| /* |
| * ARM SME Operations |
| * |
| * Copyright (c) 2022 Linaro, Ltd. |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "cpu.h" |
| #include "internals.h" |
| #include "tcg/tcg-gvec-desc.h" |
| #include "exec/helper-proto.h" |
| #include "exec/cpu_ldst.h" |
| #include "exec/exec-all.h" |
| #include "qemu/int128.h" |
| #include "fpu/softfloat.h" |
| #include "vec_internal.h" |
| #include "sve_ldst_internal.h" |
| |
| /* ResetSVEState */ |
| void arm_reset_sve_state(CPUARMState *env) |
| { |
| memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs)); |
| /* Recall that FFR is stored as pregs[16]. */ |
| memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs)); |
| vfp_set_fpcr(env, 0x0800009f); |
| } |
| |
| void helper_set_pstate_sm(CPUARMState *env, uint32_t i) |
| { |
| if (i == FIELD_EX64(env->svcr, SVCR, SM)) { |
| return; |
| } |
| env->svcr ^= R_SVCR_SM_MASK; |
| arm_reset_sve_state(env); |
| } |
| |
| void helper_set_pstate_za(CPUARMState *env, uint32_t i) |
| { |
| if (i == FIELD_EX64(env->svcr, SVCR, ZA)) { |
| return; |
| } |
| env->svcr ^= R_SVCR_ZA_MASK; |
| |
| /* |
| * ResetSMEState. |
| * |
| * SetPSTATE_ZA zeros on enable and disable. We can zero this only |
| * on enable: while disabled, the storage is inaccessible and the |
| * value does not matter. We're not saving the storage in vmstate |
| * when disabled either. |
| */ |
| if (i) { |
| memset(env->zarray, 0, sizeof(env->zarray)); |
| } |
| } |
| |
| void helper_sme_zero(CPUARMState *env, uint32_t imm, uint32_t svl) |
| { |
| uint32_t i; |
| |
| /* |
| * Special case clearing the entire ZA space. |
| * This falls into the CONSTRAINED UNPREDICTABLE zeroing of any |
| * parts of the ZA storage outside of SVL. |
| */ |
| if (imm == 0xff) { |
| memset(env->zarray, 0, sizeof(env->zarray)); |
| return; |
| } |
| |
| /* |
| * Recall that ZAnH.D[m] is spread across ZA[n+8*m], |
| * so each row is discontiguous within ZA[]. |
| */ |
| for (i = 0; i < svl; i++) { |
| if (imm & (1 << (i % 8))) { |
| memset(&env->zarray[i], 0, svl); |
| } |
| } |
| } |
| |
| |
| /* |
| * When considering the ZA storage as an array of elements of |
| * type T, the index within that array of the Nth element of |
| * a vertical slice of a tile can be calculated like this, |
| * regardless of the size of type T. This is because the tiles |
| * are interleaved, so if type T is size N bytes then row 1 of |
| * the tile is N rows away from row 0. The division by N to |
| * convert a byte offset into an array index and the multiplication |
| * by N to convert from vslice-index-within-the-tile to |
| * the index within the ZA storage cancel out. |
| */ |
| #define tile_vslice_index(i) ((i) * sizeof(ARMVectorReg)) |
| |
| /* |
| * When doing byte arithmetic on the ZA storage, the element |
| * byteoff bytes away in a tile vertical slice is always this |
| * many bytes away in the ZA storage, regardless of the |
| * size of the tile element, assuming that byteoff is a multiple |
| * of the element size. Again this is because of the interleaving |
| * of the tiles. For instance if we have 1 byte per element then |
| * each row of the ZA storage has one byte of the vslice data, |
| * and (counting from 0) byte 8 goes in row 8 of the storage |
| * at offset (8 * row-size-in-bytes). |
| * If we have 8 bytes per element then each row of the ZA storage |
| * has 8 bytes of the data, but there are 8 interleaved tiles and |
| * so byte 8 of the data goes into row 1 of the tile, |
| * which is again row 8 of the storage, so the offset is still |
| * (8 * row-size-in-bytes). Similarly for other element sizes. |
| */ |
| #define tile_vslice_offset(byteoff) ((byteoff) * sizeof(ARMVectorReg)) |
| |
| |
| /* |
| * Move Zreg vector to ZArray column. |
| */ |
| #define DO_MOVA_C(NAME, TYPE, H) \ |
| void HELPER(NAME)(void *za, void *vn, void *vg, uint32_t desc) \ |
| { \ |
| int i, oprsz = simd_oprsz(desc); \ |
| for (i = 0; i < oprsz; ) { \ |
| uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \ |
| do { \ |
| if (pg & 1) { \ |
| *(TYPE *)(za + tile_vslice_offset(i)) = *(TYPE *)(vn + H(i)); \ |
| } \ |
| i += sizeof(TYPE); \ |
| pg >>= sizeof(TYPE); \ |
| } while (i & 15); \ |
| } \ |
| } |
| |
| DO_MOVA_C(sme_mova_cz_b, uint8_t, H1) |
| DO_MOVA_C(sme_mova_cz_h, uint16_t, H1_2) |
| DO_MOVA_C(sme_mova_cz_s, uint32_t, H1_4) |
| |
| void HELPER(sme_mova_cz_d)(void *za, void *vn, void *vg, uint32_t desc) |
| { |
| int i, oprsz = simd_oprsz(desc) / 8; |
