blob: 93543da39cc4605327cc0c0a6654610b60db85b0 [file] [log] [blame]
/*
* AArch64 translation
*
* Copyright (c) 2013 Alexander Graf <agraf@suse.de>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "exec/exec-all.h"
#include "translate.h"
#include "translate-a64.h"
#include "qemu/log.h"
#include "arm_ldst.h"
#include "semihosting/semihost.h"
#include "cpregs.h"
static TCGv_i64 cpu_X[32];
static TCGv_i64 cpu_pc;
/* Load/store exclusive handling */
static TCGv_i64 cpu_exclusive_high;
static const char *regnames[] = {
"x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
"x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
"x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
"x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
};
enum a64_shift_type {
A64_SHIFT_TYPE_LSL = 0,
A64_SHIFT_TYPE_LSR = 1,
A64_SHIFT_TYPE_ASR = 2,
A64_SHIFT_TYPE_ROR = 3
};
/*
* Helpers for extracting complex instruction fields
*/
/*
* For load/store with an unsigned 12 bit immediate scaled by the element
* size. The input has the immediate field in bits [14:3] and the element
* size in [2:0].
*/
static int uimm_scaled(DisasContext *s, int x)
{
unsigned imm = x >> 3;
unsigned scale = extract32(x, 0, 3);
return imm << scale;
}
/* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
static int scale_by_log2_tag_granule(DisasContext *s, int x)
{
return x << LOG2_TAG_GRANULE;
}
/*
* Include the generated decoders.
*/
#include "decode-sme-fa64.c.inc"
#include "decode-a64.c.inc"
/* Table based decoder typedefs - used when the relevant bits for decode
* are too awkwardly scattered across the instruction (eg SIMD).
*/
typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
typedef struct AArch64DecodeTable {
uint32_t pattern;
uint32_t mask;
AArch64DecodeFn *disas_fn;
} AArch64DecodeTable;
/* initialize TCG globals. */
void a64_translate_init(void)
{
int i;
cpu_pc = tcg_global_mem_new_i64(tcg_env,
offsetof(CPUARMState, pc),
"pc");
for (i = 0; i < 32; i++) {
cpu_X[i] = tcg_global_mem_new_i64(tcg_env,
offsetof(CPUARMState, xregs[i]),
regnames[i]);
}
cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env,
offsetof(CPUARMState, exclusive_high), "exclusive_high");
}
/*
* Return the core mmu_idx to use for A64 load/store insns which
* have a "unprivileged load/store" variant. Those insns access
* EL0 if executed from an EL which has control over EL0 (usually
* EL1) but behave like normal loads and stores if executed from
* elsewhere (eg EL3).
*
* @unpriv : true for the unprivileged encoding; false for the
* normal encoding (in which case we will return the same
* thing as get_mem_index().
*/
static int get_a64_user_mem_index(DisasContext *s, bool unpriv)
{
/*
* If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
* which is the usual mmu_idx for this cpu state.
*/
ARMMMUIdx useridx = s->mmu_idx;
if (unpriv && s->unpriv) {
/*
* We have pre-computed the condition for AccType_UNPRIV.
* Therefore we should never get here with a mmu_idx for
* which we do not know the corresponding user mmu_idx.
*/
switch (useridx) {
case ARMMMUIdx_E10_1:
case ARMMMUIdx_E10_1_PAN:
useridx = ARMMMUIdx_E10_0;
break;
case ARMMMUIdx_E20_2:
case ARMMMUIdx_E20_2_PAN:
useridx = ARMMMUIdx_E20_0;
break;
default:
g_assert_not_reached();
}
}
return arm_to_core_mmu_idx(useridx);
}
static void set_btype_raw(int val)
{
tcg_gen_st_i32(tcg_constant_i32(val), tcg_env,
offsetof(CPUARMState, btype));
}
static void set_btype(DisasContext *s, int val)
{
/* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */
tcg_debug_assert(val >= 1 && val <= 3);
set_btype_raw(val);
s->btype = -1;
}
static void reset_btype(DisasContext *s)
{
if (s->btype != 0) {
set_btype_raw(0);
s->btype = 0;
}
}
static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
{
assert(s->pc_save != -1);
if (tb_cflags(s->base.tb) & CF_PCREL) {
tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
} else {
tcg_gen_movi_i64(dest, s->pc_curr + diff);
}
}
void gen_a64_update_pc(DisasContext *s, target_long diff)
{
gen_pc_plus_diff(s, cpu_pc, diff);
s->pc_save = s->pc_curr + diff;
}
/*
* Handle Top Byte Ignore (TBI) bits.
*
* If address tagging is enabled via the TCR TBI bits:
* + for EL2 and EL3 there is only one TBI bit, and if it is set
* then the address is zero-extended, clearing bits [63:56]
* + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
* and TBI1 controls addresses with bit 55 == 1.
* If the appropriate TBI bit is set for the address then
* the address is sign-extended from bit 55 into bits [63:56]
*
* Here We have concatenated TBI{1,0} into tbi.
*/
static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
TCGv_i64 src, int tbi)
{
if (tbi == 0) {
/* Load unmodified address */
tcg_gen_mov_i64(dst, src);
} else if (!regime_has_2_ranges(s->mmu_idx)) {
/* Force tag byte to all zero */
tcg_gen_extract_i64(dst, src, 0, 56);
} else {
/* Sign-extend from bit 55. */
tcg_gen_sextract_i64(dst, src, 0, 56);
switch (tbi) {
case 1:
/* tbi0 but !tbi1: only use the extension if positive */
tcg_gen_and_i64(dst, dst, src);
break;
case 2:
/* !tbi0 but tbi1: only use the extension if negative */
tcg_gen_or_i64(dst, dst, src);
break;
case 3:
/* tbi0 and tbi1: always use the extension */
break;
default:
g_assert_not_reached();
}
}
}
static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
{
/*
* If address tagging is enabled for instructions via the TCR TBI bits,
* then loading an address into the PC will clear out any tag.
*/
gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
s->pc_save = -1;
}
/*
* Handle MTE and/or TBI.
*
* For TBI, ideally, we would do nothing. Proper behaviour on fault is
* for the tag to be present in the FAR_ELx register. But for user-only
* mode we do not have a TLB with which to implement this, so we must
* remove the top byte now.
*
* Always return a fresh temporary that we can increment independently
* of the write-back address.
*/
TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
{
TCGv_i64 clean = tcg_temp_new_i64();
#ifdef CONFIG_USER_ONLY
gen_top_byte_ignore(s, clean, addr, s->tbid);
#else
tcg_gen_mov_i64(clean, addr);
#endif
return clean;
}
/* Insert a zero tag into src, with the result at dst. */
static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
{
tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
}
static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
MMUAccessType acc, int log2_size)
{
gen_helper_probe_access(tcg_env, ptr,
tcg_constant_i32(acc),
tcg_constant_i32(get_mem_index(s)),
tcg_constant_i32(1 << log2_size));
}
/*
* For MTE, check a single logical or atomic access. This probes a single
* address, the exact one specified. The size and alignment of the access
* is not relevant to MTE, per se, but watchpoints do require the size,
* and we want to recognize those before making any other changes to state.
*/
static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
bool is_write, bool tag_checked,
MemOp memop, bool is_unpriv,
int core_idx)
{
if (tag_checked && s->mte_active[is_unpriv]) {
TCGv_i64 ret;
int desc = 0;
desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop));
desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
ret = tcg_temp_new_i64();
gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
return ret;
}
return clean_data_tbi(s, addr);
}
TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
bool tag_checked, MemOp memop)
{
return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
false, get_mem_index(s));
}
/*
* For MTE, check multiple logical sequential accesses.
*/
TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
bool tag_checked, int total_size, MemOp single_mop)
{
if (tag_checked && s->mte_active[0]) {
TCGv_i64 ret;
int desc = 0;
desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop));
desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
ret = tcg_temp_new_i64();
gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
return ret;
}
return clean_data_tbi(s, addr);
}
/*
* Generate the special alignment check that applies to AccType_ATOMIC
* and AccType_ORDERED insns under FEAT_LSE2: the access need not be
* naturally aligned, but it must not cross a 16-byte boundary.
* See AArch64.CheckAlignment().
*/
static void check_lse2_align(DisasContext *s, int rn, int imm,
bool is_write, MemOp mop)
{
TCGv_i32 tmp;
TCGv_i64 addr;
TCGLabel *over_label;
MMUAccessType type;
int mmu_idx;
tmp = tcg_temp_new_i32();
tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
tcg_gen_addi_i32(tmp, tmp, imm & 15);
tcg_gen_andi_i32(tmp, tmp, 15);
tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
over_label = gen_new_label();
tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
addr = tcg_temp_new_i64();
tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
mmu_idx = get_mem_index(s);
gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type),
tcg_constant_i32(mmu_idx));
gen_set_label(over_label);
}
/* Handle the alignment check for AccType_ATOMIC instructions. */
static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
{
MemOp size = mop & MO_SIZE;
if (size == MO_8) {
return mop;
}
/*
* If size == MO_128, this is a LDXP, and the operation is single-copy
* atomic for each doubleword, not the entire quadword; it still must
* be quadword aligned.
*/
if (size == MO_128) {
return finalize_memop_atom(s, MO_128 | MO_ALIGN,
MO_ATOM_IFALIGN_PAIR);
}
if (dc_isar_feature(aa64_lse2, s)) {
check_lse2_align(s, rn, 0, true, mop);
} else {
mop |= MO_ALIGN;
}
return finalize_memop(s, mop);
}
/* Handle the alignment check for AccType_ORDERED instructions. */
static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
bool is_write, MemOp mop)
{
MemOp size = mop & MO_SIZE;
if (size == MO_8) {
return mop;
}
if (size == MO_128) {
return finalize_memop_atom(s, MO_128 | MO_ALIGN,
MO_ATOM_IFALIGN_PAIR);
}
if (!dc_isar_feature(aa64_lse2, s)) {
mop |= MO_ALIGN;
} else if (!s->naa) {
check_lse2_align(s, rn, imm, is_write, mop);
}
return finalize_memop(s, mop);
}
typedef struct DisasCompare64 {
TCGCond cond;
TCGv_i64 value;
} DisasCompare64;
static void a64_test_cc(DisasCompare64 *c64, int cc)
{
DisasCompare c32;
arm_test_cc(&c32, cc);
/*
* Sign-extend the 32-bit value so that the GE/LT comparisons work
* properly. The NE/EQ comparisons are also fine with this choice.
*/
c64->cond = c32.cond;
c64->value = tcg_temp_new_i64();
tcg_gen_ext_i32_i64(c64->value, c32.value);
}
static void gen_rebuild_hflags(DisasContext *s)
{
gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el));
}
static void gen_exception_internal(int excp)
{
assert(excp_is_internal(excp));
gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp));
}
static void gen_exception_internal_insn(DisasContext *s, int excp)
{
gen_a64_update_pc(s, 0);
gen_exception_internal(excp);
s->base.is_jmp = DISAS_NORETURN;
}
static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
{
gen_a64_update_pc(s, 0);
gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome));
s->base.is_jmp = DISAS_NORETURN;
}
static void gen_step_complete_exception(DisasContext *s)
{
/* We just completed step of an insn. Move from Active-not-pending
* to Active-pending, and then also take the swstep exception.
* This corresponds to making the (IMPDEF) choice to prioritize
* swstep exceptions over asynchronous exceptions taken to an exception
* level where debug is disabled. This choice has the advantage that
* we do not need to maintain internal state corresponding to the
* ISV/EX syndrome bits between completion of the step and generation
* of the exception, and our syndrome information is always correct.
*/
gen_ss_advance(s);
gen_swstep_exception(s, 1, s->is_ldex);
s->base.is_jmp = DISAS_NORETURN;
}
static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
{
if (s->ss_active) {
return false;
}
return translator_use_goto_tb(&s->base, dest);
}
static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
{
if (use_goto_tb(s, s->pc_curr + diff)) {
/*
* For pcrel, the pc must always be up-to-date on entry to
* the linked TB, so that it can use simple additions for all
* further adjustments. For !pcrel, the linked TB is compiled
* to know its full virtual address, so we can delay the
* update to pc to the unlinked path. A long chain of links
* can thus avoid many updates to the PC.
*/
if (tb_cflags(s->base.tb) & CF_PCREL) {
gen_a64_update_pc(s, diff);
tcg_gen_goto_tb(n);
} else {
tcg_gen_goto_tb(n);
gen_a64_update_pc(s, diff);
}
tcg_gen_exit_tb(s->base.tb, n);
s->base.is_jmp = DISAS_NORETURN;
} else {
gen_a64_update_pc(s, diff);
if (s->ss_active) {
gen_step_complete_exception(s);
} else {
tcg_gen_lookup_and_goto_ptr();
s->base.is_jmp = DISAS_NORETURN;
}
}
}
/*
* Register access functions
*
* These functions are used for directly accessing a register in where
* changes to the final register value are likely to be made. If you
* need to use a register for temporary calculation (e.g. index type
* operations) use the read_* form.
*
* B1.2.1 Register mappings
*
* In instruction register encoding 31 can refer to ZR (zero register) or
* the SP (stack pointer) depending on context. In QEMU's case we map SP
* to cpu_X[31] and ZR accesses to a temporary which can be discarded.
* This is the point of the _sp forms.
*/
TCGv_i64 cpu_reg(DisasContext *s, int reg)
{
if (reg == 31) {
TCGv_i64 t = tcg_temp_new_i64();
tcg_gen_movi_i64(t, 0);
return t;
} else {
return cpu_X[reg];
}
}
/* register access for when 31 == SP */
TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
{
return cpu_X[reg];
}
/* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
* representing the register contents. This TCGv is an auto-freed
* temporary so it need not be explicitly freed, and may be modified.
*/
TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
{
TCGv_i64 v = tcg_temp_new_i64();
if (reg != 31) {
if (sf) {
tcg_gen_mov_i64(v, cpu_X[reg]);
} else {
tcg_gen_ext32u_i64(v, cpu_X[reg]);
}
} else {
tcg_gen_movi_i64(v, 0);
}
return v;
}
TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
{
TCGv_i64 v = tcg_temp_new_i64();
if (sf) {
tcg_gen_mov_i64(v, cpu_X[reg]);
} else {
tcg_gen_ext32u_i64(v, cpu_X[reg]);
}
return v;
}
/* Return the offset into CPUARMState of a slice (from
* the least significant end) of FP register Qn (ie
* Dn, Sn, Hn or Bn).
* (Note that this is not the same mapping as for A32; see cpu.h)
*/
static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
{
return vec_reg_offset(s, regno, 0, size);
}
/* Offset of the high half of the 128 bit vector Qn */
static inline int fp_reg_hi_offset(DisasContext *s, int regno)
{
return vec_reg_offset(s, regno, 1, MO_64);
}
/* Convenience accessors for reading and writing single and double
* FP registers. Writing clears the upper parts of the associated
* 128 bit vector register, as required by the architecture.
* Note that unlike the GP register accessors, the values returned
* by the read functions must be manually freed.
*/
static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
{
TCGv_i64 v = tcg_temp_new_i64();
tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64));
return v;
}
static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
{
TCGv_i32 v = tcg_temp_new_i32();
tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
return v;
}
static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
{
TCGv_i32 v = tcg_temp_new_i32();
tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
return v;
}
/* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
* If SVE is not enabled, then there are only 128 bits in the vector.
*/
static void clear_vec_high(DisasContext *s, bool is_q, int rd)
{
unsigned ofs = fp_reg_offset(s, rd, MO_64);
unsigned vsz = vec_full_reg_size(s);
/* Nop move, with side effect of clearing the tail. */
tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
}
void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
{
unsigned ofs = fp_reg_offset(s, reg, MO_64);
tcg_gen_st_i64(v, tcg_env, ofs);
clear_vec_high(s, false, reg);
}
static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
{
TCGv_i64 tmp = tcg_temp_new_i64();
tcg_gen_extu_i32_i64(tmp, v);
write_fp_dreg(s, reg, tmp);
}
/* Expand a 2-operand AdvSIMD vector operation using an expander function. */
static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
GVecGen2Fn *gvec_fn, int vece)
{
gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
is_q ? 16 : 8, vec_full_reg_size(s));
}
/* Expand a 2-operand + immediate AdvSIMD vector operation using
* an expander function.
*/
static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
int64_t imm, GVecGen2iFn *gvec_fn, int vece)
{
gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
imm, is_q ? 16 : 8, vec_full_reg_size(s));
}
/* Expand a 3-operand AdvSIMD vector operation using an expander function. */
static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
GVecGen3Fn *gvec_fn, int vece)
{
gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
}
/* Expand a 4-operand AdvSIMD vector operation using an expander function. */
static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
int rx, GVecGen4Fn *gvec_fn, int vece)
{
gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
is_q ? 16 : 8, vec_full_reg_size(s));
}
/* Expand a 2-operand operation using an out-of-line helper. */
static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
int rn, int data, gen_helper_gvec_2 *fn)
{
tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
vec_full_reg_offset(s, rn),
is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
}
/* Expand a 3-operand operation using an out-of-line helper. */
static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
int rn, int rm, int data, gen_helper_gvec_3 *fn)
{
tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
vec_full_reg_offset(s, rn),
vec_full_reg_offset(s, rm),
is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
}
/* Expand a 3-operand + fpstatus pointer + simd data value operation using
* an out-of-line helper.
*/
static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
int rm, bool is_fp16, int data,
gen_helper_gvec_3_ptr *fn)
{
TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
vec_full_reg_offset(s, rn),
vec_full_reg_offset(s, rm), fpst,
is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
}
/* Expand a 4-operand operation using an out-of-line helper. */
static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
int rm, int ra, int data, gen_helper_gvec_4 *fn)
{
tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
vec_full_reg_offset(s, rn),
vec_full_reg_offset(s, rm),
vec_full_reg_offset(s, ra),
is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
}
/*
* Expand a 4-operand + fpstatus pointer + simd data value operation using
* an out-of-line helper.
*/
static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
int rm, int ra, bool is_fp16, int data,
gen_helper_gvec_4_ptr *fn)
{
TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
vec_full_reg_offset(s, rn),
vec_full_reg_offset(s, rm),
vec_full_reg_offset(s, ra), fpst,
is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
}
/* Set ZF and NF based on a 64 bit result. This is alas fiddlier
* than the 32 bit equivalent.
*/
static inline void gen_set_NZ64(TCGv_i64 result)
{
tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
}
/* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
static inline void gen_logic_CC(int sf, TCGv_i64 result)
{
if (sf) {
gen_set_NZ64(result);
} else {
tcg_gen_extrl_i64_i32(cpu_ZF, result);
tcg_gen_mov_i32(cpu_NF, cpu_ZF);
}
tcg_gen_movi_i32(cpu_CF, 0);
tcg_gen_movi_i32(cpu_VF, 0);
}
/* dest = T0 + T1; compute C, N, V and Z flags */
static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
{
TCGv_i64 result, flag, tmp;
result = tcg_temp_new_i64();
flag = tcg_temp_new_i64();
tmp = tcg_temp_new_i64();
tcg_gen_movi_i64(tmp, 0);
tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
tcg_gen_extrl_i64_i32(cpu_CF, flag);
gen_set_NZ64(result);
tcg_gen_xor_i64(flag, result, t0);
tcg_gen_xor_i64(tmp, t0, t1);
tcg_gen_andc_i64(flag, flag, tmp);
tcg_gen_extrh_i64_i32(cpu_VF, flag);
tcg_gen_mov_i64(dest, result);
}
static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
{
TCGv_i32 t0_32 = tcg_temp_new_i32();
TCGv_i32 t1_32 = tcg_temp_new_i32();
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp, 0);
tcg_gen_extrl_i64_i32(t0_32, t0);
tcg_gen_extrl_i64_i32(t1_32, t1);
tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
tcg_gen_mov_i32(cpu_ZF, cpu_NF);
tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
tcg_gen_xor_i32(tmp, t0_32, t1_32);
tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
tcg_gen_extu_i32_i64(dest, cpu_NF);
}
static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
{
if (sf) {
gen_add64_CC(dest, t0, t1);
} else {
gen_add32_CC(dest, t0, t1);
}
}
/* dest = T0 - T1; compute C, N, V and Z flags */
static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
{
/* 64 bit arithmetic */
TCGv_i64 result, flag, tmp;
result = tcg_temp_new_i64();
flag = tcg_temp_new_i64();
tcg_gen_sub_i64(result, t0, t1);
gen_set_NZ64(result);
tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
tcg_gen_extrl_i64_i32(cpu_CF, flag);
tcg_gen_xor_i64(flag, result, t0);
tmp = tcg_temp_new_i64();
tcg_gen_xor_i64(tmp, t0, t1);
tcg_gen_and_i64(flag, flag, tmp);
tcg_gen_extrh_i64_i32(cpu_VF, flag);
tcg_gen_mov_i64(dest, result);
}
static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
{
/* 32 bit arithmetic */
TCGv_i32 t0_32 = tcg_temp_new_i32();
TCGv_i32 t1_32 = tcg_temp_new_i32();
TCGv_i32 tmp;
tcg_gen_extrl_i64_i32(t0_32, t0);
tcg_gen_extrl_i64_i32(t1_32, t1);
tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
tcg_gen_mov_i32(cpu_ZF, cpu_NF);
tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
tmp = tcg_temp_new_i32();
tcg_gen_xor_i32(tmp, t0_32, t1_32);
tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
tcg_gen_extu_i32_i64(dest, cpu_NF);
}
static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
{
if (sf) {
gen_sub64_CC(dest, t0, t1);
} else {
gen_sub32_CC(dest, t0, t1);
}
}
/* dest = T0 + T1 + CF; do not compute flags. */
static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
{
TCGv_i64 flag = tcg_temp_new_i64();
tcg_gen_extu_i32_i64(flag, cpu_CF);
tcg_gen_add_i64(dest, t0, t1);
tcg_gen_add_i64(dest, dest, flag);
if (!sf) {
tcg_gen_ext32u_i64(dest, dest);
}
}
/* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
{
if (sf) {
TCGv_i64 result = tcg_temp_new_i64();
TCGv_i64 cf_64 = tcg_temp_new_i64();
TCGv_i64 vf_64 = tcg_temp_new_i64();
TCGv_i64 tmp = tcg_temp_new_i64();
TCGv_i64 zero = tcg_constant_i64(0);
tcg_gen_extu_i32_i64(cf_64, cpu_CF);
tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
gen_set_NZ64(result);
tcg_gen_xor_i64(vf_64, result, t0);
tcg_gen_xor_i64(tmp, t0, t1);
tcg_gen_andc_i64(vf_64, vf_64, tmp);
tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
tcg_gen_mov_i64(dest, result);
} else {
TCGv_i32 t0_32 = tcg_temp_new_i32();
TCGv_i32 t1_32 = tcg_temp_new_i32();
TCGv_i32 tmp = tcg_temp_new_i32();
TCGv_i32 zero = tcg_constant_i32(0);
tcg_gen_extrl_i64_i32(t0_32, t0);
tcg_gen_extrl_i64_i32(t1_32, t1);
tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
tcg_gen_mov_i32(cpu_ZF, cpu_NF);
tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
tcg_gen_xor_i32(tmp, t0_32, t1_32);
tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
tcg_gen_extu_i32_i64(dest, cpu_NF);
}
}
/*
* Load/Store generators
*/
/*
* Store from GPR register to memory.
*/
static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
TCGv_i64 tcg_addr, MemOp memop, int memidx,
bool iss_valid,
unsigned int iss_srt,
bool iss_sf, bool iss_ar)
{
tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
if (iss_valid) {
uint32_t syn;
syn = syn_data_abort_with_iss(0,
(memop & MO_SIZE),
false,
iss_srt,
iss_sf,
iss_ar,
0, 0, 0, 0, 0, false);
disas_set_insn_syndrome(s, syn);
}
}
static void do_gpr_st(DisasContext *s, TCGv_i64 source,
TCGv_i64 tcg_addr, MemOp memop,
bool iss_valid,
unsigned int iss_srt,
bool iss_sf, bool iss_ar)
{
do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
iss_valid, iss_srt, iss_sf, iss_ar);
}
/*
* Load from memory to GPR register
*/
static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
MemOp memop, bool extend, int memidx,
bool iss_valid, unsigned int iss_srt,
bool iss_sf, bool iss_ar)
{
tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
if (extend && (memop & MO_SIGN)) {
g_assert((memop & MO_SIZE) <= MO_32);
tcg_gen_ext32u_i64(dest, dest);
}
if (iss_valid) {
uint32_t syn;
syn = syn_data_abort_with_iss(0,
(memop & MO_SIZE),
(memop & MO_SIGN) != 0,
iss_srt,
iss_sf,
iss_ar,
0, 0, 0, 0, 0, false);
disas_set_insn_syndrome(s, syn);
}
}
static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
MemOp memop, bool extend,
bool iss_valid, unsigned int iss_srt,
bool iss_sf, bool iss_ar)
{
do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
iss_valid, iss_srt, iss_sf, iss_ar);
}
/*
* Store from FP register to memory
*/
static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
{
/* This writes the bottom N bits of a 128 bit wide vector to memory */
TCGv_i64 tmplo = tcg_temp_new_i64();
tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64));
if ((mop & MO_SIZE) < MO_128) {
tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
} else {
TCGv_i64 tmphi = tcg_temp_new_i64();
TCGv_i128 t16 = tcg_temp_new_i128();
tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx));
tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
}
}
/*
* Load from memory to FP register
*/
static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
{
/* This always zero-extends and writes to a full 128 bit wide vector */
TCGv_i64 tmplo = tcg_temp_new_i64();
TCGv_i64 tmphi = NULL;
if ((mop & MO_SIZE) < MO_128) {
tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
} else {
TCGv_i128 t16 = tcg_temp_new_i128();
tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
tmphi = tcg_temp_new_i64();
tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
}
tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64));
if (tmphi) {
tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx));
}
clear_vec_high(s, tmphi != NULL, destidx);
}
/*
* Vector load/store helpers.
*
* The principal difference between this and a FP load is that we don't
* zero extend as we are filling a partial chunk of the vector register.
* These functions don't support 128 bit loads/stores, which would be
* normal load/store operations.
*
* The _i32 versions are useful when operating on 32 bit quantities
* (eg for floating point single or using Neon helper functions).
*/
/* Get value of an element within a vector register */
static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
int element, MemOp memop)
{
int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
switch ((unsigned)memop) {
case MO_8:
tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off);
break;
case MO_16:
tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off);
break;
case MO_32:
tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off);
break;
case MO_8|MO_SIGN:
tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off);
break;
case MO_16|MO_SIGN:
tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off);
break;
case MO_32|MO_SIGN:
tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off);
break;
case MO_64:
case MO_64|MO_SIGN:
tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off);
break;
default:
g_assert_not_reached();
}
}
static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
int element, MemOp memop)
{
int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
switch (memop) {
case MO_8:
tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off);
break;
case MO_16:
tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off);
break;
case MO_8|MO_SIGN:
tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off);
break;
case MO_16|MO_SIGN:
tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off);
break;
case MO_32:
case MO_32|MO_SIGN:
tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off);
break;
default:
g_assert_not_reached();
}
}
/* Set value of an element within a vector register */
static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
int element, MemOp memop)
{
int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
switch (memop) {
case MO_8:
tcg_gen_st8_i64(tcg_src, tcg_env, vect_off);
break;
case MO_16:
tcg_gen_st16_i64(tcg_src, tcg_env, vect_off);
break;
case MO_32:
tcg_gen_st32_i64(tcg_src, tcg_env, vect_off);
break;
case MO_64:
tcg_gen_st_i64(tcg_src, tcg_env, vect_off);
break;
default:
g_assert_not_reached();
}
}
static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
int destidx, int element, MemOp memop)
{
int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
switch (memop) {
case MO_8:
tcg_gen_st8_i32(tcg_src, tcg_env, vect_off);
break;
case MO_16:
tcg_gen_st16_i32(tcg_src, tcg_env, vect_off);
break;
case MO_32:
tcg_gen_st_i32(tcg_src, tcg_env, vect_off);
break;
default:
g_assert_not_reached();
}
}
/* Store from vector register to memory */
static void do_vec_st(DisasContext *s, int srcidx, int element,
TCGv_i64 tcg_addr, MemOp mop)
{
TCGv_i64 tcg_tmp = tcg_temp_new_i64();
read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
}
/* Load from memory to vector register */
static void do_vec_ld(DisasContext *s, int destidx, int element,
TCGv_i64 tcg_addr, MemOp mop)
{
TCGv_i64 tcg_tmp = tcg_temp_new_i64();
tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
}
/* Check that FP/Neon access is enabled. If it is, return
* true. If not, emit code to generate an appropriate exception,
* and return false; the caller should not emit any code for
* the instruction. Note that this check must happen after all
* unallocated-encoding checks (otherwise the syndrome information
* for the resulting exception will be incorrect).
