| /* |
| * i386 helpers (without register variable usage) |
| * |
| * Copyright (c) 2003 Fabrice Bellard |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qapi/qapi-events-run-state.h" |
| #include "cpu.h" |
| #include "exec/exec-all.h" |
| #include "sysemu/runstate.h" |
| #include "kvm/kvm_i386.h" |
| #ifndef CONFIG_USER_ONLY |
| #include "sysemu/hw_accel.h" |
| #include "monitor/monitor.h" |
| #endif |
| #include "qemu/log.h" |
| |
| void cpu_sync_bndcs_hflags(CPUX86State *env) |
| { |
| uint32_t hflags = env->hflags; |
| uint32_t hflags2 = env->hflags2; |
| uint32_t bndcsr; |
| |
| if ((hflags & HF_CPL_MASK) == 3) { |
| bndcsr = env->bndcs_regs.cfgu; |
| } else { |
| bndcsr = env->msr_bndcfgs; |
| } |
| |
| if ((env->cr[4] & CR4_OSXSAVE_MASK) |
| && (env->xcr0 & XSTATE_BNDCSR_MASK) |
| && (bndcsr & BNDCFG_ENABLE)) { |
| hflags |= HF_MPX_EN_MASK; |
| } else { |
| hflags &= ~HF_MPX_EN_MASK; |
| } |
| |
| if (bndcsr & BNDCFG_BNDPRESERVE) { |
| hflags2 |= HF2_MPX_PR_MASK; |
| } else { |
| hflags2 &= ~HF2_MPX_PR_MASK; |
| } |
| |
| env->hflags = hflags; |
| env->hflags2 = hflags2; |
| } |
| |
| static void cpu_x86_version(CPUX86State *env, int *family, int *model) |
| { |
| int cpuver = env->cpuid_version; |
| |
| if (family == NULL || model == NULL) { |
| return; |
| } |
| |
| *family = (cpuver >> 8) & 0x0f; |
| *model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0x0f); |
| } |
| |
| /* Broadcast MCA signal for processor version 06H_EH and above */ |
| int cpu_x86_support_mca_broadcast(CPUX86State *env) |
| { |
| int family = 0; |
| int model = 0; |
| |
| cpu_x86_version(env, &family, &model); |
| if ((family == 6 && model >= 14) || family > 6) { |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /***********************************************************/ |
| /* x86 mmu */ |
| /* XXX: add PGE support */ |
| |
| void x86_cpu_set_a20(X86CPU *cpu, int a20_state) |
| { |
| CPUX86State *env = &cpu->env; |
| |
| a20_state = (a20_state != 0); |
| if (a20_state != ((env->a20_mask >> 20) & 1)) { |
| CPUState *cs = CPU(cpu); |
| |
| qemu_log_mask(CPU_LOG_MMU, "A20 update: a20=%d\n", a20_state); |
| /* if the cpu is currently executing code, we must unlink it and |
| all the potentially executing TB */ |
| cpu_interrupt(cs, CPU_INTERRUPT_EXITTB); |
| |
| /* when a20 is changed, all the MMU mappings are invalid, so |
| we must flush everything */ |
| tlb_flush(cs); |
| env->a20_mask = ~(1 << 20) | (a20_state << 20); |
| } |
| } |
| |
| void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0) |
| { |
| X86CPU *cpu = env_archcpu(env); |
| int pe_state; |
| |
| qemu_log_mask(CPU_LOG_MMU, "CR0 update: CR0=0x%08x\n", new_cr0); |
| if ((new_cr0 & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK)) != |
| (env->cr[0] & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK))) { |
| tlb_flush(CPU(cpu)); |
| } |
| |
| #ifdef TARGET_X86_64 |
| if (!(env->cr[0] & CR0_PG_MASK) && (new_cr0 & CR0_PG_MASK) && |
| (env->efer & MSR_EFER_LME)) { |
| /* enter in long mode */ |
| /* XXX: generate an exception */ |
| if (!(env->cr[4] & CR4_PAE_MASK)) |
| return; |