| uint8_t *pg = vg; |
| uint64_t *n = vn; |
| uint64_t *a = za; |
| |
| for (i = 0; i < oprsz; i++) { |
| if (pg[H1(i)] & 1) { |
| a[tile_vslice_index(i)] = n[i]; |
| } |
| } |
| } |
| |
| void HELPER(sme_mova_cz_q)(void *za, void *vn, void *vg, uint32_t desc) |
| { |
| int i, oprsz = simd_oprsz(desc) / 16; |
| uint16_t *pg = vg; |
| Int128 *n = vn; |
| Int128 *a = za; |
| |
| /* |
| * Int128 is used here simply to copy 16 bytes, and to simplify |
| * the address arithmetic. |
| */ |
| for (i = 0; i < oprsz; i++) { |
| if (pg[H2(i)] & 1) { |
| a[tile_vslice_index(i)] = n[i]; |
| } |
| } |
| } |
| |
| #undef DO_MOVA_C |
| |
| /* |
| * Move ZArray column to Zreg vector. |
| */ |
| #define DO_MOVA_Z(NAME, TYPE, H) \ |
| void HELPER(NAME)(void *vd, void *za, void *vg, uint32_t desc) \ |
| { \ |
| int i, oprsz = simd_oprsz(desc); \ |
| for (i = 0; i < oprsz; ) { \ |
| uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \ |
| do { \ |
| if (pg & 1) { \ |
| *(TYPE *)(vd + H(i)) = *(TYPE *)(za + tile_vslice_offset(i)); \ |
| } \ |
| i += sizeof(TYPE); \ |
| pg >>= sizeof(TYPE); \ |
| } while (i & 15); \ |
| } \ |
| } |
| |
| DO_MOVA_Z(sme_mova_zc_b, uint8_t, H1) |
| DO_MOVA_Z(sme_mova_zc_h, uint16_t, H1_2) |
| DO_MOVA_Z(sme_mova_zc_s, uint32_t, H1_4) |
| |
| void HELPER(sme_mova_zc_d)(void *vd, void *za, void *vg, uint32_t desc) |
| { |
| int i, oprsz = simd_oprsz(desc) / 8; |
| uint8_t *pg = vg; |
| uint64_t *d = vd; |
| uint64_t *a = za; |
| |
| for (i = 0; i < oprsz; i++) { |
| if (pg[H1(i)] & 1) { |
| d[i] = a[tile_vslice_index(i)]; |
| } |
| } |
| } |
| |
| void HELPER(sme_mova_zc_q)(void *vd, void *za, void *vg, uint32_t desc) |
| { |
| int i, oprsz = simd_oprsz(desc) / 16; |
| uint16_t *pg = vg; |
| Int128 *d = vd; |
| Int128 *a = za; |
| |
| /* |
| * Int128 is used here simply to copy 16 bytes, and to simplify |
| * the address arithmetic. |
| */ |
| for (i = 0; i < oprsz; i++, za += sizeof(ARMVectorReg)) { |
| if (pg[H2(i)] & 1) { |
| d[i] = a[tile_vslice_index(i)]; |
| } |
| } |
| } |
| |
| #undef DO_MOVA_Z |
| |
| /* |
| * Clear elements in a tile slice comprising len bytes. |
| */ |
| |
| typedef void ClearFn(void *ptr, size_t off, size_t len); |
| |
| static void clear_horizontal(void *ptr, size_t off, size_t len) |
| { |
| memset(ptr + off, 0, len); |
| } |
| |
| static void clear_vertical_b(void *vptr, size_t off, size_t len) |
| { |
| for (size_t i = 0; i < len; ++i) { |
| *(uint8_t *)(vptr + tile_vslice_offset(i + off)) = 0; |
| } |
| } |
| |
| static void clear_vertical_h(void *vptr, size_t off, size_t len) |
| { |
| for (size_t i = 0; i < len; i += 2) { |
| *(uint16_t *)(vptr + tile_vslice_offset(i + off)) = 0; |
| } |
| } |
| |
| static void clear_vertical_s(void *vptr, size_t off, size_t len) |
| { |
| for (size_t i = 0; i < len; i += 4) { |
| *(uint32_t *)(vptr + tile_vslice_offset(i + off)) = 0; |
| } |
| } |
| |
| static void clear_vertical_d(void *vptr, size_t off, size_t len) |
| { |
| for (size_t i = 0; i < len; i += 8) { |
| *(uint64_t *)(vptr + tile_vslice_offset(i + off)) = 0; |
| } |
| } |
| |
| static void clear_vertical_q(void *vptr, size_t off, size_t len) |
| { |
| for (size_t i = 0; i < len; i += 16) { |
| memset(vptr + tile_vslice_offset(i + off), 0, 16); |
| } |
| } |
| |
| /* |
| * Copy elements from an array into a tile slice comprising len bytes. |
| */ |
| |
| typedef void CopyFn(void *dst, const void *src, size_t len); |
| |
| static void copy_horizontal(void *dst, const void *src, size_t len) |
| { |
| memcpy(dst, src, len); |
| } |
| |
| static void copy_vertical_b(void *vdst, const void *vsrc, size_t len) |
| { |
| const uint8_t *src = vsrc; |
| uint8_t *dst = vdst; |
| size_t i; |
| |
| for (i = 0; i < len; ++i) { |
| dst[tile_vslice_index(i)] = src[i]; |
| } |
| } |
| |
| static void copy_vertical_h(void *vdst, const void *vsrc, size_t len) |
| { |
| const uint16_t *src = vsrc; |
| uint16_t *dst = vdst; |
| size_t i; |
| |
| for (i = 0; i < len / 2; ++i) { |
| dst[tile_vslice_index(i)] = src[i]; |
| } |
| } |
| |
| static void copy_vertical_s(void *vdst, const void *vsrc, size_t len) |
| { |
| const uint32_t *src = vsrc; |
| uint32_t *dst = vdst; |
| size_t i; |
| |
| for (i = 0; i < len / 4; ++i) { |
| dst[tile_vslice_index(i)] = src[i]; |
| } |
| } |
| |
| static void copy_vertical_d(void *vdst, const void *vsrc, size_t len) |
| { |
| const uint64_t *src = vsrc; |
| uint64_t *dst = vdst; |
| size_t i; |
| |
| for (i = 0; i < len / 8; ++i) { |