*/
static bool fp_access_check_only(DisasContext *s)
{
if (s->fp_excp_el) {
assert(!s->fp_access_checked);
s->fp_access_checked = true;
gen_exception_insn_el(s, 0, EXCP_UDEF,
syn_fp_access_trap(1, 0xe, false, 0),
s->fp_excp_el);
return false;
}
s->fp_access_checked = true;
return true;
}
static bool fp_access_check(DisasContext *s)
{
if (!fp_access_check_only(s)) {
return false;
}
if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
gen_exception_insn(s, 0, EXCP_UDEF,
syn_smetrap(SME_ET_Streaming, false));
return false;
}
return true;
}
/*
* Check that SVE access is enabled. If it is, return true.
* If not, emit code to generate an appropriate exception and return false.
* This function corresponds to CheckSVEEnabled().
*/
bool sve_access_check(DisasContext *s)
{
if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
assert(dc_isar_feature(aa64_sme, s));
if (!sme_sm_enabled_check(s)) {
goto fail_exit;
}
} else if (s->sve_excp_el) {
gen_exception_insn_el(s, 0, EXCP_UDEF,
syn_sve_access_trap(), s->sve_excp_el);
goto fail_exit;
}
s->sve_access_checked = true;
return fp_access_check(s);
fail_exit:
/* Assert that we only raise one exception per instruction. */
assert(!s->sve_access_checked);
s->sve_access_checked = true;
return false;
}
/*
* Check that SME access is enabled, raise an exception if not.
* Note that this function corresponds to CheckSMEAccess and is
* only used directly for cpregs.
*/
static bool sme_access_check(DisasContext *s)
{
if (s->sme_excp_el) {
gen_exception_insn_el(s, 0, EXCP_UDEF,
syn_smetrap(SME_ET_AccessTrap, false),
s->sme_excp_el);
return false;
}
return true;
}
/* This function corresponds to CheckSMEEnabled. */
bool sme_enabled_check(DisasContext *s)
{
/*
* Note that unlike sve_excp_el, we have not constrained sme_excp_el
* to be zero when fp_excp_el has priority. This is because we need
* sme_excp_el by itself for cpregs access checks.
*/
if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
s->fp_access_checked = true;
return sme_access_check(s);
}
return fp_access_check_only(s);
}
/* Common subroutine for CheckSMEAnd*Enabled. */
bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
{
if (!sme_enabled_check(s)) {
return false;
}
if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
gen_exception_insn(s, 0, EXCP_UDEF,
syn_smetrap(SME_ET_NotStreaming, false));
return false;
}
if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
gen_exception_insn(s, 0, EXCP_UDEF,
syn_smetrap(SME_ET_InactiveZA, false));
return false;
}
return true;
}
/*
* Expanders for AdvSIMD translation functions.
*/
static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data,
gen_helper_gvec_2 *fn)
{
if (!a->q && a->esz == MO_64) {
return false;
}
if (fp_access_check(s)) {
gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn);
}
return true;
}
static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data,
gen_helper_gvec_3 *fn)
{
if (!a->q && a->esz == MO_64) {
return false;
}
if (fp_access_check(s)) {
gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn);
}
return true;
}
static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
{
if (!a->q && a->esz == MO_64) {
return false;
}
if (fp_access_check(s)) {
gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
}
return true;
}
static bool do_gvec_fn3_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
{
if (a->esz == MO_64) {
return false;
}
if (fp_access_check(s)) {
gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
}
return true;
}
static bool do_gvec_fn3_no8_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
{
if (a->esz == MO_8) {
return false;
}
return do_gvec_fn3_no64(s, a, fn);
}
static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn)
{
if (!a->q && a->esz == MO_64) {
return false;
}
if (fp_access_check(s)) {
gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz);
}
return true;
}
/*
* This utility function is for doing register extension with an
* optional shift. You will likely want to pass a temporary for the
* destination register. See DecodeRegExtend() in the ARM ARM.
*/
static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
int option, unsigned int shift)
{
int extsize = extract32(option, 0, 2);
bool is_signed = extract32(option, 2, 1);
tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0));
tcg_gen_shli_i64(tcg_out, tcg_out, shift);
}
static inline void gen_check_sp_alignment(DisasContext *s)
{
/* The AArch64 architecture mandates that (if enabled via PSTATE
* or SCTLR bits) there is a check that SP is 16-aligned on every
* SP-relative load or store (with an exception generated if it is not).
* In line with general QEMU practice regarding misaligned accesses,
* we omit these checks for the sake of guest program performance.
* This function is provided as a hook so we can more easily add these
* checks in future (possibly as a "favour catching guest program bugs
* over speed" user selectable option).
*/
}
/*
* This provides a simple table based table lookup decoder. It is
* intended to be used when the relevant bits for decode are too
* awkwardly placed and switch/if based logic would be confusing and
* deeply nested. Since it's a linear search through the table, tables
* should be kept small.
*
* It returns the first handler where insn & mask == pattern, or
* NULL if there is no match.
* The table is terminated by an empty mask (i.e. 0)
*/
static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
uint32_t insn)
{
const AArch64DecodeTable *tptr = table;
while (tptr->mask) {
if ((insn & tptr->mask) == tptr->pattern) {
return tptr->disas_fn;
}
tptr++;
}
return NULL;
}
/*
* The instruction disassembly implemented here matches
* the instruction encoding classifications in chapter C4
* of the ARM Architecture Reference Manual (DDI0487B_a);
* classification names and decode diagrams here should generally
* match up with those in the manual.
*/
static bool trans_B(DisasContext *s, arg_i *a)
{
reset_btype(s);
gen_goto_tb(s, 0, a->imm);
return true;
}
static bool trans_BL(DisasContext *s, arg_i *a)
{
gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
reset_btype(s);
gen_goto_tb(s, 0, a->imm);
return true;
}
static bool trans_CBZ(DisasContext *s, arg_cbz *a)
{
DisasLabel match;
TCGv_i64 tcg_cmp;
tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
reset_btype(s);
match = gen_disas_label(s);
tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
tcg_cmp, 0, match.label);
gen_goto_tb(s, 0, 4);
set_disas_label(s, match);
gen_goto_tb(s, 1, a->imm);
return true;
}
static bool trans_TBZ(DisasContext *s, arg_tbz *a)
{
DisasLabel match;
TCGv_i64 tcg_cmp;
tcg_cmp = tcg_temp_new_i64();
tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
reset_btype(s);
match = gen_disas_label(s);
tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
tcg_cmp, 0, match.label);
gen_goto_tb(s, 0, 4);
set_disas_label(s, match);
gen_goto_tb(s, 1, a->imm);
return true;
}
static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
{
/* BC.cond is only present with FEAT_HBC */
if (a->c && !dc_isar_feature(aa64_hbc, s)) {
return false;
}
reset_btype(s);
if (a->cond < 0x0e) {
/* genuinely conditional branches */
DisasLabel match = gen_disas_label(s);
arm_gen_test_cc(a->cond, match.label);
gen_goto_tb(s, 0, 4);
set_disas_label(s, match);
gen_goto_tb(s, 1, a->imm);
} else {
/* 0xe and 0xf are both "always" conditions */
gen_goto_tb(s, 0, a->imm);
}
return true;
}
static void set_btype_for_br(DisasContext *s, int rn)
{
if (dc_isar_feature(aa64_bti, s)) {
/* BR to {x16,x17} or !guard -> 1, else 3. */
set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
}
}
static void set_btype_for_blr(DisasContext *s)
{
if (dc_isar_feature(aa64_bti, s)) {
/* BLR sets BTYPE to 2, regardless of source guarded page. */
set_btype(s, 2);
}
}
static bool trans_BR(DisasContext *s, arg_r *a)
{
gen_a64_set_pc(s, cpu_reg(s, a->rn));
set_btype_for_br(s, a->rn);
s->base.is_jmp = DISAS_JUMP;
return true;
}
static bool trans_BLR(DisasContext *s, arg_r *a)
{
TCGv_i64 dst = cpu_reg(s, a->rn);
TCGv_i64 lr = cpu_reg(s, 30);
if (dst == lr) {
TCGv_i64 tmp = tcg_temp_new_i64();
tcg_gen_mov_i64(tmp, dst);
dst = tmp;
}
gen_pc_plus_diff(s, lr, curr_insn_len(s));
gen_a64_set_pc(s, dst);
set_btype_for_blr(s);
s->base.is_jmp = DISAS_JUMP;
return true;
}
static bool trans_RET(DisasContext *s, arg_r *a)
{
gen_a64_set_pc(s, cpu_reg(s, a->rn));
s->base.is_jmp = DISAS_JUMP;
return true;
}
static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
TCGv_i64 modifier, bool use_key_a)
{
TCGv_i64 truedst;
/*
* Return the branch target for a BRAA/RETA/etc, which is either
* just the destination dst, or that value with the pauth check
* done and the code removed from the high bits.
*/
if (!s->pauth_active) {
return dst;
}
truedst = tcg_temp_new_i64();
if (use_key_a) {
gen_helper_autia_combined(truedst, tcg_env, dst, modifier);
} else {
gen_helper_autib_combined(truedst, tcg_env, dst, modifier);
}
return truedst;
}
static bool trans_BRAZ(DisasContext *s, arg_braz *a)
{
TCGv_i64 dst;
if (!dc_isar_feature(aa64_pauth, s)) {
return false;
}
dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
gen_a64_set_pc(s, dst);
set_btype_for_br(s, a->rn);
s->base.is_jmp = DISAS_JUMP;
return true;
}
static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
{
TCGv_i64 dst, lr;
if (!dc_isar_feature(aa64_pauth, s)) {
return false;
}
dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
lr = cpu_reg(s, 30);
if (dst == lr) {
TCGv_i64 tmp = tcg_temp_new_i64();
tcg_gen_mov_i64(tmp, dst);
dst = tmp;
}
gen_pc_plus_diff(s, lr, curr_insn_len(s));
gen_a64_set_pc(s, dst);
set_btype_for_blr(s);
s->base.is_jmp = DISAS_JUMP;
return true;
}
static bool trans_RETA(DisasContext *s, arg_reta *a)
{
TCGv_i64 dst;
dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
gen_a64_set_pc(s, dst);
s->base.is_jmp = DISAS_JUMP;
return true;
}
static bool trans_BRA(DisasContext *s, arg_bra *a)
{
TCGv_i64 dst;
if (!dc_isar_feature(aa64_pauth, s)) {
return false;
}
dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
gen_a64_set_pc(s, dst);
set_btype_for_br(s, a->rn);
s->base.is_jmp = DISAS_JUMP;
return true;
}
static bool trans_BLRA(DisasContext *s, arg_bra *a)
{
TCGv_i64 dst, lr;
if (!dc_isar_feature(aa64_pauth, s)) {
return false;
}
dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
lr = cpu_reg(s, 30);
if (dst == lr) {
TCGv_i64 tmp = tcg_temp_new_i64();
tcg_gen_mov_i64(tmp, dst);
dst = tmp;
}
gen_pc_plus_diff(s, lr, curr_insn_len(s));
gen_a64_set_pc(s, dst);
set_btype_for_blr(s);
s->base.is_jmp = DISAS_JUMP;
return true;
}
static bool trans_ERET(DisasContext *s, arg_ERET *a)
{
TCGv_i64 dst;
if (s->current_el == 0) {
return false;
}
if (s->trap_eret) {
gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2);
return true;
}
dst = tcg_temp_new_i64();
tcg_gen_ld_i64(dst, tcg_env,
offsetof(CPUARMState, elr_el[s->current_el]));
translator_io_start(&s->base);
gen_helper_exception_return(tcg_env, dst);
/* Must exit loop to check un-masked IRQs */
s->base.is_jmp = DISAS_EXIT;
return true;
}
static bool trans_ERETA(DisasContext *s, arg_reta *a)
{
TCGv_i64 dst;
if (!dc_isar_feature(aa64_pauth, s)) {
return false;
}
if (s->current_el == 0) {
return false;
}
/* The FGT trap takes precedence over an auth trap. */
if (s->trap_eret) {
gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2);
return true;
}
dst = tcg_temp_new_i64();
tcg_gen_ld_i64(dst, tcg_env,
offsetof(CPUARMState, elr_el[s->current_el]));
dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
translator_io_start(&s->base);
gen_helper_exception_return(tcg_env, dst);
/* Must exit loop to check un-masked IRQs */
s->base.is_jmp = DISAS_EXIT;
return true;
}
static bool trans_NOP(DisasContext *s, arg_NOP *a)
{
return true;
}
static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
{
/*
* When running in MTTCG we don't generate jumps to the yield and
* WFE helpers as it won't affect the scheduling of other vCPUs.
* If we wanted to more completely model WFE/SEV so we don't busy
* spin unnecessarily we would need to do something more involved.
*/
if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
s->base.is_jmp = DISAS_YIELD;
}
return true;
}
static bool trans_WFI(DisasContext *s, arg_WFI *a)
{
s->base.is_jmp = DISAS_WFI;
return true;
}
static bool trans_WFE(DisasContext *s, arg_WFI *a)
{
/*
* When running in MTTCG we don't generate jumps to the yield and
* WFE helpers as it won't affect the scheduling of other vCPUs.
* If we wanted to more completely model WFE/SEV so we don't busy
* spin unnecessarily we would need to do something more involved.
*/
if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
s->base.is_jmp = DISAS_WFE;
}
return true;
}
static bool trans_WFIT(DisasContext *s, arg_WFIT *a)
{
if (!dc_isar_feature(aa64_wfxt, s)) {
return false;
}
/*
* Because we need to pass the register value to the helper,
* it's easier to emit the code now, unlike trans_WFI which
* defers it to aarch64_tr_tb_stop(). That means we need to
* check ss_active so that single-stepping a WFIT doesn't halt.
*/
if (s->ss_active) {
/* Act like a NOP under architectural singlestep */
return true;
}
gen_a64_update_pc(s, 4);
gen_helper_wfit(tcg_env, cpu_reg(s, a->rd));
/* Go back to the main loop to check for interrupts */
s->base.is_jmp = DISAS_EXIT;
return true;
}
static bool trans_WFET(DisasContext *s, arg_WFET *a)
{
if (!dc_isar_feature(aa64_wfxt, s)) {
return false;
}
/*
* We rely here on our WFE implementation being a NOP, so we
* don't need to do anything different to handle the WFET timeout
* from what trans_WFE does.
*/
if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
s->base.is_jmp = DISAS_WFE;
}
return true;
}
static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
{
if (s->pauth_active) {
gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]);
}
return true;
}
static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
{
if (s->pauth_active) {
gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
}
return true;
}
static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
{
if (s->pauth_active) {
gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
}
return true;
}
static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
{
if (s->pauth_active) {
gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
}
return true;
}
static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
{
if (s->pauth_active) {
gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
}
return true;
}
static bool trans_ESB(DisasContext *s, arg_ESB *a)
{
/* Without RAS, we must implement this as NOP. */
if (dc_isar_feature(aa64_ras, s)) {
/*
* QEMU does not have a source of physical SErrors,
* so we are only concerned with virtual SErrors.
* The pseudocode in the ARM for this case is
* if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
* AArch64.vESBOperation();
* Most of the condition can be evaluated at translation time.
* Test for EL2 present, and defer test for SEL2 to runtime.
*/
if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
gen_helper_vesb(tcg_env);
}
}
return true;
}
static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
{
if (s->pauth_active) {
gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
}
return true;
}
static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
{
if (s->pauth_active) {
gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
}
return true;
}
static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
{
if (s->pauth_active) {
gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
}
return true;
}
static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
{
if (s->pauth_active) {
gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
}
return true;
}
static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
{
if (s->pauth_active) {
gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
}
return true;
}
static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
{
if (s->pauth_active) {
gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
}
return true;
}
static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
{
if (s->pauth_active) {
gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
}
return true;
}
static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
{
if (s->pauth_active) {
gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
}
return true;
}
static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
{
tcg_gen_movi_i64(cpu_exclusive_addr, -1);
return true;
}
static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
{
/* We handle DSB and DMB the same way */
TCGBar bar;
switch (a->types) {
case 1: /* MBReqTypes_Reads */
bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
break;
case 2: /* MBReqTypes_Writes */
bar = TCG_BAR_SC | TCG_MO_ST_ST;
break;
default: /* MBReqTypes_All */
bar = TCG_BAR_SC | TCG_MO_ALL;
break;
}
tcg_gen_mb(bar);
return true;
}
static bool trans_ISB(DisasContext *s, arg_ISB *a)
{
/*
* We need to break the TB after this insn to execute
* self-modifying code correctly and also to take
* any pending interrupts immediately.
*/
reset_btype(s);
gen_goto_tb(s, 0, 4);
return true;
}
static bool trans_SB(DisasContext *s, arg_SB *a)
{
if (!dc_isar_feature(aa64_sb, s)) {
return false;
}
/*
* TODO: There is no speculation barrier opcode for TCG;
* MB and end the TB instead.
*/
tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
gen_goto_tb(s, 0, 4);
return true;
}
static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
{
if (!dc_isar_feature(aa64_condm_4, s)) {
return false;
}
tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
return true;
}
static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
{
TCGv_i32 z;
if (!dc_isar_feature(aa64_condm_5, s)) {
return false;
}
z = tcg_temp_new_i32();
tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
/*
* (!C & !Z) << 31
* (!(C | Z)) << 31
* ~((C | Z) << 31)
* ~-(C | Z)
* (C | Z) - 1
*/
tcg_gen_or_i32(cpu_NF, cpu_CF, z);
tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
/* !(Z & C) */
tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
/* (!C & Z) << 31 -> -(Z & ~C) */
tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
tcg_gen_neg_i32(cpu_VF, cpu_VF);
/* C | Z */
tcg_gen_or_i32(cpu_CF, cpu_CF, z);
return true;
}
static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
{
if (!dc_isar_feature(aa64_condm_5, s)) {
return false;
}
tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */
tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */
/* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
tcg_gen_movi_i32(cpu_NF, 0);
tcg_gen_movi_i32(cpu_VF, 0);
return true;
}
static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
{
if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
return false;
}
if (a->imm & 1) {
set_pstate_bits(PSTATE_UAO);
} else {
clear_pstate_bits(PSTATE_UAO);
}
gen_rebuild_hflags(s);
s->base.is_jmp = DISAS_TOO_MANY;
return true;
}
static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
{
if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
return false;
}
if (a->imm & 1) {
set_pstate_bits(PSTATE_PAN);
} else {
clear_pstate_bits(PSTATE_PAN);
}
gen_rebuild_hflags(s);
s->base.is_jmp = DISAS_TOO_MANY;
return true;
}
static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
{
if (s->current_el == 0) {
return false;
}
gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP));
s->base.is_jmp = DISAS_TOO_MANY;
return true;
}
static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
{
if (!dc_isar_feature(aa64_ssbs, s)) {
return false;
}
if (a->imm & 1) {
set_pstate_bits(PSTATE_SSBS);
} else {
clear_pstate_bits(PSTATE_SSBS);
}
/* Don't need to rebuild hflags since SSBS is a nop */
s->base.is_jmp = DISAS_TOO_MANY;
return true;
}
static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
{
if (!dc_isar_feature(aa64_dit, s)) {
return false;
}
if (a->imm & 1) {
set_pstate_bits(PSTATE_DIT);
} else {
clear_pstate_bits(PSTATE_DIT);
}
/* There's no need to rebuild hflags because DIT is a nop */
s->base.is_jmp = DISAS_TOO_MANY;
return true;
}
static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
{
if (dc_isar_feature(aa64_mte, s)) {
/* Full MTE is enabled -- set the TCO bit as directed. */
if (a->imm & 1) {
set_pstate_bits(PSTATE_TCO);
} else {
clear_pstate_bits(PSTATE_TCO);
}
gen_rebuild_hflags(s);
/* Many factors, including TCO, go into MTE_ACTIVE. */
s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
return true;
} else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
/* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */
return true;
} else {
/* Insn not present */
return false;
}
}
static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
{
gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm));
s->base.is_jmp = DISAS_TOO_MANY;
return true;
}
static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
{
gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm));
/* Exit the cpu loop to re-evaluate pending IRQs. */
s->base.is_jmp = DISAS_UPDATE_EXIT;
return true;
}
static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a)
{
if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) {
return false;
}
if (a->imm == 0) {
clear_pstate_bits(PSTATE_ALLINT);
} else if (s->current_el > 1) {
set_pstate_bits(PSTATE_ALLINT);
} else {
gen_helper_msr_set_allint_el1(tcg_env);
}
/* Exit the cpu loop to re-evaluate pending IRQs. */
s->base.is_jmp = DISAS_UPDATE_EXIT;
return true;
}
static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
{
if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
return false;
}
if (sme_access_check(s)) {
int old = s->pstate_sm | (s->pstate_za << 1);
int new = a->imm * 3;
if ((old ^ new) & a->mask) {
/* At least one bit changes. */
gen_helper_set_svcr(tcg_env, tcg_constant_i32(new),
tcg_constant_i32(a->mask));
s->base.is_jmp = DISAS_TOO_MANY;
}
}
return true;
}
static void gen_get_nzcv(TCGv_i64 tcg_rt)
{
TCGv_i32 tmp = tcg_temp_new_i32();
TCGv_i32 nzcv = tcg_temp_new_i32();
/* build bit 31, N */
tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
/* build bit 30, Z */
tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
/* build bit 29, C */
tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
/* build bit 28, V */
tcg_gen_shri_i32(tmp, cpu_VF, 31);
tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
/* generate result */
tcg_gen_extu_i32_i64(tcg_rt, nzcv);
}
static void gen_set_nzcv(TCGv_i64 tcg_rt)
{
TCGv_i32 nzcv = tcg_temp_new_i32();
/* take NZCV from R[t] */
tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
/* bit 31, N */
tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
/* bit 30, Z */
tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
/* bit 29, C */
tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
/* bit 28, V */
tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
}
static void gen_sysreg_undef(DisasContext *s, bool isread,
uint8_t op0, uint8_t op1, uint8_t op2,
uint8_t crn, uint8_t crm, uint8_t rt)
{
/*
* Generate code to emit an UNDEF with correct syndrome
* information for a failed system register access.
* This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
* but if FEAT_IDST is implemented then read accesses to registers
* in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
* syndrome.
*/
uint32_t syndrome;
if (isread && dc_isar_feature(aa64_ids, s) &&
arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
} else {
syndrome = syn_uncategorized();
}
gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
}
/* MRS - move from system register
* MSR (register) - move to system register
* SYS
* SYSL
* These are all essentially the same insn in 'read' and 'write'
* versions, with varying op0 fields.
*/
static void handle_sys(DisasContext *s, bool isread,
unsigned int op0, unsigned int op1, unsigned int op2,
unsigned int crn, unsigned int crm, unsigned int rt)
{
uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
crn, crm, op0, op1, op2);
const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
bool need_exit_tb = false;
bool nv_trap_to_el2 = false;
bool nv_redirect_reg = false;
bool skip_fp_access_checks = false;
bool nv2_mem_redirect = false;
TCGv_ptr tcg_ri = NULL;
TCGv_i64 tcg_rt;
uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
if (crn == 11 || crn == 15) {
/*
* Check for TIDCP trap, which must take precedence over
* the UNDEF for "no such register" etc.
*/
switch (s->current_el) {
case 0:
if (dc_isar_feature(aa64_tidcp1, s)) {
gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome));
}
break;
case 1:
gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome));
break;
}
}
if (!ri) {
/* Unknown register; this might be a guest error or a QEMU
* unimplemented feature.
*/
qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
"system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
isread ? "read" : "write", op0, op1, crn, crm, op2);
gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
return;
}
if (s->nv2 && ri->nv2_redirect_offset) {
/*
* Some registers always redirect to memory; some only do so if
* HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in
* pairs which share an offset; see the table in R_CSRPQ).
*/
if (ri->nv2_redirect_offset & NV2_REDIR_NV1) {
nv2_mem_redirect = s->nv1;
} else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) {
nv2_mem_redirect = !s->nv1;
} else {
nv2_mem_redirect = true;
}
}
/* Check access permissions */
if (!cp_access_ok(s->current_el, ri, isread)) {
/*
* FEAT_NV/NV2 handling does not do the usual FP access checks
* for registers only accessible at EL2 (though it *does* do them
* for registers accessible at EL1).
*/
skip_fp_access_checks = true;
if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) {
/*
* This is one of the few EL2 registers which should redirect
* to the equivalent EL1 register. We do that after running
* the EL2 register's accessfn.
*/
nv_redirect_reg = true;
assert(!nv2_mem_redirect);
} else if (nv2_mem_redirect) {
/*
* NV2 redirect-to-memory takes precedence over trap to EL2 or
* UNDEF to EL1.
*/
} else if (s->nv && arm_cpreg_traps_in_nv(ri)) {
/*
* This register / instruction exists and is an EL2 register, so
* we must trap to EL2 if accessed in nested virtualization EL1
* instead of UNDEFing. We'll do that after the usual access checks.
* (This makes a difference only for a couple of registers like
* VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority
* over the trap-to-EL2. Most trapped-by-FEAT_NV registers have
* an accessfn which does nothing when called from EL1, because
* the trap-to-EL3 controls which would apply to that register
* at EL2 don't take priority over the FEAT_NV trap-to-EL2.)
*/
nv_trap_to_el2 = true;
} else {
gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
return;
}
}
if (ri->accessfn || (ri->fgt && s->fgt_active)) {
/* Emit code to perform further access permissions checks at
* runtime; this may result in an exception.
*/
gen_a64_update_pc(s, 0);
tcg_ri = tcg_temp_new_ptr();
gen_helper_access_check_cp_reg(tcg_ri, tcg_env,
tcg_constant_i32(key),
tcg_constant_i32(syndrome),
tcg_constant_i32(isread));
} else if (ri->type & ARM_CP_RAISES_EXC) {
/*
* The readfn or writefn might raise an exception;
* synchronize the CPU state in case it does.
*/
gen_a64_update_pc(s, 0);
}
if (!skip_fp_access_checks) {
if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
return;
} else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
return;
} else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
return;
}
}
if (nv_trap_to_el2) {
gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
return;
}
if (nv_redirect_reg) {
/*
* FEAT_NV2 redirection of an EL2 register to an EL1 register.
* Conveniently in all cases the encoding of the EL1 register is
* identical to the EL2 register except that opc1 is 0.
* Get the reginfo for the EL1 register to use for the actual access.
* We don't use the EL1 register's access function, and
* fine-grained-traps on EL1 also do not apply here.
*/
key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
crn, crm, op0, 0, op2);
ri = get_arm_cp_reginfo(s->cp_regs, key);
assert(ri);
assert(cp_access_ok(s->current_el, ri, isread));
/*
* We might not have done an update_pc earlier, so check we don't
* need it. We could support this in future if necessary.
*/
assert(!(ri->type & ARM_CP_RAISES_EXC));
}
if (nv2_mem_redirect) {
/*
* This system register is being redirected into an EL2 memory access.
* This means it is not an IO operation, doesn't change hflags,
* and need not end the TB, because it has no side effects.
*
* The access is 64-bit single copy atomic, guaranteed aligned because
* of the definition of VCNR_EL2. Its endianness depends on
* SCTLR_EL2.EE, not on the data endianness of EL1.
* It is done under either the EL2 translation regime or the EL2&0
* translation regime, depending on HCR_EL2.E2H. It behaves as if
* PSTATE.PAN is 0.
*/
TCGv_i64 ptr = tcg_temp_new_i64();
MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN;
ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
int memidx = arm_to_core_mmu_idx(armmemidx);
uint32_t syn;
mop |= (s->nv2_mem_be ? MO_BE : MO_LE);
tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2));
tcg_gen_addi_i64(ptr, ptr,
(ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK));
tcg_rt = cpu_reg(s, rt);
syn = syn_data_abort_vncr(0, !isread, 0);
disas_set_insn_syndrome(s, syn);
if (isread) {
tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop);
} else {
tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop);
}
return;
}
/* Handle special cases first */
switch (ri->type & ARM_CP_SPECIAL_MASK) {
case 0:
break;
case ARM_CP_NOP:
return;
case ARM_CP_NZCV:
tcg_rt = cpu_reg(s, rt);
if (isread) {
gen_get_nzcv(tcg_rt);
} else {
gen_set_nzcv(tcg_rt);
}
return;
case ARM_CP_CURRENTEL:
{
/*
* Reads as current EL value from pstate, which is
* guaranteed to be constant by the tb flags.
* For nested virt we should report EL2.
*/
int el = s->nv ? 2 : s->current_el;
tcg_rt = cpu_reg(s, rt);
tcg_gen_movi_i64(tcg_rt, el << 2);
return;
}
case ARM_CP_DC_ZVA:
/* Writes clear the aligned block of memory which rt points into. */
if (s->mte_active[0]) {
int desc = 0;
desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
tcg_rt = tcg_temp_new_i64();
gen_helper_mte_check_zva(tcg_rt, tcg_env,
tcg_constant_i32(desc), cpu_reg(s, rt));
} else {
tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
}
gen_helper_dc_zva(tcg_env, tcg_rt);
return;
case ARM_CP_DC_GVA:
{
TCGv_i64 clean_addr, tag;
/*
* DC_GVA, like DC_ZVA, requires that we supply the original
* pointer for an invalid page. Probe that address first.
