIG_TSAN |
| void *new_fiber = caller ? |
| co->tsan_caller_fiber : |
| co->tsan_co_fiber; |
| void *curr_fiber = __tsan_get_current_fiber(); |
| __tsan_acquire(curr_fiber); |
| |
| *fake_stack_save = curr_fiber; |
| __tsan_switch_to_fiber(new_fiber, 0); /* 0=synchronize */ |
| #endif |
| } |
| |
| static void coroutine_trampoline(int i0, int i1) |
| { |
| union cc_arg arg; |
| CoroutineUContext *self; |
| Coroutine *co; |
| void *fake_stack_save = NULL; |
| |
| finish_switch_fiber(NULL); |
| |
| arg.i[0] = i0; |
| arg.i[1] = i1; |
| self = arg.p; |
| co = &self->base; |
| |
| /* Initialize longjmp environment and switch back the caller */ |
| if (!sigsetjmp(self->env, 0)) { |
| CoroutineUContext *leaderp = get_ptr_leader(); |
| |
| start_switch_fiber_asan(COROUTINE_YIELD, &fake_stack_save, |
| leaderp->stack, leaderp->stack_size); |
| start_switch_fiber_tsan(&fake_stack_save, self, true); /* true=caller */ |
| siglongjmp(*(sigjmp_buf *)co->entry_arg, 1); |
| } |
| |
| finish_switch_fiber(fake_stack_save); |
| |
| while (true) { |
| co->entry(co->entry_arg); |
| qemu_coroutine_switch(co, co->caller, COROUTINE_TERMINATE); |
| } |
| } |
| |
| Coroutine *qemu_coroutine_new(void) |
| { |
| CoroutineUContext *co; |
| ucontext_t old_uc, uc; |
| sigjmp_buf old_env; |
| union cc_arg arg = {0}; |
| void *fake_stack_save = NULL; |
| |
| /* The ucontext functions preserve signal masks which incurs a |
| * system call overhead. sigsetjmp(buf, 0)/siglongjmp() does not |
| * preserve signal masks but only works on the current stack. |
| * Since we need a way to create and switch to a new stack, use |
| * the ucontext functions for that but sigsetjmp()/siglongjmp() for |
| * everything else. |
| */ |
| |
| if (getcontext(&uc) == -1) { |
| abort(); |
| } |
| |
| co = g_malloc0(sizeof(*co)); |
| co->stack_size = COROUTINE_STACK_SIZE; |
| co->stack = qemu_alloc_stack(&co->stack_size); |
| #ifdef CONFIG_SAFESTACK |
| co->unsafe_stack_size = COROUTINE_STACK_SIZE; |
| co->unsafe_stack = qemu_alloc_stack(&co->unsafe_stack_size); |
| #endif |
| co->base.entry_arg = &old_env; /* stash away our jmp_buf */ |
| |
| uc.uc_link = &old_uc; |
| uc.uc_stack.ss_sp = co->stack; |
| uc.uc_stack.ss_size = co->stack_size; |
| uc.uc_stack.ss_flags = 0; |
| |
| #ifdef CONFIG_VALGRIND_H |
| co->valgrind_stack_id = |
| VALGRIND_STACK_REGISTER(co->stack, co->stack + co->stack_size); |
| #endif |
| |
| arg.p = co; |
| |
| on_new_fiber(co); |
| makecontext(&uc, (void (*)(void))coroutine_trampoline, |
| 2, arg.i[0], arg.i[1]); |
| |
| /* swapcontext() in, siglongjmp() back out */ |
| if (!sigsetjmp(old_env, 0)) { |
| start_switch_fiber_asan(COROUTINE_YIELD, &fake_stack_save, co->stack, |
| co->stack_size); |
| start_switch_fiber_tsan(&fake_stack_save, |
| co, false); /* false=not caller */ |
| |
| #ifdef CONFIG_SAFESTACK |
| /* |
| * Before we swap the context, set the new unsafe stack |
| * The unsafe stack grows just like the normal stack, so start from |
| * the last usable location of the memory area. |
| * NOTE: we don't have to re-set the usp afterwards because we are |
| * coming back to this context through a siglongjmp. |
| * The compiler already wrapped the corresponding sigsetjmp call with |
| * code that saves the usp on the (safe) stack before the call, and |
| * restores it right after (which is where we return with siglongjmp). |
| */ |
| void *usp = co->unsafe_stack + co->unsafe_stack_size; |
| __safestack_unsafe_stack_ptr = usp; |
| #endif |
| |
| swapcontext(&old_uc, &uc); |
| } |
| |
| finish_switch_fiber(fake_stack_save); |
| |
| return &co->base; |
| } |
| |
| #ifdef CONFIG_VALGRIND_H |
| /* Work around an unused variable in the valgrind.h macro... */ |
| #if !defined(__clang__) |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Wunused-but-set-variable" |
| #endif |
| static inline void valgrind_stack_deregister(CoroutineUContext *co) |
| { |
| VALGRIND_STACK_DEREGISTER(co->valgrind_stack_id); |
| } |
| #if !defined(__clang__) |
| #pragma GCC diagnostic pop |
| #endif |
| #endif |
| |
| void qemu_coroutine_delete(Coroutine *co_) |
| { |
| CoroutineUContext *co = DO_UPCAST(CoroutineUContext, base, co_); |
| |
| #ifdef CONFIG_VALGRIND_H |
| valgrind_stack_deregister(co); |
| #endif |
| |
| qemu_free_stack(co->stack, co->stack_size); |
| #ifdef CONFIG_SAFESTACK |
| qemu_free_stack(co->unsafe_stack, co->unsafe_stack_size); |
| #endif |
| g_free(co); |
| } |
| |
| /* This function is marked noinline to prevent GCC from inlining it |
| * into coroutine_trampoline(). If we allow it to do that then it |
| * hoists the code to get the address of the TLS variable "current" |
| * out of the while() loop. This is an invalid transformation because |
| * the sigsetjmp() call may be called when running thread A but |
| * return in thread B, and so we might be in a different thread |
| * context each time round the loop. |
| */ |
| CoroutineAction __attribute__((noinline)) |
| qemu_coroutine_switch(Coroutine *from_, Coroutine *to_, |
| CoroutineAction action) |
| { |
| CoroutineUContext *from = DO_UPCAST(CoroutineUContext, base, from_); |
| CoroutineUContext *to = DO_UPCAST(CoroutineUContext, base, to_); |
| int ret; |
| void *fake_stack_save = NULL; |
| |
| set_current(to_); |
| |
| ret = sigsetjmp(from->env, 0); |
| if (ret == 0) { |
| start_switch_fiber_asan(action, &fake_stack_save, to->stack, |
| to->stack_size); |
| start_switch_fiber_tsan(&fake_stack_save, |
| to, false); /* false=not caller */ |
| siglongjmp(to->env, action); |
| } |
| |
| finish_switch_fiber(fake_stack_save); |
| |
| return ret; |
| } |
| |
| Coroutine *qemu_coroutine_self(void) |
| { |
| Coroutine *self = get_current(); |
| CoroutineUContext *leaderp = get_ptr_leader(); |
| |
| if (!self) { |
| self = &leaderp->base; |
| set_current(self); |
| } |
| #ifdef CONFIG_TSAN |
| if (!leaderp->tsan_co_fiber) { |
| leaderp->tsan_co_fiber = __tsan_get_current_fiber(); |
| } |
| #endif |
| return self; |
| } |
| |
| bool qemu_in_coroutine(void) |
| { |
| Coroutine *self = get_current(); |
| |
| return self && self->caller; |
| } |