| env->efer |= MSR_EFER_LMA; |
| env->hflags |= HF_LMA_MASK; |
| } else if ((env->cr[0] & CR0_PG_MASK) && !(new_cr0 & CR0_PG_MASK) && |
| (env->efer & MSR_EFER_LMA)) { |
| /* exit long mode */ |
| env->efer &= ~MSR_EFER_LMA; |
| env->hflags &= ~(HF_LMA_MASK | HF_CS64_MASK); |
| env->eip &= 0xffffffff; |
| } |
| #endif |
| env->cr[0] = new_cr0 | CR0_ET_MASK; |
| |
| /* update PE flag in hidden flags */ |
| pe_state = (env->cr[0] & CR0_PE_MASK); |
| env->hflags = (env->hflags & ~HF_PE_MASK) | (pe_state << HF_PE_SHIFT); |
| /* ensure that ADDSEG is always set in real mode */ |
| env->hflags |= ((pe_state ^ 1) << HF_ADDSEG_SHIFT); |
| /* update FPU flags */ |
| env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) | |
| ((new_cr0 << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)); |
| } |
| |
| /* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in |
| the PDPT */ |
| void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3) |
| { |
| env->cr[3] = new_cr3; |
| if (env->cr[0] & CR0_PG_MASK) { |
| qemu_log_mask(CPU_LOG_MMU, |
| "CR3 update: CR3=" TARGET_FMT_lx "\n", new_cr3); |
| tlb_flush(env_cpu(env)); |
| } |
| } |
| |
| void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4) |
| { |
| uint32_t hflags; |
| |
| #if defined(DEBUG_MMU) |
| printf("CR4 update: %08x -> %08x\n", (uint32_t)env->cr[4], new_cr4); |
| #endif |
| if ((new_cr4 ^ env->cr[4]) & |
| (CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK | |
| CR4_SMEP_MASK | CR4_SMAP_MASK | CR4_LA57_MASK)) { |
| tlb_flush(env_cpu(env)); |
| } |
| |
| /* Clear bits we're going to recompute. */ |
| hflags = env->hflags & ~(HF_OSFXSR_MASK | HF_SMAP_MASK); |
| |
| /* SSE handling */ |
| if (!(env->features[FEAT_1_EDX] & CPUID_SSE)) { |
| new_cr4 &= ~CR4_OSFXSR_MASK; |
| } |
| if (new_cr4 & CR4_OSFXSR_MASK) { |
| hflags |= HF_OSFXSR_MASK; |
| } |
| |
| if (!(env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_SMAP)) { |
| new_cr4 &= ~CR4_SMAP_MASK; |
| } |
| if (new_cr4 & CR4_SMAP_MASK) { |
| hflags |= HF_SMAP_MASK; |
| } |
| |
| if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKU)) { |
| new_cr4 &= ~CR4_PKE_MASK; |
| } |
| if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKS)) { |
| new_cr4 &= ~CR4_PKS_MASK; |
| } |
| |
| env->cr[4] = new_cr4; |
| env->hflags = hflags; |
| |
| cpu_sync_bndcs_hflags(env); |
| } |
| |
| #if !defined(CONFIG_USER_ONLY) |
| hwaddr x86_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, |
| MemTxAttrs *attrs) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| CPUX86State *env = &cpu->env; |
| target_ulong pde_addr, pte_addr; |
| uint64_t pte; |
| int32_t a20_mask; |
| uint32_t page_offset; |
| int page_size; |
| |
| *attrs = cpu_get_mem_attrs(env); |
| |
| a20_mask = x86_get_a20_mask(env); |
| if (!(env->cr[0] & CR0_PG_MASK)) { |
| pte = addr & a20_mask; |
| page_size = 4096; |
| } else if (env->cr[4] & CR4_PAE_MASK) { |
| target_ulong pdpe_addr; |
| uint64_t pde, pdpe; |
| |
| #ifdef TARGET_X86_64 |
| if (env->hflags & HF_LMA_MASK) { |
| bool la57 = env->cr[4] & CR4_LA57_MASK; |
| uint64_t pml5e_addr, pml5e; |
