| /* |
| * ARM implementation of KVM hooks, 64 bit specific code |
| * |
| * Copyright Mian-M. Hamayun 2013, Virtual Open Systems |
| * Copyright Alex Bennée 2014, Linaro |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include "qemu/osdep.h" |
| #include <sys/ioctl.h> |
| #include <sys/ptrace.h> |
| |
| #include <linux/elf.h> |
| #include <linux/kvm.h> |
| |
| #include "qemu-common.h" |
| #include "cpu.h" |
| #include "qemu/timer.h" |
| #include "qemu/error-report.h" |
| #include "qemu/host-utils.h" |
| #include "qemu/main-loop.h" |
| #include "exec/gdbstub.h" |
| #include "sysemu/runstate.h" |
| #include "sysemu/kvm.h" |
| #include "sysemu/kvm_int.h" |
| #include "kvm_arm.h" |
| #include "internals.h" |
| #include "hw/acpi/acpi.h" |
| #include "hw/acpi/ghes.h" |
| #include "hw/arm/virt.h" |
| |
| static bool have_guest_debug; |
| |
| /* |
| * Although the ARM implementation of hardware assisted debugging |
| * allows for different breakpoints per-core, the current GDB |
| * interface treats them as a global pool of registers (which seems to |
| * be the case for x86, ppc and s390). As a result we store one copy |
| * of registers which is used for all active cores. |
| * |
| * Write access is serialised by virtue of the GDB protocol which |
| * updates things. Read access (i.e. when the values are copied to the |
| * vCPU) is also gated by GDB's run control. |
| * |
| * This is not unreasonable as most of the time debugging kernels you |
| * never know which core will eventually execute your function. |
| */ |
| |
| typedef struct { |
| uint64_t bcr; |
| uint64_t bvr; |
| } HWBreakpoint; |
| |
| /* The watchpoint registers can cover more area than the requested |
| * watchpoint so we need to store the additional information |
| * somewhere. We also need to supply a CPUWatchpoint to the GDB stub |
| * when the watchpoint is hit. |
| */ |
| typedef struct { |
| uint64_t wcr; |
| uint64_t wvr; |
| CPUWatchpoint details; |
| } HWWatchpoint; |
| |
| /* Maximum and current break/watch point counts */ |
| int max_hw_bps, max_hw_wps; |
| GArray *hw_breakpoints, *hw_watchpoints; |
| |
| #define cur_hw_wps (hw_watchpoints->len) |
| #define cur_hw_bps (hw_breakpoints->len) |
| #define get_hw_bp(i) (&g_array_index(hw_breakpoints, HWBreakpoint, i)) |
| #define get_hw_wp(i) (&g_array_index(hw_watchpoints, HWWatchpoint, i)) |
| |
| /** |
| * kvm_arm_init_debug() - check for guest debug capabilities |
| * @cs: CPUState |
| * |
| * kvm_check_extension returns the number of debug registers we have |
| * or 0 if we have none. |
| * |
| */ |
| static void kvm_arm_init_debug(CPUState *cs) |
| { |
| have_guest_debug = kvm_check_extension(cs->kvm_state, |
| KVM_CAP_SET_GUEST_DEBUG); |
| |
| max_hw_wps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_WPS); |
| hw_watchpoints = g_array_sized_new(true, true, |
| sizeof(HWWatchpoint), max_hw_wps); |
| |
| max_hw_bps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_BPS); |
| hw_breakpoints = g_array_sized_new(true, true, |
| sizeof(HWBreakpoint), max_hw_bps); |
| return; |
| } |
| |
| /** |
| * insert_hw_breakpoint() |
| * @addr: address of breakpoint |
| * |
| * See ARM ARM D2.9.1 for details but here we are only going to create |
| * simple un-linked breakpoints (i.e. we don't chain breakpoints |
| * together to match address and context or vmid). The hardware is |
| * capable of fancier matching but that will require exposing that |
| * fanciness to GDB's interface |
| * |
| * DBGBCR<n>_EL1, Debug Breakpoint Control Registers |
| * |
| * 31 24 23 20 19 16 15 14 13 12 9 8 5 4 3 2 1 0 |
| * +------+------+-------+-----+----+------+-----+------+-----+---+ |
| * | RES0 | BT | LBN | SSC | HMC| RES0 | BAS | RES0 | PMC | E | |
| * +------+------+-------+-----+----+------+-----+------+-----+---+ |
| * |
| * BT: Breakpoint type (0 = unlinked address match) |
| * LBN: Linked BP number (0 = unused) |
| * SSC/HMC/PMC: Security, Higher and Priv access control (Table D-12) |
| * BAS: Byte Address Select (RES1 for AArch64) |
| * E: Enable bit |
| * |
| * DBGBVR<n>_EL1, Debug Breakpoint Value Registers |
| * |
| * 63 53 52 49 48 2 1 0 |
| * +------+-----------+----------+-----+ |
| * | RESS | VA[52:49] | VA[48:2] | 0 0 | |
| * +------+-----------+----------+-----+ |
| * |
| * Depending on the addressing mode bits the top bits of the register |
| * are a sign extension of the highest applicable VA bit. Some |
| * versions of GDB don't do it correctly so we ensure they are correct |
| * here so future PC comparisons will work properly. |
| */ |
| |
| static int insert_hw_breakpoint(target_ulong addr) |
| { |
| HWBreakpoint brk = { |
| .bcr = 0x1, /* BCR E=1, enable */ |
| .bvr = sextract64(addr, 0, 53) |
| }; |
| |
| if (cur_hw_bps >= max_hw_bps) { |
| return -ENOBUFS; |
| } |
| |
| brk.bcr = deposit32(brk.bcr, 1, 2, 0x3); /* PMC = 11 */ |
| brk.bcr = deposit32(brk.bcr, 5, 4, 0xf); /* BAS = RES1 */ |
| |
| g_array_append_val(hw_breakpoints, brk); |
| |
| return 0; |
| } |
| |
| /** |
| * delete_hw_breakpoint() |
| * @pc: address of breakpoint |
| * |
| * Delete a breakpoint and shuffle any above down |
| */ |
| |
| static int delete_hw_breakpoint(target_ulong pc) |
| { |
| int i; |
| for (i = 0; i < hw_breakpoints->len; i++) { |
| HWBreakpoint *brk = get_hw_bp(i); |
| if (brk->bvr == pc) { |
| g_array_remove_index(hw_breakpoints, i); |
| return 0; |
| } |