| dst[tile_vslice_index(i)] = src[i]; |
| } |
| } |
| |
| static void copy_vertical_q(void *vdst, const void *vsrc, size_t len) |
| { |
| for (size_t i = 0; i < len; i += 16) { |
| memcpy(vdst + tile_vslice_offset(i), vsrc + i, 16); |
| } |
| } |
| |
| /* |
| * Host and TLB primitives for vertical tile slice addressing. |
| */ |
| |
| #define DO_LD(NAME, TYPE, HOST, TLB) \ |
| static inline void sme_##NAME##_v_host(void *za, intptr_t off, void *host) \ |
| { \ |
| TYPE val = HOST(host); \ |
| *(TYPE *)(za + tile_vslice_offset(off)) = val; \ |
| } \ |
| static inline void sme_##NAME##_v_tlb(CPUARMState *env, void *za, \ |
| intptr_t off, target_ulong addr, uintptr_t ra) \ |
| { \ |
| TYPE val = TLB(env, useronly_clean_ptr(addr), ra); \ |
| *(TYPE *)(za + tile_vslice_offset(off)) = val; \ |
| } |
| |
| #define DO_ST(NAME, TYPE, HOST, TLB) \ |
| static inline void sme_##NAME##_v_host(void *za, intptr_t off, void *host) \ |
| { \ |
| TYPE val = *(TYPE *)(za + tile_vslice_offset(off)); \ |
| HOST(host, val); \ |
| } \ |
| static inline void sme_##NAME##_v_tlb(CPUARMState *env, void *za, \ |
| intptr_t off, target_ulong addr, uintptr_t ra) \ |
| { \ |
| TYPE val = *(TYPE *)(za + tile_vslice_offset(off)); \ |
| TLB(env, useronly_clean_ptr(addr), val, ra); \ |
| } |
| |
| /* |
| * The ARMVectorReg elements are stored in host-endian 64-bit units. |
| * For 128-bit quantities, the sequence defined by the Elem[] pseudocode |
| * corresponds to storing the two 64-bit pieces in little-endian order. |
| */ |
| #define DO_LDQ(HNAME, VNAME, BE, HOST, TLB) \ |
| static inline void HNAME##_host(void *za, intptr_t off, void *host) \ |
| { \ |
| uint64_t val0 = HOST(host), val1 = HOST(host + 8); \ |
| uint64_t *ptr = za + off; \ |
| ptr[0] = BE ? val1 : val0, ptr[1] = BE ? val0 : val1; \ |
| } \ |
| static inline void VNAME##_v_host(void *za, intptr_t off, void *host) \ |
| { \ |
| HNAME##_host(za, tile_vslice_offset(off), host); \ |
| } \ |
| static inline void HNAME##_tlb(CPUARMState *env, void *za, intptr_t off, \ |
| target_ulong addr, uintptr_t ra) \ |
| { \ |
| uint64_t val0 = TLB(env, useronly_clean_ptr(addr), ra); \ |
| uint64_t val1 = TLB(env, useronly_clean_ptr(addr + 8), ra); \ |
| uint64_t *ptr = za + off; \ |
| ptr[0] = BE ? val1 : val0, ptr[1] = BE ? val0 : val1; \ |
| } \ |
| static inline void VNAME##_v_tlb(CPUARMState *env, void *za, intptr_t off, \ |
| target_ulong addr, uintptr_t ra) \ |
| { \ |
| HNAME##_tlb(env, za, tile_vslice_offset(off), addr, ra); \ |
| } |
| |
| #define DO_STQ(HNAME, VNAME, BE, HOST, TLB) \ |
| static inline void HNAME##_host(void *za, intptr_t off, void *host) \ |
| { \ |
| uint64_t *ptr = za + off; \ |
| HOST(host, ptr[BE]); \ |
| HOST(host + 8, ptr[!BE]); \ |
| } \ |
| static inline void VNAME##_v_host(void *za, intptr_t off, void *host) \ |
| { \ |
| HNAME##_host(za, tile_vslice_offset(off), host); \ |
| } \ |
| static inline void HNAME##_tlb(CPUARMState *env, void *za, intptr_t off, \ |
| target_ulong addr, uintptr_t ra) \ |
| { \ |
| uint64_t *ptr = za + off; \ |
| TLB(env, useronly_clean_ptr(addr), ptr[BE], ra); \ |
| TLB(env, useronly_clean_ptr(addr + 8), ptr[!BE], ra); \ |
| } \ |
| static inline void VNAME##_v_tlb(CPUARMState *env, void *za, intptr_t off, \ |
| target_ulong addr, uintptr_t ra) \ |
| { \ |
| HNAME##_tlb(env, za, tile_vslice_offset(off), addr, ra); \ |
| } |
| |
| DO_LD(ld1b, uint8_t, ldub_p, cpu_ldub_data_ra) |
| DO_LD(ld1h_be, uint16_t, lduw_be_p, cpu_lduw_be_data_ra) |
| DO_LD(ld1h_le, uint16_t, lduw_le_p, cpu_lduw_le_data_ra) |
| DO_LD(ld1s_be, uint32_t, ldl_be_p, cpu_ldl_be_data_ra) |
| DO_LD(ld1s_le, uint32_t, ldl_le_p, cpu_ldl_le_data_ra) |
| DO_LD(ld1d_be, uint64_t, ldq_be_p, cpu_ldq_be_data_ra) |
| DO_LD(ld1d_le, uint64_t, ldq_le_p, cpu_ldq_le_data_ra) |
| |
| DO_LDQ(sve_ld1qq_be, sme_ld1q_be, 1, ldq_be_p, cpu_ldq_be_data_ra) |
| DO_LDQ(sve_ld1qq_le, sme_ld1q_le, 0, ldq_le_p, cpu_ldq_le_data_ra) |
| |
| DO_ST(st1b, uint8_t, stb_p, cpu_stb_data_ra) |
| DO_ST(st1h_be, uint16_t, stw_be_p, cpu_stw_be_data_ra) |
| DO_ST(st1h_le, uint16_t, stw_le_p, cpu_stw_le_data_ra) |
| DO_ST(st1s_be, uint32_t, stl_be_p, cpu_stl_be_data_ra) |
| DO_ST(st1s_le, uint32_t, stl_le_p, cpu_stl_le_data_ra) |
| DO_ST(st1d_be, uint64_t, stq_be_p, cpu_stq_be_data_ra) |
| DO_ST(st1d_le, uint64_t, stq_le_p, cpu_stq_le_data_ra) |
| |
| DO_STQ(sve_st1qq_be, sme_st1q_be, 1, stq_be_p, cpu_stq_be_data_ra) |
| DO_STQ(sve_st1qq_le, sme_st1q_le, 0, stq_le_p, cpu_stq_le_data_ra) |