*/
tcg_rt = cpu_reg(s, rt);
clean_addr = clean_data_tbi(s, tcg_rt);
gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
if (s->ata[0]) {
/* Extract the tag from the register to match STZGM. */
tag = tcg_temp_new_i64();
tcg_gen_shri_i64(tag, tcg_rt, 56);
gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
}
}
return;
case ARM_CP_DC_GZVA:
{
TCGv_i64 clean_addr, tag;
/* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
tcg_rt = cpu_reg(s, rt);
clean_addr = clean_data_tbi(s, tcg_rt);
gen_helper_dc_zva(tcg_env, clean_addr);
if (s->ata[0]) {
/* Extract the tag from the register to match STZGM. */
tag = tcg_temp_new_i64();
tcg_gen_shri_i64(tag, tcg_rt, 56);
gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
}
}
return;
default:
g_assert_not_reached();
}
if (ri->type & ARM_CP_IO) {
/* I/O operations must end the TB here (whether read or write) */
need_exit_tb = translator_io_start(&s->base);
}
tcg_rt = cpu_reg(s, rt);
if (isread) {
if (ri->type & ARM_CP_CONST) {
tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
} else if (ri->readfn) {
if (!tcg_ri) {
tcg_ri = gen_lookup_cp_reg(key);
}
gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri);
} else {
tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset);
}
} else {
if (ri->type & ARM_CP_CONST) {
/* If not forbidden by access permissions, treat as WI */
return;
} else if (ri->writefn) {
if (!tcg_ri) {
tcg_ri = gen_lookup_cp_reg(key);
}
gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt);
} else {
tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset);
}
}
if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
/*
* A write to any coprocessor register that ends a TB
* must rebuild the hflags for the next TB.
*/
gen_rebuild_hflags(s);
/*
* We default to ending the TB on a coprocessor register write,
* but allow this to be suppressed by the register definition
* (usually only necessary to work around guest bugs).
*/
need_exit_tb = true;
}
if (need_exit_tb) {
s->base.is_jmp = DISAS_UPDATE_EXIT;
}
}
static bool trans_SYS(DisasContext *s, arg_SYS *a)
{
handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
return true;
}
static bool trans_SVC(DisasContext *s, arg_i *a)
{
/*
* For SVC, HVC and SMC we advance the single-step state
* machine before taking the exception. This is architecturally
* mandated, to ensure that single-stepping a system call
* instruction works properly.
*/
uint32_t syndrome = syn_aa64_svc(a->imm);
if (s->fgt_svc) {
gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
return true;
}
gen_ss_advance(s);
gen_exception_insn(s, 4, EXCP_SWI, syndrome);
return true;
}
static bool trans_HVC(DisasContext *s, arg_i *a)
{
int target_el = s->current_el == 3 ? 3 : 2;
if (s->current_el == 0) {
unallocated_encoding(s);
return true;
}
/*
* The pre HVC helper handles cases when HVC gets trapped
* as an undefined insn by runtime configuration.
*/
gen_a64_update_pc(s, 0);
gen_helper_pre_hvc(tcg_env);
/* Architecture requires ss advance before we do the actual work */
gen_ss_advance(s);
gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el);
return true;
}
static bool trans_SMC(DisasContext *s, arg_i *a)
{
if (s->current_el == 0) {
unallocated_encoding(s);
return true;
}
gen_a64_update_pc(s, 0);
gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
/* Architecture requires ss advance before we do the actual work */
gen_ss_advance(s);
gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
return true;
}
static bool trans_BRK(DisasContext *s, arg_i *a)
{
gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
return true;
}
static bool trans_HLT(DisasContext *s, arg_i *a)
{
/*
* HLT. This has two purposes.
* Architecturally, it is an external halting debug instruction.
* Since QEMU doesn't implement external debug, we treat this as
* it is required for halting debug disabled: it will UNDEF.
* Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
*/
if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
gen_exception_internal_insn(s, EXCP_SEMIHOST);
} else {
unallocated_encoding(s);
}
return true;
}
/*
* Load/Store exclusive instructions are implemented by remembering
* the value/address loaded, and seeing if these are the same
* when the store is performed. This is not actually the architecturally
* mandated semantics, but it works for typical guest code sequences
* and avoids having to monitor regular stores.
*
* The store exclusive uses the atomic cmpxchg primitives to avoid
* races in multi-threaded linux-user and when MTTCG softmmu is
* enabled.
*/
static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
int size, bool is_pair)
{
int idx = get_mem_index(s);
TCGv_i64 dirty_addr, clean_addr;
MemOp memop = check_atomic_align(s, rn, size + is_pair);
s->is_ldex = true;
dirty_addr = cpu_reg_sp(s, rn);
clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
g_assert(size <= 3);
if (is_pair) {
g_assert(size >= 2);
if (size == 2) {
tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
if (s->be_data == MO_LE) {
tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
} else {
tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
}
} else {
TCGv_i128 t16 = tcg_temp_new_i128();
tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
if (s->be_data == MO_LE) {
tcg_gen_extr_i128_i64(cpu_exclusive_val,
cpu_exclusive_high, t16);
} else {
tcg_gen_extr_i128_i64(cpu_exclusive_high,
cpu_exclusive_val, t16);
}
tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
}
} else {
tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
}
tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
}
static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
int rn, int size, int is_pair)
{
/* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
* && (!is_pair || env->exclusive_high == [addr + datasize])) {
* [addr] = {Rt};
* if (is_pair) {
* [addr + datasize] = {Rt2};
* }
* {Rd} = 0;
* } else {
* {Rd} = 1;
* }
* env->exclusive_addr = -1;
*/
TCGLabel *fail_label = gen_new_label();
TCGLabel *done_label = gen_new_label();
TCGv_i64 tmp, clean_addr;
MemOp memop;
/*
* FIXME: We are out of spec here. We have recorded only the address
* from load_exclusive, not the entire range, and we assume that the
* size of the access on both sides match. The architecture allows the
* store to be smaller than the load, so long as the stored bytes are
* within the range recorded by the load.
*/
/* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
/*
* The write, and any associated faults, only happen if the virtual
* and physical addresses pass the exclusive monitor check. These
* faults are exceedingly unlikely, because normally the guest uses
* the exact same address register for the load_exclusive, and we
* would have recognized these faults there.
*
* It is possible to trigger an alignment fault pre-LSE2, e.g. with an
* unaligned 4-byte write within the range of an aligned 8-byte load.
* With LSE2, the store would need to cross a 16-byte boundary when the
* load did not, which would mean the store is outside the range
* recorded for the monitor, which would have failed a corrected monitor
* check above. For now, we assume no size change and retain the
* MO_ALIGN to let tcg know what we checked in the load_exclusive.
*
* It is possible to trigger an MTE fault, by performing the load with
* a virtual address with a valid tag and performing the store with the
* same virtual address and a different invalid tag.
*/
memop = size + is_pair;
if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
memop |= MO_ALIGN;
}
memop = finalize_memop(s, memop);
gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
tmp = tcg_temp_new_i64();
if (is_pair) {
if (size == 2) {
if (s->be_data == MO_LE) {
tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
} else {
tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
}
tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
cpu_exclusive_val, tmp,
get_mem_index(s), memop);
tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
} else {
TCGv_i128 t16 = tcg_temp_new_i128();
TCGv_i128 c16 = tcg_temp_new_i128();
TCGv_i64 a, b;
if (s->be_data == MO_LE) {
tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
cpu_exclusive_high);
} else {
tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
cpu_exclusive_val);
}
tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
get_mem_index(s), memop);
a = tcg_temp_new_i64();
b = tcg_temp_new_i64();
if (s->be_data == MO_LE) {
tcg_gen_extr_i128_i64(a, b, t16);
} else {
tcg_gen_extr_i128_i64(b, a, t16);
}
tcg_gen_xor_i64(a, a, cpu_exclusive_val);
tcg_gen_xor_i64(b, b, cpu_exclusive_high);
tcg_gen_or_i64(tmp, a, b);
tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
}
} else {
tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
cpu_reg(s, rt), get_mem_index(s), memop);
tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
}
tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
tcg_gen_br(done_label);
gen_set_label(fail_label);
tcg_gen_movi_i64(cpu_reg(s, rd), 1);
gen_set_label(done_label);
tcg_gen_movi_i64(cpu_exclusive_addr, -1);
}
static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
int rn, int size)
{
TCGv_i64 tcg_rs = cpu_reg(s, rs);
TCGv_i64 tcg_rt = cpu_reg(s, rt);
int memidx = get_mem_index(s);
TCGv_i64 clean_addr;
MemOp memop;
if (rn == 31) {
gen_check_sp_alignment(s);
}
memop = check_atomic_align(s, rn, size);
clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
memidx, memop);
}
static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
int rn, int size)
{
TCGv_i64 s1 = cpu_reg(s, rs);
TCGv_i64 s2 = cpu_reg(s, rs + 1);
TCGv_i64 t1 = cpu_reg(s, rt);
TCGv_i64 t2 = cpu_reg(s, rt + 1);
TCGv_i64 clean_addr;
int memidx = get_mem_index(s);
MemOp memop;
if (rn == 31) {
gen_check_sp_alignment(s);
}
/* This is a single atomic access, despite the "pair". */
memop = check_atomic_align(s, rn, size + 1);
clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
if (size == 2) {
TCGv_i64 cmp = tcg_temp_new_i64();
TCGv_i64 val = tcg_temp_new_i64();
if (s->be_data == MO_LE) {
tcg_gen_concat32_i64(val, t1, t2);
tcg_gen_concat32_i64(cmp, s1, s2);
} else {
tcg_gen_concat32_i64(val, t2, t1);
tcg_gen_concat32_i64(cmp, s2, s1);
}
tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
if (s->be_data == MO_LE) {
tcg_gen_extr32_i64(s1, s2, cmp);
} else {
tcg_gen_extr32_i64(s2, s1, cmp);
}
} else {
TCGv_i128 cmp = tcg_temp_new_i128();
TCGv_i128 val = tcg_temp_new_i128();
if (s->be_data == MO_LE) {
tcg_gen_concat_i64_i128(val, t1, t2);
tcg_gen_concat_i64_i128(cmp, s1, s2);
} else {
tcg_gen_concat_i64_i128(val, t2, t1);
tcg_gen_concat_i64_i128(cmp, s2, s1);
}
tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
if (s->be_data == MO_LE) {
tcg_gen_extr_i128_i64(s1, s2, cmp);
} else {
tcg_gen_extr_i128_i64(s2, s1, cmp);
}
}
}
/*
* Compute the ISS.SF bit for syndrome information if an exception
* is taken on a load or store. This indicates whether the instruction
* is accessing a 32-bit or 64-bit register. This logic is derived
* from the ARMv8 specs for LDR (Shared decode for all encodings).
*/
static bool ldst_iss_sf(int size, bool sign, bool ext)
{
if (sign) {
/*
* Signed loads are 64 bit results if we are not going to
* do a zero-extend from 32 to 64 after the load.
* (For a store, sign and ext are always false.)
*/
return !ext;
} else {
/* Unsigned loads/stores work at the specified size */
return size == MO_64;
}
}
static bool trans_STXR(DisasContext *s, arg_stxr *a)
{
if (a->rn == 31) {
gen_check_sp_alignment(s);
}
if (a->lasr) {
tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
}
gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
return true;
}
static bool trans_LDXR(DisasContext *s, arg_stxr *a)
{
if (a->rn == 31) {
gen_check_sp_alignment(s);
}
gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
if (a->lasr) {
tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
}
return true;
}
static bool trans_STLR(DisasContext *s, arg_stlr *a)
{
TCGv_i64 clean_addr;
MemOp memop;
bool iss_sf = ldst_iss_sf(a->sz, false, false);
/*
* StoreLORelease is the same as Store-Release for QEMU, but
* needs the feature-test.
*/
if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
return false;
}
/* Generate ISS for non-exclusive accesses including LASR. */
if (a->rn == 31) {
gen_check_sp_alignment(s);
}
tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
memop = check_ordered_align(s, a->rn, 0, true, a->sz);
clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
true, a->rn != 31, memop);
do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
iss_sf, a->lasr);
return true;
}
static bool trans_LDAR(DisasContext *s, arg_stlr *a)
{
TCGv_i64 clean_addr;
MemOp memop;
bool iss_sf = ldst_iss_sf(a->sz, false, false);
/* LoadLOAcquire is the same as Load-Acquire for QEMU. */
if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
return false;
}
/* Generate ISS for non-exclusive accesses including LASR. */
if (a->rn == 31) {
gen_check_sp_alignment(s);
}
memop = check_ordered_align(s, a->rn, 0, false, a->sz);
clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
false, a->rn != 31, memop);
do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
a->rt, iss_sf, a->lasr);
tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
return true;
}
static bool trans_STXP(DisasContext *s, arg_stxr *a)
{
if (a->rn == 31) {
gen_check_sp_alignment(s);
}
if (a->lasr) {
tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
}
gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
return true;
}
static bool trans_LDXP(DisasContext *s, arg_stxr *a)
{
if (a->rn == 31) {
gen_check_sp_alignment(s);
}
gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
if (a->lasr) {
tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
}
return true;
}
static bool trans_CASP(DisasContext *s, arg_CASP *a)
{
if (!dc_isar_feature(aa64_atomics, s)) {
return false;
}
if (((a->rt | a->rs) & 1) != 0) {
return false;
}
gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
return true;
}
static bool trans_CAS(DisasContext *s, arg_CAS *a)
{
if (!dc_isar_feature(aa64_atomics, s)) {
return false;
}
gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
return true;
}
static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
{
bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
TCGv_i64 clean_addr = tcg_temp_new_i64();
MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
gen_pc_plus_diff(s, clean_addr, a->imm);
do_gpr_ld(s, tcg_rt, clean_addr, memop,
false, true, a->rt, iss_sf, false);
return true;
}
static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
{
/* Load register (literal), vector version */
TCGv_i64 clean_addr;
MemOp memop;
if (!fp_access_check(s)) {
return true;
}
memop = finalize_memop_asimd(s, a->sz);
clean_addr = tcg_temp_new_i64();
gen_pc_plus_diff(s, clean_addr, a->imm);
do_fp_ld(s, a->rt, clean_addr, memop);
return true;
}
static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
uint64_t offset, bool is_store, MemOp mop)
{
if (a->rn == 31) {
gen_check_sp_alignment(s);
}
*dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
if (!a->p) {
tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
}
*clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
(a->w || a->rn != 31), 2 << a->sz, mop);
}
static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
TCGv_i64 dirty_addr, uint64_t offset)
{
if (a->w) {
if (a->p) {
tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
}
tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
}
}
static bool trans_STP(DisasContext *s, arg_ldstpair *a)
{
uint64_t offset = a->imm << a->sz;
TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
MemOp mop = finalize_memop(s, a->sz);
op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
tcg_rt = cpu_reg(s, a->rt);
tcg_rt2 = cpu_reg(s, a->rt2);
/*
* We built mop above for the single logical access -- rebuild it
* now for the paired operation.
*
* With LSE2, non-sign-extending pairs are treated atomically if
* aligned, and if unaligned one of the pair will be completely
* within a 16-byte block and that element will be atomic.
* Otherwise each element is separately atomic.
* In all cases, issue one operation with the correct atomicity.
*/
mop = a->sz + 1;
if (s->align_mem) {
mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
}
mop = finalize_memop_pair(s, mop);
if (a->sz == 2) {
TCGv_i64 tmp = tcg_temp_new_i64();
if (s->be_data == MO_LE) {
tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
} else {
tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
}
tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
} else {
TCGv_i128 tmp = tcg_temp_new_i128();
if (s->be_data == MO_LE) {
tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
} else {
tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
}
tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
}
op_addr_ldstpair_post(s, a, dirty_addr, offset);
return true;
}
static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
{
uint64_t offset = a->imm << a->sz;
TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
MemOp mop = finalize_memop(s, a->sz);
op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
tcg_rt = cpu_reg(s, a->rt);
tcg_rt2 = cpu_reg(s, a->rt2);
/*
* We built mop above for the single logical access -- rebuild it
* now for the paired operation.
*
* With LSE2, non-sign-extending pairs are treated atomically if
* aligned, and if unaligned one of the pair will be completely
* within a 16-byte block and that element will be atomic.
* Otherwise each element is separately atomic.
* In all cases, issue one operation with the correct atomicity.
*
* This treats sign-extending loads like zero-extending loads,
* since that reuses the most code below.
*/
mop = a->sz + 1;
if (s->align_mem) {
mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
}
mop = finalize_memop_pair(s, mop);
if (a->sz == 2) {
int o2 = s->be_data == MO_LE ? 32 : 0;
int o1 = o2 ^ 32;
tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
if (a->sign) {
tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
} else {
tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
}
} else {
TCGv_i128 tmp = tcg_temp_new_i128();
tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
if (s->be_data == MO_LE) {
tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
} else {
tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
}
}
op_addr_ldstpair_post(s, a, dirty_addr, offset);
return true;
}
static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
{
uint64_t offset = a->imm << a->sz;
TCGv_i64 clean_addr, dirty_addr;
MemOp mop;
if (!fp_access_check(s)) {
return true;
}
/* LSE2 does not merge FP pairs; leave these as separate operations. */
mop = finalize_memop_asimd(s, a->sz);
op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
do_fp_st(s, a->rt, clean_addr, mop);
tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
do_fp_st(s, a->rt2, clean_addr, mop);
op_addr_ldstpair_post(s, a, dirty_addr, offset);
return true;
}
static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
{
uint64_t offset = a->imm << a->sz;
TCGv_i64 clean_addr, dirty_addr;
MemOp mop;
if (!fp_access_check(s)) {
return true;
}
/* LSE2 does not merge FP pairs; leave these as separate operations. */
mop = finalize_memop_asimd(s, a->sz);
op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
do_fp_ld(s, a->rt, clean_addr, mop);
tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
do_fp_ld(s, a->rt2, clean_addr, mop);
op_addr_ldstpair_post(s, a, dirty_addr, offset);
return true;
}
static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
{
TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
uint64_t offset = a->imm << LOG2_TAG_GRANULE;
MemOp mop;
TCGv_i128 tmp;
/* STGP only comes in one size. */
tcg_debug_assert(a->sz == MO_64);
if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
return false;
}
if (a->rn == 31) {
gen_check_sp_alignment(s);
}
dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
if (!a->p) {
tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
}
clean_addr = clean_data_tbi(s, dirty_addr);
tcg_rt = cpu_reg(s, a->rt);
tcg_rt2 = cpu_reg(s, a->rt2);
/*
* STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE,
* and one tag operation. We implement it as one single aligned 16-byte
* memory operation for convenience. Note that the alignment ensures
* MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store.
*/
mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR);
tmp = tcg_temp_new_i128();
if (s->be_data == MO_LE) {
tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
} else {
tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
}
tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
/* Perform the tag store, if tag access enabled. */
if (s->ata[0]) {
if (tb_cflags(s->base.tb) & CF_PARALLEL) {
gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr);
} else {
gen_helper_stg(tcg_env, dirty_addr, dirty_addr);
}
}
op_addr_ldstpair_post(s, a, dirty_addr, offset);
return true;
}
static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
uint64_t offset, bool is_store, MemOp mop)
{
int memidx;
if (a->rn == 31) {
gen_check_sp_alignment(s);
}
*dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
if (!a->p) {
tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
}
memidx = get_a64_user_mem_index(s, a->unpriv);
*clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
a->w || a->rn != 31,
mop, a->unpriv, memidx);
}
static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
TCGv_i64 dirty_addr, uint64_t offset)
{
if (a->w) {
if (a->p) {
tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
}
tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
}
}
static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
{
bool iss_sf, iss_valid = !a->w;
TCGv_i64 clean_addr, dirty_addr, tcg_rt;
int memidx = get_a64_user_mem_index(s, a->unpriv);
MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
tcg_rt = cpu_reg(s, a->rt);
iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
iss_valid, a->rt, iss_sf, false);
op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
return true;
}
static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
{
bool iss_sf, iss_valid = !a->w;
TCGv_i64 clean_addr, dirty_addr, tcg_rt;
int memidx = get_a64_user_mem_index(s, a->unpriv);
MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
tcg_rt = cpu_reg(s, a->rt);
iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
a->ext, memidx, iss_valid, a->rt, iss_sf, false);
op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
return true;
}
static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
{
TCGv_i64 clean_addr, dirty_addr;
MemOp mop;
if (!fp_access_check(s)) {
return true;
}
mop = finalize_memop_asimd(s, a->sz);
op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
do_fp_st(s, a->rt, clean_addr, mop);
op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
return true;
}
static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
{
TCGv_i64 clean_addr, dirty_addr;
MemOp mop;
if (!fp_access_check(s)) {
return true;
}
mop = finalize_memop_asimd(s, a->sz);
op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
do_fp_ld(s, a->rt, clean_addr, mop);
op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
return true;
}
static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
bool is_store, MemOp memop)
{
TCGv_i64 tcg_rm;
if (a->rn == 31) {
gen_check_sp_alignment(s);
}
*dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
tcg_rm = read_cpu_reg(s, a->rm, 1);
ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
*clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
}
static bool trans_LDR(DisasContext *s, arg_ldst *a)
{
TCGv_i64 clean_addr, dirty_addr, tcg_rt;
bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
MemOp memop;
if (extract32(a->opt, 1, 1) == 0) {
return false;
}
memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
tcg_rt = cpu_reg(s, a->rt);
do_gpr_ld(s, tcg_rt, clean_addr, memop,
a->ext, true, a->rt, iss_sf, false);
return true;
}
static bool trans_STR(DisasContext *s, arg_ldst *a)
{
TCGv_i64 clean_addr, dirty_addr, tcg_rt;
bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
MemOp memop;
if (extract32(a->opt, 1, 1) == 0) {
return false;
}
memop = finalize_memop(s, a->sz);
op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
tcg_rt = cpu_reg(s, a->rt);
do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
return true;
}
static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
{
TCGv_i64 clean_addr, dirty_addr;
MemOp memop;
if (extract32(a->opt, 1, 1) == 0) {
return false;
}
if (!fp_access_check(s)) {
return true;
}
memop = finalize_memop_asimd(s, a->sz);
op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
do_fp_ld(s, a->rt, clean_addr, memop);
return true;
}
static bool trans_STR_v(DisasContext *s, arg_ldst *a)
{
TCGv_i64 clean_addr, dirty_addr;
MemOp memop;
if (extract32(a->opt, 1, 1) == 0) {
return false;
}
if (!fp_access_check(s)) {
return true;
}
memop = finalize_memop_asimd(s, a->sz);
op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
do_fp_st(s, a->rt, clean_addr, memop);
return true;
}
static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
int sign, bool invert)
{
MemOp mop = a->sz | sign;
TCGv_i64 clean_addr, tcg_rs, tcg_rt;
if (a->rn == 31) {
gen_check_sp_alignment(s);
}
mop = check_atomic_align(s, a->rn, mop);
clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
a->rn != 31, mop);
tcg_rs = read_cpu_reg(s, a->rs, true);
tcg_rt = cpu_reg(s, a->rt);
if (invert) {
tcg_gen_not_i64(tcg_rs, tcg_rs);
}
/*
* The tcg atomic primitives are all full barriers. Therefore we
* can ignore the Acquire and Release bits of this instruction.
*/
fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
if (mop & MO_SIGN) {
switch (a->sz) {
case MO_8:
tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
break;
case MO_16:
tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
break;
case MO_32:
tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
break;
case MO_64:
break;
default:
g_assert_not_reached();
}
}
return true;
}
TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
{
bool iss_sf = ldst_iss_sf(a->sz, false, false);
TCGv_i64 clean_addr;
MemOp mop;
if (!dc_isar_feature(aa64_atomics, s) ||
!dc_isar_feature(aa64_rcpc_8_3, s)) {
return false;
}
if (a->rn == 31) {
gen_check_sp_alignment(s);
}
mop = check_atomic_align(s, a->rn, a->sz);
clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
a->rn != 31, mop);
/*
* LDAPR* are a special case because they are a simple load, not a
* fetch-and-do-something op.
* The architectural consistency requirements here are weaker than
* full load-acquire (we only need "load-acquire processor consistent"),
* but we choose to implement them as full LDAQ.
*/
do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
true, a->rt, iss_sf, true);
tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
return true;
}
static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
{
TCGv_i64 clean_addr, dirty_addr, tcg_rt;
MemOp memop;
/* Load with pointer authentication */
if (!dc_isar_feature(aa64_pauth, s)) {
return false;
}
if (a->rn == 31) {
gen_check_sp_alignment(s);
}
dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
if (s->pauth_active) {
if (!a->m) {
gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr,
tcg_constant_i64(0));
} else {
gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr,
tcg_constant_i64(0));
}
}
tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
memop = finalize_memop(s, MO_64);
/* Note that "clean" and "dirty" here refer to TBI not PAC. */
clean_addr = gen_mte_check1(s, dirty_addr, false,
a->w || a->rn != 31, memop);
tcg_rt = cpu_reg(s, a->rt);
do_gpr_ld(s, tcg_rt, clean_addr, memop,
/* extend */ false, /* iss_valid */ !a->w,
/* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
if (a->w) {
tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
}
return true;
}
static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
{
TCGv_i64 clean_addr, dirty_addr;
MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
return false;
}
if (a->rn == 31) {
gen_check_sp_alignment(s);
}
mop = check_ordered_align(s, a->rn, a->imm, false, mop);
dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
clean_addr = clean_data_tbi(s, dirty_addr);
/*
* Load-AcquirePC semantics; we implement as the slightly more
* restrictive Load-Acquire.
*/
do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
a->rt, iss_sf, true);
tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
return true;
}
static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
{
TCGv_i64 clean_addr, dirty_addr;
MemOp mop = a->sz;
bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
return false;
}
/* TODO: ARMv8.4-LSE SCTLR.nAA */
if (a->rn == 31) {
gen_check_sp_alignment(s);
}
mop = check_ordered_align(s, a->rn, a->imm, true, mop);
dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
clean_addr = clean_data_tbi(s, dirty_addr);
/* Store-Release semantics */
tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
return true;
}
static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
{
TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
MemOp endian, align, mop;
int total; /* total bytes */
int elements; /* elements per vector */
int r;
int size = a->sz;
if (!a->p && a->rm != 0) {
/* For non-postindexed accesses the Rm field must be 0 */
return false;
}
if (size == 3 && !a->q && a->selem != 1) {
return false;
}
if (!fp_access_check(s)) {
return true;
}
if (a->rn == 31) {
gen_check_sp_alignment(s);
}
/* For our purposes, bytes are always little-endian. */
endian = s->be_data;
if (size == 0) {
endian = MO_LE;
}
total = a->rpt * a->selem * (a->q ? 16 : 8);
tcg_rn = cpu_reg_sp(s, a->rn);
/*
* Issue the MTE check vs the logical repeat count, before we
* promote consecutive little-endian elements below.
*/
clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
finalize_memop_asimd(s, size));
/*
* Consecutive little-endian elements from a single register
* can be promoted to a larger little-endian operation.
*/
align = MO_ALIGN;
if (a->selem == 1 && endian == MO_LE) {
align = pow2_align(size);
size = 3;
}
if (!s->align_mem) {
align = 0;
}
mop = endian | size | align;
elements = (a->q ? 16 : 8) >> size;
tcg_ebytes = tcg_constant_i64(1 << size);
for (r = 0; r < a->rpt; r++) {
int e;
for (e = 0; e < elements; e++) {
int xs;
for (xs = 0; xs < a->selem; xs++) {
int tt = (a->rt + r + xs) % 32;
do_vec_ld(s, tt, e, clean_addr, mop);
tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
}
}
}
/*
* For non-quad operations, setting a slice of the low 64 bits of
* the register clears the high 64 bits (in the ARM ARM pseudocode
* this is implicit in the fact that 'rval' is a 64 bit wide
* variable). For quad operations, we might still need to zero
* the high bits of SVE.
*/
for (r = 0; r < a->rpt * a->selem; r++) {
int tt = (a->rt + r) % 32;
clear_vec_high(s, a->q, tt);
}
if (a->p) {
if (a->rm == 31) {
tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
} else {
tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
}
}
return true;
}
static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
{
TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
MemOp endian, align, mop;
int total; /* total bytes */
int elements; /* elements per vector */
int r;
int size = a->sz;
if (!a->p && a->rm != 0) {
/* For non-postindexed accesses the Rm field must be 0 */
return false;
}
if (size == 3 && !a->q && a->selem != 1) {
return false;
}
if (!fp_access_check(s)) {
return true;
}
if (a->rn == 31) {
gen_check_sp_alignment(s);
}
/* For our purposes, bytes are always little-endian. */
endian = s->be_data;
if (size == 0) {
endian = MO_LE;
}
total = a->rpt * a->selem * (a->q ? 16 : 8);
tcg_rn = cpu_reg_sp(s, a->rn);
/*
* Issue the MTE check vs the logical repeat count, before we
* promote consecutive little-endian elements below.
*/
clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
finalize_memop_asimd(s, size));
/*
* Consecutive little-endian elements from a single register
* can be promoted to a larger little-endian operation.