| } |
| return -ENOENT; |
| } |
| |
| /** |
| * insert_hw_watchpoint() |
| * @addr: address of watch point |
| * @len: size of area |
| * @type: type of watch point |
| * |
| * See ARM ARM D2.10. As with the breakpoints we can do some advanced |
| * stuff if we want to. The watch points can be linked with the break |
| * points above to make them context aware. However for simplicity |
| * currently we only deal with simple read/write watch points. |
| * |
| * D7.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers |
| * |
| * 31 29 28 24 23 21 20 19 16 15 14 13 12 5 4 3 2 1 0 |
| * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+ |
| * | RES0 | MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E | |
| * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+ |
| * |
| * MASK: num bits addr mask (0=none,01/10=res,11=3 bits (8 bytes)) |
| * WT: 0 - unlinked, 1 - linked (not currently used) |
| * LBN: Linked BP number (not currently used) |
| * SSC/HMC/PAC: Security, Higher and Priv access control (Table D2-11) |
| * BAS: Byte Address Select |
| * LSC: Load/Store control (01: load, 10: store, 11: both) |
| * E: Enable |
| * |
| * The bottom 2 bits of the value register are masked. Therefore to |
| * break on any sizes smaller than an unaligned word you need to set |
| * MASK=0, BAS=bit per byte in question. For larger regions (^2) you |
| * need to ensure you mask the address as required and set BAS=0xff |
| */ |
| |
| static int insert_hw_watchpoint(target_ulong addr, |
| target_ulong len, int type) |
| { |
| HWWatchpoint wp = { |
| .wcr = 1, /* E=1, enable */ |
| .wvr = addr & (~0x7ULL), |
| .details = { .vaddr = addr, .len = len } |
| }; |
| |
| if (cur_hw_wps >= max_hw_wps) { |
| return -ENOBUFS; |
| } |
| |
| /* |
| * HMC=0 SSC=0 PAC=3 will hit EL0 or EL1, any security state, |
| * valid whether EL3 is implemented or not |
| */ |
| wp.wcr = deposit32(wp.wcr, 1, 2, 3); |
| |
| switch (type) { |
| case GDB_WATCHPOINT_READ: |
| wp.wcr = deposit32(wp.wcr, 3, 2, 1); |
| wp.details.flags = BP_MEM_READ; |
| break; |
| case GDB_WATCHPOINT_WRITE: |
| wp.wcr = deposit32(wp.wcr, 3, 2, 2); |
| wp.details.flags = BP_MEM_WRITE; |
| break; |
| case GDB_WATCHPOINT_ACCESS: |
| wp.wcr = deposit32(wp.wcr, 3, 2, 3); |
| wp.details.flags = BP_MEM_ACCESS; |
| break; |
| default: |
| g_assert_not_reached(); |
| break; |
| } |
| if (len <= 8) { |
| /* we align the address and set the bits in BAS */ |
| int off = addr & 0x7; |
| int bas = (1 << len) - 1; |
| |
| wp.wcr = deposit32(wp.wcr, 5 + off, 8 - off, bas); |
| } else { |
| /* For ranges above 8 bytes we need to be a power of 2 */ |
| if (is_power_of_2(len)) { |
| int bits = ctz64(len); |
| |
| wp.wvr &= ~((1 << bits) - 1); |
| wp.wcr = deposit32(wp.wcr, 24, 4, bits); |
| wp.wcr = deposit32(wp.wcr, 5, 8, 0xff); |
| } else { |
| return -ENOBUFS; |
| } |
| } |
| |
| g_array_append_val(hw_watchpoints, wp); |
| return 0; |
| } |
| |
| |
| static bool check_watchpoint_in_range(int i, target_ulong addr) |
| { |
| HWWatchpoint *wp = get_hw_wp(i); |
| uint64_t addr_top, addr_bottom = wp->wvr; |
| int bas = extract32(wp->wcr, 5, 8); |
| int mask = extract32(wp->wcr, 24, 4); |
| |
| if (mask) { |
| addr_top = addr_bottom + (1 << mask); |
| } else { |
| /* BAS must be contiguous but can offset against the base |
| * address in DBGWVR */ |
| addr_bottom = addr_bottom + ctz32(bas); |
| addr_top = addr_bottom + clo32(bas); |
| } |
| |
| if (addr >= addr_bottom && addr <= addr_top) { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /** |
| * delete_hw_watchpoint() |
| * @addr: address of breakpoint |
| * |
| * Delete a breakpoint and shuffle any above down |
| */ |
| |
| static int delete_hw_watchpoint(target_ulong addr, |
| target_ulong len, int type) |
| { |
| int i; |
| for (i = 0; i < cur_hw_wps; i++) { |
| if (check_watchpoint_in_range(i, addr)) { |
| g_array_remove_index(hw_watchpoints, i); |
| return 0; |
| } |
| } |
| return -ENOENT; |
| } |
| |
| |
| int kvm_arch_insert_hw_breakpoint(target_ulong addr, |
| target_ulong len, int type) |
| { |
| switch (type) { |
| case GDB_BREAKPOINT_HW: |
| return insert_hw_breakpoint(addr); |
| break; |
| case GDB_WATCHPOINT_READ: |
| case GDB_WATCHPOINT_WRITE: |
| case GDB_WATCHPOINT_ACCESS: |
| return insert_hw_watchpoint(addr, len, type); |
| default: |
| return -ENOSYS; |
| } |
| } |
| |
| int kvm_arch_remove_hw_breakpoint(target_ulong addr, |
| target_ulong len, int type) |
| { |
| switch (type) { |
| case GDB_BREAKPOINT_HW: |
| return delete_hw_breakpoint(addr); |
| break; |
| case GDB_WATCHPOINT_READ: |
| case GDB_WATCHPOINT_WRITE: |
| case GDB_WATCHPOINT_ACCESS: |
| return delete_hw_watchpoint(addr, len, type); |
| default: |
| return -ENOSYS; |
| } |
| } |
| |
| |
| void kvm_arch_remove_all_hw_breakpoints(void) |
| { |
| if (cur_hw_wps > 0) { |
| g_array_remove_range(hw_watchpoints, 0, cur_hw_wps); |
| } |
| if (cur_hw_bps > 0) { |
| g_array_remove_range(hw_breakpoints, 0, cur_hw_bps); |
| } |
| } |
| |
| void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr) |
| { |
| int i; |
| memset(ptr, 0, sizeof(struct kvm_guest_debug_arch)); |
| |
| for (i = 0; i < max_hw_wps; i++) { |
| HWWatchpoint *wp = get_hw_wp(i); |
| ptr->dbg_wcr[i] = wp->wcr; |
| ptr->dbg_wvr[i] = wp->wvr; |
| } |
| for (i = 0; i < max_hw_bps; i++) { |
| HWBreakpoint *bp = get_hw_bp(i); |
| ptr->dbg_bcr[i] = bp->bcr; |