| uint64_t pml4e_addr, pml4e; |
| int32_t sext; |
| |
| /* test virtual address sign extension */ |
| sext = la57 ? (int64_t)addr >> 56 : (int64_t)addr >> 47; |
| if (sext != 0 && sext != -1) { |
| return -1; |
| } |
| |
| if (la57) { |
| pml5e_addr = ((env->cr[3] & ~0xfff) + |
| (((addr >> 48) & 0x1ff) << 3)) & a20_mask; |
| pml5e = x86_ldq_phys(cs, pml5e_addr); |
| if (!(pml5e & PG_PRESENT_MASK)) { |
| return -1; |
| } |
| } else { |
| pml5e = env->cr[3]; |
| } |
| |
| pml4e_addr = ((pml5e & PG_ADDRESS_MASK) + |
| (((addr >> 39) & 0x1ff) << 3)) & a20_mask; |
| pml4e = x86_ldq_phys(cs, pml4e_addr); |
| if (!(pml4e & PG_PRESENT_MASK)) { |
| return -1; |
| } |
| pdpe_addr = ((pml4e & PG_ADDRESS_MASK) + |
| (((addr >> 30) & 0x1ff) << 3)) & a20_mask; |
| pdpe = x86_ldq_phys(cs, pdpe_addr); |
| if (!(pdpe & PG_PRESENT_MASK)) { |
| return -1; |
| } |
| if (pdpe & PG_PSE_MASK) { |
| page_size = 1024 * 1024 * 1024; |
| pte = pdpe; |
| goto out; |
| } |
| |
| } else |
| #endif |
| { |
| pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) & |
| a20_mask; |
| pdpe = x86_ldq_phys(cs, pdpe_addr); |
| if (!(pdpe & PG_PRESENT_MASK)) |
| return -1; |
| } |
| |
| pde_addr = ((pdpe & PG_ADDRESS_MASK) + |
| (((addr >> 21) & 0x1ff) << 3)) & a20_mask; |
| pde = x86_ldq_phys(cs, pde_addr); |
| if (!(pde & PG_PRESENT_MASK)) { |
| return -1; |
| } |
| if (pde & PG_PSE_MASK) { |
| /* 2 MB page */ |
| page_size = 2048 * 1024; |
| pte = pde; |
| } else { |
| /* 4 KB page */ |
| pte_addr = ((pde & PG_ADDRESS_MASK) + |
| (((addr >> 12) & 0x1ff) << 3)) & a20_mask; |
| page_size = 4096; |
| pte = x86_ldq_phys(cs, pte_addr); |
| } |
| if (!(pte & PG_PRESENT_MASK)) { |
| return -1; |
| } |
| } else { |
| uint32_t pde; |
| |
| /* page directory entry */ |
| pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) & a20_mask; |
| pde = x86_ldl_phys(cs, pde_addr); |
| if (!(pde & PG_PRESENT_MASK)) |
| return -1; |
| if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) { |
| pte = pde | ((pde & 0x1fe000LL) << (32 - 13)); |
| page_size = 4096 * 1024; |
| } else { |
| /* page directory entry */ |
| pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & a20_mask; |
| pte = x86_ldl_phys(cs, pte_addr); |
| if (!(pte & PG_PRESENT_MASK)) { |
| return -1; |
| } |
| page_size = 4096; |
| } |
| pte = pte & a20_mask; |
| } |
| |
| #ifdef TARGET_X86_64 |
| out: |
| #endif |
| pte &= PG_ADDRESS_MASK & ~(page_size - 1); |
| page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1); |
| return pte | page_offset; |
| } |
| |
| typedef struct MCEInjectionParams { |
| Monitor *mon; |
| int bank; |
| uint64_t status; |
| uint64_t mcg_status; |
| uint64_t addr; |
| uint64_t misc; |
| int flags; |
| } MCEInjectionParams; |
| |
| static void emit_guest_memory_failure(MemoryFailureAction action, bool ar, |
| bool recursive) |
| { |
| MemoryFailureFlags mff = {.action_required = ar, .recursive = recursive}; |
| |
| qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_GUEST, action, |
| &mff); |
| } |
| |
| static void do_inject_x86_mce(CPUState *cs, run_on_cpu_data data) |
| { |
| MCEInjectionParams *params = data.host_ptr; |