*/
align = MO_ALIGN;
if (a->selem == 1 && endian == MO_LE) {
align = pow2_align(size);
size = 3;
}
if (!s->align_mem) {
align = 0;
}
mop = endian | size | align;
elements = (a->q ? 16 : 8) >> size;
tcg_ebytes = tcg_constant_i64(1 << size);
for (r = 0; r < a->rpt; r++) {
int e;
for (e = 0; e < elements; e++) {
int xs;
for (xs = 0; xs < a->selem; xs++) {
int tt = (a->rt + r + xs) % 32;
do_vec_st(s, tt, e, clean_addr, mop);
tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
}
}
}
if (a->p) {
if (a->rm == 31) {
tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
} else {
tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
}
}
return true;
}
static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
{
int xs, total, rt;
TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
MemOp mop;
if (!a->p && a->rm != 0) {
return false;
}
if (!fp_access_check(s)) {
return true;
}
if (a->rn == 31) {
gen_check_sp_alignment(s);
}
total = a->selem << a->scale;
tcg_rn = cpu_reg_sp(s, a->rn);
mop = finalize_memop_asimd(s, a->scale);
clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
total, mop);
tcg_ebytes = tcg_constant_i64(1 << a->scale);
for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
do_vec_st(s, rt, a->index, clean_addr, mop);
tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
}
if (a->p) {
if (a->rm == 31) {
tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
} else {
tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
}
}
return true;
}
static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
{
int xs, total, rt;
TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
MemOp mop;
if (!a->p && a->rm != 0) {
return false;
}
if (!fp_access_check(s)) {
return true;
}
if (a->rn == 31) {
gen_check_sp_alignment(s);
}
total = a->selem << a->scale;
tcg_rn = cpu_reg_sp(s, a->rn);
mop = finalize_memop_asimd(s, a->scale);
clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
total, mop);
tcg_ebytes = tcg_constant_i64(1 << a->scale);
for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
do_vec_ld(s, rt, a->index, clean_addr, mop);
tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
}
if (a->p) {
if (a->rm == 31) {
tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
} else {
tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
}
}
return true;
}
static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
{
int xs, total, rt;
TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
MemOp mop;
if (!a->p && a->rm != 0) {
return false;
}
if (!fp_access_check(s)) {
return true;
}
if (a->rn == 31) {
gen_check_sp_alignment(s);
}
total = a->selem << a->scale;
tcg_rn = cpu_reg_sp(s, a->rn);
mop = finalize_memop_asimd(s, a->scale);
clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
total, mop);
tcg_ebytes = tcg_constant_i64(1 << a->scale);
for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
/* Load and replicate to all elements */
TCGv_i64 tcg_tmp = tcg_temp_new_i64();
tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
(a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
}
if (a->p) {
if (a->rm == 31) {
tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
} else {
tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
}
}
return true;
}
static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
{
TCGv_i64 addr, clean_addr, tcg_rt;
int size = 4 << s->dcz_blocksize;
if (!dc_isar_feature(aa64_mte, s)) {
return false;
}
if (s->current_el == 0) {
return false;
}
if (a->rn == 31) {
gen_check_sp_alignment(s);
}
addr = read_cpu_reg_sp(s, a->rn, true);
tcg_gen_addi_i64(addr, addr, a->imm);
tcg_rt = cpu_reg(s, a->rt);
if (s->ata[0]) {
gen_helper_stzgm_tags(tcg_env, addr, tcg_rt);
}
/*
* The non-tags portion of STZGM is mostly like DC_ZVA,
* except the alignment happens before the access.
*/
clean_addr = clean_data_tbi(s, addr);
tcg_gen_andi_i64(clean_addr, clean_addr, -size);
gen_helper_dc_zva(tcg_env, clean_addr);
return true;
}
static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
{
TCGv_i64 addr, clean_addr, tcg_rt;
if (!dc_isar_feature(aa64_mte, s)) {
return false;
}
if (s->current_el == 0) {
return false;
}
if (a->rn == 31) {
gen_check_sp_alignment(s);
}
addr = read_cpu_reg_sp(s, a->rn, true);
tcg_gen_addi_i64(addr, addr, a->imm);
tcg_rt = cpu_reg(s, a->rt);
if (s->ata[0]) {
gen_helper_stgm(tcg_env, addr, tcg_rt);
} else {
MMUAccessType acc = MMU_DATA_STORE;
int size = 4 << s->gm_blocksize;
clean_addr = clean_data_tbi(s, addr);
tcg_gen_andi_i64(clean_addr, clean_addr, -size);
gen_probe_access(s, clean_addr, acc, size);
}
return true;
}
static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
{
TCGv_i64 addr, clean_addr, tcg_rt;
if (!dc_isar_feature(aa64_mte, s)) {
return false;
}
if (s->current_el == 0) {
return false;
}
if (a->rn == 31) {
gen_check_sp_alignment(s);
}
addr = read_cpu_reg_sp(s, a->rn, true);
tcg_gen_addi_i64(addr, addr, a->imm);
tcg_rt = cpu_reg(s, a->rt);
if (s->ata[0]) {
gen_helper_ldgm(tcg_rt, tcg_env, addr);
} else {
MMUAccessType acc = MMU_DATA_LOAD;
int size = 4 << s->gm_blocksize;
clean_addr = clean_data_tbi(s, addr);
tcg_gen_andi_i64(clean_addr, clean_addr, -size);
gen_probe_access(s, clean_addr, acc, size);
/* The result tags are zeros. */
tcg_gen_movi_i64(tcg_rt, 0);
}
return true;
}
static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
{
TCGv_i64 addr, clean_addr, tcg_rt;
if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
return false;
}
if (a->rn == 31) {
gen_check_sp_alignment(s);
}
addr = read_cpu_reg_sp(s, a->rn, true);
if (!a->p) {
/* pre-index or signed offset */
tcg_gen_addi_i64(addr, addr, a->imm);
}
tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
tcg_rt = cpu_reg(s, a->rt);
if (s->ata[0]) {
gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt);
} else {
/*
* Tag access disabled: we must check for aborts on the load
* load from [rn+offset], and then insert a 0 tag into rt.
*/
clean_addr = clean_data_tbi(s, addr);
gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
}
if (a->w) {
/* pre-index or post-index */
if (a->p) {
/* post-index */
tcg_gen_addi_i64(addr, addr, a->imm);
}
tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
}
return true;
}
static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
{
TCGv_i64 addr, tcg_rt;
if (a->rn == 31) {
gen_check_sp_alignment(s);
}
addr = read_cpu_reg_sp(s, a->rn, true);
if (!a->p) {
/* pre-index or signed offset */
tcg_gen_addi_i64(addr, addr, a->imm);
}
tcg_rt = cpu_reg_sp(s, a->rt);
if (!s->ata[0]) {
/*
* For STG and ST2G, we need to check alignment and probe memory.
* TODO: For STZG and STZ2G, we could rely on the stores below,
* at least for system mode; user-only won't enforce alignment.
*/
if (is_pair) {
gen_helper_st2g_stub(tcg_env, addr);
} else {
gen_helper_stg_stub(tcg_env, addr);
}
} else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
if (is_pair) {
gen_helper_st2g_parallel(tcg_env, addr, tcg_rt);
} else {
gen_helper_stg_parallel(tcg_env, addr, tcg_rt);
}
} else {
if (is_pair) {
gen_helper_st2g(tcg_env, addr, tcg_rt);
} else {
gen_helper_stg(tcg_env, addr, tcg_rt);
}
}
if (is_zero) {
TCGv_i64 clean_addr = clean_data_tbi(s, addr);
TCGv_i64 zero64 = tcg_constant_i64(0);
TCGv_i128 zero128 = tcg_temp_new_i128();
int mem_index = get_mem_index(s);
MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
tcg_gen_concat_i64_i128(zero128, zero64, zero64);
/* This is 1 or 2 atomic 16-byte operations. */
tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
if (is_pair) {
tcg_gen_addi_i64(clean_addr, clean_addr, 16);
tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
}
}
if (a->w) {
/* pre-index or post-index */
if (a->p) {
/* post-index */
tcg_gen_addi_i64(addr, addr, a->imm);
}
tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
}
return true;
}
TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32);
static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue,
bool is_setg, SetFn fn)
{
int memidx;
uint32_t syndrome, desc = 0;
if (is_setg && !dc_isar_feature(aa64_mte, s)) {
return false;
}
/*
* UNPREDICTABLE cases: we choose to UNDEF, which allows
* us to pull this check before the CheckMOPSEnabled() test
* (which we do in the helper function)
*/
if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
a->rd == 31 || a->rn == 31) {
return false;
}
memidx = get_a64_user_mem_index(s, a->unpriv);
/*
* We pass option_a == true, matching our implementation;
* we pass wrong_option == false: helper function may set that bit.
*/
syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv,
is_epilogue, false, true, a->rd, a->rs, a->rn);
if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) {
/* We may need to do MTE tag checking, so assemble the descriptor */
desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
desc = FIELD_DP32(desc, MTEDESC, WRITE, true);
/* SIZEM1 and ALIGN we leave 0 (byte write) */
}
/* The helper function always needs the memidx even with MTE disabled */
desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx);
/*
* The helper needs the register numbers, but since they're in
* the syndrome anyway, we let it extract them from there rather
* than passing in an extra three integer arguments.
*/
fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc));
return true;
}
TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp)
TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm)
TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete)
TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp)
TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm)
TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge)
typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32);
static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn)
{
int rmemidx, wmemidx;
uint32_t syndrome, rdesc = 0, wdesc = 0;
bool wunpriv = extract32(a->options, 0, 1);
bool runpriv = extract32(a->options, 1, 1);
/*
* UNPREDICTABLE cases: we choose to UNDEF, which allows
* us to pull this check before the CheckMOPSEnabled() test
* (which we do in the helper function)
*/
if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
a->rd == 31 || a->rs == 31 || a->rn == 31) {
return false;
}
rmemidx = get_a64_user_mem_index(s, runpriv);
wmemidx = get_a64_user_mem_index(s, wunpriv);
/*
* We pass option_a == true, matching our implementation;
* we pass wrong_option == false: helper function may set that bit.
*/
syndrome = syn_mop(false, false, a->options, is_epilogue,
false, true, a->rd, a->rs, a->rn);
/* If we need to do MTE tag checking, assemble the descriptors */
if (s->mte_active[runpriv]) {
rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid);
rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma);
}
if (s->mte_active[wunpriv]) {
wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid);
wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma);
wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true);
}
/* The helper function needs these parts of the descriptor regardless */
rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx);
wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx);
/*
* The helper needs the register numbers, but since they're in
* the syndrome anyway, we let it extract them from there rather
* than passing in an extra three integer arguments.
*/
fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc),
tcg_constant_i32(rdesc));
return true;
}
TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp)
TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym)
TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye)
TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp)
TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm)
TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe)
typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
static bool gen_rri(DisasContext *s, arg_rri_sf *a,
bool rd_sp, bool rn_sp, ArithTwoOp *fn)
{
TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
fn(tcg_rd, tcg_rn, tcg_imm);
if (!a->sf) {
tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
}
return true;
}
/*
* PC-rel. addressing
*/
static bool trans_ADR(DisasContext *s, arg_ri *a)
{
gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
return true;
}
static bool trans_ADRP(DisasContext *s, arg_ri *a)
{
int64_t offset = (int64_t)a->imm << 12;
/* The page offset is ok for CF_PCREL. */
offset -= s->pc_curr & 0xfff;
gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
return true;
}
/*
* Add/subtract (immediate)
*/
TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
/*
* Add/subtract (immediate, with tags)
*/
static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
bool sub_op)
{
TCGv_i64 tcg_rn, tcg_rd;
int imm;
imm = a->uimm6 << LOG2_TAG_GRANULE;
if (sub_op) {
imm = -imm;
}
tcg_rn = cpu_reg_sp(s, a->rn);
tcg_rd = cpu_reg_sp(s, a->rd);
if (s->ata[0]) {
gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn,
tcg_constant_i32(imm),
tcg_constant_i32(a->uimm4));
} else {
tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
}
return true;
}
TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
/* The input should be a value in the bottom e bits (with higher
* bits zero); returns that value replicated into every element
* of size e in a 64 bit integer.
*/
static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
{
assert(e != 0);
while (e < 64) {
mask |= mask << e;
e *= 2;
}
return mask;
}
/*
* Logical (immediate)
*/
/*
* Simplified variant of pseudocode DecodeBitMasks() for the case where we
* only require the wmask. Returns false if the imms/immr/immn are a reserved
* value (ie should cause a guest UNDEF exception), and true if they are
* valid, in which case the decoded bit pattern is written to result.
*/
bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
unsigned int imms, unsigned int immr)
{
uint64_t mask;
unsigned e, levels, s, r;
int len;
assert(immn < 2 && imms < 64 && immr < 64);
/* The bit patterns we create here are 64 bit patterns which
* are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
* 64 bits each. Each element contains the same value: a run
* of between 1 and e-1 non-zero bits, rotated within the
* element by between 0 and e-1 bits.
*
* The element size and run length are encoded into immn (1 bit)
* and imms (6 bits) as follows:
* 64 bit elements: immn = 1, imms = <length of run - 1>
* 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
* 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
* 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
* 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
* 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
* Notice that immn = 0, imms = 11111x is the only combination
* not covered by one of the above options; this is reserved.
* Further, <length of run - 1> all-ones is a reserved pattern.
*
* In all cases the rotation is by immr % e (and immr is 6 bits).
*/
/* First determine the element size */
len = 31 - clz32((immn << 6) | (~imms & 0x3f));
if (len < 1) {
/* This is the immn == 0, imms == 0x11111x case */
return false;
}
e = 1 << len;
levels = e - 1;
s = imms & levels;
r = immr & levels;
if (s == levels) {
/* <length of run - 1> mustn't be all-ones. */
return false;
}
/* Create the value of one element: s+1 set bits rotated
* by r within the element (which is e bits wide)...
*/
mask = MAKE_64BIT_MASK(0, s + 1);
if (r) {
mask = (mask >> r) | (mask << (e - r));
mask &= MAKE_64BIT_MASK(0, e);
}
/* ...then replicate the element over the whole 64 bit value */
mask = bitfield_replicate(mask, e);
*result = mask;
return true;
}
static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
void (*fn)(TCGv_i64, TCGv_i64, int64_t))
{
TCGv_i64 tcg_rd, tcg_rn;
uint64_t imm;
/* Some immediate field values are reserved. */
if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
extract32(a->dbm, 0, 6),
extract32(a->dbm, 6, 6))) {
return false;
}
if (!a->sf) {
imm &= 0xffffffffull;
}
tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
tcg_rn = cpu_reg(s, a->rn);
fn(tcg_rd, tcg_rn, imm);
if (set_cc) {
gen_logic_CC(a->sf, tcg_rd);
}
if (!a->sf) {
tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
}
return true;
}
TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
/*
* Move wide (immediate)
*/
static bool trans_MOVZ(DisasContext *s, arg_movw *a)
{
int pos = a->hw << 4;
tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
return true;
}
static bool trans_MOVN(DisasContext *s, arg_movw *a)
{
int pos = a->hw << 4;
uint64_t imm = a->imm;
imm = ~(imm << pos);
if (!a->sf) {
imm = (uint32_t)imm;
}
tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
return true;
}
static bool trans_MOVK(DisasContext *s, arg_movw *a)
{
int pos = a->hw << 4;
TCGv_i64 tcg_rd, tcg_im;
tcg_rd = cpu_reg(s, a->rd);
tcg_im = tcg_constant_i64(a->imm);
tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
if (!a->sf) {
tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
}
return true;
}
/*
* Bitfield
*/
static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
{
TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
unsigned int bitsize = a->sf ? 64 : 32;
unsigned int ri = a->immr;
unsigned int si = a->imms;
unsigned int pos, len;
if (si >= ri) {
/* Wd<s-r:0> = Wn<s:r> */
len = (si - ri) + 1;
tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
if (!a->sf) {
tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
}
} else {
/* Wd<32+s-r,32-r> = Wn<s:0> */
len = si + 1;
pos = (bitsize - ri) & (bitsize - 1);
if (len < ri) {
/*
* Sign extend the destination field from len to fill the
* balance of the word. Let the deposit below insert all
* of those sign bits.
*/
tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
len = ri;
}
/*
* We start with zero, and we haven't modified any bits outside
* bitsize, therefore no final zero-extension is unneeded for !sf.
*/
tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
}
return true;
}
static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
{
TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
unsigned int bitsize = a->sf ? 64 : 32;
unsigned int ri = a->immr;
unsigned int si = a->imms;
unsigned int pos, len;
tcg_rd = cpu_reg(s, a->rd);
tcg_tmp = read_cpu_reg(s, a->rn, 1);
if (si >= ri) {
/* Wd<s-r:0> = Wn<s:r> */
len = (si - ri) + 1;
tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
} else {
/* Wd<32+s-r,32-r> = Wn<s:0> */
len = si + 1;
pos = (bitsize - ri) & (bitsize - 1);
tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
}
return true;
}
static bool trans_BFM(DisasContext *s, arg_BFM *a)
{
TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
unsigned int bitsize = a->sf ? 64 : 32;
unsigned int ri = a->immr;
unsigned int si = a->imms;
unsigned int pos, len;
tcg_rd = cpu_reg(s, a->rd);
tcg_tmp = read_cpu_reg(s, a->rn, 1);
if (si >= ri) {
/* Wd<s-r:0> = Wn<s:r> */
tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
len = (si - ri) + 1;
pos = 0;
} else {
/* Wd<32+s-r,32-r> = Wn<s:0> */
len = si + 1;
pos = (bitsize - ri) & (bitsize - 1);
}
tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
if (!a->sf) {
tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
}
return true;
}
static bool trans_EXTR(DisasContext *s, arg_extract *a)
{
TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
tcg_rd = cpu_reg(s, a->rd);
if (unlikely(a->imm == 0)) {
/*
* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
* so an extract from bit 0 is a special case.
*/
if (a->sf) {
tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
} else {
tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
}
} else {
tcg_rm = cpu_reg(s, a->rm);
tcg_rn = cpu_reg(s, a->rn);
if (a->sf) {
/* Specialization to ROR happens in EXTRACT2. */
tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
} else {
TCGv_i32 t0 = tcg_temp_new_i32();
tcg_gen_extrl_i64_i32(t0, tcg_rm);
if (a->rm == a->rn) {
tcg_gen_rotri_i32(t0, t0, a->imm);
} else {
TCGv_i32 t1 = tcg_temp_new_i32();
tcg_gen_extrl_i64_i32(t1, tcg_rn);
tcg_gen_extract2_i32(t0, t0, t1, a->imm);
}
tcg_gen_extu_i32_i64(tcg_rd, t0);
}
}
return true;
}
/*
* Cryptographic AES, SHA, SHA512
*/
TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese)
TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd)
TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc)
TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc)
TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c)
TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p)
TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m)
TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0)
TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h)
TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2)
TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1)
TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h)
TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1)
TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0)
TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h)
TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2)
TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1)
TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1)
TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1)
TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2)
TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey)
TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0)
TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e)
TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3)
TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax)
static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a)
{
if (!dc_isar_feature(aa64_sm3, s)) {
return false;
}
if (fp_access_check(s)) {
TCGv_i32 tcg_op1 = tcg_temp_new_i32();
TCGv_i32 tcg_op2 = tcg_temp_new_i32();
TCGv_i32 tcg_op3 = tcg_temp_new_i32();
TCGv_i32 tcg_res = tcg_temp_new_i32();
unsigned vsz, dofs;
read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32);
read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32);
read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32);
tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
/* Clear the whole register first, then store bits [127:96]. */
vsz = vec_full_reg_size(s);
dofs = vec_full_reg_offset(s, a->rd);
tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0);
write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32);
}
return true;
}
static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn)
{
if (fp_access_check(s)) {
gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn);
}
return true;
}
TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a)
TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b)
TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a)
TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b)
static bool trans_XAR(DisasContext *s, arg_XAR *a)
{
if (!dc_isar_feature(aa64_sha3, s)) {
return false;
}
if (fp_access_check(s)) {
gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd),
vec_full_reg_offset(s, a->rn),
vec_full_reg_offset(s, a->rm), a->imm, 16,
vec_full_reg_size(s));
}
return true;
}
/*
* Advanced SIMD copy
*/
static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx)
{
unsigned esz = ctz32(imm);
if (esz <= MO_64) {
*pesz = esz;
*pidx = imm >> (esz + 1);
return true;
}
return false;
}
static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a)
{
MemOp esz;
unsigned idx;
if (!decode_esz_idx(a->imm, &esz, &idx)) {
return false;
}
if (fp_access_check(s)) {
/*
* This instruction just extracts the specified element and
* zero-extends it into the bottom of the destination register.
*/
TCGv_i64 tmp = tcg_temp_new_i64();
read_vec_element(s, tmp, a->rn, idx, esz);
write_fp_dreg(s, a->rd, tmp);
}
return true;
}
static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a)
{
MemOp esz;
unsigned idx;
if (!decode_esz_idx(a->imm, &esz, &idx)) {
return false;
}
if (esz == MO_64 && !a->q) {
return false;
}
if (fp_access_check(s)) {
tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd),
vec_reg_offset(s, a->rn, idx, esz),
a->q ? 16 : 8, vec_full_reg_size(s));
}
return true;
}
static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a)
{
MemOp esz;
unsigned idx;
if (!decode_esz_idx(a->imm, &esz, &idx)) {
return false;
}
if (esz == MO_64 && !a->q) {
return false;
}
if (fp_access_check(s)) {
tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd),
a->q ? 16 : 8, vec_full_reg_size(s),
cpu_reg(s, a->rn));
}
return true;
}
static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed)
{
MemOp esz;
unsigned idx;
if (!decode_esz_idx(a->imm, &esz, &idx)) {
return false;
}
if (is_signed) {
if (esz == MO_64 || (esz == MO_32 && !a->q)) {
return false;
}
} else {
if (esz == MO_64 ? !a->q : a->q) {
return false;
}
}
if (fp_access_check(s)) {
TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed);
if (is_signed && !a->q) {
tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
}
}
return true;
}
TRANS(SMOV, do_smov_umov, a, MO_SIGN)
TRANS(UMOV, do_smov_umov, a, 0)
static bool trans_INS_general(DisasContext *s, arg_INS_general *a)
{
MemOp esz;
unsigned idx;
if (!decode_esz_idx(a->imm, &esz, &idx)) {
return false;
}
if (fp_access_check(s)) {
write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz);
clear_vec_high(s, true, a->rd);
}
return true;
}
static bool trans_INS_element(DisasContext *s, arg_INS_element *a)
{
MemOp esz;
unsigned didx, sidx;
if (!decode_esz_idx(a->di, &esz, &didx)) {
return false;
}
sidx = a->si >> esz;
if (fp_access_check(s)) {
TCGv_i64 tmp = tcg_temp_new_i64();
read_vec_element(s, tmp, a->rn, sidx, esz);
write_vec_element(s, tmp, a->rd, didx, esz);
/* INS is considered a 128-bit write for SVE. */
clear_vec_high(s, true, a->rd);
}
return true;
}
/*
* Advanced SIMD three same
*/
typedef struct FPScalar {
void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
} FPScalar;
static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f)
{
switch (a->esz) {
case MO_64:
if (fp_access_check(s)) {
TCGv_i64 t0 = read_fp_dreg(s, a->rn);
TCGv_i64 t1 = read_fp_dreg(s, a->rm);
f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
write_fp_dreg(s, a->rd, t0);
}
break;
case MO_32:
if (fp_access_check(s)) {
TCGv_i32 t0 = read_fp_sreg(s, a->rn);
TCGv_i32 t1 = read_fp_sreg(s, a->rm);
f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
write_fp_sreg(s, a->rd, t0);
}
break;
case MO_16:
if (!dc_isar_feature(aa64_fp16, s)) {
return false;
}
if (fp_access_check(s)) {
TCGv_i32 t0 = read_fp_hreg(s, a->rn);
TCGv_i32 t1 = read_fp_hreg(s, a->rm);
f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