| ptr->dbg_bvr[i] = bp->bvr; |
| } |
| } |
| |
| bool kvm_arm_hw_debug_active(CPUState *cs) |
| { |
| return ((cur_hw_wps > 0) || (cur_hw_bps > 0)); |
| } |
| |
| static bool find_hw_breakpoint(CPUState *cpu, target_ulong pc) |
| { |
| int i; |
| |
| for (i = 0; i < cur_hw_bps; i++) { |
| HWBreakpoint *bp = get_hw_bp(i); |
| if (bp->bvr == pc) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr) |
| { |
| int i; |
| |
| for (i = 0; i < cur_hw_wps; i++) { |
| if (check_watchpoint_in_range(i, addr)) { |
| return &get_hw_wp(i)->details; |
| } |
| } |
| return NULL; |
| } |
| |
| static bool kvm_arm_pmu_set_attr(CPUState *cs, struct kvm_device_attr *attr) |
| { |
| int err; |
| |
| err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr); |
| if (err != 0) { |
| error_report("PMU: KVM_HAS_DEVICE_ATTR: %s", strerror(-err)); |
| return false; |
| } |
| |
| err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, attr); |
| if (err != 0) { |
| error_report("PMU: KVM_SET_DEVICE_ATTR: %s", strerror(-err)); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void kvm_arm_pmu_init(CPUState *cs) |
| { |
| struct kvm_device_attr attr = { |
| .group = KVM_ARM_VCPU_PMU_V3_CTRL, |
| .attr = KVM_ARM_VCPU_PMU_V3_INIT, |
| }; |
| |
| if (!ARM_CPU(cs)->has_pmu) { |
| return; |
| } |
| if (!kvm_arm_pmu_set_attr(cs, &attr)) { |
| error_report("failed to init PMU"); |
| abort(); |
| } |
| } |
| |
| void kvm_arm_pmu_set_irq(CPUState *cs, int irq) |
| { |
| struct kvm_device_attr attr = { |
| .group = KVM_ARM_VCPU_PMU_V3_CTRL, |
| .addr = (intptr_t)&irq, |
| .attr = KVM_ARM_VCPU_PMU_V3_IRQ, |
| }; |
| |
| if (!ARM_CPU(cs)->has_pmu) { |
| return; |
| } |
| if (!kvm_arm_pmu_set_attr(cs, &attr)) { |
| error_report("failed to set irq for PMU"); |
| abort(); |
| } |
| } |
| |
| static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id) |
| { |
| uint64_t ret; |
| struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret }; |
| int err; |
| |
| assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64); |
| err = ioctl(fd, KVM_GET_ONE_REG, &idreg); |
| if (err < 0) { |
| return -1; |
| } |
| *pret = ret; |
| return 0; |
| } |
| |
| static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id) |
| { |
| struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret }; |
| |
| assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64); |
| return ioctl(fd, KVM_GET_ONE_REG, &idreg); |
| } |
| |
| bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf) |
| { |
| /* Identify the feature bits corresponding to the host CPU, and |
| * fill out the ARMHostCPUClass fields accordingly. To do this |
| * we have to create a scratch VM, create a single CPU inside it, |
| * and then query that CPU for the relevant ID registers. |
| */ |
| int fdarray[3]; |
| bool sve_supported; |
| uint64_t features = 0; |
| uint64_t t; |
| int err; |
| |
| /* Old kernels may not know about the PREFERRED_TARGET ioctl: however |
| * we know these will only support creating one kind of guest CPU, |
| * which is its preferred CPU type. Fortunately these old kernels |
| * support only a very limited number of CPUs. |
| */ |
| static const uint32_t cpus_to_try[] = { |
| KVM_ARM_TARGET_AEM_V8, |
| KVM_ARM_TARGET_FOUNDATION_V8, |
| KVM_ARM_TARGET_CORTEX_A57, |
| QEMU_KVM_ARM_TARGET_NONE |
| }; |
| /* |
| * target = -1 informs kvm_arm_create_scratch_host_vcpu() |
| * to use the preferred target |
| */ |
| struct kvm_vcpu_init init = { .target = -1, }; |
| |
| if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) { |
| return false; |
| } |
| |
| ahcf->target = init.target; |
| ahcf->dtb_compatible = "arm,arm-v8"; |
| |
| err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0, |
| ARM64_SYS_REG(3, 0, 0, 4, 0)); |
| if (unlikely(err < 0)) { |
| /* |
| * Before v4.15, the kernel only exposed a limited number of system |
| * registers, not including any of the interesting AArch64 ID regs. |
| * For the most part we could leave these fields as zero with minimal |
| * effect, since this does not affect the values seen by the guest. |
| * |
| * However, it could cause problems down the line for QEMU, |
| * so provide a minimal v8.0 default. |
| * |
| * ??? Could read MIDR and use knowledge from cpu64.c. |
| * ??? Could map a page of memory into our temp guest and |
| * run the tiniest of hand-crafted kernels to extract |
| * the values seen by the guest. |
| * ??? Either of these sounds like too much effort just |
| * to work around running a modern host kernel. |
| */ |
| ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */ |
| err = 0; |
| } else { |
| err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1, |
| ARM64_SYS_REG(3, 0, 0, 4, 1)); |
| err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr0, |
| ARM64_SYS_REG(3, 0, 0, 5, 0)); |
| err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr1, |
| ARM64_SYS_REG(3, 0, 0, 5, 1)); |
| err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0, |
| ARM64_SYS_REG(3, 0, 0, 6, 0)); |
| err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1, |
| ARM64_SYS_REG(3, 0, 0, 6, 1)); |
| err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0, |
| ARM64_SYS_REG(3, 0, 0, 7, 0)); |
| err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1, |
| ARM64_SYS_REG(3, 0, 0, 7, 1)); |
| err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr2, |
| ARM64_SYS_REG(3, 0, 0, 7, 2)); |
| |
| /* |