| X86CPU *cpu = X86_CPU(cs); |
| CPUX86State *cenv = &cpu->env; |
| uint64_t *banks = cenv->mce_banks + 4 * params->bank; |
| g_autofree char *msg = NULL; |
| bool need_reset = false; |
| bool recursive; |
| bool ar = !!(params->status & MCI_STATUS_AR); |
| |
| cpu_synchronize_state(cs); |
| recursive = !!(cenv->mcg_status & MCG_STATUS_MCIP); |
| |
| /* |
| * If there is an MCE exception being processed, ignore this SRAO MCE |
| * unless unconditional injection was requested. |
| */ |
| if (!(params->flags & MCE_INJECT_UNCOND_AO) && !ar && recursive) { |
| emit_guest_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, ar, recursive); |
| return; |
| } |
| |
| if (params->status & MCI_STATUS_UC) { |
| /* |
| * if MSR_MCG_CTL is not all 1s, the uncorrected error |
| * reporting is disabled |
| */ |
| if ((cenv->mcg_cap & MCG_CTL_P) && cenv->mcg_ctl != ~(uint64_t)0) { |
| monitor_printf(params->mon, |
| "CPU %d: Uncorrected error reporting disabled\n", |
| cs->cpu_index); |
| return; |
| } |
| |
| /* |
| * if MSR_MCi_CTL is not all 1s, the uncorrected error |
| * reporting is disabled for the bank |
| */ |
| if (banks[0] != ~(uint64_t)0) { |
| monitor_printf(params->mon, |
| "CPU %d: Uncorrected error reporting disabled for" |
| " bank %d\n", |
| cs->cpu_index, params->bank); |
| return; |
| } |
| |
| if (!(cenv->cr[4] & CR4_MCE_MASK)) { |
| need_reset = true; |
| msg = g_strdup_printf("CPU %d: MCE capability is not enabled, " |
| "raising triple fault", cs->cpu_index); |
| } else if (recursive) { |
| need_reset = true; |
| msg = g_strdup_printf("CPU %d: Previous MCE still in progress, " |
| "raising triple fault", cs->cpu_index); |
| } |
| |
| if (need_reset) { |
| emit_guest_memory_failure(MEMORY_FAILURE_ACTION_RESET, ar, |
| recursive); |
| monitor_printf(params->mon, "%s", msg); |
| qemu_log_mask(CPU_LOG_RESET, "%s\n", msg); |
| qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); |
| return; |
| } |
| |
| if (banks[1] & MCI_STATUS_VAL) { |
| params->status |= MCI_STATUS_OVER; |
| } |
| banks[2] = params->addr; |
| banks[3] = params->misc; |
| cenv->mcg_status = params->mcg_status; |
| banks[1] = params->status; |
| cpu_interrupt(cs, CPU_INTERRUPT_MCE); |
| } else if (!(banks[1] & MCI_STATUS_VAL) |
| || !(banks[1] & MCI_STATUS_UC)) { |
| if (banks[1] & MCI_STATUS_VAL) { |
| params->status |= MCI_STATUS_OVER; |
| } |
| banks[2] = params->addr; |
| banks[3] = params->misc; |
| banks[1] = params->status; |
| } else { |
| banks[1] |= MCI_STATUS_OVER; |
| } |
| |
| emit_guest_memory_failure(MEMORY_FAILURE_ACTION_INJECT, ar, recursive); |
| } |
| |
| void cpu_x86_inject_mce(Monitor *mon, X86CPU *cpu, int bank, |
| uint64_t status, uint64_t mcg_status, uint64_t addr, |
| uint64_t misc, int flags) |
| { |
| CPUState *cs = CPU(cpu); |
| CPUX86State *cenv = &cpu->env; |
| MCEInjectionParams params = { |
| .mon = mon, |
| .bank = bank, |
| .status = status, |
| .mcg_status = mcg_status, |
| .addr = addr, |
| .misc = misc, |
| .flags = flags, |
| }; |
| unsigned bank_num = cenv->mcg_cap & 0xff; |
| |
| if (!cenv->mcg_cap) { |