| |
| #undef DO_LD |
| #undef DO_ST |
| #undef DO_LDQ |
| #undef DO_STQ |
| |
| /* |
| * Common helper for all contiguous predicated loads. |
| */ |
| |
| static inline QEMU_ALWAYS_INLINE |
| void sme_ld1(CPUARMState *env, void *za, uint64_t *vg, |
| const target_ulong addr, uint32_t desc, const uintptr_t ra, |
| const int esz, uint32_t mtedesc, bool vertical, |
| sve_ldst1_host_fn *host_fn, |
| sve_ldst1_tlb_fn *tlb_fn, |
| ClearFn *clr_fn, |
| CopyFn *cpy_fn) |
| { |
| const intptr_t reg_max = simd_oprsz(desc); |
| const intptr_t esize = 1 << esz; |
| intptr_t reg_off, reg_last; |
| SVEContLdSt info; |
| void *host; |
| int flags; |
| |
| /* Find the active elements. */ |
| if (!sve_cont_ldst_elements(&info, addr, vg, reg_max, esz, esize)) { |
| /* The entire predicate was false; no load occurs. */ |
| clr_fn(za, 0, reg_max); |
| return; |
| } |
| |
| /* Probe the page(s). Exit with exception for any invalid page. */ |
| sve_cont_ldst_pages(&info, FAULT_ALL, env, addr, MMU_DATA_LOAD, ra); |
| |
| /* Handle watchpoints for all active elements. */ |
| sve_cont_ldst_watchpoints(&info, env, vg, addr, esize, esize, |
| BP_MEM_READ, ra); |
| |
| /* |
| * Handle mte checks for all active elements. |
| * Since TBI must be set for MTE, !mtedesc => !mte_active. |
| */ |
| if (mtedesc) { |
| sve_cont_ldst_mte_check(&info, env, vg, addr, esize, esize, |
| mtedesc, ra); |
| } |
| |
| flags = info.page[0].flags | info.page[1].flags; |
| if (unlikely(flags != 0)) { |
| #ifdef CONFIG_USER_ONLY |
| g_assert_not_reached(); |
| #else |
| /* |
| * At least one page includes MMIO. |
| * Any bus operation can fail with cpu_transaction_failed, |
| * which for ARM will raise SyncExternal. Perform the load |
| * into scratch memory to preserve register state until the end. |
| */ |
| ARMVectorReg scratch = { }; |
| |
| reg_off = info.reg_off_first[0]; |
| reg_last = info.reg_off_last[1]; |
| if (reg_last < 0) { |
| reg_last = info.reg_off_split; |
| if (reg_last < 0) { |
| reg_last = info.reg_off_last[0]; |
| } |
| } |
| |
| do { |
| uint64_t pg = vg[reg_off >> 6]; |
| do { |
| if ((pg >> (reg_off & 63)) & 1) { |
| tlb_fn(env, &scratch, reg_off, addr + reg_off, ra); |
| } |
| reg_off += esize; |
| } while (reg_off & 63); |
| } while (reg_off <= reg_last); |
| |
| cpy_fn(za, &scratch, reg_max); |
| return; |
| #endif |
| } |
| |
| /* The entire operation is in RAM, on valid pages. */ |
| |
| reg_off = info.reg_off_first[0]; |
| reg_last = info.reg_off_last[0]; |
| host = info.page[0].host; |
| |
| if (!vertical) { |
| memset(za, 0, reg_max); |
| } else if (reg_off) { |
| clr_fn(za, 0, reg_off); |
| } |
| |
| while (reg_off <= reg_last) { |
| uint64_t pg = vg[reg_off >> 6]; |
| do { |
| if ((pg >> (reg_off & 63)) & 1) { |
| host_fn(za, reg_off, host + reg_off); |
| } else if (vertical) { |
| clr_fn(za, reg_off, esize); |
| } |
| reg_off += esize; |
| } while (reg_off <= reg_last && (reg_off & 63)); |
| } |
| |
| /* |
| * Use the slow path to manage the cross-page misalignment. |
| * But we know this is RAM and cannot trap. |
| */ |
| reg_off = info.reg_off_split; |
| if (unlikely(reg_off >= 0)) { |
| tlb_fn(env, za, reg_off, addr + reg_off, ra); |
| } |
| |
| reg_off = info.reg_off_first[1]; |
| if (unlikely(reg_off >= 0)) { |
| reg_last = info.reg_off_last[1]; |
| host = info.page[1].host; |
| |
| do { |
| uint64_t pg = vg[reg_off >> 6]; |
| do { |
| if ((pg >> (reg_off & 63)) & 1) { |
| host_fn(za, reg_off, host + reg_off); |
| } else if (vertical) { |
| clr_fn(za, reg_off, esize); |
| } |
| reg_off += esize; |
| } while (reg_off & 63); |
| } while (reg_off <= reg_last); |
| } |
| } |
| |
| static inline QEMU_ALWAYS_INLINE |
| void sme_ld1_mte(CPUARMState *env, void *za, uint64_t *vg, |
| target_ulong addr, uint32_t desc, uintptr_t ra, |
| const int esz, bool vertical, |
| sve_ldst1_host_fn *host_fn, |
| sve_ldst1_tlb_fn *tlb_fn, |
| ClearFn *clr_fn, |
| CopyFn *cpy_fn) |
| { |
| uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); |
| int bit55 = extract64(addr, 55, 1); |
| |
| /* Remove mtedesc from the normal sve descriptor. */ |
| desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); |
| |
| /* Perform gross MTE suppression early. */ |
| if (!tbi_check(mtedesc, bit55) || |
| tcma_check(mtedesc, bit55, allocation_tag_from_addr(addr))) { |
| mtedesc = 0; |
| } |
| |
| sme_ld1(env, za, vg, addr, desc, ra, esz, mtedesc, vertical, |
| host_fn, tlb_fn, clr_fn, cpy_fn); |
| } |