| * Note that if AArch32 support is not present in the host, |
| * the AArch32 sysregs are present to be read, but will |
| * return UNKNOWN values. This is neither better nor worse |
| * than skipping the reads and leaving 0, as we must avoid |
| * considering the values in every case. |
| */ |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr0, |
| ARM64_SYS_REG(3, 0, 0, 1, 2)); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr0, |
| ARM64_SYS_REG(3, 0, 0, 1, 4)); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr1, |
| ARM64_SYS_REG(3, 0, 0, 1, 5)); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr2, |
| ARM64_SYS_REG(3, 0, 0, 1, 6)); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr3, |
| ARM64_SYS_REG(3, 0, 0, 1, 7)); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0, |
| ARM64_SYS_REG(3, 0, 0, 2, 0)); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1, |
| ARM64_SYS_REG(3, 0, 0, 2, 1)); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2, |
| ARM64_SYS_REG(3, 0, 0, 2, 2)); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3, |
| ARM64_SYS_REG(3, 0, 0, 2, 3)); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4, |
| ARM64_SYS_REG(3, 0, 0, 2, 4)); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5, |
| ARM64_SYS_REG(3, 0, 0, 2, 5)); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr4, |
| ARM64_SYS_REG(3, 0, 0, 2, 6)); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6, |
| ARM64_SYS_REG(3, 0, 0, 2, 7)); |
| |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0, |
| ARM64_SYS_REG(3, 0, 0, 3, 0)); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1, |
| ARM64_SYS_REG(3, 0, 0, 3, 1)); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2, |
| ARM64_SYS_REG(3, 0, 0, 3, 2)); |
| |
| /* |
| * DBGDIDR is a bit complicated because the kernel doesn't |
| * provide an accessor for it in 64-bit mode, which is what this |
| * scratch VM is in, and there's no architected "64-bit sysreg |
| * which reads the same as the 32-bit register" the way there is |
| * for other ID registers. Instead we synthesize a value from the |
| * AArch64 ID_AA64DFR0, the same way the kernel code in |
| * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does. |
| * We only do this if the CPU supports AArch32 at EL1. |
| */ |
| if (FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL1) >= 2) { |
| int wrps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, WRPS); |
| int brps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, BRPS); |
| int ctx_cmps = |
| FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS); |
| int version = 6; /* ARMv8 debug architecture */ |
| bool has_el3 = |
| !!FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL3); |
| uint32_t dbgdidr = 0; |
| |
| dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, WRPS, wrps); |
| dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, BRPS, brps); |
| dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, CTX_CMPS, ctx_cmps); |
| dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, VERSION, version); |
| dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, NSUHD_IMP, has_el3); |
| dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, SE_IMP, has_el3); |
| dbgdidr |= (1 << 15); /* RES1 bit */ |
| ahcf->isar.dbgdidr = dbgdidr; |
| } |
| } |
| |
| sve_supported = ioctl(fdarray[0], KVM_CHECK_EXTENSION, KVM_CAP_ARM_SVE) > 0; |
| |
| kvm_arm_destroy_scratch_host_vcpu(fdarray); |
| |
| if (err < 0) { |
| return false; |
| } |
| |
| /* Add feature bits that can't appear until after VCPU init. */ |
| if (sve_supported) { |
| t = ahcf->isar.id_aa64pfr0; |
| t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1); |
| ahcf->isar.id_aa64pfr0 = t; |
| } |
| |
| /* |
| * We can assume any KVM supporting CPU is at least a v8 |
| * with VFPv4+Neon; this in turn implies most of the other |
| * feature bits. |
| */ |
| features |= 1ULL << ARM_FEATURE_V8; |
| features |= 1ULL << ARM_FEATURE_NEON; |
| features |= 1ULL << ARM_FEATURE_AARCH64; |
| features |= 1ULL << ARM_FEATURE_PMU; |
| features |= 1ULL << ARM_FEATURE_GENERIC_TIMER; |
| |
| ahcf->features = features; |
| |
| return true; |
| } |
| |
| bool kvm_arm_aarch32_supported(void) |
| { |
| return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT); |
| } |
| |
| bool kvm_arm_sve_supported(void) |
| { |
| return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE); |
| } |
| |
| QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1); |
| |
| void kvm_arm_sve_get_vls(CPUState *cs, unsigned long *map) |
| { |
| /* Only call this function if kvm_arm_sve_supported() returns true. */ |
| static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS]; |
| static bool probed; |
| uint32_t vq = 0; |
| int i, j; |
| |
| bitmap_clear(map, 0, ARM_MAX_VQ); |
| |
| /* |
| * KVM ensures all host CPUs support the same set of vector lengths. |
| * So we only need to create the scratch VCPUs once and then cache |
| * the results. |
| */ |
| if (!probed) { |
| struct kvm_vcpu_init init = { |
| .target = -1, |
| .features[0] = (1 << KVM_ARM_VCPU_SVE), |
| }; |
| struct kvm_one_reg reg = { |
| .id = KVM_REG_ARM64_SVE_VLS, |
| .addr = (uint64_t)&vls[0], |
| }; |
| int fdarray[3], ret; |
| |
| probed = true; |
| |
| if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) { |
| error_report("failed to create scratch VCPU with SVE enabled"); |
| abort(); |
| } |