write_fp_sreg(s, a->rd, t0);
}
break;
default:
return false;
}
return true;
}
static const FPScalar f_scalar_fadd = {
gen_helper_vfp_addh,
gen_helper_vfp_adds,
gen_helper_vfp_addd,
};
TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd)
static const FPScalar f_scalar_fsub = {
gen_helper_vfp_subh,
gen_helper_vfp_subs,
gen_helper_vfp_subd,
};
TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub)
static const FPScalar f_scalar_fdiv = {
gen_helper_vfp_divh,
gen_helper_vfp_divs,
gen_helper_vfp_divd,
};
TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv)
static const FPScalar f_scalar_fmul = {
gen_helper_vfp_mulh,
gen_helper_vfp_muls,
gen_helper_vfp_muld,
};
TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul)
static const FPScalar f_scalar_fmax = {
gen_helper_advsimd_maxh,
gen_helper_vfp_maxs,
gen_helper_vfp_maxd,
};
TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax)
static const FPScalar f_scalar_fmin = {
gen_helper_advsimd_minh,
gen_helper_vfp_mins,
gen_helper_vfp_mind,
};
TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin)
static const FPScalar f_scalar_fmaxnm = {
gen_helper_advsimd_maxnumh,
gen_helper_vfp_maxnums,
gen_helper_vfp_maxnumd,
};
TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm)
static const FPScalar f_scalar_fminnm = {
gen_helper_advsimd_minnumh,
gen_helper_vfp_minnums,
gen_helper_vfp_minnumd,
};
TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm)
static const FPScalar f_scalar_fmulx = {
gen_helper_advsimd_mulxh,
gen_helper_vfp_mulxs,
gen_helper_vfp_mulxd,
};
TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx)
static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
{
gen_helper_vfp_mulh(d, n, m, s);
gen_vfp_negh(d, d);
}
static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
{
gen_helper_vfp_muls(d, n, m, s);
gen_vfp_negs(d, d);
}
static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
{
gen_helper_vfp_muld(d, n, m, s);
gen_vfp_negd(d, d);
}
static const FPScalar f_scalar_fnmul = {
gen_fnmul_h,
gen_fnmul_s,
gen_fnmul_d,
};
TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul)
static const FPScalar f_scalar_fcmeq = {
gen_helper_advsimd_ceq_f16,
gen_helper_neon_ceq_f32,
gen_helper_neon_ceq_f64,
};
TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq)
static const FPScalar f_scalar_fcmge = {
gen_helper_advsimd_cge_f16,
gen_helper_neon_cge_f32,
gen_helper_neon_cge_f64,
};
TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge)
static const FPScalar f_scalar_fcmgt = {
gen_helper_advsimd_cgt_f16,
gen_helper_neon_cgt_f32,
gen_helper_neon_cgt_f64,
};
TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt)
static const FPScalar f_scalar_facge = {
gen_helper_advsimd_acge_f16,
gen_helper_neon_acge_f32,
gen_helper_neon_acge_f64,
};
TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge)
static const FPScalar f_scalar_facgt = {
gen_helper_advsimd_acgt_f16,
gen_helper_neon_acgt_f32,
gen_helper_neon_acgt_f64,
};
TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt)
static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
{
gen_helper_vfp_subh(d, n, m, s);
gen_vfp_absh(d, d);
}
static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
{
gen_helper_vfp_subs(d, n, m, s);
gen_vfp_abss(d, d);
}
static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
{
gen_helper_vfp_subd(d, n, m, s);
gen_vfp_absd(d, d);
}
static const FPScalar f_scalar_fabd = {
gen_fabd_h,
gen_fabd_s,
gen_fabd_d,
};
TRANS(FABD_s, do_fp3_scalar, a, &f_scalar_fabd)
static const FPScalar f_scalar_frecps = {
gen_helper_recpsf_f16,
gen_helper_recpsf_f32,
gen_helper_recpsf_f64,
};
TRANS(FRECPS_s, do_fp3_scalar, a, &f_scalar_frecps)
static const FPScalar f_scalar_frsqrts = {
gen_helper_rsqrtsf_f16,
gen_helper_rsqrtsf_f32,
gen_helper_rsqrtsf_f64,
};
TRANS(FRSQRTS_s, do_fp3_scalar, a, &f_scalar_frsqrts)
static bool do_satacc_s(DisasContext *s, arg_rrr_e *a,
MemOp sgn_n, MemOp sgn_m,
void (*gen_bhs)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64, MemOp),
void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
{
TCGv_i64 t0, t1, t2, qc;
MemOp esz = a->esz;
if (!fp_access_check(s)) {
return true;
}
t0 = tcg_temp_new_i64();
t1 = tcg_temp_new_i64();
t2 = tcg_temp_new_i64();
qc = tcg_temp_new_i64();
read_vec_element(s, t1, a->rn, 0, esz | sgn_n);
read_vec_element(s, t2, a->rm, 0, esz | sgn_m);
tcg_gen_ld_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
if (esz == MO_64) {
gen_d(t0, qc, t1, t2);
} else {
gen_bhs(t0, qc, t1, t2, esz);
tcg_gen_ext_i64(t0, t0, esz);
}
write_fp_dreg(s, a->rd, t0);
tcg_gen_st_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
return true;
}
TRANS(SQADD_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqadd_bhs, gen_sqadd_d)
TRANS(SQSUB_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqsub_bhs, gen_sqsub_d)
TRANS(UQADD_s, do_satacc_s, a, 0, 0, gen_uqadd_bhs, gen_uqadd_d)
TRANS(UQSUB_s, do_satacc_s, a, 0, 0, gen_uqsub_bhs, gen_uqsub_d)
TRANS(SUQADD_s, do_satacc_s, a, MO_SIGN, 0, gen_suqadd_bhs, gen_suqadd_d)
TRANS(USQADD_s, do_satacc_s, a, 0, MO_SIGN, gen_usqadd_bhs, gen_usqadd_d)
static bool do_int3_scalar_d(DisasContext *s, arg_rrr_e *a,
void (*fn)(TCGv_i64, TCGv_i64, TCGv_i64))
{
if (fp_access_check(s)) {
TCGv_i64 t0 = tcg_temp_new_i64();
TCGv_i64 t1 = tcg_temp_new_i64();
read_vec_element(s, t0, a->rn, 0, MO_64);
read_vec_element(s, t1, a->rm, 0, MO_64);
fn(t0, t0, t1);
write_fp_dreg(s, a->rd, t0);
}
return true;
}
TRANS(SSHL_s, do_int3_scalar_d, a, gen_sshl_i64)
TRANS(USHL_s, do_int3_scalar_d, a, gen_ushl_i64)
TRANS(SRSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_s64)
TRANS(URSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_u64)
TRANS(ADD_s, do_int3_scalar_d, a, tcg_gen_add_i64)
TRANS(SUB_s, do_int3_scalar_d, a, tcg_gen_sub_i64)
typedef struct ENVScalar2 {
NeonGenTwoOpEnvFn *gen_bhs[3];
NeonGenTwo64OpEnvFn *gen_d;
} ENVScalar2;
static bool do_env_scalar2(DisasContext *s, arg_rrr_e *a, const ENVScalar2 *f)
{
if (!fp_access_check(s)) {
return true;
}
if (a->esz == MO_64) {
TCGv_i64 t0 = read_fp_dreg(s, a->rn);
TCGv_i64 t1 = read_fp_dreg(s, a->rm);
f->gen_d(t0, tcg_env, t0, t1);
write_fp_dreg(s, a->rd, t0);
} else {
TCGv_i32 t0 = tcg_temp_new_i32();
TCGv_i32 t1 = tcg_temp_new_i32();
read_vec_element_i32(s, t0, a->rn, 0, a->esz);
read_vec_element_i32(s, t1, a->rm, 0, a->esz);
f->gen_bhs[a->esz](t0, tcg_env, t0, t1);
write_fp_sreg(s, a->rd, t0);
}
return true;
}
static const ENVScalar2 f_scalar_sqshl = {
{ gen_helper_neon_qshl_s8,
gen_helper_neon_qshl_s16,
gen_helper_neon_qshl_s32 },
gen_helper_neon_qshl_s64,
};
TRANS(SQSHL_s, do_env_scalar2, a, &f_scalar_sqshl)
static const ENVScalar2 f_scalar_uqshl = {
{ gen_helper_neon_qshl_u8,
gen_helper_neon_qshl_u16,
gen_helper_neon_qshl_u32 },
gen_helper_neon_qshl_u64,
};
TRANS(UQSHL_s, do_env_scalar2, a, &f_scalar_uqshl)
static const ENVScalar2 f_scalar_sqrshl = {
{ gen_helper_neon_qrshl_s8,
gen_helper_neon_qrshl_s16,
gen_helper_neon_qrshl_s32 },
gen_helper_neon_qrshl_s64,
};
TRANS(SQRSHL_s, do_env_scalar2, a, &f_scalar_sqrshl)
static const ENVScalar2 f_scalar_uqrshl = {
{ gen_helper_neon_qrshl_u8,
gen_helper_neon_qrshl_u16,
gen_helper_neon_qrshl_u32 },
gen_helper_neon_qrshl_u64,
};
TRANS(UQRSHL_s, do_env_scalar2, a, &f_scalar_uqrshl)
static bool do_env_scalar2_hs(DisasContext *s, arg_rrr_e *a,
const ENVScalar2 *f)
{
if (a->esz == MO_16 || a->esz == MO_32) {
return do_env_scalar2(s, a, f);
}
return false;
}
static const ENVScalar2 f_scalar_sqdmulh = {
{ NULL, gen_helper_neon_qdmulh_s16, gen_helper_neon_qdmulh_s32 }
};
TRANS(SQDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqdmulh)
static const ENVScalar2 f_scalar_sqrdmulh = {
{ NULL, gen_helper_neon_qrdmulh_s16, gen_helper_neon_qrdmulh_s32 }
};
TRANS(SQRDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqrdmulh)
static bool do_cmop_d(DisasContext *s, arg_rrr_e *a, TCGCond cond)
{
if (fp_access_check(s)) {
TCGv_i64 t0 = read_fp_dreg(s, a->rn);
TCGv_i64 t1 = read_fp_dreg(s, a->rm);
tcg_gen_negsetcond_i64(cond, t0, t0, t1);
write_fp_dreg(s, a->rd, t0);
}
return true;
}
TRANS(CMGT_s, do_cmop_d, a, TCG_COND_GT)
TRANS(CMHI_s, do_cmop_d, a, TCG_COND_GTU)
TRANS(CMGE_s, do_cmop_d, a, TCG_COND_GE)
TRANS(CMHS_s, do_cmop_d, a, TCG_COND_GEU)
TRANS(CMEQ_s, do_cmop_d, a, TCG_COND_EQ)
TRANS(CMTST_s, do_cmop_d, a, TCG_COND_TSTNE)
static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a,
gen_helper_gvec_3_ptr * const fns[3])
{
MemOp esz = a->esz;
switch (esz) {
case MO_64:
if (!a->q) {
return false;
}
break;
case MO_32:
break;
case MO_16:
if (!dc_isar_feature(aa64_fp16, s)) {
return false;
}
break;
default:
return false;
}
if (fp_access_check(s)) {
gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
esz == MO_16, 0, fns[esz - 1]);
}
return true;
}
static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = {
gen_helper_gvec_fadd_h,
gen_helper_gvec_fadd_s,
gen_helper_gvec_fadd_d,
};
TRANS(FADD_v, do_fp3_vector, a, f_vector_fadd)
static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = {
gen_helper_gvec_fsub_h,
gen_helper_gvec_fsub_s,
gen_helper_gvec_fsub_d,
};
TRANS(FSUB_v, do_fp3_vector, a, f_vector_fsub)
static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = {
gen_helper_gvec_fdiv_h,
gen_helper_gvec_fdiv_s,
gen_helper_gvec_fdiv_d,
};
TRANS(FDIV_v, do_fp3_vector, a, f_vector_fdiv)
static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = {
gen_helper_gvec_fmul_h,
gen_helper_gvec_fmul_s,
gen_helper_gvec_fmul_d,
};
TRANS(FMUL_v, do_fp3_vector, a, f_vector_fmul)
static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = {
gen_helper_gvec_fmax_h,
gen_helper_gvec_fmax_s,
gen_helper_gvec_fmax_d,
};
TRANS(FMAX_v, do_fp3_vector, a, f_vector_fmax)
static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = {
gen_helper_gvec_fmin_h,
gen_helper_gvec_fmin_s,
gen_helper_gvec_fmin_d,
};
TRANS(FMIN_v, do_fp3_vector, a, f_vector_fmin)
static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = {
gen_helper_gvec_fmaxnum_h,
gen_helper_gvec_fmaxnum_s,
gen_helper_gvec_fmaxnum_d,
};
TRANS(FMAXNM_v, do_fp3_vector, a, f_vector_fmaxnm)
static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = {
gen_helper_gvec_fminnum_h,
gen_helper_gvec_fminnum_s,
gen_helper_gvec_fminnum_d,
};
TRANS(FMINNM_v, do_fp3_vector, a, f_vector_fminnm)
static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = {
gen_helper_gvec_fmulx_h,
gen_helper_gvec_fmulx_s,
gen_helper_gvec_fmulx_d,
};
TRANS(FMULX_v, do_fp3_vector, a, f_vector_fmulx)
static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = {
gen_helper_gvec_vfma_h,
gen_helper_gvec_vfma_s,
gen_helper_gvec_vfma_d,
};
TRANS(FMLA_v, do_fp3_vector, a, f_vector_fmla)
static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = {
gen_helper_gvec_vfms_h,
gen_helper_gvec_vfms_s,
gen_helper_gvec_vfms_d,
};
TRANS(FMLS_v, do_fp3_vector, a, f_vector_fmls)
static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = {
gen_helper_gvec_fceq_h,
gen_helper_gvec_fceq_s,
gen_helper_gvec_fceq_d,
};
TRANS(FCMEQ_v, do_fp3_vector, a, f_vector_fcmeq)
static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = {
gen_helper_gvec_fcge_h,
gen_helper_gvec_fcge_s,
gen_helper_gvec_fcge_d,
};
TRANS(FCMGE_v, do_fp3_vector, a, f_vector_fcmge)
static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = {
gen_helper_gvec_fcgt_h,
gen_helper_gvec_fcgt_s,
gen_helper_gvec_fcgt_d,
};
TRANS(FCMGT_v, do_fp3_vector, a, f_vector_fcmgt)
static gen_helper_gvec_3_ptr * const f_vector_facge[3] = {
gen_helper_gvec_facge_h,
gen_helper_gvec_facge_s,
gen_helper_gvec_facge_d,
};
TRANS(FACGE_v, do_fp3_vector, a, f_vector_facge)
static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = {
gen_helper_gvec_facgt_h,
gen_helper_gvec_facgt_s,
gen_helper_gvec_facgt_d,
};
TRANS(FACGT_v, do_fp3_vector, a, f_vector_facgt)
static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = {
gen_helper_gvec_fabd_h,
gen_helper_gvec_fabd_s,
gen_helper_gvec_fabd_d,
};
TRANS(FABD_v, do_fp3_vector, a, f_vector_fabd)
static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = {
gen_helper_gvec_recps_h,
gen_helper_gvec_recps_s,
gen_helper_gvec_recps_d,
};
TRANS(FRECPS_v, do_fp3_vector, a, f_vector_frecps)
static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = {
gen_helper_gvec_rsqrts_h,
gen_helper_gvec_rsqrts_s,
gen_helper_gvec_rsqrts_d,
};
TRANS(FRSQRTS_v, do_fp3_vector, a, f_vector_frsqrts)
static gen_helper_gvec_3_ptr * const f_vector_faddp[3] = {
gen_helper_gvec_faddp_h,
gen_helper_gvec_faddp_s,
gen_helper_gvec_faddp_d,
};
TRANS(FADDP_v, do_fp3_vector, a, f_vector_faddp)
static gen_helper_gvec_3_ptr * const f_vector_fmaxp[3] = {
gen_helper_gvec_fmaxp_h,
gen_helper_gvec_fmaxp_s,
gen_helper_gvec_fmaxp_d,
};
TRANS(FMAXP_v, do_fp3_vector, a, f_vector_fmaxp)
static gen_helper_gvec_3_ptr * const f_vector_fminp[3] = {
gen_helper_gvec_fminp_h,
gen_helper_gvec_fminp_s,
gen_helper_gvec_fminp_d,
};
TRANS(FMINP_v, do_fp3_vector, a, f_vector_fminp)
static gen_helper_gvec_3_ptr * const f_vector_fmaxnmp[3] = {
gen_helper_gvec_fmaxnump_h,
gen_helper_gvec_fmaxnump_s,
gen_helper_gvec_fmaxnump_d,
};
TRANS(FMAXNMP_v, do_fp3_vector, a, f_vector_fmaxnmp)
static gen_helper_gvec_3_ptr * const f_vector_fminnmp[3] = {
gen_helper_gvec_fminnump_h,
gen_helper_gvec_fminnump_s,
gen_helper_gvec_fminnump_d,
};
TRANS(FMINNMP_v, do_fp3_vector, a, f_vector_fminnmp)
static bool do_fmlal(DisasContext *s, arg_qrrr_e *a, bool is_s, bool is_2)
{
if (fp_access_check(s)) {
int data = (is_2 << 1) | is_s;
tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
vec_full_reg_offset(s, a->rn),
vec_full_reg_offset(s, a->rm), tcg_env,
a->q ? 16 : 8, vec_full_reg_size(s),
data, gen_helper_gvec_fmlal_a64);
}
return true;
}
TRANS_FEAT(FMLAL_v, aa64_fhm, do_fmlal, a, false, false)
TRANS_FEAT(FMLSL_v, aa64_fhm, do_fmlal, a, true, false)
TRANS_FEAT(FMLAL2_v, aa64_fhm, do_fmlal, a, false, true)
TRANS_FEAT(FMLSL2_v, aa64_fhm, do_fmlal, a, true, true)
TRANS(ADDP_v, do_gvec_fn3, a, gen_gvec_addp)
TRANS(SMAXP_v, do_gvec_fn3_no64, a, gen_gvec_smaxp)
TRANS(SMINP_v, do_gvec_fn3_no64, a, gen_gvec_sminp)
TRANS(UMAXP_v, do_gvec_fn3_no64, a, gen_gvec_umaxp)
TRANS(UMINP_v, do_gvec_fn3_no64, a, gen_gvec_uminp)
TRANS(AND_v, do_gvec_fn3, a, tcg_gen_gvec_and)
TRANS(BIC_v, do_gvec_fn3, a, tcg_gen_gvec_andc)
TRANS(ORR_v, do_gvec_fn3, a, tcg_gen_gvec_or)
TRANS(ORN_v, do_gvec_fn3, a, tcg_gen_gvec_orc)
TRANS(EOR_v, do_gvec_fn3, a, tcg_gen_gvec_xor)
static bool do_bitsel(DisasContext *s, bool is_q, int d, int a, int b, int c)
{
if (fp_access_check(s)) {
gen_gvec_fn4(s, is_q, d, a, b, c, tcg_gen_gvec_bitsel, 0);
}
return true;
}
TRANS(BSL_v, do_bitsel, a->q, a->rd, a->rd, a->rn, a->rm)
TRANS(BIT_v, do_bitsel, a->q, a->rd, a->rm, a->rn, a->rd)
TRANS(BIF_v, do_bitsel, a->q, a->rd, a->rm, a->rd, a->rn)
TRANS(SQADD_v, do_gvec_fn3, a, gen_gvec_sqadd_qc)
TRANS(UQADD_v, do_gvec_fn3, a, gen_gvec_uqadd_qc)
TRANS(SQSUB_v, do_gvec_fn3, a, gen_gvec_sqsub_qc)
TRANS(UQSUB_v, do_gvec_fn3, a, gen_gvec_uqsub_qc)
TRANS(SUQADD_v, do_gvec_fn3, a, gen_gvec_suqadd_qc)
TRANS(USQADD_v, do_gvec_fn3, a, gen_gvec_usqadd_qc)
TRANS(SSHL_v, do_gvec_fn3, a, gen_gvec_sshl)
TRANS(USHL_v, do_gvec_fn3, a, gen_gvec_ushl)
TRANS(SRSHL_v, do_gvec_fn3, a, gen_gvec_srshl)
TRANS(URSHL_v, do_gvec_fn3, a, gen_gvec_urshl)
TRANS(SQSHL_v, do_gvec_fn3, a, gen_neon_sqshl)
TRANS(UQSHL_v, do_gvec_fn3, a, gen_neon_uqshl)
TRANS(SQRSHL_v, do_gvec_fn3, a, gen_neon_sqrshl)
TRANS(UQRSHL_v, do_gvec_fn3, a, gen_neon_uqrshl)
TRANS(ADD_v, do_gvec_fn3, a, tcg_gen_gvec_add)
TRANS(SUB_v, do_gvec_fn3, a, tcg_gen_gvec_sub)
TRANS(SHADD_v, do_gvec_fn3_no64, a, gen_gvec_shadd)
TRANS(UHADD_v, do_gvec_fn3_no64, a, gen_gvec_uhadd)
TRANS(SHSUB_v, do_gvec_fn3_no64, a, gen_gvec_shsub)
TRANS(UHSUB_v, do_gvec_fn3_no64, a, gen_gvec_uhsub)
TRANS(SRHADD_v, do_gvec_fn3_no64, a, gen_gvec_srhadd)
TRANS(URHADD_v, do_gvec_fn3_no64, a, gen_gvec_urhadd)
TRANS(SMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smax)
TRANS(UMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umax)
TRANS(SMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smin)
TRANS(UMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umin)
TRANS(SABA_v, do_gvec_fn3_no64, a, gen_gvec_saba)
TRANS(UABA_v, do_gvec_fn3_no64, a, gen_gvec_uaba)
TRANS(SABD_v, do_gvec_fn3_no64, a, gen_gvec_sabd)
TRANS(UABD_v, do_gvec_fn3_no64, a, gen_gvec_uabd)
TRANS(MUL_v, do_gvec_fn3_no64, a, tcg_gen_gvec_mul)
TRANS(PMUL_v, do_gvec_op3_ool, a, 0, gen_helper_gvec_pmul_b)
TRANS(MLA_v, do_gvec_fn3_no64, a, gen_gvec_mla)
TRANS(MLS_v, do_gvec_fn3_no64, a, gen_gvec_mls)
static bool do_cmop_v(DisasContext *s, arg_qrrr_e *a, TCGCond cond)
{
if (a->esz == MO_64 && !a->q) {
return false;
}
if (fp_access_check(s)) {
tcg_gen_gvec_cmp(cond, a->esz,
vec_full_reg_offset(s, a->rd),
vec_full_reg_offset(s, a->rn),
vec_full_reg_offset(s, a->rm),
a->q ? 16 : 8, vec_full_reg_size(s));
}
return true;
}
TRANS(CMGT_v, do_cmop_v, a, TCG_COND_GT)
TRANS(CMHI_v, do_cmop_v, a, TCG_COND_GTU)
TRANS(CMGE_v, do_cmop_v, a, TCG_COND_GE)
TRANS(CMHS_v, do_cmop_v, a, TCG_COND_GEU)
TRANS(CMEQ_v, do_cmop_v, a, TCG_COND_EQ)
TRANS(CMTST_v, do_gvec_fn3, a, gen_gvec_cmtst)
TRANS(SQDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqdmulh_qc)
TRANS(SQRDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmulh_qc)
/*
* Advanced SIMD scalar/vector x indexed element
*/
static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f)
{
switch (a->esz) {
case MO_64:
if (fp_access_check(s)) {
TCGv_i64 t0 = read_fp_dreg(s, a->rn);
TCGv_i64 t1 = tcg_temp_new_i64();
read_vec_element(s, t1, a->rm, a->idx, MO_64);
f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
write_fp_dreg(s, a->rd, t0);
}
break;
case MO_32:
if (fp_access_check(s)) {
TCGv_i32 t0 = read_fp_sreg(s, a->rn);
TCGv_i32 t1 = tcg_temp_new_i32();
read_vec_element_i32(s, t1, a->rm, a->idx, MO_32);
f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
write_fp_sreg(s, a->rd, t0);
}
break;
case MO_16:
if (!dc_isar_feature(aa64_fp16, s)) {
return false;
}
if (fp_access_check(s)) {
TCGv_i32 t0 = read_fp_hreg(s, a->rn);
TCGv_i32 t1 = tcg_temp_new_i32();
read_vec_element_i32(s, t1, a->rm, a->idx, MO_16);
f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
write_fp_sreg(s, a->rd, t0);
}
break;
default:
g_assert_not_reached();
}
return true;
}
TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul)
TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx)
static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg)
{
switch (a->esz) {
case MO_64:
if (fp_access_check(s)) {
TCGv_i64 t0 = read_fp_dreg(s, a->rd);
TCGv_i64 t1 = read_fp_dreg(s, a->rn);
TCGv_i64 t2 = tcg_temp_new_i64();
read_vec_element(s, t2, a->rm, a->idx, MO_64);
if (neg) {
gen_vfp_negd(t1, t1);
}
gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
write_fp_dreg(s, a->rd, t0);
}
break;
case MO_32:
if (fp_access_check(s)) {
TCGv_i32 t0 = read_fp_sreg(s, a->rd);
TCGv_i32 t1 = read_fp_sreg(s, a->rn);
TCGv_i32 t2 = tcg_temp_new_i32();
read_vec_element_i32(s, t2, a->rm, a->idx, MO_32);
if (neg) {
gen_vfp_negs(t1, t1);
}
gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
write_fp_sreg(s, a->rd, t0);
}
break;
case MO_16:
if (!dc_isar_feature(aa64_fp16, s)) {
return false;
}
if (fp_access_check(s)) {
TCGv_i32 t0 = read_fp_hreg(s, a->rd);
TCGv_i32 t1 = read_fp_hreg(s, a->rn);
TCGv_i32 t2 = tcg_temp_new_i32();
read_vec_element_i32(s, t2, a->rm, a->idx, MO_16);
if (neg) {
gen_vfp_negh(t1, t1);
}
gen_helper_advsimd_muladdh(t0, t1, t2, t0,
fpstatus_ptr(FPST_FPCR_F16));
write_fp_sreg(s, a->rd, t0);
}
break;
default:
g_assert_not_reached();
}
return true;
}
TRANS(FMLA_si, do_fmla_scalar_idx, a, false)
TRANS(FMLS_si, do_fmla_scalar_idx, a, true)
static bool do_env_scalar2_idx_hs(DisasContext *s, arg_rrx_e *a,
const ENVScalar2 *f)
{
if (a->esz < MO_16 || a->esz > MO_32) {
return false;
}
if (fp_access_check(s)) {
TCGv_i32 t0 = tcg_temp_new_i32();
TCGv_i32 t1 = tcg_temp_new_i32();
read_vec_element_i32(s, t0, a->rn, 0, a->esz);
read_vec_element_i32(s, t1, a->rm, a->idx, a->esz);
f->gen_bhs[a->esz](t0, tcg_env, t0, t1);
write_fp_sreg(s, a->rd, t0);
}
return true;
}
TRANS(SQDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqdmulh)
TRANS(SQRDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqrdmulh)
static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a,
gen_helper_gvec_3_ptr * const fns[3])
{
MemOp esz = a->esz;
switch (esz) {
case MO_64:
if (!a->q) {
return false;
}
break;
case MO_32:
break;
case MO_16:
if (!dc_isar_feature(aa64_fp16, s)) {
return false;
}
break;
default:
g_assert_not_reached();
}
if (fp_access_check(s)) {
gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
esz == MO_16, a->idx, fns[esz - 1]);
}
return true;
}
static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = {
gen_helper_gvec_fmul_idx_h,
gen_helper_gvec_fmul_idx_s,
gen_helper_gvec_fmul_idx_d,
};
TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul)
static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = {
gen_helper_gvec_fmulx_idx_h,
gen_helper_gvec_fmulx_idx_s,
gen_helper_gvec_fmulx_idx_d,
};
TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx)
static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg)
{
static gen_helper_gvec_4_ptr * const fns[3] = {
gen_helper_gvec_fmla_idx_h,
gen_helper_gvec_fmla_idx_s,
gen_helper_gvec_fmla_idx_d,
};
MemOp esz = a->esz;
switch (esz) {
case MO_64:
if (!a->q) {
return false;
}
break;
case MO_32:
break;
case MO_16:
if (!dc_isar_feature(aa64_fp16, s)) {
return false;
}
break;
default:
g_assert_not_reached();
}
if (fp_access_check(s)) {
gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
esz == MO_16, (a->idx << 1) | neg,
fns[esz - 1]);
}
return true;
}
TRANS(FMLA_vi, do_fmla_vector_idx, a, false)
TRANS(FMLS_vi, do_fmla_vector_idx, a, true)
static bool do_fmlal_idx(DisasContext *s, arg_qrrx_e *a, bool is_s, bool is_2)
{
if (fp_access_check(s)) {
int data = (a->idx << 2) | (is_2 << 1) | is_s;
tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
vec_full_reg_offset(s, a->rn),
vec_full_reg_offset(s, a->rm), tcg_env,
a->q ? 16 : 8, vec_full_reg_size(s),
data, gen_helper_gvec_fmlal_idx_a64);
}
return true;
}
TRANS_FEAT(FMLAL_vi, aa64_fhm, do_fmlal_idx, a, false, false)
TRANS_FEAT(FMLSL_vi, aa64_fhm, do_fmlal_idx, a, true, false)
TRANS_FEAT(FMLAL2_vi, aa64_fhm, do_fmlal_idx, a, false, true)
TRANS_FEAT(FMLSL2_vi, aa64_fhm, do_fmlal_idx, a, true, true)
static bool do_int3_vector_idx(DisasContext *s, arg_qrrx_e *a,
gen_helper_gvec_3 * const fns[2])
{
assert(a->esz == MO_16 || a->esz == MO_32);
if (fp_access_check(s)) {
gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, a->idx, fns[a->esz - 1]);
}
return true;
}
static gen_helper_gvec_3 * const f_vector_idx_mul[2] = {
gen_helper_gvec_mul_idx_h,
gen_helper_gvec_mul_idx_s,
};
TRANS(MUL_vi, do_int3_vector_idx, a, f_vector_idx_mul)
static bool do_mla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool sub)
{
static gen_helper_gvec_4 * const fns[2][2] = {
{ gen_helper_gvec_mla_idx_h, gen_helper_gvec_mls_idx_h },
{ gen_helper_gvec_mla_idx_s, gen_helper_gvec_mls_idx_s },
};
assert(a->esz == MO_16 || a->esz == MO_32);
if (fp_access_check(s)) {
gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd,
a->idx, fns[a->esz - 1][sub]);
}
return true;
}
TRANS(MLA_vi, do_mla_vector_idx, a, false)
TRANS(MLS_vi, do_mla_vector_idx, a, true)
static bool do_int3_qc_vector_idx(DisasContext *s, arg_qrrx_e *a,
gen_helper_gvec_4 * const fns[2])
{
assert(a->esz == MO_16 || a->esz == MO_32);
if (fp_access_check(s)) {
tcg_gen_gvec_4_ool(vec_full_reg_offset(s, a->rd),
vec_full_reg_offset(s, a->rn),
vec_full_reg_offset(s, a->rm),
offsetof(CPUARMState, vfp.qc),
a->q ? 16 : 8, vec_full_reg_size(s),
a->idx, fns[a->esz - 1]);
}
return true;
}
static gen_helper_gvec_4 * const f_vector_idx_sqdmulh[2] = {
gen_helper_neon_sqdmulh_idx_h,
gen_helper_neon_sqdmulh_idx_s,
};
TRANS(SQDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqdmulh)
static gen_helper_gvec_4 * const f_vector_idx_sqrdmulh[2] = {
gen_helper_neon_sqrdmulh_idx_h,
gen_helper_neon_sqrdmulh_idx_s,
};
TRANS(SQRDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqrdmulh)
/*
* Advanced SIMD scalar pairwise
*/
static bool do_fp3_scalar_pair(DisasContext *s, arg_rr_e *a, const FPScalar *f)
{
switch (a->esz) {
case MO_64:
if (fp_access_check(s)) {
TCGv_i64 t0 = tcg_temp_new_i64();
TCGv_i64 t1 = tcg_temp_new_i64();
read_vec_element(s, t0, a->rn, 0, MO_64);
read_vec_element(s, t1, a->rn, 1, MO_64);
f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
write_fp_dreg(s, a->rd, t0);
}
break;
case MO_32:
if (fp_access_check(s)) {
TCGv_i32 t0 = tcg_temp_new_i32();
TCGv_i32 t1 = tcg_temp_new_i32();
read_vec_element_i32(s, t0, a->rn, 0, MO_32);
read_vec_element_i32(s, t1, a->rn, 1, MO_32);
f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
write_fp_sreg(s, a->rd, t0);
}
break;
case MO_16:
if (!dc_isar_feature(aa64_fp16, s)) {
return false;
}
if (fp_access_check(s)) {
TCGv_i32 t0 = tcg_temp_new_i32();
TCGv_i32 t1 = tcg_temp_new_i32();
read_vec_element_i32(s, t0, a->rn, 0, MO_16);
read_vec_element_i32(s, t1, a->rn, 1, MO_16);
f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
write_fp_sreg(s, a->rd, t0);
}
break;
default:
g_assert_not_reached();
}
return true;
}
TRANS(FADDP_s, do_fp3_scalar_pair, a, &f_scalar_fadd)
TRANS(FMAXP_s, do_fp3_scalar_pair, a, &f_scalar_fmax)
TRANS(FMINP_s, do_fp3_scalar_pair, a, &f_scalar_fmin)
TRANS(FMAXNMP_s, do_fp3_scalar_pair, a, &f_scalar_fmaxnm)
TRANS(FMINNMP_s, do_fp3_scalar_pair, a, &f_scalar_fminnm)
static bool trans_ADDP_s(DisasContext *s, arg_rr_e *a)
{
if (fp_access_check(s)) {
TCGv_i64 t0 = tcg_temp_new_i64();
TCGv_i64 t1 = tcg_temp_new_i64();
read_vec_element(s, t0, a->rn, 0, MO_64);
read_vec_element(s, t1, a->rn, 1, MO_64);
tcg_gen_add_i64(t0, t0, t1);
write_fp_dreg(s, a->rd, t0);
}
return true;
}
/*
* Floating-point conditional select
*/
static bool trans_FCSEL(DisasContext *s, arg_FCSEL *a)
{
TCGv_i64 t_true, t_false;
DisasCompare64 c;
switch (a->esz) {
case MO_32:
case MO_64:
break;
case MO_16:
if (!dc_isar_feature(aa64_fp16, s)) {
return false;
}
break;
default:
return false;
}
if (!fp_access_check(s)) {
return true;
}
/* Zero extend sreg & hreg inputs to 64 bits now. */
t_true = tcg_temp_new_i64();
t_false = tcg_temp_new_i64();
read_vec_element(s, t_true, a->rn, 0, a->esz);
read_vec_element(s, t_false, a->rm, 0, a->esz);
a64_test_cc(&c, a->cond);
tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
t_true, t_false);
/*
* Note that sregs & hregs write back zeros to the high bits,
* and we've already done the zero-extension.