| monitor_printf(mon, "MCE injection not supported\n"); |
| return; |
| } |
| if (bank >= bank_num) { |
| monitor_printf(mon, "Invalid MCE bank number\n"); |
| return; |
| } |
| if (!(status & MCI_STATUS_VAL)) { |
| monitor_printf(mon, "Invalid MCE status code\n"); |
| return; |
| } |
| if ((flags & MCE_INJECT_BROADCAST) |
| && !cpu_x86_support_mca_broadcast(cenv)) { |
| monitor_printf(mon, "Guest CPU does not support MCA broadcast\n"); |
| return; |
| } |
| |
| run_on_cpu(cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(¶ms)); |
| if (flags & MCE_INJECT_BROADCAST) { |
| CPUState *other_cs; |
| |
| params.bank = 1; |
| params.status = MCI_STATUS_VAL | MCI_STATUS_UC; |
| params.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV; |
| params.addr = 0; |
| params.misc = 0; |
| CPU_FOREACH(other_cs) { |
| if (other_cs == cs) { |
| continue; |
| } |
| run_on_cpu(other_cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(¶ms)); |
| } |
| } |
| } |
| |
| void cpu_report_tpr_access(CPUX86State *env, TPRAccess access) |
| { |
| X86CPU *cpu = env_archcpu(env); |
| CPUState *cs = env_cpu(env); |
| |
| if (kvm_enabled() || whpx_enabled() || nvmm_enabled()) { |
| env->tpr_access_type = access; |
| |
| cpu_interrupt(cs, CPU_INTERRUPT_TPR); |
| } else if (tcg_enabled()) { |
| cpu_restore_state(cs, cs->mem_io_pc, false); |
| |
| apic_handle_tpr_access_report(cpu->apic_state, env->eip, access); |
| } |
| } |
| #endif /* !CONFIG_USER_ONLY */ |
| |
| int cpu_x86_get_descr_debug(CPUX86State *env, unsigned int selector, |
| target_ulong *base, unsigned int *limit, |
| unsigned int *flags) |
| { |
| CPUState *cs = env_cpu(env); |
| SegmentCache *dt; |
| target_ulong ptr; |
| uint32_t e1, e2; |
| int index; |
| |
| if (selector & 0x4) |
| dt = &env->ldt; |
| else |
| dt = &env->gdt; |
| index = selector & ~7; |
| ptr = dt->base + index; |
| if ((index + 7) > dt->limit |
| || cpu_memory_rw_debug(cs, ptr, (uint8_t *)&e1, sizeof(e1), 0) != 0 |
| || cpu_memory_rw_debug(cs, ptr+4, (uint8_t *)&e2, sizeof(e2), 0) != 0) |
| return 0; |
| |
| *base = ((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000)); |
| *limit = (e1 & 0xffff) | (e2 & 0x000f0000); |
| if (e2 & DESC_G_MASK) |
| *limit = (*limit << 12) | 0xfff; |
| *flags = e2; |
| |
| return 1; |
| } |
| |
| #if !defined(CONFIG_USER_ONLY) |
| void do_cpu_init(X86CPU *cpu) |
| { |
| CPUState *cs = CPU(cpu); |
| CPUX86State *env = &cpu->env; |
| CPUX86State *save = g_new(CPUX86State, 1); |
| int sipi = cs->interrupt_request & CPU_INTERRUPT_SIPI; |
| |
| *save = *env; |
| |
| cpu_reset(cs); |
| cs->interrupt_request = sipi; |
| memcpy(&env->start_init_save, &save->start_init_save, |
| offsetof(CPUX86State, end_init_save) - |
| offsetof(CPUX86State, start_init_save)); |
| g_free(save); |
| |
| if (kvm_enabled()) { |
| kvm_arch_do_init_vcpu(cpu); |
| } |
| apic_init_reset(cpu->apic_state); |
| } |
| |
| void do_cpu_sipi(X86CPU *cpu) |
| { |
| apic_sipi(cpu->apic_state); |
| } |
| #else |
| void do_cpu_init(X86CPU *cpu) |
| { |
| } |
| void do_cpu_sipi(X86CPU *cpu) |
| { |
| } |
| #endif |
| |
| #ifndef CONFIG_USER_ONLY |