| ret = ioctl(fdarray[2], KVM_GET_ONE_REG, ®); |
| kvm_arm_destroy_scratch_host_vcpu(fdarray); |
| if (ret) { |
| error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s", |
| strerror(errno)); |
| abort(); |
| } |
| |
| for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) { |
| if (vls[i]) { |
| vq = 64 - clz64(vls[i]) + i * 64; |
| break; |
| } |
| } |
| if (vq > ARM_MAX_VQ) { |
| warn_report("KVM supports vector lengths larger than " |
| "QEMU can enable"); |
| } |
| } |
| |
| for (i = 0; i < KVM_ARM64_SVE_VLS_WORDS; ++i) { |
| if (!vls[i]) { |
| continue; |
| } |
| for (j = 1; j <= 64; ++j) { |
| vq = j + i * 64; |
| if (vq > ARM_MAX_VQ) { |
| return; |
| } |
| if (vls[i] & (1UL << (j - 1))) { |
| set_bit(vq - 1, map); |
| } |
| } |
| } |
| } |
| |
| static int kvm_arm_sve_set_vls(CPUState *cs) |
| { |
| uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = {0}; |
| struct kvm_one_reg reg = { |
| .id = KVM_REG_ARM64_SVE_VLS, |
| .addr = (uint64_t)&vls[0], |
| }; |
| ARMCPU *cpu = ARM_CPU(cs); |
| uint32_t vq; |
| int i, j; |
| |
| assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX); |
| |
| for (vq = 1; vq <= cpu->sve_max_vq; ++vq) { |
| if (test_bit(vq - 1, cpu->sve_vq_map)) { |
| i = (vq - 1) / 64; |
| j = (vq - 1) % 64; |
| vls[i] |= 1UL << j; |
| } |
| } |
| |
| return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); |
| } |
| |
| #define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5 |
| |
| int kvm_arch_init_vcpu(CPUState *cs) |
| { |
| int ret; |
| uint64_t mpidr; |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| |
| if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE || |
| !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) { |
| error_report("KVM is not supported for this guest CPU type"); |
| return -EINVAL; |
| } |
| |
| qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cs); |
| |
| /* Determine init features for this CPU */ |
| memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features)); |
| if (cpu->start_powered_off) { |
| cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF; |
| } |
| if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) { |
| cpu->psci_version = 2; |
| cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2; |
| } |
| if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { |
| cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT; |
| } |
| if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) { |
| cpu->has_pmu = false; |
| } |
| if (cpu->has_pmu) { |
| cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3; |
| } else { |
| env->features &= ~(1ULL << ARM_FEATURE_PMU); |
| } |
| if (cpu_isar_feature(aa64_sve, cpu)) { |
| assert(kvm_arm_sve_supported()); |
| cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE; |
| } |
| |
| /* Do KVM_ARM_VCPU_INIT ioctl */ |
| ret = kvm_arm_vcpu_init(cs); |
| if (ret) { |
| return ret; |
| } |
| |
| if (cpu_isar_feature(aa64_sve, cpu)) { |
| ret = kvm_arm_sve_set_vls(cs); |
| if (ret) { |
| return ret; |
| } |
| ret = kvm_arm_vcpu_finalize(cs, KVM_ARM_VCPU_SVE); |
| if (ret) { |
| return ret; |
| } |
| } |
| |
| /* |
| * When KVM is in use, PSCI is emulated in-kernel and not by qemu. |
| * Currently KVM has its own idea about MPIDR assignment, so we |
| * override our defaults with what we get from KVM. |
| */ |
| ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr); |
| if (ret) { |
| return ret; |
| } |
| cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK; |
| |
| kvm_arm_init_debug(cs); |
| |
| /* Check whether user space can specify guest syndrome value */ |
| kvm_arm_init_serror_injection(cs); |
| |
| return kvm_arm_init_cpreg_list(cpu); |
| } |
| |
| int kvm_arch_destroy_vcpu(CPUState *cs) |
| { |
| return 0; |
| } |
| |
| bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx) |
| { |
| /* Return true if the regidx is a register we should synchronize |
| * via the cpreg_tuples array (ie is not a core or sve reg that |
| * we sync by hand in kvm_arch_get/put_registers()) |
| */ |
| switch (regidx & KVM_REG_ARM_COPROC_MASK) { |
| case KVM_REG_ARM_CORE: |
| case KVM_REG_ARM64_SVE: |
| return false; |
| default: |
| return true; |
| } |
| } |
| |
| typedef struct CPRegStateLevel { |
| uint64_t regidx; |
| int level; |
| } CPRegStateLevel; |
| |
| /* All system registers not listed in the following table are assumed to be |
| * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less |
| * often, you must add it to this table with a state of either |
| * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE. |
| */ |
| static const CPRegStateLevel non_runtime_cpregs[] = { |
| { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE }, |
| }; |
| |
| int kvm_arm_cpreg_level(uint64_t regidx) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) { |
| const CPRegStateLevel *l = &non_runtime_cpregs[i]; |
| if (l->regidx == regidx) { |
| return l->level; |
| } |
| } |
| |
| return KVM_PUT_RUNTIME_STATE; |
| } |
| |
| /* Callers must hold the iothread mutex lock */ |
| static void kvm_inject_arm_sea(CPUState *c) |
| { |
| ARMCPU *cpu = ARM_CPU(c); |
| CPUARMState *env = &cpu->env; |
| CPUClass *cc = CPU_GET_CLASS(c); |
| uint32_t esr; |
| bool same_el; |
| |
| c->exception_index = EXCP_DATA_ABORT; |
| env->exception.target_el = 1; |
| |
| /* |
| * Set the DFSC to synchronous external abort and set FnV to not valid, |