*/
write_fp_dreg(s, a->rd, t_true);
return true;
}
/*
* Floating-point data-processing (3 source)
*/
static bool do_fmadd(DisasContext *s, arg_rrrr_e *a, bool neg_a, bool neg_n)
{
TCGv_ptr fpst;
/*
* These are fused multiply-add. Note that doing the negations here
* as separate steps is correct: an input NaN should come out with
* its sign bit flipped if it is a negated-input.
*/
switch (a->esz) {
case MO_64:
if (fp_access_check(s)) {
TCGv_i64 tn = read_fp_dreg(s, a->rn);
TCGv_i64 tm = read_fp_dreg(s, a->rm);
TCGv_i64 ta = read_fp_dreg(s, a->ra);
if (neg_a) {
gen_vfp_negd(ta, ta);
}
if (neg_n) {
gen_vfp_negd(tn, tn);
}
fpst = fpstatus_ptr(FPST_FPCR);
gen_helper_vfp_muladdd(ta, tn, tm, ta, fpst);
write_fp_dreg(s, a->rd, ta);
}
break;
case MO_32:
if (fp_access_check(s)) {
TCGv_i32 tn = read_fp_sreg(s, a->rn);
TCGv_i32 tm = read_fp_sreg(s, a->rm);
TCGv_i32 ta = read_fp_sreg(s, a->ra);
if (neg_a) {
gen_vfp_negs(ta, ta);
}
if (neg_n) {
gen_vfp_negs(tn, tn);
}
fpst = fpstatus_ptr(FPST_FPCR);
gen_helper_vfp_muladds(ta, tn, tm, ta, fpst);
write_fp_sreg(s, a->rd, ta);
}
break;
case MO_16:
if (!dc_isar_feature(aa64_fp16, s)) {
return false;
}
if (fp_access_check(s)) {
TCGv_i32 tn = read_fp_hreg(s, a->rn);
TCGv_i32 tm = read_fp_hreg(s, a->rm);
TCGv_i32 ta = read_fp_hreg(s, a->ra);
if (neg_a) {
gen_vfp_negh(ta, ta);
}
if (neg_n) {
gen_vfp_negh(tn, tn);
}
fpst = fpstatus_ptr(FPST_FPCR_F16);
gen_helper_advsimd_muladdh(ta, tn, tm, ta, fpst);
write_fp_sreg(s, a->rd, ta);
}
break;
default:
return false;
}
return true;
}
TRANS(FMADD, do_fmadd, a, false, false)
TRANS(FNMADD, do_fmadd, a, true, true)
TRANS(FMSUB, do_fmadd, a, false, true)
TRANS(FNMSUB, do_fmadd, a, true, false)
/* Shift a TCGv src by TCGv shift_amount, put result in dst.
* Note that it is the caller's responsibility to ensure that the
* shift amount is in range (ie 0..31 or 0..63) and provide the ARM
* mandated semantics for out of range shifts.
*/
static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
enum a64_shift_type shift_type, TCGv_i64 shift_amount)
{
switch (shift_type) {
case A64_SHIFT_TYPE_LSL:
tcg_gen_shl_i64(dst, src, shift_amount);
break;
case A64_SHIFT_TYPE_LSR:
tcg_gen_shr_i64(dst, src, shift_amount);
break;
case A64_SHIFT_TYPE_ASR:
if (!sf) {
tcg_gen_ext32s_i64(dst, src);
}
tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
break;
case A64_SHIFT_TYPE_ROR:
if (sf) {
tcg_gen_rotr_i64(dst, src, shift_amount);
} else {
TCGv_i32 t0, t1;
t0 = tcg_temp_new_i32();
t1 = tcg_temp_new_i32();
tcg_gen_extrl_i64_i32(t0, src);
tcg_gen_extrl_i64_i32(t1, shift_amount);
tcg_gen_rotr_i32(t0, t0, t1);
tcg_gen_extu_i32_i64(dst, t0);
}
break;
default:
assert(FALSE); /* all shift types should be handled */
break;
}
if (!sf) { /* zero extend final result */
tcg_gen_ext32u_i64(dst, dst);
}
}
/* Shift a TCGv src by immediate, put result in dst.
* The shift amount must be in range (this should always be true as the
* relevant instructions will UNDEF on bad shift immediates).
*/
static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
enum a64_shift_type shift_type, unsigned int shift_i)
{
assert(shift_i < (sf ? 64 : 32));
if (shift_i == 0) {
tcg_gen_mov_i64(dst, src);
} else {
shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
}
}
/* Logical (shifted register)
* 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
* +----+-----+-----------+-------+---+------+--------+------+------+
* | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
* +----+-----+-----------+-------+---+------+--------+------+------+
*/
static void disas_logic_reg(DisasContext *s, uint32_t insn)
{
TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
sf = extract32(insn, 31, 1);
opc = extract32(insn, 29, 2);
shift_type = extract32(insn, 22, 2);
invert = extract32(insn, 21, 1);
rm = extract32(insn, 16, 5);
shift_amount = extract32(insn, 10, 6);
rn = extract32(insn, 5, 5);
rd = extract32(insn, 0, 5);
if (!sf && (shift_amount & (1 << 5))) {
unallocated_encoding(s);
return;
}
tcg_rd = cpu_reg(s, rd);
if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
/* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
* register-register MOV and MVN, so it is worth special casing.
*/
tcg_rm = cpu_reg(s, rm);
if (invert) {
tcg_gen_not_i64(tcg_rd, tcg_rm);
if (!sf) {
tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
}
} else {
if (sf) {
tcg_gen_mov_i64(tcg_rd, tcg_rm);
} else {
tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
}
}
return;
}
tcg_rm = read_cpu_reg(s, rm, sf);
if (shift_amount) {
shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
}
tcg_rn = cpu_reg(s, rn);
switch (opc | (invert << 2)) {
case 0: /* AND */
case 3: /* ANDS */
tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
break;
case 1: /* ORR */
tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
break;
case 2: /* EOR */
tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
break;
case 4: /* BIC */
case 7: /* BICS */
tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
break;
case 5: /* ORN */
tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
break;
case 6: /* EON */
tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
break;
default:
assert(FALSE);
break;
}
if (!sf) {
tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
}
if (opc == 3) {
gen_logic_CC(sf, tcg_rd);
}
}
/*
* Add/subtract (extended register)
*
* 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
* +--+--+--+-----------+-----+--+-------+------+------+----+----+
* |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
* +--+--+--+-----------+-----+--+-------+------+------+----+----+
*
* sf: 0 -> 32bit, 1 -> 64bit
* op: 0 -> add , 1 -> sub
* S: 1 -> set flags
* opt: 00
* option: extension type (see DecodeRegExtend)
* imm3: optional shift to Rm
*
* Rd = Rn + LSL(extend(Rm), amount)
*/
static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int imm3 = extract32(insn, 10, 3);
int option = extract32(insn, 13, 3);
int rm = extract32(insn, 16, 5);
int opt = extract32(insn, 22, 2);
bool setflags = extract32(insn, 29, 1);
bool sub_op = extract32(insn, 30, 1);
bool sf = extract32(insn, 31, 1);
TCGv_i64 tcg_rm, tcg_rn; /* temps */
TCGv_i64 tcg_rd;
TCGv_i64 tcg_result;
if (imm3 > 4 || opt != 0) {
unallocated_encoding(s);
return;
}
/* non-flag setting ops may use SP */
if (!setflags) {
tcg_rd = cpu_reg_sp(s, rd);
} else {
tcg_rd = cpu_reg(s, rd);
}
tcg_rn = read_cpu_reg_sp(s, rn, sf);
tcg_rm = read_cpu_reg(s, rm, sf);
ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
tcg_result = tcg_temp_new_i64();
if (!setflags) {
if (sub_op) {
tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
} else {
tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
}
} else {
if (sub_op) {
gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
} else {
gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
}
}
if (sf) {
tcg_gen_mov_i64(tcg_rd, tcg_result);
} else {
tcg_gen_ext32u_i64(tcg_rd, tcg_result);
}
}
/*
* Add/subtract (shifted register)
*
* 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
* +--+--+--+-----------+-----+--+-------+---------+------+------+
* |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
* +--+--+--+-----------+-----+--+-------+---------+------+------+
*
* sf: 0 -> 32bit, 1 -> 64bit
* op: 0 -> add , 1 -> sub
* S: 1 -> set flags
* shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
* imm6: Shift amount to apply to Rm before the add/sub
*/
static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int imm6 = extract32(insn, 10, 6);
int rm = extract32(insn, 16, 5);
int shift_type = extract32(insn, 22, 2);
bool setflags = extract32(insn, 29, 1);
bool sub_op = extract32(insn, 30, 1);
bool sf = extract32(insn, 31, 1);
TCGv_i64 tcg_rd = cpu_reg(s, rd);
TCGv_i64 tcg_rn, tcg_rm;
TCGv_i64 tcg_result;
if ((shift_type == 3) || (!sf && (imm6 > 31))) {
unallocated_encoding(s);
return;
}
tcg_rn = read_cpu_reg(s, rn, sf);
tcg_rm = read_cpu_reg(s, rm, sf);
shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
tcg_result = tcg_temp_new_i64();
if (!setflags) {
if (sub_op) {
tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
} else {
tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
}
} else {
if (sub_op) {
gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
} else {
gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
}
}
if (sf) {
tcg_gen_mov_i64(tcg_rd, tcg_result);
} else {
tcg_gen_ext32u_i64(tcg_rd, tcg_result);
}
}
/* Data-processing (3 source)
*
* 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
* +--+------+-----------+------+------+----+------+------+------+
* |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
* +--+------+-----------+------+------+----+------+------+------+
*/
static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int ra = extract32(insn, 10, 5);
int rm = extract32(insn, 16, 5);
int op_id = (extract32(insn, 29, 3) << 4) |
(extract32(insn, 21, 3) << 1) |
extract32(insn, 15, 1);
bool sf = extract32(insn, 31, 1);
bool is_sub = extract32(op_id, 0, 1);
bool is_high = extract32(op_id, 2, 1);
bool is_signed = false;
TCGv_i64 tcg_op1;
TCGv_i64 tcg_op2;
TCGv_i64 tcg_tmp;
/* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
switch (op_id) {
case 0x42: /* SMADDL */
case 0x43: /* SMSUBL */
case 0x44: /* SMULH */
is_signed = true;
break;
case 0x0: /* MADD (32bit) */
case 0x1: /* MSUB (32bit) */
case 0x40: /* MADD (64bit) */
case 0x41: /* MSUB (64bit) */
case 0x4a: /* UMADDL */
case 0x4b: /* UMSUBL */
case 0x4c: /* UMULH */
break;
default:
unallocated_encoding(s);
return;
}
if (is_high) {
TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
TCGv_i64 tcg_rd = cpu_reg(s, rd);
TCGv_i64 tcg_rn = cpu_reg(s, rn);
TCGv_i64 tcg_rm = cpu_reg(s, rm);
if (is_signed) {
tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
} else {
tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
}
return;
}
tcg_op1 = tcg_temp_new_i64();
tcg_op2 = tcg_temp_new_i64();
tcg_tmp = tcg_temp_new_i64();
if (op_id < 0x42) {
tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
} else {
if (is_signed) {
tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
} else {
tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
}
}
if (ra == 31 && !is_sub) {
/* Special-case MADD with rA == XZR; it is the standard MUL alias */
tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
} else {
tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
if (is_sub) {
tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
} else {
tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
}
}
if (!sf) {
tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
}
}
/* Add/subtract (with carry)
* 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
* +--+--+--+------------------------+------+-------------+------+-----+
* |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd |
* +--+--+--+------------------------+------+-------------+------+-----+
*/
static void disas_adc_sbc(DisasContext *s, uint32_t insn)
{
unsigned int sf, op, setflags, rm, rn, rd;
TCGv_i64 tcg_y, tcg_rn, tcg_rd;
sf = extract32(insn, 31, 1);
op = extract32(insn, 30, 1);
setflags = extract32(insn, 29, 1);
rm = extract32(insn, 16, 5);
rn = extract32(insn, 5, 5);
rd = extract32(insn, 0, 5);
tcg_rd = cpu_reg(s, rd);
tcg_rn = cpu_reg(s, rn);
if (op) {
tcg_y = tcg_temp_new_i64();
tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
} else {
tcg_y = cpu_reg(s, rm);
}
if (setflags) {
gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
} else {
gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
}
}
/*
* Rotate right into flags
* 31 30 29 21 15 10 5 4 0
* +--+--+--+-----------------+--------+-----------+------+--+------+
* |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask |
* +--+--+--+-----------------+--------+-----------+------+--+------+
*/
static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
{
int mask = extract32(insn, 0, 4);
int o2 = extract32(insn, 4, 1);
int rn = extract32(insn, 5, 5);
int imm6 = extract32(insn, 15, 6);
int sf_op_s = extract32(insn, 29, 3);
TCGv_i64 tcg_rn;
TCGv_i32 nzcv;
if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
unallocated_encoding(s);
return;
}
tcg_rn = read_cpu_reg(s, rn, 1);
tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
nzcv = tcg_temp_new_i32();
tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
if (mask & 8) { /* N */
tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
}
if (mask & 4) { /* Z */
tcg_gen_not_i32(cpu_ZF, nzcv);
tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
}
if (mask & 2) { /* C */
tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
}
if (mask & 1) { /* V */
tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
}
}
/*
* Evaluate into flags
* 31 30 29 21 15 14 10 5 4 0
* +--+--+--+-----------------+---------+----+---------+------+--+------+
* |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask |
* +--+--+--+-----------------+---------+----+---------+------+--+------+
*/
static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
{
int o3_mask = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int o2 = extract32(insn, 15, 6);
int sz = extract32(insn, 14, 1);
int sf_op_s = extract32(insn, 29, 3);
TCGv_i32 tmp;
int shift;
if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
!dc_isar_feature(aa64_condm_4, s)) {
unallocated_encoding(s);
return;
}
shift = sz ? 16 : 24; /* SETF16 or SETF8 */
tmp = tcg_temp_new_i32();
tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
tcg_gen_shli_i32(cpu_NF, tmp, shift);
tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
tcg_gen_mov_i32(cpu_ZF, cpu_NF);
tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
}
/* Conditional compare (immediate / register)
* 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
* +--+--+--+------------------------+--------+------+----+--+------+--+-----+
* |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
* +--+--+--+------------------------+--------+------+----+--+------+--+-----+
* [1] y [0] [0]
*/
static void disas_cc(DisasContext *s, uint32_t insn)
{
unsigned int sf, op, y, cond, rn, nzcv, is_imm;
TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
DisasCompare c;
if (!extract32(insn, 29, 1)) {
unallocated_encoding(s);
return;
}
if (insn & (1 << 10 | 1 << 4)) {
unallocated_encoding(s);
return;
}
sf = extract32(insn, 31, 1);
op = extract32(insn, 30, 1);
is_imm = extract32(insn, 11, 1);
y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
cond = extract32(insn, 12, 4);
rn = extract32(insn, 5, 5);
nzcv = extract32(insn, 0, 4);
/* Set T0 = !COND. */
tcg_t0 = tcg_temp_new_i32();
arm_test_cc(&c, cond);
tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
/* Load the arguments for the new comparison. */
if (is_imm) {
tcg_y = tcg_temp_new_i64();
tcg_gen_movi_i64(tcg_y, y);
} else {
tcg_y = cpu_reg(s, y);
}
tcg_rn = cpu_reg(s, rn);
/* Set the flags for the new comparison. */
tcg_tmp = tcg_temp_new_i64();
if (op) {
gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
} else {
gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
}
/* If COND was false, force the flags to #nzcv. Compute two masks
* to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
* For tcg hosts that support ANDC, we can make do with just T1.
* In either case, allow the tcg optimizer to delete any unused mask.
*/
tcg_t1 = tcg_temp_new_i32();
tcg_t2 = tcg_temp_new_i32();
tcg_gen_neg_i32(tcg_t1, tcg_t0);
tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
if (nzcv & 8) { /* N */
tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
} else {
if (TCG_TARGET_HAS_andc_i32) {
tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
} else {
tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
}
}
if (nzcv & 4) { /* Z */
if (TCG_TARGET_HAS_andc_i32) {
tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
} else {
tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
}
} else {
tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
}
if (nzcv & 2) { /* C */
tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
} else {
if (TCG_TARGET_HAS_andc_i32) {
tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
} else {
tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
}
}
if (nzcv & 1) { /* V */
tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
} else {
if (TCG_TARGET_HAS_andc_i32) {
tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
} else {
tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
}
}
}
/* Conditional select
* 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
* +----+----+---+-----------------+------+------+-----+------+------+
* | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
* +----+----+---+-----------------+------+------+-----+------+------+
*/
static void disas_cond_select(DisasContext *s, uint32_t insn)
{
unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
TCGv_i64 tcg_rd, zero;
DisasCompare64 c;
if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
/* S == 1 or op2<1> == 1 */
unallocated_encoding(s);
return;
}
sf = extract32(insn, 31, 1);
else_inv = extract32(insn, 30, 1);
rm = extract32(insn, 16, 5);
cond = extract32(insn, 12, 4);
else_inc = extract32(insn, 10, 1);
rn = extract32(insn, 5, 5);
rd = extract32(insn, 0, 5);
tcg_rd = cpu_reg(s, rd);
a64_test_cc(&c, cond);
zero = tcg_constant_i64(0);
if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
/* CSET & CSETM. */
if (else_inv) {
tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond),
tcg_rd, c.value, zero);
} else {
tcg_gen_setcond_i64(tcg_invert_cond(c.cond),
tcg_rd, c.value, zero);
}
} else {
TCGv_i64 t_true = cpu_reg(s, rn);
TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
if (else_inv && else_inc) {
tcg_gen_neg_i64(t_false, t_false);
} else if (else_inv) {
tcg_gen_not_i64(t_false, t_false);
} else if (else_inc) {
tcg_gen_addi_i64(t_false, t_false, 1);
}
tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
}
if (!sf) {
tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
}
}
static void handle_clz(DisasContext *s, unsigned int sf,
unsigned int rn, unsigned int rd)
{
TCGv_i64 tcg_rd, tcg_rn;
tcg_rd = cpu_reg(s, rd);
tcg_rn = cpu_reg(s, rn);
if (sf) {
tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
} else {
TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
}
}
static void handle_cls(DisasContext *s, unsigned int sf,
unsigned int rn, unsigned int rd)
{
TCGv_i64 tcg_rd, tcg_rn;
tcg_rd = cpu_reg(s, rd);
tcg_rn = cpu_reg(s, rn);
if (sf) {
tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
} else {
TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
}
}
static void handle_rbit(DisasContext *s, unsigned int sf,
unsigned int rn, unsigned int rd)
{
TCGv_i64 tcg_rd, tcg_rn;
tcg_rd = cpu_reg(s, rd);
tcg_rn = cpu_reg(s, rn);
if (sf) {
gen_helper_rbit64(tcg_rd, tcg_rn);
} else {
TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
gen_helper_rbit(tcg_tmp32, tcg_tmp32);
tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
}
}
/* REV with sf==1, opcode==3 ("REV64") */
static void handle_rev64(DisasContext *s, unsigned int sf,
unsigned int rn, unsigned int rd)
{
if (!sf) {
unallocated_encoding(s);
return;
}
tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
}
/* REV with sf==0, opcode==2
* REV32 (sf==1, opcode==2)
*/
static void handle_rev32(DisasContext *s, unsigned int sf,
unsigned int rn, unsigned int rd)
{
TCGv_i64 tcg_rd = cpu_reg(s, rd);
TCGv_i64 tcg_rn = cpu_reg(s, rn);
if (sf) {
tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
} else {
tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
}
}
/* REV16 (opcode==1) */
static void handle_rev16(DisasContext *s, unsigned int sf,
unsigned int rn, unsigned int rd)
{
TCGv_i64 tcg_rd = cpu_reg(s, rd);
TCGv_i64 tcg_tmp = tcg_temp_new_i64();
TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
}
/* Data-processing (1 source)
* 31 30 29 28 21 20 16 15 10 9 5 4 0
* +----+---+---+-----------------+---------+--------+------+------+
* | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
* +----+---+---+-----------------+---------+--------+------+------+
*/
static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
{
unsigned int sf, opcode, opcode2, rn, rd;
TCGv_i64 tcg_rd;
if (extract32(insn, 29, 1)) {
unallocated_encoding(s);
return;
}
sf = extract32(insn, 31, 1);
opcode = extract32(insn, 10, 6);
opcode2 = extract32(insn, 16, 5);
rn = extract32(insn, 5, 5);
rd = extract32(insn, 0, 5);
#define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
switch (MAP(sf, opcode2, opcode)) {
case MAP(0, 0x00, 0x00): /* RBIT */
case MAP(1, 0x00, 0x00):
handle_rbit(s, sf, rn, rd);
break;
case MAP(0, 0x00, 0x01): /* REV16 */
case MAP(1, 0x00, 0x01):
handle_rev16(s, sf, rn, rd);
break;
case MAP(0, 0x00, 0x02): /* REV/REV32 */
case MAP(1, 0x00, 0x02):
handle_rev32(s, sf, rn, rd);
break;
case MAP(1, 0x00, 0x03): /* REV64 */
handle_rev64(s, sf, rn, rd);
break;
case MAP(0, 0x00, 0x04): /* CLZ */
case MAP(1, 0x00, 0x04):
handle_clz(s, sf, rn, rd);
break;
case MAP(0, 0x00, 0x05): /* CLS */
case MAP(1, 0x00, 0x05):
handle_cls(s, sf, rn, rd);
break;
case MAP(1, 0x01, 0x00): /* PACIA */
if (s->pauth_active) {
tcg_rd = cpu_reg(s, rd);
gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
} else if (!dc_isar_feature(aa64_pauth, s)) {
goto do_unallocated;
}
break;
case MAP(1, 0x01, 0x01): /* PACIB */
if (s->pauth_active) {
tcg_rd = cpu_reg(s, rd);
gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
} else if (!dc_isar_feature(aa64_pauth, s)) {
goto do_unallocated;
}
break;
case MAP(1, 0x01, 0x02): /* PACDA */
if (s->pauth_active) {
tcg_rd = cpu_reg(s, rd);
gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
} else if (!dc_isar_feature(aa64_pauth, s)) {
goto do_unallocated;
}
break;
case MAP(1, 0x01, 0x03): /* PACDB */
if (s->pauth_active) {
tcg_rd = cpu_reg(s, rd);
gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
} else if (!dc_isar_feature(aa64_pauth, s)) {
goto do_unallocated;
}
break;
case MAP(1, 0x01, 0x04): /* AUTIA */
if (s->pauth_active) {
tcg_rd = cpu_reg(s, rd);
gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
} else if (!dc_isar_feature(aa64_pauth, s)) {
goto do_unallocated;
}
break;
case MAP(1, 0x01, 0x05): /* AUTIB */
if (s->pauth_active) {
tcg_rd = cpu_reg(s, rd);
gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
} else if (!dc_isar_feature(aa64_pauth, s)) {
goto do_unallocated;
}
break;
case MAP(1, 0x01, 0x06): /* AUTDA */
if (s->pauth_active) {
tcg_rd = cpu_reg(s, rd);
gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
} else if (!dc_isar_feature(aa64_pauth, s)) {
goto do_unallocated;
}
break;
case MAP(1, 0x01, 0x07): /* AUTDB */
if (s->pauth_active) {
tcg_rd = cpu_reg(s, rd);
gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
} else if (!dc_isar_feature(aa64_pauth, s)) {
goto do_unallocated;
}
break;
case MAP(1, 0x01, 0x08): /* PACIZA */
if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
goto do_unallocated;
} else if (s->pauth_active) {
tcg_rd = cpu_reg(s, rd);
gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
}
break;
case MAP(1, 0x01, 0x09): /* PACIZB */
if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
goto do_unallocated;
} else if (s->pauth_active) {
tcg_rd = cpu_reg(s, rd);
gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
}
break;
case MAP(1, 0x01, 0x0a): /* PACDZA */
if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
goto do_unallocated;
} else if (s->pauth_active) {
tcg_rd = cpu_reg(s, rd);
gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
}
break;
case MAP(1, 0x01, 0x0b): /* PACDZB */
if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
goto do_unallocated;
} else if (s->pauth_active) {
tcg_rd = cpu_reg(s, rd);
gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
}
break;
case MAP(1, 0x01, 0x0c): /* AUTIZA */
if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
goto do_unallocated;
} else if (s->pauth_active) {
tcg_rd = cpu_reg(s, rd);
gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
}
break;
case MAP(1, 0x01, 0x0d): /* AUTIZB */
if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
goto do_unallocated;
} else if (s->pauth_active) {
tcg_rd = cpu_reg(s, rd);
gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
}
break;
case MAP(1, 0x01, 0x0e): /* AUTDZA */
if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
goto do_unallocated;
} else if (s->pauth_active) {
tcg_rd = cpu_reg(s, rd);
gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
}
break;
case MAP(1, 0x01, 0x0f): /* AUTDZB */
if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
goto do_unallocated;
} else if (s->pauth_active) {
tcg_rd = cpu_reg(s, rd);
gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
}
break;
case MAP(1, 0x01, 0x10): /* XPACI */
if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
goto do_unallocated;
} else if (s->pauth_active) {
tcg_rd = cpu_reg(s, rd);
gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd);
}
break;
case MAP(1, 0x01, 0x11): /* XPACD */
if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
goto do_unallocated;
} else if (s->pauth_active) {
tcg_rd = cpu_reg(s, rd);
gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd);
}
break;
default:
do_unallocated:
unallocated_encoding(s);
break;
}
#undef MAP
}
static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
unsigned int rm, unsigned int rn, unsigned int rd)
{
TCGv_i64 tcg_n, tcg_m, tcg_rd;
tcg_rd = cpu_reg(s, rd);
if (!sf && is_signed) {
tcg_n = tcg_temp_new_i64();
tcg_m = tcg_temp_new_i64();
tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
} else {
tcg_n = read_cpu_reg(s, rn, sf);
tcg_m = read_cpu_reg(s, rm, sf);
}
if (is_signed) {
gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
} else {
gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
}
if (!sf) { /* zero extend final result */
tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
}
}
/* LSLV, LSRV, ASRV, RORV */
static void handle_shift_reg(DisasContext *s,
enum a64_shift_type shift_type, unsigned int sf,
unsigned int rm, unsigned int rn, unsigned int rd)
{
TCGv_i64 tcg_shift = tcg_temp_new_i64();
TCGv_i64 tcg_rd = cpu_reg(s, rd);
TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
}
/* CRC32[BHWX], CRC32C[BHWX] */
static void handle_crc32(DisasContext *s,
unsigned int sf, unsigned int sz, bool crc32c,
unsigned int rm, unsigned int rn, unsigned int rd)
{
TCGv_i64 tcg_acc, tcg_val;
TCGv_i32 tcg_bytes;
if (!dc_isar_feature(aa64_crc32, s)
|| (sf == 1 && sz != 3)
|| (sf == 0 && sz == 3)) {
unallocated_encoding(s);
return;
}
if (sz == 3) {
tcg_val = cpu_reg(s, rm);
} else {
uint64_t mask;
switch (sz) {
case 0:
mask = 0xFF;
break;
case 1:
mask = 0xFFFF;
break;
case 2:
mask = 0xFFFFFFFF;
break;
default:
g_assert_not_reached();
}
tcg_val = tcg_temp_new_i64();
tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
}
tcg_acc = cpu_reg(s, rn);
tcg_bytes = tcg_constant_i32(1 << sz);
if (crc32c) {
gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
} else {
gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
}
}
/* Data-processing (2 source)
* 31 30 29 28 21 20 16 15 10 9 5 4 0
* +----+---+---+-----------------+------+--------+------+------+
* | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
* +----+---+---+-----------------+------+--------+------+------+
*/
static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
{
unsigned int sf, rm, opcode, rn, rd, setflag;
sf = extract32(insn, 31, 1);
setflag = extract32(insn, 29, 1);
rm = extract32(insn, 16, 5);
opcode = extract32(insn, 10, 6);
rn = extract32(insn, 5, 5);
rd = extract32(insn, 0, 5);
if (setflag && opcode != 0) {
unallocated_encoding(s);
return;
}
switch (opcode) {
case 0: /* SUBP(S) */
if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
goto do_unallocated;
} else {
TCGv_i64 tcg_n, tcg_m, tcg_d;
tcg_n = read_cpu_reg_sp(s, rn, true);
tcg_m = read_cpu_reg_sp(s, rm, true);
tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
tcg_d = cpu_reg(s, rd);
if (setflag) {
gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
} else {
tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
}
}
break;
case 2: /* UDIV */
handle_div(s, false, sf, rm, rn, rd);
break;
case 3: /* SDIV */
handle_div(s, true, sf, rm, rn, rd);
break;
case 4: /* IRG */
if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
goto do_unallocated;
}
if (s->ata[0]) {
gen_helper_irg(cpu_reg_sp(s, rd), tcg_env,
cpu_reg_sp(s, rn), cpu_reg(s, rm));
} else {
gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
cpu_reg_sp(s, rn));
}
break;
case 5: /* GMI */
if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
goto do_unallocated;
} else {
TCGv_i64 t = tcg_temp_new_i64();
tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
}
break;
case 8: /* LSLV */
handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
break;
case 9: /* LSRV */
handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
break;
case 10: /* ASRV */
handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
break;
case 11: /* RORV */
handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
break;
case 12: /* PACGA */
if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
goto do_unallocated;
}
gen_helper_pacga(cpu_reg(s, rd), tcg_env,
cpu_reg(s, rn), cpu_reg_sp(s, rm));
break;
case 16:
case 17:
case 18:
case 19:
case 20:
case 21:
case 22:
case 23: /* CRC32 */
{
int sz = extract32(opcode, 0, 2);
bool crc32c = extract32(opcode, 2, 1);
handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
break;
}
default:
do_unallocated:
unallocated_encoding(s);
break;
}
}
/*
* Data processing - register
* 31 30 29 28 25 21 20 16 10 0
* +--+---+--+---+-------+-----+-------+-------+---------+
* | |op0| |op1| 1 0 1 | op2 | | op3 | |
* +--+---+--+---+-------+-----+-------+-------+---------+
*/
static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
{
int op0 = extract32(insn, 30, 1);
int op1 = extract32(insn, 28, 1);
int op2 = extract32(insn, 21, 4);
int op3 = extract32(insn, 10, 6);
if (!op1) {
if (op2 & 8) {
if (op2 & 1) {
/* Add/sub (extended register) */
disas_add_sub_ext_reg(s, insn);
} else {
/* Add/sub (shifted register) */
disas_add_sub_reg(s, insn);
}
} else {
/* Logical (shifted register) */
disas_logic_reg(s, insn);
}
return;
}
switch (op2) {
case 0x0:
switch (op3) {
case 0x00: /* Add/subtract (with carry) */
disas_adc_sbc(s, insn);
break;
case 0x01: /* Rotate right into flags */
case 0x21:
disas_rotate_right_into_flags(s, insn);
break;
case 0x02: /* Evaluate into flags */
case 0x12:
case 0x22:
case 0x32:
disas_evaluate_into_flags(s, insn);
break;
default:
goto do_unallocated;
}
break;
case 0x2: /* Conditional compare */
disas_cc(s, insn); /* both imm and reg forms */
break;
case 0x4: /* Conditional select */
disas_cond_select(s, insn);
break;
case 0x6: /* Data-processing */
if (op0) { /* (1 source) */
disas_data_proc_1src(s, insn);
} else { /* (2 source) */
disas_data_proc_2src(s, insn);
}
break;
case 0x8 ... 0xf: /* (3 source) */
disas_data_proc_3src(s, insn);
break;
default:
do_unallocated:
unallocated_encoding(s);
break;
}
}
static void handle_fp_compare(DisasContext *s, int size,
unsigned int rn, unsigned int rm,
bool cmp_with_zero, bool signal_all_nans)
{
TCGv_i64 tcg_flags = tcg_temp_new_i64();
TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
if (size == MO_64) {
TCGv_i64 tcg_vn, tcg_vm;
tcg_vn = read_fp_dreg(s, rn);
if (cmp_with_zero) {
tcg_vm = tcg_constant_i64(0);
} else {
tcg_vm = read_fp_dreg(s, rm);
}
if (signal_all_nans) {
gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
} else {
gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
}
} else {
TCGv_i32 tcg_vn = tcg_temp_new_i32();
TCGv_i32 tcg_vm = tcg_temp_new_i32();
read_vec_element_i32(s, tcg_vn, rn, 0, size);
if (cmp_with_zero) {
tcg_gen_movi_i32(tcg_vm, 0);
} else {
read_vec_element_i32(s, tcg_vm, rm, 0, size);
}
switch (size) {
case MO_32:
if (signal_all_nans) {
gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
} else {
gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
}
break;
case MO_16:
if (signal_all_nans) {
gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
} else {
gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
}
break;
default:
g_assert_not_reached();
}
}
gen_set_nzcv(tcg_flags);
}
/* Floating point compare
* 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
* +---+---+---+-----------+------+---+------+-----+---------+------+-------+
* | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
* +---+---+---+-----------+------+---+------+-----+---------+------+-------+
*/
static void disas_fp_compare(DisasContext *s, uint32_t insn)
{
unsigned int mos, type, rm, op, rn, opc, op2r;
int size;
mos = extract32(insn, 29, 3);
type = extract32(insn, 22, 2);
rm = extract32(insn, 16, 5);
op = extract32(insn, 14, 2);
rn = extract32(insn, 5, 5);
opc = extract32(insn, 3, 2);
op2r = extract32(insn, 0, 3);
if (mos || op || op2r) {
unallocated_encoding(s);
return;
}
switch (type) {
case 0:
size = MO_32;
break;
case 1:
size = MO_64;
break;
case 3:
size = MO_16;
if (dc_isar_feature(aa64_fp16, s)) {
break;
}
/* fallthru */
default:
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
}
/* Floating point conditional compare
* 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
* +---+---+---+-----------+------+---+------+------+-----+------+----+------+
* | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
* +---+---+---+-----------+------+---+------+------+-----+------+----+------+
*/
static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
{
unsigned int mos, type, rm, cond, rn, op, nzcv;
TCGLabel *label_continue = NULL;
int size;
mos = extract32(insn, 29, 3);
type = extract32(insn, 22, 2);
rm = extract32(insn, 16, 5);
cond = extract32(insn, 12, 4);
rn = extract32(insn, 5, 5);
op = extract32(insn, 4, 1);
nzcv = extract32(insn, 0, 4);
if (mos) {
unallocated_encoding(s);
return;
}
switch (type) {
case 0:
size = MO_32;
break;
case 1:
size = MO_64;
break;
case 3:
size = MO_16;
if (dc_isar_feature(aa64_fp16, s)) {
break;
}
/* fallthru */
default:
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
if (cond < 0x0e) { /* not always */
TCGLabel *label_match = gen_new_label();
label_continue = gen_new_label();
arm_gen_test_cc(cond, label_match);
/* nomatch: */
gen_set_nzcv(tcg_constant_i64(nzcv << 28));
tcg_gen_br(label_continue);
gen_set_label(label_match);
}
handle_fp_compare(s, size, rn, rm, false, op);
if (cond < 0x0e) {
gen_set_label(label_continue);
}
}
/* Floating-point data-processing (1 source) - half precision */
static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
{
TCGv_ptr fpst = NULL;
TCGv_i32 tcg_op = read_fp_hreg(s, rn);
TCGv_i32 tcg_res = tcg_temp_new_i32();
switch (opcode) {
case 0x0: /* FMOV */
tcg_gen_mov_i32(tcg_res, tcg_op);
break;
case 0x1: /* FABS */
gen_vfp_absh(tcg_res, tcg_op);
break;
case 0x2: /* FNEG */
gen_vfp_negh(tcg_res, tcg_op);
break;
case 0x3: /* FSQRT */
fpst = fpstatus_ptr(FPST_FPCR_F16);
gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
break;
case 0x8: /* FRINTN */
case 0x9: /* FRINTP */
case 0xa: /* FRINTM */
case 0xb: /* FRINTZ */
case 0xc: /* FRINTA */
{
TCGv_i32 tcg_rmode;
fpst = fpstatus_ptr(FPST_FPCR_F16);
tcg_rmode = gen_set_rmode(opcode & 7, fpst);
gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
gen_restore_rmode(tcg_rmode, fpst);
break;
}
case 0xe: /* FRINTX */
fpst = fpstatus_ptr(FPST_FPCR_F16);
gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
break;
case 0xf: /* FRINTI */
fpst = fpstatus_ptr(FPST_FPCR_F16);
gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
break;
default:
g_assert_not_reached();
}
write_fp_sreg(s, rd, tcg_res);
}
/* Floating-point data-processing (1 source) - single precision */
static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
{
void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
TCGv_i32 tcg_op, tcg_res;
TCGv_ptr fpst;
int rmode = -1;
tcg_op = read_fp_sreg(s, rn);
tcg_res = tcg_temp_new_i32();
switch (opcode) {
case 0x0: /* FMOV */
tcg_gen_mov_i32(tcg_res, tcg_op);
goto done;
case 0x1: /* FABS */
gen_vfp_abss(tcg_res, tcg_op);
goto done;
case 0x2: /* FNEG */
gen_vfp_negs(tcg_res, tcg_op);
goto done;
case 0x3: /* FSQRT */
gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
goto done;
case 0x6: /* BFCVT */
gen_fpst = gen_helper_bfcvt;
break;
case 0x8: /* FRINTN */
case 0x9: /* FRINTP */
case 0xa: /* FRINTM */
case 0xb: /* FRINTZ */
case 0xc: /* FRINTA */
rmode = opcode & 7;
gen_fpst = gen_helper_rints;
break;
case 0xe: /* FRINTX */
gen_fpst = gen_helper_rints_exact;
break;
case 0xf: /* FRINTI */
gen_fpst = gen_helper_rints;
break;
case 0x10: /* FRINT32Z */
rmode = FPROUNDING_ZERO;
gen_fpst = gen_helper_frint32_s;
break;
case 0x11: /* FRINT32X */
gen_fpst = gen_helper_frint32_s;
break;
case 0x12: /* FRINT64Z */
rmode = FPROUNDING_ZERO;
gen_fpst = gen_helper_frint64_s;
break;
case 0x13: /* FRINT64X */
gen_fpst = gen_helper_frint64_s;
break;
default:
g_assert_not_reached();
}
fpst = fpstatus_ptr(FPST_FPCR);
if (rmode >= 0) {
TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
gen_fpst(tcg_res, tcg_op, fpst);
gen_restore_rmode(tcg_rmode, fpst);
} else {
gen_fpst(tcg_res, tcg_op, fpst);
}
done:
write_fp_sreg(s, rd, tcg_res);
}
/* Floating-point data-processing (1 source) - double precision */
static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
{
void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
TCGv_i64 tcg_op, tcg_res;
TCGv_ptr fpst;
int rmode = -1;
switch (opcode) {
case 0x0: /* FMOV */
gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
return;
}
tcg_op = read_fp_dreg(s, rn);
tcg_res = tcg_temp_new_i64();
switch (opcode) {
case 0x1: /* FABS */
gen_vfp_absd(tcg_res, tcg_op);
goto done;
case 0x2: /* FNEG */
gen_vfp_negd(tcg_res, tcg_op);
goto done;
case 0x3: /* FSQRT */
gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env);
goto done;
case 0x8: /* FRINTN */
case 0x9: /* FRINTP */
case 0xa: /* FRINTM */
case 0xb: /* FRINTZ */
case 0xc: /* FRINTA */
rmode = opcode & 7;
gen_fpst = gen_helper_rintd;
break;
case 0xe: /* FRINTX */
gen_fpst = gen_helper_rintd_exact;
break;
case 0xf: /* FRINTI */
gen_fpst = gen_helper_rintd;
break;
case 0x10: /* FRINT32Z */
rmode = FPROUNDING_ZERO;
gen_fpst = gen_helper_frint32_d;
break;
case 0x11: /* FRINT32X */
gen_fpst = gen_helper_frint32_d;
break;
case 0x12: /* FRINT64Z */
rmode = FPROUNDING_ZERO;
gen_fpst = gen_helper_frint64_d;
break;
case 0x13: /* FRINT64X */
gen_fpst = gen_helper_frint64_d;
break;
default:
g_assert_not_reached();
}
fpst = fpstatus_ptr(FPST_FPCR);
if (rmode >= 0) {
TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
gen_fpst(tcg_res, tcg_op, fpst);
gen_restore_rmode(tcg_rmode, fpst);
} else {
gen_fpst(tcg_res, tcg_op, fpst);
}
done:
write_fp_dreg(s, rd, tcg_res);
}
static void handle_fp_fcvt(DisasContext *s, int opcode,
int rd, int rn, int dtype, int ntype)
{
switch (ntype) {
case 0x0:
{
TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
if (dtype == 1) {
/* Single to double */
TCGv_i64 tcg_rd = tcg_temp_new_i64();
gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env);
write_fp_dreg(s, rd, tcg_rd);
} else {
/* Single to half */
TCGv_i32 tcg_rd = tcg_temp_new_i32();
TCGv_i32 ahp = get_ahp_flag();
TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
/* write_fp_sreg is OK here because top half of tcg_rd is zero */
write_fp_sreg(s, rd, tcg_rd);
}
break;
}
case 0x1:
{
TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
TCGv_i32 tcg_rd = tcg_temp_new_i32();
if (dtype == 0) {
/* Double to single */
gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env);
} else {
TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
TCGv_i32 ahp = get_ahp_flag();
/* Double to half */
gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
/* write_fp_sreg is OK here because top half of tcg_rd is zero */
}
write_fp_sreg(s, rd, tcg_rd);
break;
}
case 0x3:
{
TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
TCGv_i32 tcg_ahp = get_ahp_flag();
tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
if (dtype == 0) {
/* Half to single */
TCGv_i32 tcg_rd = tcg_temp_new_i32();
gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
write_fp_sreg(s, rd, tcg_rd);
} else {
/* Half to double */
TCGv_i64 tcg_rd = tcg_temp_new_i64();
gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
write_fp_dreg(s, rd, tcg_rd);
}
break;
}
default:
g_assert_not_reached();
}
}
/* Floating point data-processing (1 source)
* 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
* +---+---+---+-----------+------+---+--------+-----------+------+------+
* | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
* +---+---+---+-----------+------+---+--------+-----------+------+------+
*/
static void disas_fp_1src(DisasContext *s, uint32_t insn)
{
int mos = extract32(insn, 29, 3);
int type = extract32(insn, 22, 2);
int opcode = extract32(insn, 15, 6);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
if (mos) {
goto do_unallocated;
}
switch (opcode) {
case 0x4: case 0x5: case 0x7:
{
/* FCVT between half, single and double precision */
int dtype = extract32(opcode, 0, 2);
if (type == 2 || dtype == type) {
goto do_unallocated;
}
if (!fp_access_check(s)) {
return;
}
handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
break;
}
case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
goto do_unallocated;
}
/* fall through */
case 0x0 ... 0x3:
case 0x8 ... 0xc:
case 0xe ... 0xf:
/* 32-to-32 and 64-to-64 ops */
switch (type) {
case 0:
if (!fp_access_check(s)) {
return;
}
handle_fp_1src_single(s, opcode, rd, rn);
break;
case 1:
if (!fp_access_check(s)) {
return;
}
handle_fp_1src_double(s, opcode, rd, rn);
break;
case 3:
if (!dc_isar_feature(aa64_fp16, s)) {
goto do_unallocated;
}
if (!fp_access_check(s)) {
return;
}
handle_fp_1src_half(s, opcode, rd, rn);
break;
default:
goto do_unallocated;
}
break;
case 0x6:
switch (type) {
case 1: /* BFCVT */
if (!dc_isar_feature(aa64_bf16, s)) {
goto do_unallocated;
}
if (!fp_access_check(s)) {
return;
}
handle_fp_1src_single(s, opcode, rd, rn);
break;
default:
goto do_unallocated;
}
break;
default:
do_unallocated:
unallocated_encoding(s);
break;
}
}
/* Floating point immediate
* 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
* +---+---+---+-----------+------+---+------------+-------+------+------+
* | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
* +---+---+---+-----------+------+---+------------+-------+------+------+
*/
static void disas_fp_imm(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int imm5 = extract32(insn, 5, 5);
int imm8 = extract32(insn, 13, 8);
int type = extract32(insn, 22, 2);
int mos = extract32(insn, 29, 3);
uint64_t imm;
MemOp sz;
if (mos || imm5) {
unallocated_encoding(s);
return;
}
switch (type) {
case 0:
sz = MO_32;
break;
case 1:
sz = MO_64;
break;
case 3:
sz = MO_16;
if (dc_isar_feature(aa64_fp16, s)) {
break;
}
/* fallthru */
default:
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
imm = vfp_expand_imm(sz, imm8);
write_fp_dreg(s, rd, tcg_constant_i64(imm));
}
/* Handle floating point <=> fixed point conversions. Note that we can
* also deal with fp <=> integer conversions as a special case (scale == 64)
* OPTME: consider handling that special case specially or at least skipping
* the call to scalbn in the helpers for zero shifts.
*/
static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
bool itof, int rmode, int scale, int sf, int type)
{
bool is_signed = !(opcode & 1);
TCGv_ptr tcg_fpstatus;
TCGv_i32 tcg_shift, tcg_single;
TCGv_i64 tcg_double;
tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
tcg_shift = tcg_constant_i32(64 - scale);
if (itof) {
TCGv_i64 tcg_int = cpu_reg(s, rn);
if (!sf) {
TCGv_i64 tcg_extend = tcg_temp_new_i64();
if (is_signed) {
tcg_gen_ext32s_i64(tcg_extend, tcg_int);
} else {
tcg_gen_ext32u_i64(tcg_extend, tcg_int);
}
tcg_int = tcg_extend;
}
switch (type) {
case 1: /* float64 */
tcg_double = tcg_temp_new_i64();
if (is_signed) {
gen_helper_vfp_sqtod(tcg_double, tcg_int,
tcg_shift, tcg_fpstatus);
} else {
gen_helper_vfp_uqtod(tcg_double, tcg_int,
tcg_shift, tcg_fpstatus);
}
write_fp_dreg(s, rd, tcg_double);
break;
case 0: /* float32 */
tcg_single = tcg_temp_new_i32();
if (is_signed) {
gen_helper_vfp_sqtos(tcg_single, tcg_int,
tcg_shift, tcg_fpstatus);
} else {
gen_helper_vfp_uqtos(tcg_single, tcg_int,
tcg_shift, tcg_fpstatus);
}
write_fp_sreg(s, rd, tcg_single);
break;
case 3: /* float16 */
tcg_single = tcg_temp_new_i32();
if (is_signed) {
gen_helper_vfp_sqtoh(tcg_single, tcg_int,
tcg_shift, tcg_fpstatus);
} else {
gen_helper_vfp_uqtoh(tcg_single, tcg_int,
tcg_shift, tcg_fpstatus);
}
write_fp_sreg(s, rd, tcg_single);
break;
default:
g_assert_not_reached();
}
} else {
TCGv_i64 tcg_int = cpu_reg(s, rd);
TCGv_i32 tcg_rmode;
if (extract32(opcode, 2, 1)) {
/* There are too many rounding modes to all fit into rmode,
* so FCVTA[US] is a special case.
*/
rmode = FPROUNDING_TIEAWAY;
}
tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
switch (type) {
case 1: /* float64 */
tcg_double = read_fp_dreg(s, rn);
if (is_signed) {
if (!sf) {
gen_helper_vfp_tosld(tcg_int, tcg_double,
tcg_shift, tcg_fpstatus);
} else {
gen_helper_vfp_tosqd(tcg_int, tcg_double,
tcg_shift, tcg_fpstatus);
}
} else {
if (!sf) {
gen_helper_vfp_tould(tcg_int, tcg_double,
tcg_shift, tcg_fpstatus);
} else {
gen_helper_vfp_touqd(tcg_int, tcg_double,
tcg_shift, tcg_fpstatus);
}
}
if (!sf) {
tcg_gen_ext32u_i64(tcg_int, tcg_int);
}
break;
case 0: /* float32 */
tcg_single = read_fp_sreg(s, rn);
if (sf) {
if (is_signed) {
gen_helper_vfp_tosqs(tcg_int, tcg_single,
tcg_shift, tcg_fpstatus);
} else {
gen_helper_vfp_touqs(tcg_int, tcg_single,
tcg_shift, tcg_fpstatus);
}
} else {
TCGv_i32 tcg_dest = tcg_temp_new_i32();
if (is_signed) {
gen_helper_vfp_tosls(tcg_dest, tcg_single,
tcg_shift, tcg_fpstatus);
} else {
gen_helper_vfp_touls(tcg_dest, tcg_single,
tcg_shift, tcg_fpstatus);
}
tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
}
break;
case 3: /* float16 */
tcg_single = read_fp_sreg(s, rn);
if (sf) {
if (is_signed) {
gen_helper_vfp_tosqh(tcg_int, tcg_single,
tcg_shift, tcg_fpstatus);
} else {
gen_helper_vfp_touqh(tcg_int, tcg_single,
tcg_shift, tcg_fpstatus);
}
} else {
TCGv_i32 tcg_dest = tcg_temp_new_i32();
if (is_signed) {
gen_helper_vfp_toslh(tcg_dest, tcg_single,
tcg_shift, tcg_fpstatus);
} else {
gen_helper_vfp_toulh(tcg_dest, tcg_single,
tcg_shift, tcg_fpstatus);
}
tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
}
break;
default:
g_assert_not_reached();
}
gen_restore_rmode(tcg_rmode, tcg_fpstatus);
}
}
/* Floating point <-> fixed point conversions
* 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
* +----+---+---+-----------+------+---+-------+--------+-------+------+------+
* | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
* +----+---+---+-----------+------+---+-------+--------+-------+------+------+
*/
static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int scale = extract32(insn, 10, 6);
int opcode = extract32(insn, 16, 3);
int rmode = extract32(insn, 19, 2);
int type = extract32(insn, 22, 2);
bool sbit = extract32(insn, 29, 1);
bool sf = extract32(insn, 31, 1);
bool itof;
if (sbit || (!sf && scale < 32)) {
unallocated_encoding(s);
return;
}
switch (type) {
case 0: /* float32 */
case 1: /* float64 */
break;
case 3: /* float16 */
if (dc_isar_feature(aa64_fp16, s)) {
break;
}
/* fallthru */
default:
unallocated_encoding(s);
return;
}
switch ((rmode << 3) | opcode) {
case 0x2: /* SCVTF */
case 0x3: /* UCVTF */
itof = true;
break;
case 0x18: /* FCVTZS */
case 0x19: /* FCVTZU */
itof = false;
break;
default:
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
}
static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
{
/* FMOV: gpr to or from float, double, or top half of quad fp reg,
* without conversion.
*/
if (itof) {
TCGv_i64 tcg_rn = cpu_reg(s, rn);
TCGv_i64 tmp;
switch (type) {
case 0:
/* 32 bit */
tmp = tcg_temp_new_i64();
tcg_gen_ext32u_i64(tmp, tcg_rn);
write_fp_dreg(s, rd, tmp);
break;
case 1:
/* 64 bit */
write_fp_dreg(s, rd, tcg_rn);
break;
case 2:
/* 64 bit to top half. */
tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd));
clear_vec_high(s, true, rd);
break;
case 3:
/* 16 bit */
tmp = tcg_temp_new_i64();
tcg_gen_ext16u_i64(tmp, tcg_rn);
write_fp_dreg(s, rd, tmp);
break;
default:
g_assert_not_reached();
}
} else {
TCGv_i64 tcg_rd = cpu_reg(s, rd);
switch (type) {
case 0:
/* 32 bit */
tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32));
break;
case 1:
/* 64 bit */
tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64));
break;
case 2:
/* 64 bits from top half */
tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn));
break;
case 3:
/* 16 bit */
tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16));
break;
default:
g_assert_not_reached();
}
}
}
static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
{
TCGv_i64 t = read_fp_dreg(s, rn);
TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
gen_helper_fjcvtzs(t, t, fpstatus);
tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
tcg_gen_extrh_i64_i32(cpu_ZF, t);
tcg_gen_movi_i32(cpu_CF, 0);
tcg_gen_movi_i32(cpu_NF, 0);
tcg_gen_movi_i32(cpu_VF, 0);
}
/* Floating point <-> integer conversions
* 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
* +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
* | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
* +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
*/
static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int opcode = extract32(insn, 16, 3);
int rmode = extract32(insn, 19, 2);
int type = extract32(insn, 22, 2);
bool sbit = extract32(insn, 29, 1);
bool sf = extract32(insn, 31, 1);
bool itof = false;
if (sbit) {
goto do_unallocated;
}
switch (opcode) {
case 2: /* SCVTF */
case 3: /* UCVTF */
itof = true;
/* fallthru */
case 4: /* FCVTAS */
case 5: /* FCVTAU */
if (rmode != 0) {
goto do_unallocated;
}
/* fallthru */
case 0: /* FCVT[NPMZ]S */
case 1: /* FCVT[NPMZ]U */
switch (type) {
case 0: /* float32 */
case 1: /* float64 */
break;
case 3: /* float16 */
if (!dc_isar_feature(aa64_fp16, s)) {
goto do_unallocated;
}
break;
default:
goto do_unallocated;
}
if (!fp_access_check(s)) {
return;
}
handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
break;
default:
switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
case 0b01100110: /* FMOV half <-> 32-bit int */
case 0b01100111:
case 0b11100110: /* FMOV half <-> 64-bit int */
case 0b11100111:
if (!dc_isar_feature(aa64_fp16, s)) {
goto do_unallocated;
}
/* fallthru */
case 0b00000110: /* FMOV 32-bit */
case 0b00000111:
case 0b10100110: /* FMOV 64-bit */
case 0b10100111:
case 0b11001110: /* FMOV top half of 128-bit */
case 0b11001111:
if (!fp_access_check(s)) {
return;
}
itof = opcode & 1;
handle_fmov(s, rd, rn, type, itof);
break;
case 0b00111110: /* FJCVTZS */
if (!dc_isar_feature(aa64_jscvt, s)) {
goto do_unallocated;
} else if (fp_access_check(s)) {
handle_fjcvtzs(s, rd, rn);
}
break;
default:
do_unallocated:
unallocated_encoding(s);
return;
}
break;
}
}
/* FP-specific subcases of table C3-6 (SIMD and FP data processing)
* 31 30 29 28 25 24 0
* +---+---+---+---------+-----------------------------+
* | | 0 | | 1 1 1 1 | |
* +---+---+---+---------+-----------------------------+
*/
static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
{
if (extract32(insn, 24, 1)) {
unallocated_encoding(s); /* in decodetree */
} else if (extract32(insn, 21, 1) == 0) {
/* Floating point to fixed point conversions */
disas_fp_fixed_conv(s, insn);
} else {
switch (extract32(insn, 10, 2)) {
case 1:
/* Floating point conditional compare */
disas_fp_ccomp(s, insn);
break;
case 2:
/* Floating point data-processing (2 source) */
unallocated_encoding(s); /* in decodetree */
break;
case 3:
/* Floating point conditional select */
unallocated_encoding(s); /* in decodetree */
break;
case 0:
switch (ctz32(extract32(insn, 12, 4))) {
case 0: /* [15:12] == xxx1 */
/* Floating point immediate */
disas_fp_imm(s, insn);
break;
case 1: /* [15:12] == xx10 */
/* Floating point compare */
disas_fp_compare(s, insn);
break;
case 2: /* [15:12] == x100 */
/* Floating point data-processing (1 source) */
disas_fp_1src(s, insn);
break;
case 3: /* [15:12] == 1000 */
unallocated_encoding(s);
break;
default: /* [15:12] == 0000 */
/* Floating point <-> integer conversions */
disas_fp_int_conv(s, insn);
break;
}
break;
}
}
}
static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
int pos)
{
/* Extract 64 bits from the middle of two concatenated 64 bit
* vector register slices left:right. The extracted bits start
* at 'pos' bits into the right (least significant) side.
* We return the result in tcg_right, and guarantee not to
* trash tcg_left.
*/
TCGv_i64 tcg_tmp = tcg_temp_new_i64();
assert(pos > 0 && pos < 64);
tcg_gen_shri_i64(tcg_right, tcg_right, pos);
tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
}
/* EXT
* 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
* +---+---+-------------+-----+---+------+---+------+---+------+------+
* | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
* +---+---+-------------+-----+---+------+---+------+---+------+------+
*/
static void disas_simd_ext(DisasContext *s, uint32_t insn)
{
int is_q = extract32(insn, 30, 1);
int op2 = extract32(insn, 22, 2);
int imm4 = extract32(insn, 11, 4);
int rm = extract32(insn, 16, 5);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
int pos = imm4 << 3;
TCGv_i64 tcg_resl, tcg_resh;
if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
tcg_resh = tcg_temp_new_i64();
tcg_resl = tcg_temp_new_i64();
/* Vd gets bits starting at pos bits into Vm:Vn. This is
* either extracting 128 bits from a 128:128 concatenation, or
* extracting 64 bits from a 64:64 concatenation.