| |
| #define DO_LD(L, END, ESZ) \ |
| void HELPER(sme_ld1##L##END##_h)(CPUARMState *env, void *za, void *vg, \ |
| target_ulong addr, uint32_t desc) \ |
| { \ |
| sme_ld1(env, za, vg, addr, desc, GETPC(), ESZ, 0, false, \ |
| sve_ld1##L##L##END##_host, sve_ld1##L##L##END##_tlb, \ |
| clear_horizontal, copy_horizontal); \ |
| } \ |
| void HELPER(sme_ld1##L##END##_v)(CPUARMState *env, void *za, void *vg, \ |
| target_ulong addr, uint32_t desc) \ |
| { \ |
| sme_ld1(env, za, vg, addr, desc, GETPC(), ESZ, 0, true, \ |
| sme_ld1##L##END##_v_host, sme_ld1##L##END##_v_tlb, \ |
| clear_vertical_##L, copy_vertical_##L); \ |
| } \ |
| void HELPER(sme_ld1##L##END##_h_mte)(CPUARMState *env, void *za, void *vg, \ |
| target_ulong addr, uint32_t desc) \ |
| { \ |
| sme_ld1_mte(env, za, vg, addr, desc, GETPC(), ESZ, false, \ |
| sve_ld1##L##L##END##_host, sve_ld1##L##L##END##_tlb, \ |
| clear_horizontal, copy_horizontal); \ |
| } \ |
| void HELPER(sme_ld1##L##END##_v_mte)(CPUARMState *env, void *za, void *vg, \ |
| target_ulong addr, uint32_t desc) \ |
| { \ |
| sme_ld1_mte(env, za, vg, addr, desc, GETPC(), ESZ, true, \ |
| sme_ld1##L##END##_v_host, sme_ld1##L##END##_v_tlb, \ |
| clear_vertical_##L, copy_vertical_##L); \ |
| } |
| |
| DO_LD(b, , MO_8) |
| DO_LD(h, _be, MO_16) |
| DO_LD(h, _le, MO_16) |
| DO_LD(s, _be, MO_32) |
| DO_LD(s, _le, MO_32) |
| DO_LD(d, _be, MO_64) |
| DO_LD(d, _le, MO_64) |
| DO_LD(q, _be, MO_128) |
| DO_LD(q, _le, MO_128) |
| |
| #undef DO_LD |
| |
| /* |
| * Common helper for all contiguous predicated stores. |
| */ |
| |
| static inline QEMU_ALWAYS_INLINE |
| void sme_st1(CPUARMState *env, void *za, uint64_t *vg, |
| const target_ulong addr, uint32_t desc, const uintptr_t ra, |
| const int esz, uint32_t mtedesc, bool vertical, |
| sve_ldst1_host_fn *host_fn, |
| sve_ldst1_tlb_fn *tlb_fn) |
| { |
| const intptr_t reg_max = simd_oprsz(desc); |
| const intptr_t esize = 1 << esz; |
| intptr_t reg_off, reg_last; |
| SVEContLdSt info; |
| void *host; |
| int flags; |
| |
| /* Find the active elements. */ |
| if (!sve_cont_ldst_elements(&info, addr, vg, reg_max, esz, esize)) { |
| /* The entire predicate was false; no store occurs. */ |
| return; |
| } |
| |
| /* Probe the page(s). Exit with exception for any invalid page. */ |
| sve_cont_ldst_pages(&info, FAULT_ALL, env, addr, MMU_DATA_STORE, ra); |
| |
| /* Handle watchpoints for all active elements. */ |
| sve_cont_ldst_watchpoints(&info, env, vg, addr, esize, esize, |
| BP_MEM_WRITE, ra); |
| |
| /* |
| * Handle mte checks for all active elements. |
| * Since TBI must be set for MTE, !mtedesc => !mte_active. |
| */ |
| if (mtedesc) { |
| sve_cont_ldst_mte_check(&info, env, vg, addr, esize, esize, |
| mtedesc, ra); |
| } |
| |
| flags = info.page[0].flags | info.page[1].flags; |
| if (unlikely(flags != 0)) { |
| #ifdef CONFIG_USER_ONLY |
| g_assert_not_reached(); |
| #else |
| /* |
| * At least one page includes MMIO. |
| * Any bus operation can fail with cpu_transaction_failed, |
| * which for ARM will raise SyncExternal. We cannot avoid |
| * this fault and will leave with the store incomplete. |
| */ |
| reg_off = info.reg_off_first[0]; |
| reg_last = info.reg_off_last[1]; |
| if (reg_last < 0) { |
| reg_last = info.reg_off_split; |
| if (reg_last < 0) { |
| reg_last = info.reg_off_last[0]; |
| } |
| } |
| |
| do { |
| uint64_t pg = vg[reg_off >> 6]; |
| do { |
| if ((pg >> (reg_off & 63)) & 1) { |
| tlb_fn(env, za, reg_off, addr + reg_off, ra); |
| } |
| reg_off += esize; |
| } while (reg_off & 63); |
| } while (reg_off <= reg_last); |
| return; |
| #endif |
| } |
| |
| reg_off = info.reg_off_first[0]; |
| reg_last = info.reg_off_last[0]; |
| host = info.page[0].host; |
| |
| while (reg_off <= reg_last) { |
| uint64_t pg = vg[reg_off >> 6]; |
| do { |
| if ((pg >> (reg_off & 63)) & 1) { |
| host_fn(za, reg_off, host + reg_off); |
| } |
| reg_off += 1 << esz; |
| } while (reg_off <= reg_last && (reg_off & 63)); |
| } |
| |
| /* |
| * Use the slow path to manage the cross-page misalignment. |
| * But we know this is RAM and cannot trap. |
| */ |
| reg_off = info.reg_off_split; |
| if (unlikely(reg_off >= 0)) { |
| tlb_fn(env, za, reg_off, addr + reg_off, ra); |
| } |
| |
| reg_off = info.reg_off_first[1]; |
| if (unlikely(reg_off >= 0)) { |
| reg_last = info.reg_off_last[1]; |
| host = info.page[1].host; |
| |
| do { |
| uint64_t pg = vg[reg_off >> 6]; |
| do { |
| if ((pg >> (reg_off & 63)) & 1) { |