| * this will tell guest the FAR_ELx is UNKNOWN for this abort. |
| */ |
| same_el = arm_current_el(env) == env->exception.target_el; |
| esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10); |
| |
| env->exception.syndrome = esr; |
| |
| cc->do_interrupt(c); |
| } |
| |
| #define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \ |
| KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x)) |
| |
| #define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \ |
| KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x)) |
| |
| #define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \ |
| KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x)) |
| |
| static int kvm_arch_put_fpsimd(CPUState *cs) |
| { |
| CPUARMState *env = &ARM_CPU(cs)->env; |
| struct kvm_one_reg reg; |
| int i, ret; |
| |
| for (i = 0; i < 32; i++) { |
| uint64_t *q = aa64_vfp_qreg(env, i); |
| #ifdef HOST_WORDS_BIGENDIAN |
| uint64_t fp_val[2] = { q[1], q[0] }; |
| reg.addr = (uintptr_t)fp_val; |
| #else |
| reg.addr = (uintptr_t)q; |
| #endif |
| reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]); |
| ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits |
| * and PREGS and the FFR have a slice size of 256 bits. However we simply hard |
| * code the slice index to zero for now as it's unlikely we'll need more than |
| * one slice for quite some time. |
| */ |
| static int kvm_arch_put_sve(CPUState *cs) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| uint64_t tmp[ARM_MAX_VQ * 2]; |
| uint64_t *r; |
| struct kvm_one_reg reg; |
| int n, ret; |
| |
| for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) { |
| r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2); |
| reg.addr = (uintptr_t)r; |
| reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0); |
| ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| } |
| |
| for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) { |
| r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0], |
| DIV_ROUND_UP(cpu->sve_max_vq * 2, 8)); |
| reg.addr = (uintptr_t)r; |
| reg.id = KVM_REG_ARM64_SVE_PREG(n, 0); |
| ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| } |
| |
| r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0], |
| DIV_ROUND_UP(cpu->sve_max_vq * 2, 8)); |
| reg.addr = (uintptr_t)r; |
| reg.id = KVM_REG_ARM64_SVE_FFR(0); |
| ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| int kvm_arch_put_registers(CPUState *cs, int level) |
| { |
| struct kvm_one_reg reg; |
| uint64_t val; |
| uint32_t fpr; |
| int i, ret; |
| unsigned int el; |
| |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| |
| /* If we are in AArch32 mode then we need to copy the AArch32 regs to the |
| * AArch64 registers before pushing them out to 64-bit KVM. |
| */ |
| if (!is_a64(env)) { |
| aarch64_sync_32_to_64(env); |
| } |
| |
| for (i = 0; i < 31; i++) { |
| reg.id = AARCH64_CORE_REG(regs.regs[i]); |
| reg.addr = (uintptr_t) &env->xregs[i]; |
| ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| } |
| |
| /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the |
| * QEMU side we keep the current SP in xregs[31] as well. |
| */ |
| aarch64_save_sp(env, 1); |
| |
| reg.id = AARCH64_CORE_REG(regs.sp); |
| reg.addr = (uintptr_t) &env->sp_el[0]; |
| ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| |
| reg.id = AARCH64_CORE_REG(sp_el1); |
| reg.addr = (uintptr_t) &env->sp_el[1]; |
| ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| |
| /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */ |
| if (is_a64(env)) { |
| val = pstate_read(env); |
| } else { |
| val = cpsr_read(env); |
| } |
| reg.id = AARCH64_CORE_REG(regs.pstate); |
| reg.addr = (uintptr_t) &val; |
| ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| |
| reg.id = AARCH64_CORE_REG(regs.pc); |
| reg.addr = (uintptr_t) &env->pc; |
| ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| |
| reg.id = AARCH64_CORE_REG(elr_el1); |
| reg.addr = (uintptr_t) &env->elr_el[1]; |
| ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| |
| /* Saved Program State Registers |
| * |
| * Before we restore from the banked_spsr[] array we need to |
| * ensure that any modifications to env->spsr are correctly |
| * reflected in the banks. |
| */ |
| el = arm_current_el(env); |
| if (el > 0 && !is_a64(env)) { |
| i = bank_number(env->uncached_cpsr & CPSR_M); |
| env->banked_spsr[i] = env->spsr; |
| } |
| |
| /* KVM 0-4 map to QEMU banks 1-5 */ |
| for (i = 0; i < KVM_NR_SPSR; i++) { |
| reg.id = AARCH64_CORE_REG(spsr[i]); |
| reg.addr = (uintptr_t) &env->banked_spsr[i + 1]; |
| ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| } |
| |
| if (cpu_isar_feature(aa64_sve, cpu)) { |
| ret = kvm_arch_put_sve(cs); |
| } else { |
| ret = kvm_arch_put_fpsimd(cs); |
| } |
| if (ret) { |
| return ret; |
| } |
| |
| reg.addr = (uintptr_t)(&fpr); |
| fpr = vfp_get_fpsr(env); |
| reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr); |
| ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| |
| reg.addr = (uintptr_t)(&fpr); |
| fpr = vfp_get_fpcr(env); |
| reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr); |
| ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| |
| write_cpustate_to_list(cpu, true); |
| |
| if (!write_list_to_kvmstate(cpu, level)) { |
| return -EINVAL; |
| } |
| |
| /* |
| * Setting VCPU events should be triggered after syncing the registers |