| |
| void cpu_load_efer(CPUX86State *env, uint64_t val) |
| { |
| env->efer = val; |
| env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK); |
| if (env->efer & MSR_EFER_LMA) { |
| env->hflags |= HF_LMA_MASK; |
| } |
| if (env->efer & MSR_EFER_SVME) { |
| env->hflags |= HF_SVME_MASK; |
| } |
| } |
| |
| uint8_t x86_ldub_phys(CPUState *cs, hwaddr addr) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| CPUX86State *env = &cpu->env; |
| MemTxAttrs attrs = cpu_get_mem_attrs(env); |
| AddressSpace *as = cpu_addressspace(cs, attrs); |
| |
| return address_space_ldub(as, addr, attrs, NULL); |
| } |
| |
| uint32_t x86_lduw_phys(CPUState *cs, hwaddr addr) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| CPUX86State *env = &cpu->env; |
| MemTxAttrs attrs = cpu_get_mem_attrs(env); |
| AddressSpace *as = cpu_addressspace(cs, attrs); |
| |
| return address_space_lduw(as, addr, attrs, NULL); |
| } |
| |
| uint32_t x86_ldl_phys(CPUState *cs, hwaddr addr) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| CPUX86State *env = &cpu->env; |
| MemTxAttrs attrs = cpu_get_mem_attrs(env); |
| AddressSpace *as = cpu_addressspace(cs, attrs); |
| |
| return address_space_ldl(as, addr, attrs, NULL); |
| } |
| |
| uint64_t x86_ldq_phys(CPUState *cs, hwaddr addr) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| CPUX86State *env = &cpu->env; |
| MemTxAttrs attrs = cpu_get_mem_attrs(env); |
| AddressSpace *as = cpu_addressspace(cs, attrs); |
| |
| return address_space_ldq(as, addr, attrs, NULL); |
| } |
| |
| void x86_stb_phys(CPUState *cs, hwaddr addr, uint8_t val) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| CPUX86State *env = &cpu->env; |
| MemTxAttrs attrs = cpu_get_mem_attrs(env); |
| AddressSpace *as = cpu_addressspace(cs, attrs); |
| |
| address_space_stb(as, addr, val, attrs, NULL); |
| } |
| |
| void x86_stl_phys_notdirty(CPUState *cs, hwaddr addr, uint32_t val) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| CPUX86State *env = &cpu->env; |
| MemTxAttrs attrs = cpu_get_mem_attrs(env); |
| AddressSpace *as = cpu_addressspace(cs, attrs); |
| |
| address_space_stl_notdirty(as, addr, val, attrs, NULL); |
| } |
| |
| void x86_stw_phys(CPUState *cs, hwaddr addr, uint32_t val) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| CPUX86State *env = &cpu->env; |
| MemTxAttrs attrs = cpu_get_mem_attrs(env); |
| AddressSpace *as = cpu_addressspace(cs, attrs); |
| |
| address_space_stw(as, addr, val, attrs, NULL); |
| } |
| |
| void x86_stl_phys(CPUState *cs, hwaddr addr, uint32_t val) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| CPUX86State *env = &cpu->env; |
| MemTxAttrs attrs = cpu_get_mem_attrs(env); |
| AddressSpace *as = cpu_addressspace(cs, attrs); |
| |
| address_space_stl(as, addr, val, attrs, NULL); |
| } |
| |
| void x86_stq_phys(CPUState *cs, hwaddr addr, uint64_t val) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| CPUX86State *env = &cpu->env; |
| MemTxAttrs attrs = cpu_get_mem_attrs(env); |
| AddressSpace *as = cpu_addressspace(cs, attrs); |
| |
| address_space_stq(as, addr, val, attrs, NULL); |
| } |
| #endif |