| host_fn(za, reg_off, host + reg_off); |
| } |
| reg_off += 1 << esz; |
| } while (reg_off & 63); |
| } while (reg_off <= reg_last); |
| } |
| } |
| |
| static inline QEMU_ALWAYS_INLINE |
| void sme_st1_mte(CPUARMState *env, void *za, uint64_t *vg, target_ulong addr, |
| uint32_t desc, uintptr_t ra, int esz, bool vertical, |
| sve_ldst1_host_fn *host_fn, |
| sve_ldst1_tlb_fn *tlb_fn) |
| { |
| uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); |
| int bit55 = extract64(addr, 55, 1); |
| |
| /* Remove mtedesc from the normal sve descriptor. */ |
| desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT); |
| |
| /* Perform gross MTE suppression early. */ |
| if (!tbi_check(mtedesc, bit55) || |
| tcma_check(mtedesc, bit55, allocation_tag_from_addr(addr))) { |
| mtedesc = 0; |
| } |
| |
| sme_st1(env, za, vg, addr, desc, ra, esz, mtedesc, |
| vertical, host_fn, tlb_fn); |
| } |
| |
| #define DO_ST(L, END, ESZ) \ |
| void HELPER(sme_st1##L##END##_h)(CPUARMState *env, void *za, void *vg, \ |
| target_ulong addr, uint32_t desc) \ |
| { \ |
| sme_st1(env, za, vg, addr, desc, GETPC(), ESZ, 0, false, \ |
| sve_st1##L##L##END##_host, sve_st1##L##L##END##_tlb); \ |
| } \ |
| void HELPER(sme_st1##L##END##_v)(CPUARMState *env, void *za, void *vg, \ |
| target_ulong addr, uint32_t desc) \ |
| { \ |
| sme_st1(env, za, vg, addr, desc, GETPC(), ESZ, 0, true, \ |
| sme_st1##L##END##_v_host, sme_st1##L##END##_v_tlb); \ |
| } \ |
| void HELPER(sme_st1##L##END##_h_mte)(CPUARMState *env, void *za, void *vg, \ |
| target_ulong addr, uint32_t desc) \ |
| { \ |
| sme_st1_mte(env, za, vg, addr, desc, GETPC(), ESZ, false, \ |
| sve_st1##L##L##END##_host, sve_st1##L##L##END##_tlb); \ |
| } \ |
| void HELPER(sme_st1##L##END##_v_mte)(CPUARMState *env, void *za, void *vg, \ |
| target_ulong addr, uint32_t desc) \ |
| { \ |
| sme_st1_mte(env, za, vg, addr, desc, GETPC(), ESZ, true, \ |
| sme_st1##L##END##_v_host, sme_st1##L##END##_v_tlb); \ |
| } |
| |
| DO_ST(b, , MO_8) |
| DO_ST(h, _be, MO_16) |
| DO_ST(h, _le, MO_16) |
| DO_ST(s, _be, MO_32) |
| DO_ST(s, _le, MO_32) |
| DO_ST(d, _be, MO_64) |
| DO_ST(d, _le, MO_64) |
| DO_ST(q, _be, MO_128) |
| DO_ST(q, _le, MO_128) |
| |
| #undef DO_ST |
| |
| void HELPER(sme_addha_s)(void *vzda, void *vzn, void *vpn, |
| void *vpm, uint32_t desc) |
| { |
| intptr_t row, col, oprsz = simd_oprsz(desc) / 4; |
| uint64_t *pn = vpn, *pm = vpm; |
| uint32_t *zda = vzda, *zn = vzn; |
| |
| for (row = 0; row < oprsz; ) { |
| uint64_t pa = pn[row >> 4]; |
| do { |
| if (pa & 1) { |
| for (col = 0; col < oprsz; ) { |
| uint64_t pb = pm[col >> 4]; |
| do { |
| if (pb & 1) { |
| zda[tile_vslice_index(row) + H4(col)] += zn[H4(col)]; |
| } |
| pb >>= 4; |
| } while (++col & 15); |
| } |
| } |
| pa >>= 4; |
| } while (++row & 15); |
| } |
| } |
| |
| void HELPER(sme_addha_d)(void *vzda, void *vzn, void *vpn, |
| void *vpm, uint32_t desc) |
| { |
| intptr_t row, col, oprsz = simd_oprsz(desc) / 8; |
| uint8_t *pn = vpn, *pm = vpm; |
| uint64_t *zda = vzda, *zn = vzn; |
| |
| for (row = 0; row < oprsz; ++row) { |
| if (pn[H1(row)] & 1) { |
| for (col = 0; col < oprsz; ++col) { |
| if (pm[H1(col)] & 1) { |
| zda[tile_vslice_index(row) + col] += zn[col]; |
| } |
| } |
| } |
| } |
| } |
| |
| void HELPER(sme_addva_s)(void *vzda, void *vzn, void *vpn, |
| void *vpm, uint32_t desc) |
| { |
| intptr_t row, col, oprsz = simd_oprsz(desc) / 4; |
| uint64_t *pn = vpn, *pm = vpm; |
| uint32_t *zda = vzda, *zn = vzn; |
| |
| for (row = 0; row < oprsz; ) { |
| uint64_t pa = pn[row >> 4]; |
| do { |
| if (pa & 1) { |
| uint32_t zn_row = zn[H4(row)]; |
| for (col = 0; col < oprsz; ) { |
| uint64_t pb = pm[col >> 4]; |
| do { |
| if (pb & 1) { |
| zda[tile_vslice_index(row) + H4(col)] += zn_row; |
| } |
| pb >>= 4; |
| } while (++col & 15); |
| } |
| } |
| pa >>= 4; |
| } while (++row & 15); |
| } |
| } |
| |
| void HELPER(sme_addva_d)(void *vzda, void *vzn, void *vpn, |
| void *vpm, uint32_t desc) |
| { |
| intptr_t row, col, oprsz = simd_oprsz(desc) / 8; |
| uint8_t *pn = vpn, *pm = vpm; |
| uint64_t *zda = vzda, *zn = vzn; |
| |
| for (row = 0; row < oprsz; ++row) { |
| if (pn[H1(row)] & 1) { |
| uint64_t zn_row = zn[row]; |
| for (col = 0; col < oprsz; ++col) { |
| if (pm[H1(col)] & 1) { |
| zda[tile_vslice_index(row) + col] += zn_row; |
| } |
| } |
| } |
| } |
| } |
| |
| void HELPER(sme_fmopa_s)(void *vza, void *vzn, void *vzm, void *vpn, |
| void *vpm, void *vst, uint32_t desc) |
| { |