| * to avoid overwriting potential changes made by KVM upon calling |
| * KVM_SET_VCPU_EVENTS ioctl |
| */ |
| ret = kvm_put_vcpu_events(cpu); |
| if (ret) { |
| return ret; |
| } |
| |
| kvm_arm_sync_mpstate_to_kvm(cpu); |
| |
| return ret; |
| } |
| |
| static int kvm_arch_get_fpsimd(CPUState *cs) |
| { |
| CPUARMState *env = &ARM_CPU(cs)->env; |
| struct kvm_one_reg reg; |
| int i, ret; |
| |
| for (i = 0; i < 32; i++) { |
| uint64_t *q = aa64_vfp_qreg(env, i); |
| reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]); |
| reg.addr = (uintptr_t)q; |
| ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } else { |
| #ifdef HOST_WORDS_BIGENDIAN |
| uint64_t t; |
| t = q[0], q[0] = q[1], q[1] = t; |
| #endif |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits |
| * and PREGS and the FFR have a slice size of 256 bits. However we simply hard |
| * code the slice index to zero for now as it's unlikely we'll need more than |
| * one slice for quite some time. |
| */ |
| static int kvm_arch_get_sve(CPUState *cs) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| struct kvm_one_reg reg; |
| uint64_t *r; |
| int n, ret; |
| |
| for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) { |
| r = &env->vfp.zregs[n].d[0]; |
| reg.addr = (uintptr_t)r; |
| reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0); |
| ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| sve_bswap64(r, r, cpu->sve_max_vq * 2); |
| } |
| |
| for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) { |
| r = &env->vfp.pregs[n].p[0]; |
| reg.addr = (uintptr_t)r; |
| reg.id = KVM_REG_ARM64_SVE_PREG(n, 0); |
| ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8)); |
| } |
| |
| r = &env->vfp.pregs[FFR_PRED_NUM].p[0]; |
| reg.addr = (uintptr_t)r; |
| reg.id = KVM_REG_ARM64_SVE_FFR(0); |
| ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8)); |
| |
| return 0; |
| } |
| |
| int kvm_arch_get_registers(CPUState *cs) |
| { |
| struct kvm_one_reg reg; |
| uint64_t val; |
| unsigned int el; |
| uint32_t fpr; |
| int i, ret; |
| |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| |
| for (i = 0; i < 31; i++) { |
| reg.id = AARCH64_CORE_REG(regs.regs[i]); |
| reg.addr = (uintptr_t) &env->xregs[i]; |
| ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| } |
| |
| reg.id = AARCH64_CORE_REG(regs.sp); |
| reg.addr = (uintptr_t) &env->sp_el[0]; |
| ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| |
| reg.id = AARCH64_CORE_REG(sp_el1); |
| reg.addr = (uintptr_t) &env->sp_el[1]; |
| ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| |
| reg.id = AARCH64_CORE_REG(regs.pstate); |
| reg.addr = (uintptr_t) &val; |
| ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| |
| env->aarch64 = ((val & PSTATE_nRW) == 0); |
| if (is_a64(env)) { |
| pstate_write(env, val); |
| } else { |
| cpsr_write(env, val, 0xffffffff, CPSRWriteRaw); |
| } |
| |
| /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the |
| * QEMU side we keep the current SP in xregs[31] as well. |
| */ |
| aarch64_restore_sp(env, 1); |
| |
| reg.id = AARCH64_CORE_REG(regs.pc); |
| reg.addr = (uintptr_t) &env->pc; |
| ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| |
| /* If we are in AArch32 mode then we need to sync the AArch32 regs with the |
| * incoming AArch64 regs received from 64-bit KVM. |
| * We must perform this after all of the registers have been acquired from |
| * the kernel. |
| */ |
| if (!is_a64(env)) { |
| aarch64_sync_64_to_32(env); |
| } |
| |
| reg.id = AARCH64_CORE_REG(elr_el1); |
| reg.addr = (uintptr_t) &env->elr_el[1]; |
| ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| |
| /* Fetch the SPSR registers |
| * |
| * KVM SPSRs 0-4 map to QEMU banks 1-5 |
| */ |
| for (i = 0; i < KVM_NR_SPSR; i++) { |
| reg.id = AARCH64_CORE_REG(spsr[i]); |
| reg.addr = (uintptr_t) &env->banked_spsr[i + 1]; |
| ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| } |
| |
| el = arm_current_el(env); |
| if (el > 0 && !is_a64(env)) { |
| i = bank_number(env->uncached_cpsr & CPSR_M); |
| env->spsr = env->banked_spsr[i]; |
| } |
| |
| if (cpu_isar_feature(aa64_sve, cpu)) { |
| ret = kvm_arch_get_sve(cs); |
| } else { |
| ret = kvm_arch_get_fpsimd(cs); |
| } |
| if (ret) { |
| return ret; |
| } |
| |
| reg.addr = (uintptr_t)(&fpr); |
| reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr); |
| ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| vfp_set_fpsr(env, fpr); |
| |
| reg.addr = (uintptr_t)(&fpr); |
| reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr); |
| ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); |
| if (ret) { |
| return ret; |
| } |
| vfp_set_fpcr(env, fpr); |
| |
| ret = kvm_get_vcpu_events(cpu); |
| if (ret) { |
| return ret; |
| } |
| |
| if (!write_kvmstate_to_list(cpu)) { |
| return -EINVAL; |
| } |
| /* Note that it's OK to have registers which aren't in CPUState, |
| * so we can ignore a failure return here. |
| */ |
| write_list_to_cpustate(cpu); |
| |
| kvm_arm_sync_mpstate_to_qemu(cpu); |
| |
| /* TODO: other registers */ |
| return ret; |
| } |
| |
| void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) |
| { |
| ram_addr_t ram_addr; |
| hwaddr paddr; |
| Object *obj = qdev_get_machine(); |
| VirtMachineState *vms = VIRT_MACHINE(obj); |
| bool acpi_enabled = virt_is_acpi_enabled(vms); |
| |
| assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO); |
| |
| if (acpi_enabled && addr && |
| object_property_get_bool(obj, "ras", NULL)) { |
| ram_addr = qemu_ram_addr_from_host(addr); |
| if (ram_addr != RAM_ADDR_INVALID && |
| kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { |
| kvm_hwpoison_page_add(ram_addr); |
| /* |
| * If this is a BUS_MCEERR_AR, we know we have been called |
| * synchronously from the vCPU thread, so we can easily |
| * synchronize the state and inject an error. |
| * |
| * TODO: we currently don't tell the guest at all about |
| * BUS_MCEERR_AO. In that case we might either be being |
| * called synchronously from the vCPU thread, or a bit |
| * later from the main thread, so doing the injection of |
| * the error would be more complicated. |
| */ |
| if (code == BUS_MCEERR_AR) { |
| kvm_cpu_synchronize_state(c); |
| if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) { |
| kvm_inject_arm_sea(c); |
| } else { |
| error_report("failed to record the error"); |
| abort(); |
| } |
| } |
| return; |
| } |
| if (code == BUS_MCEERR_AO) { |
| error_report("Hardware memory error at addr %p for memory used by " |
| "QEMU itself instead of guest system!", addr); |
| } |
| } |
| |
| if (code == BUS_MCEERR_AR) { |
| error_report("Hardware memory error!"); |
| exit(1); |
| } |
| } |
| |
| /* C6.6.29 BRK instruction */ |
| static const uint32_t brk_insn = 0xd4200000; |
| |
| int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
| { |
| if (have_guest_debug) { |
| if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) || |
| cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) { |
| return -EINVAL; |
| } |
| return 0; |
| } else { |
| error_report("guest debug not supported on this kernel"); |
| return -EINVAL; |
| } |
| } |
| |
| int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
| { |
| static uint32_t brk; |
| |
| if (have_guest_debug) { |
| if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) || |
| brk != brk_insn || |
| cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) { |
| return -EINVAL; |
| } |
| return 0; |
| } else { |
| error_report("guest debug not supported on this kernel"); |
| return -EINVAL; |
| } |
| } |
| |
| /* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register |
| * |
| * To minimise translating between kernel and user-space the kernel |
| * ABI just provides user-space with the full exception syndrome |
| * register value to be decoded in QEMU. |
| */ |
| |
| bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit) |
| { |
| int hsr_ec = syn_get_ec(debug_exit->hsr); |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUClass *cc = CPU_GET_CLASS(cs); |
| CPUARMState *env = &cpu->env; |
| |
| /* Ensure PC is synchronised */ |
| kvm_cpu_synchronize_state(cs); |
| |
| switch (hsr_ec) { |
| case EC_SOFTWARESTEP: |
| if (cs->singlestep_enabled) { |
| return true; |
| } else { |
| /* |
| * The kernel should have suppressed the guest's ability to |
| * single step at this point so something has gone wrong. |
| */ |
| error_report("%s: guest single-step while debugging unsupported" |
| " (%"PRIx64", %"PRIx32")", |
| __func__, env->pc, debug_exit->hsr); |
| return false; |
| } |
| break; |
| case EC_AA64_BKPT: |
| if (kvm_find_sw_breakpoint(cs, env->pc)) { |
| return true; |
| } |
| break; |
| case EC_BREAKPOINT: |
| if (find_hw_breakpoint(cs, env->pc)) { |
| return true; |
| } |
| break; |
| case EC_WATCHPOINT: |
| { |
| CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far); |
| if (wp) { |
| cs->watchpoint_hit = wp; |
| return true; |
| } |
| break; |
| } |
| default: |
| error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")", |
| __func__, debug_exit->hsr, env->pc); |
| } |
| |
| /* If we are not handling the debug exception it must belong to |
| * the guest. Let's re-use the existing TCG interrupt code to set |
| * everything up properly. |
| */ |
| cs->exception_index = EXCP_BKPT; |
| env->exception.syndrome = debug_exit->hsr; |
| env->exception.vaddress = debug_exit->far; |
| env->exception.target_el = 1; |
| qemu_mutex_lock_iothread(); |
| cc->do_interrupt(cs); |
| qemu_mutex_unlock_iothread(); |
| |
| return false; |
| } |
| |
| #define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0) |
| #define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2) |
| |
| /* |
| * ESR_EL1 |
| * ISS encoding |
| * AARCH64: DFSC, bits [5:0] |
| * AARCH32: |
| * TTBCR.EAE == 0 |
| * FS[4] - DFSR[10] |
| * FS[3:0] - DFSR[3:0] |
| * TTBCR.EAE == 1 |
| * FS, bits [5:0] |
| */ |
| #define ESR_DFSC(aarch64, lpae, v) \ |
| ((aarch64 || (lpae)) ? ((v) & 0x3F) \ |
| : (((v) >> 6) | ((v) & 0x1F))) |
| |
| #define ESR_DFSC_EXTABT(aarch64, lpae) \ |
| ((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8) |
| |
| bool kvm_arm_verify_ext_dabt_pending(CPUState *cs) |
| { |
| uint64_t dfsr_val; |
| |
| if (!kvm_get_one_reg(cs, ARM64_REG_ESR_EL1, &dfsr_val)) { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| int aarch64_mode = arm_feature(env, ARM_FEATURE_AARCH64); |
| int lpae = 0; |
| |
| if (!aarch64_mode) { |
| uint64_t ttbcr; |
| |
| if (!kvm_get_one_reg(cs, ARM64_REG_TCR_EL1, &ttbcr)) { |
| lpae = arm_feature(env, ARM_FEATURE_LPAE) |
| && (ttbcr & TTBCR_EAE); |
| } |
| } |
| /* |
| * The verification here is based on the DFSC bits |
| * of the ESR_EL1 reg only |
| */ |
| return (ESR_DFSC(aarch64_mode, lpae, dfsr_val) == |
| ESR_DFSC_EXTABT(aarch64_mode, lpae)); |
| } |
| return false; |
| } |