| intptr_t row, col, oprsz = simd_maxsz(desc); |
| uint32_t neg = simd_data(desc) << 31; |
| uint16_t *pn = vpn, *pm = vpm; |
| float_status fpst; |
| |
| /* |
| * Make a copy of float_status because this operation does not |
| * update the cumulative fp exception status. It also produces |
| * default nans. |
| */ |
| fpst = *(float_status *)vst; |
| set_default_nan_mode(true, &fpst); |
| |
| for (row = 0; row < oprsz; ) { |
| uint16_t pa = pn[H2(row >> 4)]; |
| do { |
| if (pa & 1) { |
| void *vza_row = vza + tile_vslice_offset(row); |
| uint32_t n = *(uint32_t *)(vzn + H1_4(row)) ^ neg; |
| |
| for (col = 0; col < oprsz; ) { |
| uint16_t pb = pm[H2(col >> 4)]; |
| do { |
| if (pb & 1) { |
| uint32_t *a = vza_row + H1_4(col); |
| uint32_t *m = vzm + H1_4(col); |
| *a = float32_muladd(n, *m, *a, 0, &fpst); |
| } |
| col += 4; |
| pb >>= 4; |
| } while (col & 15); |
| } |
| } |
| row += 4; |
| pa >>= 4; |
| } while (row & 15); |
| } |
| } |
| |
| void HELPER(sme_fmopa_d)(void *vza, void *vzn, void *vzm, void *vpn, |
| void *vpm, void *vst, uint32_t desc) |
| { |
| intptr_t row, col, oprsz = simd_oprsz(desc) / 8; |
| uint64_t neg = (uint64_t)simd_data(desc) << 63; |
| uint64_t *za = vza, *zn = vzn, *zm = vzm; |
| uint8_t *pn = vpn, *pm = vpm; |
| float_status fpst = *(float_status *)vst; |
| |
| set_default_nan_mode(true, &fpst); |
| |
| for (row = 0; row < oprsz; ++row) { |
| if (pn[H1(row)] & 1) { |
| uint64_t *za_row = &za[tile_vslice_index(row)]; |
| uint64_t n = zn[row] ^ neg; |
| |
| for (col = 0; col < oprsz; ++col) { |
| if (pm[H1(col)] & 1) { |
| uint64_t *a = &za_row[col]; |
| *a = float64_muladd(n, zm[col], *a, 0, &fpst); |
| } |
| } |
| } |
| } |
| } |
| |
| /* |
| * Alter PAIR as needed for controlling predicates being false, |
| * and for NEG on an enabled row element. |
| */ |
| static inline uint32_t f16mop_adj_pair(uint32_t pair, uint32_t pg, uint32_t neg) |
| { |
| /* |
| * The pseudocode uses a conditional negate after the conditional zero. |
| * It is simpler here to unconditionally negate before conditional zero. |
| */ |
| pair ^= neg; |
| if (!(pg & 1)) { |
| pair &= 0xffff0000u; |
| } |
| if (!(pg & 4)) { |
| pair &= 0x0000ffffu; |
| } |
| return pair; |
| } |
| |
| static float32 f16_dotadd(float32 sum, uint32_t e1, uint32_t e2, |
| float_status *s_f16, float_status *s_std, |
| float_status *s_odd) |
| { |
| /* |
| * We need three different float_status for different parts of this |
| * operation: |
| * - the input conversion of the float16 values must use the |
| * f16-specific float_status, so that the FPCR.FZ16 control is applied |
| * - operations on float32 including the final accumulation must use |
| * the normal float_status, so that FPCR.FZ is applied |
| * - we have pre-set-up copy of s_std which is set to round-to-odd, |
| * for the multiply (see below) |
| */ |
| float64 e1r = float16_to_float64(e1 & 0xffff, true, s_f16); |
| float64 e1c = float16_to_float64(e1 >> 16, true, s_f16); |
| float64 e2r = float16_to_float64(e2 & 0xffff, true, s_f16); |
| float64 e2c = float16_to_float64(e2 >> 16, true, s_f16); |
| float64 t64; |
| float32 t32; |
| |
| /* |
| * The ARM pseudocode function FPDot performs both multiplies |
| * and the add with a single rounding operation. Emulate this |
| * by performing the first multiply in round-to-odd, then doing |
| * the second multiply as fused multiply-add, and rounding to |
| * float32 all in one step. |
| */ |
| t64 = float64_mul(e1r, e2r, s_odd); |
| t64 = float64r32_muladd(e1c, e2c, t64, 0, s_std); |
| |
| /* This conversion is exact, because we've already rounded. */ |
| t32 = float64_to_float32(t64, s_std); |
| |
| /* The final accumulation step is not fused. */ |
| return float32_add(sum, t32, s_std); |
| } |
| |
| void HELPER(sme_fmopa_h)(void *vza, void *vzn, void *vzm, void *vpn, |
| void *vpm, CPUARMState *env, uint32_t desc) |
| { |
| intptr_t row, col, oprsz = simd_maxsz(desc); |
| uint32_t neg = simd_data(desc) * 0x80008000u; |
| uint16_t *pn = vpn, *pm = vpm; |
| float_status fpst_odd, fpst_std, fpst_f16; |
| |
| /* |
| * Make copies of fp_status and fp_status_f16, because this operation |
| * does not update the cumulative fp exception status. It also |
| * produces default NaNs. We also need a second copy of fp_status with |
| * round-to-odd -- see above. |
| */ |
| fpst_f16 = env->vfp.fp_status_f16; |
| fpst_std = env->vfp.fp_status; |
| set_default_nan_mode(true, &fpst_std); |
| set_default_nan_mode(true, &fpst_f16); |
| fpst_odd = fpst_std; |
| set_float_rounding_mode(float_round_to_odd, &fpst_odd); |
| |
| for (row = 0; row < oprsz; ) { |
| uint16_t prow = pn[H2(row >> 4)]; |
| do { |
| void *vza_row = vza + tile_vslice_offset(row); |
| uint32_t n = *(uint32_t *)(vzn + H1_4(row)); |
| |
| n = f16mop_adj_pair(n, prow, neg); |
| |
| for (col = 0; col < oprsz; ) { |
| uint16_t pcol = pm[H2(col >> 4)]; |
| do { |
| if (prow & pcol & 0b0101) { |
| uint32_t *a = vza_row + H1_4(col); |
| uint32_t m = *(uint32_t *)(vzm + H1_4(col)); |
| |
| m = f16mop_adj_pair(m, pcol, 0); |
| *a = f16_dotadd(*a, n, m, |
| &fpst_f16, &fpst_std, &fpst_odd); |
| } |
| col += 4; |
| pcol >>= 4; |
| } while (col & 15); |
| } |
| row += 4; |
| prow >>= 4; |
| } while (row & 15); |
| } |
| } |
| |
| void HELPER(sme_bfmopa)(void *vza, void *vzn, void *vzm, void *vpn, |
| void *vpm, uint32_t desc) |
| { |
| intptr_t row, col, oprsz = simd_maxsz(desc); |
| uint32_t neg = simd_data(desc) * 0x80008000u; |
| uint16_t *pn = vpn, *pm = vpm; |
| |
| for (row = 0; row < oprsz; ) { |
| uint16_t prow = pn[H2(row >> 4)]; |
| do { |
| void *vza_row = vza + tile_vslice_offset(row); |
| uint32_t n = *(uint32_t *)(vzn + H1_4(row)); |
| |
| n = f16mop_adj_pair(n, prow, neg); |
| |
| for (col = 0; col < oprsz; ) { |
| uint16_t pcol = pm[H2(col >> 4)]; |
| do { |
| if (prow & pcol & 0b0101) { |
| uint32_t *a = vza_row + H1_4(col); |
| uint32_t m = *(uint32_t *)(vzm + H1_4(col)); |
| |
| m = f16mop_adj_pair(m, pcol, 0); |
| *a = bfdotadd(*a, n, m); |
| } |
| col += 4; |
| pcol >>= 4; |
| } while (col & 15); |
| } |
| row += 4; |
| prow >>= 4; |
| } while (row & 15); |
| } |
| } |
| |
| typedef uint64_t IMOPFn(uint64_t, uint64_t, uint64_t, uint8_t, bool); |
| |
| static inline void do_imopa(uint64_t *za, uint64_t *zn, uint64_t *zm, |
| uint8_t *pn, uint8_t *pm, |
| uint32_t desc, IMOPFn *fn) |
| { |
| intptr_t row, col, oprsz = simd_oprsz(desc) / 8; |
| bool neg = simd_data(desc); |
| |
| for (row = 0; row < oprsz; ++row) { |
| uint8_t pa = pn[H1(row)]; |
| uint64_t *za_row = &za[tile_vslice_index(row)]; |
| uint64_t n = zn[row]; |
| |
| for (col = 0; col < oprsz; ++col) { |
| uint8_t pb = pm[H1(col)]; |
| uint64_t *a = &za_row[col]; |
| |
| *a = fn(n, zm[col], *a, pa & pb, neg); |
| } |
| } |
| } |
| |
| #define DEF_IMOP_32(NAME, NTYPE, MTYPE) \ |
| static uint64_t NAME(uint64_t n, uint64_t m, uint64_t a, uint8_t p, bool neg) \ |
| { \ |
| uint32_t sum0 = 0, sum1 = 0; \ |
| /* Apply P to N as a mask, making the inactive elements 0. */ \ |
| n &= expand_pred_b(p); \ |
| sum0 += (NTYPE)(n >> 0) * (MTYPE)(m >> 0); \ |
| sum0 += (NTYPE)(n >> 8) * (MTYPE)(m >> 8); \ |
| sum0 += (NTYPE)(n >> 16) * (MTYPE)(m >> 16); \ |
| sum0 += (NTYPE)(n >> 24) * (MTYPE)(m >> 24); \ |
| sum1 += (NTYPE)(n >> 32) * (MTYPE)(m >> 32); \ |
| sum1 += (NTYPE)(n >> 40) * (MTYPE)(m >> 40); \ |
| sum1 += (NTYPE)(n >> 48) * (MTYPE)(m >> 48); \ |
| sum1 += (NTYPE)(n >> 56) * (MTYPE)(m >> 56); \ |
| if (neg) { \ |
| sum0 = (uint32_t)a - sum0, sum1 = (uint32_t)(a >> 32) - sum1; \ |
| } else { \ |
| sum0 = (uint32_t)a + sum0, sum1 = (uint32_t)(a >> 32) + sum1; \ |
| } \ |
| return ((uint64_t)sum1 << 32) | sum0; \ |
| } |
| |
| #define DEF_IMOP_64(NAME, NTYPE, MTYPE) \ |
| static uint64_t NAME(uint64_t n, uint64_t m, uint64_t a, uint8_t p, bool neg) \ |
| { \ |
| uint64_t sum = 0; \ |
| /* Apply P to N as a mask, making the inactive elements 0. */ \ |
| n &= expand_pred_h(p); \ |
| sum += (int64_t)(NTYPE)(n >> 0) * (MTYPE)(m >> 0); \ |
| sum += (int64_t)(NTYPE)(n >> 16) * (MTYPE)(m >> 16); \ |
| sum += (int64_t)(NTYPE)(n >> 32) * (MTYPE)(m >> 32); \ |
| sum += (int64_t)(NTYPE)(n >> 48) * (MTYPE)(m >> 48); \ |
| return neg ? a - sum : a + sum; \ |
| } |
| |
| DEF_IMOP_32(smopa_s, int8_t, int8_t) |
| DEF_IMOP_32(umopa_s, uint8_t, uint8_t) |
| DEF_IMOP_32(sumopa_s, int8_t, uint8_t) |
| DEF_IMOP_32(usmopa_s, uint8_t, int8_t) |
| |
| DEF_IMOP_64(smopa_d, int16_t, int16_t) |
| DEF_IMOP_64(umopa_d, uint16_t, uint16_t) |
| DEF_IMOP_64(sumopa_d, int16_t, uint16_t) |
| DEF_IMOP_64(usmopa_d, uint16_t, int16_t) |
| |
| #define DEF_IMOPH(NAME) \ |
| void HELPER(sme_##NAME)(void *vza, void *vzn, void *vzm, void *vpn, \ |
| void *vpm, uint32_t desc) \ |
| { do_imopa(vza, vzn, vzm, vpn, vpm, desc, NAME); } |
| |
| DEF_IMOPH(smopa_s) |
| DEF_IMOPH(umopa_s) |
| DEF_IMOPH(sumopa_s) |
| DEF_IMOPH(usmopa_s) |
| DEF_IMOPH(smopa_d) |
| DEF_IMOPH(umopa_d) |
| DEF_IMOPH(sumopa_d) |
| DEF_IMOPH(usmopa_d) |