*/
if (!is_q) {
read_vec_element(s, tcg_resl, rn, 0, MO_64);
if (pos != 0) {
read_vec_element(s, tcg_resh, rm, 0, MO_64);
do_ext64(s, tcg_resh, tcg_resl, pos);
}
} else {
TCGv_i64 tcg_hh;
typedef struct {
int reg;
int elt;
} EltPosns;
EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
EltPosns *elt = eltposns;
if (pos >= 64) {
elt++;
pos -= 64;
}
read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
elt++;
read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
elt++;
if (pos != 0) {
do_ext64(s, tcg_resh, tcg_resl, pos);
tcg_hh = tcg_temp_new_i64();
read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
do_ext64(s, tcg_hh, tcg_resh, pos);
}
}
write_vec_element(s, tcg_resl, rd, 0, MO_64);
if (is_q) {
write_vec_element(s, tcg_resh, rd, 1, MO_64);
}
clear_vec_high(s, is_q, rd);
}
/* TBL/TBX
* 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
* +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
* | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
* +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
*/
static void disas_simd_tb(DisasContext *s, uint32_t insn)
{
int op2 = extract32(insn, 22, 2);
int is_q = extract32(insn, 30, 1);
int rm = extract32(insn, 16, 5);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
int is_tbx = extract32(insn, 12, 1);
int len = (extract32(insn, 13, 2) + 1) * 16;
if (op2 != 0) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
vec_full_reg_offset(s, rm), tcg_env,
is_q ? 16 : 8, vec_full_reg_size(s),
(len << 6) | (is_tbx << 5) | rn,
gen_helper_simd_tblx);
}
/* ZIP/UZP/TRN
* 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
* +---+---+-------------+------+---+------+---+------------------+------+
* | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
* +---+---+-------------+------+---+------+---+------------------+------+
*/
static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int rm = extract32(insn, 16, 5);
int size = extract32(insn, 22, 2);
/* opc field bits [1:0] indicate ZIP/UZP/TRN;
* bit 2 indicates 1 vs 2 variant of the insn.
*/
int opcode = extract32(insn, 12, 2);
bool part = extract32(insn, 14, 1);
bool is_q = extract32(insn, 30, 1);
int esize = 8 << size;
int i;
int datasize = is_q ? 128 : 64;
int elements = datasize / esize;
TCGv_i64 tcg_res[2], tcg_ele;
if (opcode == 0 || (size == 3 && !is_q)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
tcg_res[0] = tcg_temp_new_i64();
tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
tcg_ele = tcg_temp_new_i64();
for (i = 0; i < elements; i++) {
int o, w;
switch (opcode) {
case 1: /* UZP1/2 */
{
int midpoint = elements / 2;
if (i < midpoint) {
read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
} else {
read_vec_element(s, tcg_ele, rm,
2 * (i - midpoint) + part, size);
}
break;
}
case 2: /* TRN1/2 */
if (i & 1) {
read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
} else {
read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
}
break;
case 3: /* ZIP1/2 */
{
int base = part * elements / 2;
if (i & 1) {
read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
} else {
read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
}
break;
}
default:
g_assert_not_reached();
}
w = (i * esize) / 64;
o = (i * esize) % 64;
if (o == 0) {
tcg_gen_mov_i64(tcg_res[w], tcg_ele);
} else {
tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
}
}
for (i = 0; i <= is_q; ++i) {
write_vec_element(s, tcg_res[i], rd, i, MO_64);
}
clear_vec_high(s, is_q, rd);
}
/*
* do_reduction_op helper
*
* This mirrors the Reduce() pseudocode in the ARM ARM. It is
* important for correct NaN propagation that we do these
* operations in exactly the order specified by the pseudocode.
*
* This is a recursive function, TCG temps should be freed by the
* calling function once it is done with the values.
*/
static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
int esize, int size, int vmap, TCGv_ptr fpst)
{
if (esize == size) {
int element;
MemOp msize = esize == 16 ? MO_16 : MO_32;
TCGv_i32 tcg_elem;
/* We should have one register left here */
assert(ctpop8(vmap) == 1);
element = ctz32(vmap);
assert(element < 8);
tcg_elem = tcg_temp_new_i32();
read_vec_element_i32(s, tcg_elem, rn, element, msize);
return tcg_elem;
} else {
int bits = size / 2;
int shift = ctpop8(vmap) / 2;
int vmap_lo = (vmap >> shift) & vmap;
int vmap_hi = (vmap & ~vmap_lo);
TCGv_i32 tcg_hi, tcg_lo, tcg_res;
tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
tcg_res = tcg_temp_new_i32();
switch (fpopcode) {
case 0x0c: /* fmaxnmv half-precision */
gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
break;
case 0x0f: /* fmaxv half-precision */
gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
break;
case 0x1c: /* fminnmv half-precision */
gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
break;
case 0x1f: /* fminv half-precision */
gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
break;
case 0x2c: /* fmaxnmv */
gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
break;
case 0x2f: /* fmaxv */
gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
break;
case 0x3c: /* fminnmv */
gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
break;
case 0x3f: /* fminv */
gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
break;
default:
g_assert_not_reached();
}
return tcg_res;
}
}
/* AdvSIMD across lanes
* 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
* +---+---+---+-----------+------+-----------+--------+-----+------+------+
* | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
* +---+---+---+-----------+------+-----------+--------+-----+------+------+
*/
static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int size = extract32(insn, 22, 2);
int opcode = extract32(insn, 12, 5);
bool is_q = extract32(insn, 30, 1);
bool is_u = extract32(insn, 29, 1);
bool is_fp = false;
bool is_min = false;
int esize;
int elements;
int i;
TCGv_i64 tcg_res, tcg_elt;
switch (opcode) {
case 0x1b: /* ADDV */
if (is_u) {
unallocated_encoding(s);
return;
}
/* fall through */
case 0x3: /* SADDLV, UADDLV */
case 0xa: /* SMAXV, UMAXV */
case 0x1a: /* SMINV, UMINV */
if (size == 3 || (size == 2 && !is_q)) {
unallocated_encoding(s);
return;
}
break;
case 0xc: /* FMAXNMV, FMINNMV */
case 0xf: /* FMAXV, FMINV */
/* Bit 1 of size field encodes min vs max and the actual size
* depends on the encoding of the U bit. If not set (and FP16
* enabled) then we do half-precision float instead of single
* precision.
*/
is_min = extract32(size, 1, 1);
is_fp = true;
if (!is_u && dc_isar_feature(aa64_fp16, s)) {
size = 1;
} else if (!is_u || !is_q || extract32(size, 0, 1)) {
unallocated_encoding(s);
return;
} else {
size = 2;
}
break;
default:
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
esize = 8 << size;
elements = (is_q ? 128 : 64) / esize;
tcg_res = tcg_temp_new_i64();
tcg_elt = tcg_temp_new_i64();
/* These instructions operate across all lanes of a vector
* to produce a single result. We can guarantee that a 64
* bit intermediate is sufficient:
* + for [US]ADDLV the maximum element size is 32 bits, and
* the result type is 64 bits
* + for FMAX*V, FMIN*V, ADDV the intermediate type is the
* same as the element size, which is 32 bits at most
* For the integer operations we can choose to work at 64
* or 32 bits and truncate at the end; for simplicity
* we use 64 bits always. The floating point
* ops do require 32 bit intermediates, though.
*/
if (!is_fp) {
read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
for (i = 1; i < elements; i++) {
read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
switch (opcode) {
case 0x03: /* SADDLV / UADDLV */
case 0x1b: /* ADDV */
tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
break;
case 0x0a: /* SMAXV / UMAXV */
if (is_u) {
tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
} else {
tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
}
break;
case 0x1a: /* SMINV / UMINV */
if (is_u) {
tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
} else {
tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
}
break;
default:
g_assert_not_reached();
}
}
} else {
/* Floating point vector reduction ops which work across 32
* bit (single) or 16 bit (half-precision) intermediates.
* Note that correct NaN propagation requires that we do these
* operations in exactly the order specified by the pseudocode.
*/
TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
int fpopcode = opcode | is_min << 4 | is_u << 5;
int vmap = (1 << elements) - 1;
TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
(is_q ? 128 : 64), vmap, fpst);
tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
}
/* Now truncate the result to the width required for the final output */
if (opcode == 0x03) {
/* SADDLV, UADDLV: result is 2*esize */
size++;
}
switch (size) {
case 0:
tcg_gen_ext8u_i64(tcg_res, tcg_res);
break;
case 1:
tcg_gen_ext16u_i64(tcg_res, tcg_res);
break;
case 2:
tcg_gen_ext32u_i64(tcg_res, tcg_res);
break;
case 3:
break;
default:
g_assert_not_reached();
}
write_fp_dreg(s, rd, tcg_res);
}
/* AdvSIMD modified immediate
* 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
* +---+---+----+---------------------+-----+-------+----+---+-------+------+
* | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
* +---+---+----+---------------------+-----+-------+----+---+-------+------+
*
* There are a number of operations that can be carried out here:
* MOVI - move (shifted) imm into register
* MVNI - move inverted (shifted) imm into register
* ORR - bitwise OR of (shifted) imm with register
* BIC - bitwise clear of (shifted) imm with register
* With ARMv8.2 we also have:
* FMOV half-precision
*/
static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int cmode = extract32(insn, 12, 4);
int o2 = extract32(insn, 11, 1);
uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
bool is_neg = extract32(insn, 29, 1);
bool is_q = extract32(insn, 30, 1);
uint64_t imm = 0;
if (o2) {
if (cmode != 0xf || is_neg) {
unallocated_encoding(s);
return;
}
/* FMOV (vector, immediate) - half-precision */
if (!dc_isar_feature(aa64_fp16, s)) {
unallocated_encoding(s);
return;
}
imm = vfp_expand_imm(MO_16, abcdefgh);
/* now duplicate across the lanes */
imm = dup_const(MO_16, imm);
} else {
if (cmode == 0xf && is_neg && !is_q) {
unallocated_encoding(s);
return;
}
imm = asimd_imm_const(abcdefgh, cmode, is_neg);
}
if (!fp_access_check(s)) {
return;
}
if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
/* MOVI or MVNI, with MVNI negation handled above. */
tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
vec_full_reg_size(s), imm);
} else {
/* ORR or BIC, with BIC negation to AND handled above. */
if (is_neg) {
gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
} else {
gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
}
}
}
/*
* Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
*
* This code is handles the common shifting code and is used by both
* the vector and scalar code.
*/
static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
TCGv_i64 tcg_rnd, bool accumulate,
bool is_u, int size, int shift)
{
bool extended_result = false;
bool round = tcg_rnd != NULL;
int ext_lshift = 0;
TCGv_i64 tcg_src_hi;
if (round && size == 3) {
extended_result = true;
ext_lshift = 64 - shift;
tcg_src_hi = tcg_temp_new_i64();
} else if (shift == 64) {
if (!accumulate && is_u) {
/* result is zero */
tcg_gen_movi_i64(tcg_res, 0);
return;
}
}
/* Deal with the rounding step */
if (round) {
if (extended_result) {
TCGv_i64 tcg_zero = tcg_constant_i64(0);
if (!is_u) {
/* take care of sign extending tcg_res */
tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
tcg_gen_add2_i64(tcg_src, tcg_src_hi,
tcg_src, tcg_src_hi,
tcg_rnd, tcg_zero);
} else {
tcg_gen_add2_i64(tcg_src, tcg_src_hi,
tcg_src, tcg_zero,
tcg_rnd, tcg_zero);
}
} else {
tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
}
}
/* Now do the shift right */
if (round && extended_result) {
/* extended case, >64 bit precision required */
if (ext_lshift == 0) {
/* special case, only high bits matter */
tcg_gen_mov_i64(tcg_src, tcg_src_hi);
} else {
tcg_gen_shri_i64(tcg_src, tcg_src, shift);
tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
}
} else {
if (is_u) {
if (shift == 64) {
/* essentially shifting in 64 zeros */
tcg_gen_movi_i64(tcg_src, 0);
} else {
tcg_gen_shri_i64(tcg_src, tcg_src, shift);
}
} else {
if (shift == 64) {
/* effectively extending the sign-bit */
tcg_gen_sari_i64(tcg_src, tcg_src, 63);
} else {
tcg_gen_sari_i64(tcg_src, tcg_src, shift);
}
}
}
if (accumulate) {
tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
} else {
tcg_gen_mov_i64(tcg_res, tcg_src);
}
}
/* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
static void handle_scalar_simd_shri(DisasContext *s,
bool is_u, int immh, int immb,
int opcode, int rn, int rd)
{
const int size = 3;
int immhb = immh << 3 | immb;
int shift = 2 * (8 << size) - immhb;
bool accumulate = false;
bool round = false;
bool insert = false;
TCGv_i64 tcg_rn;
TCGv_i64 tcg_rd;
TCGv_i64 tcg_round;
if (!extract32(immh, 3, 1)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
switch (opcode) {
case 0x02: /* SSRA / USRA (accumulate) */
accumulate = true;
break;
case 0x04: /* SRSHR / URSHR (rounding) */
round = true;
break;
case 0x06: /* SRSRA / URSRA (accum + rounding) */
accumulate = round = true;
break;
case 0x08: /* SRI */
insert = true;
break;
}
if (round) {
tcg_round = tcg_constant_i64(1ULL << (shift - 1));
} else {
tcg_round = NULL;
}
tcg_rn = read_fp_dreg(s, rn);
tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
if (insert) {
/* shift count same as element size is valid but does nothing;
* special case to avoid potential shift by 64.
*/
int esize = 8 << size;
if (shift != esize) {
tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
}
} else {
handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
accumulate, is_u, size, shift);
}
write_fp_dreg(s, rd, tcg_rd);
}
/* SHL/SLI - Scalar shift left */
static void handle_scalar_simd_shli(DisasContext *s, bool insert,
int immh, int immb, int opcode,
int rn, int rd)
{
int size = 32 - clz32(immh) - 1;
int immhb = immh << 3 | immb;
int shift = immhb - (8 << size);
TCGv_i64 tcg_rn;
TCGv_i64 tcg_rd;
if (!extract32(immh, 3, 1)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
tcg_rn = read_fp_dreg(s, rn);
tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
if (insert) {
tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
} else {
tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
}
write_fp_dreg(s, rd, tcg_rd);
}
/* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
* (signed/unsigned) narrowing */
static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
bool is_u_shift, bool is_u_narrow,
int immh, int immb, int opcode,
int rn, int rd)
{
int immhb = immh << 3 | immb;
int size = 32 - clz32(immh) - 1;
int esize = 8 << size;
int shift = (2 * esize) - immhb;
int elements = is_scalar ? 1 : (64 / esize);
bool round = extract32(opcode, 0, 1);
MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
TCGv_i64 tcg_rn, tcg_rd, tcg_round;
TCGv_i32 tcg_rd_narrowed;
TCGv_i64 tcg_final;
static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
{ gen_helper_neon_narrow_sat_s8,
gen_helper_neon_unarrow_sat8 },
{ gen_helper_neon_narrow_sat_s16,
gen_helper_neon_unarrow_sat16 },
{ gen_helper_neon_narrow_sat_s32,
gen_helper_neon_unarrow_sat32 },
{ NULL, NULL },
};
static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
gen_helper_neon_narrow_sat_u8,
gen_helper_neon_narrow_sat_u16,
gen_helper_neon_narrow_sat_u32,
NULL
};
NeonGenNarrowEnvFn *narrowfn;
int i;
assert(size < 4);
if (extract32(immh, 3, 1)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
if (is_u_shift) {
narrowfn = unsigned_narrow_fns[size];
} else {
narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
}
tcg_rn = tcg_temp_new_i64();
tcg_rd = tcg_temp_new_i64();
tcg_rd_narrowed = tcg_temp_new_i32();
tcg_final = tcg_temp_new_i64();
if (round) {
tcg_round = tcg_constant_i64(1ULL << (shift - 1));
} else {
tcg_round = NULL;
}
for (i = 0; i < elements; i++) {
read_vec_element(s, tcg_rn, rn, i, ldop);
handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
false, is_u_shift, size+1, shift);
narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd);
tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
if (i == 0) {
tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize);
} else {
tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
}
}
if (!is_q) {
write_vec_element(s, tcg_final, rd, 0, MO_64);
} else {
write_vec_element(s, tcg_final, rd, 1, MO_64);
}
clear_vec_high(s, is_q, rd);
}
/* SQSHLU, UQSHL, SQSHL: saturating left shifts */
static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
bool src_unsigned, bool dst_unsigned,
int immh, int immb, int rn, int rd)
{
int immhb = immh << 3 | immb;
int size = 32 - clz32(immh) - 1;
int shift = immhb - (8 << size);
int pass;
assert(immh != 0);
assert(!(scalar && is_q));
if (!scalar) {
if (!is_q && extract32(immh, 3, 1)) {
unallocated_encoding(s);
return;
}
/* Since we use the variable-shift helpers we must
* replicate the shift count into each element of
* the tcg_shift value.
*/
switch (size) {
case 0:
shift |= shift << 8;
/* fall through */
case 1:
shift |= shift << 16;
break;
case 2:
case 3:
break;
default:
g_assert_not_reached();
}
}
if (!fp_access_check(s)) {
return;
}
if (size == 3) {
TCGv_i64 tcg_shift = tcg_constant_i64(shift);
static NeonGenTwo64OpEnvFn * const fns[2][2] = {
{ gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
{ NULL, gen_helper_neon_qshl_u64 },
};
NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
int maxpass = is_q ? 2 : 1;
for (pass = 0; pass < maxpass; pass++) {
TCGv_i64 tcg_op = tcg_temp_new_i64();
read_vec_element(s, tcg_op, rn, pass, MO_64);
genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
write_vec_element(s, tcg_op, rd, pass, MO_64);
}
clear_vec_high(s, is_q, rd);
} else {
TCGv_i32 tcg_shift = tcg_constant_i32(shift);
static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
{
{ gen_helper_neon_qshl_s8,
gen_helper_neon_qshl_s16,
gen_helper_neon_qshl_s32 },
{ gen_helper_neon_qshlu_s8,
gen_helper_neon_qshlu_s16,
gen_helper_neon_qshlu_s32 }
}, {
{ NULL, NULL, NULL },
{ gen_helper_neon_qshl_u8,
gen_helper_neon_qshl_u16,
gen_helper_neon_qshl_u32 }
}
};
NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
MemOp memop = scalar ? size : MO_32;
int maxpass = scalar ? 1 : is_q ? 4 : 2;
for (pass = 0; pass < maxpass; pass++) {
TCGv_i32 tcg_op = tcg_temp_new_i32();
read_vec_element_i32(s, tcg_op, rn, pass, memop);
genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
if (scalar) {
switch (size) {
case 0:
tcg_gen_ext8u_i32(tcg_op, tcg_op);
break;
case 1:
tcg_gen_ext16u_i32(tcg_op, tcg_op);
break;
case 2:
break;
default:
g_assert_not_reached();
}
write_fp_sreg(s, rd, tcg_op);
} else {
write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
}
}
if (!scalar) {
clear_vec_high(s, is_q, rd);
}
}
}
/* Common vector code for handling integer to FP conversion */
static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
int elements, int is_signed,
int fracbits, int size)
{
TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
TCGv_i32 tcg_shift = NULL;
MemOp mop = size | (is_signed ? MO_SIGN : 0);
int pass;
if (fracbits || size == MO_64) {
tcg_shift = tcg_constant_i32(fracbits);
}
if (size == MO_64) {
TCGv_i64 tcg_int64 = tcg_temp_new_i64();
TCGv_i64 tcg_double = tcg_temp_new_i64();
for (pass = 0; pass < elements; pass++) {
read_vec_element(s, tcg_int64, rn, pass, mop);
if (is_signed) {
gen_helper_vfp_sqtod(tcg_double, tcg_int64,
tcg_shift, tcg_fpst);
} else {
gen_helper_vfp_uqtod(tcg_double, tcg_int64,
tcg_shift, tcg_fpst);
}
if (elements == 1) {
write_fp_dreg(s, rd, tcg_double);
} else {
write_vec_element(s, tcg_double, rd, pass, MO_64);
}
}
} else {
TCGv_i32 tcg_int32 = tcg_temp_new_i32();
TCGv_i32 tcg_float = tcg_temp_new_i32();
for (pass = 0; pass < elements; pass++) {
read_vec_element_i32(s, tcg_int32, rn, pass, mop);
switch (size) {
case MO_32:
if (fracbits) {
if (is_signed) {
gen_helper_vfp_sltos(tcg_float, tcg_int32,
tcg_shift, tcg_fpst);
} else {
gen_helper_vfp_ultos(tcg_float, tcg_int32,
tcg_shift, tcg_fpst);
}
} else {
if (is_signed) {
gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
} else {
gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
}
}
break;
case MO_16:
if (fracbits) {
if (is_signed) {
gen_helper_vfp_sltoh(tcg_float, tcg_int32,
tcg_shift, tcg_fpst);
} else {
gen_helper_vfp_ultoh(tcg_float, tcg_int32,
tcg_shift, tcg_fpst);
}
} else {
if (is_signed) {
gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
} else {
gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
}
}
break;
default:
g_assert_not_reached();
}
if (elements == 1) {
write_fp_sreg(s, rd, tcg_float);
} else {
write_vec_element_i32(s, tcg_float, rd, pass, size);
}
}
}
clear_vec_high(s, elements << size == 16, rd);
}
/* UCVTF/SCVTF - Integer to FP conversion */
static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
bool is_q, bool is_u,
int immh, int immb, int opcode,
int rn, int rd)
{
int size, elements, fracbits;
int immhb = immh << 3 | immb;
if (immh & 8) {
size = MO_64;
if (!is_scalar && !is_q) {
unallocated_encoding(s);
return;
}
} else if (immh & 4) {
size = MO_32;
} else if (immh & 2) {
size = MO_16;
if (!dc_isar_feature(aa64_fp16, s)) {
unallocated_encoding(s);
return;
}
} else {
/* immh == 0 would be a failure of the decode logic */
g_assert(immh == 1);
unallocated_encoding(s);
return;
}
if (is_scalar) {
elements = 1;
} else {
elements = (8 << is_q) >> size;
}
fracbits = (16 << size) - immhb;
if (!fp_access_check(s)) {
return;
}
handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
}
/* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
bool is_q, bool is_u,
int immh, int immb, int rn, int rd)
{
int immhb = immh << 3 | immb;
int pass, size, fracbits;
TCGv_ptr tcg_fpstatus;
TCGv_i32 tcg_rmode, tcg_shift;
if (immh & 0x8) {
size = MO_64;
if (!is_scalar && !is_q) {
unallocated_encoding(s);
return;
}
} else if (immh & 0x4) {
size = MO_32;
} else if (immh & 0x2) {
size = MO_16;
if (!dc_isar_feature(aa64_fp16, s)) {
unallocated_encoding(s);
return;
}
} else {
/* Should have split out AdvSIMD modified immediate earlier. */
assert(immh == 1);
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
assert(!(is_scalar && is_q));
tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
fracbits = (16 << size) - immhb;
tcg_shift = tcg_constant_i32(fracbits);
if (size == MO_64) {
int maxpass = is_scalar ? 1 : 2;
for (pass = 0; pass < maxpass; pass++) {
TCGv_i64 tcg_op = tcg_temp_new_i64();
read_vec_element(s, tcg_op, rn, pass, MO_64);
if (is_u) {
gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
} else {
gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
}
write_vec_element(s, tcg_op, rd, pass, MO_64);
}
clear_vec_high(s, is_q, rd);
} else {
void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
switch (size) {
case MO_16:
if (is_u) {
fn = gen_helper_vfp_touhh;
} else {
fn = gen_helper_vfp_toshh;
}
break;
case MO_32:
if (is_u) {
fn = gen_helper_vfp_touls;
} else {
fn = gen_helper_vfp_tosls;
}
break;
default:
g_assert_not_reached();
}
for (pass = 0; pass < maxpass; pass++) {
TCGv_i32 tcg_op = tcg_temp_new_i32();
read_vec_element_i32(s, tcg_op, rn, pass, size);
fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
if (is_scalar) {
if (size == MO_16 && !is_u) {
tcg_gen_ext16u_i32(tcg_op, tcg_op);
}
write_fp_sreg(s, rd, tcg_op);
} else {
write_vec_element_i32(s, tcg_op, rd, pass, size);
}
}
if (!is_scalar) {
clear_vec_high(s, is_q, rd);
}
}
gen_restore_rmode(tcg_rmode, tcg_fpstatus);
}
/* AdvSIMD scalar shift by immediate
* 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
* +-----+---+-------------+------+------+--------+---+------+------+
* | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
* +-----+---+-------------+------+------+--------+---+------+------+
*
* This is the scalar version so it works on a fixed sized registers
*/
static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int opcode = extract32(insn, 11, 5);
int immb = extract32(insn, 16, 3);
int immh = extract32(insn, 19, 4);
bool is_u = extract32(insn, 29, 1);
if (immh == 0) {
unallocated_encoding(s);
return;
}
switch (opcode) {
case 0x08: /* SRI */
if (!is_u) {
unallocated_encoding(s);
return;
}
/* fall through */
case 0x00: /* SSHR / USHR */
case 0x02: /* SSRA / USRA */
case 0x04: /* SRSHR / URSHR */
case 0x06: /* SRSRA / URSRA */
handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
break;
case 0x0a: /* SHL / SLI */
handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
break;
case 0x1c: /* SCVTF, UCVTF */
handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
opcode, rn, rd);
break;
case 0x10: /* SQSHRUN, SQSHRUN2 */
case 0x11: /* SQRSHRUN, SQRSHRUN2 */
if (!is_u) {
unallocated_encoding(s);
return;
}
handle_vec_simd_sqshrn(s, true, false, false, true,
immh, immb, opcode, rn, rd);
break;
case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
immh, immb, opcode, rn, rd);
break;
case 0xc: /* SQSHLU */
if (!is_u) {
unallocated_encoding(s);
return;
}
handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
break;
case 0xe: /* SQSHL, UQSHL */
handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
break;
case 0x1f: /* FCVTZS, FCVTZU */
handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
break;
default:
unallocated_encoding(s);
break;
}
}
/* AdvSIMD scalar three different
* 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
* +-----+---+-----------+------+---+------+--------+-----+------+------+
* | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
* +-----+---+-----------+------+---+------+--------+-----+------+------+
*/
static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
{
bool is_u = extract32(insn, 29, 1);
int size = extract32(insn, 22, 2);
int opcode = extract32(insn, 12, 4);
int rm = extract32(insn, 16, 5);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
if (is_u) {
unallocated_encoding(s);
return;
}
switch (opcode) {
case 0x9: /* SQDMLAL, SQDMLAL2 */
case 0xb: /* SQDMLSL, SQDMLSL2 */
case 0xd: /* SQDMULL, SQDMULL2 */
if (size == 0 || size == 3) {
unallocated_encoding(s);
return;
}
break;
default:
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
if (size == 2) {
TCGv_i64 tcg_op1 = tcg_temp_new_i64();
TCGv_i64 tcg_op2 = tcg_temp_new_i64();
TCGv_i64 tcg_res = tcg_temp_new_i64();
read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res);
switch (opcode) {
case 0xd: /* SQDMULL, SQDMULL2 */
break;
case 0xb: /* SQDMLSL, SQDMLSL2 */
tcg_gen_neg_i64(tcg_res, tcg_res);
/* fall through */
case 0x9: /* SQDMLAL, SQDMLAL2 */
read_vec_element(s, tcg_op1, rd, 0, MO_64);
gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env,
tcg_res, tcg_op1);
break;
default:
g_assert_not_reached();
}
write_fp_dreg(s, rd, tcg_res);
} else {
TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
TCGv_i64 tcg_res = tcg_temp_new_i64();
gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res);
switch (opcode) {
case 0xd: /* SQDMULL, SQDMULL2 */
break;
case 0xb: /* SQDMLSL, SQDMLSL2 */
gen_helper_neon_negl_u32(tcg_res, tcg_res);
/* fall through */
case 0x9: /* SQDMLAL, SQDMLAL2 */
{
TCGv_i64 tcg_op3 = tcg_temp_new_i64();
read_vec_element(s, tcg_op3, rd, 0, MO_32);
gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env,
tcg_res, tcg_op3);
break;
}
default:
g_assert_not_reached();
}
tcg_gen_ext32u_i64(tcg_res, tcg_res);
write_fp_dreg(s, rd, tcg_res);
}
}
/* AdvSIMD scalar three same extra
* 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
* +-----+---+-----------+------+---+------+---+--------+---+----+----+
* | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
* +-----+---+-----------+------+---+------+---+--------+---+----+----+
*/
static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int opcode = extract32(insn, 11, 4);
int rm = extract32(insn, 16, 5);
int size = extract32(insn, 22, 2);
bool u = extract32(insn, 29, 1);
TCGv_i32 ele1, ele2, ele3;
TCGv_i64 res;
bool feature;
switch (u * 16 + opcode) {
case 0x10: /* SQRDMLAH (vector) */
case 0x11: /* SQRDMLSH (vector) */
if (size != 1 && size != 2) {
unallocated_encoding(s);
return;
}
feature = dc_isar_feature(aa64_rdm, s);
break;
default:
unallocated_encoding(s);
return;
}
if (!feature) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
/* Do a single operation on the lowest element in the vector.
* We use the standard Neon helpers and rely on 0 OP 0 == 0
* with no side effects for all these operations.
* OPTME: special-purpose helpers would avoid doing some
* unnecessary work in the helper for the 16 bit cases.
*/
ele1 = tcg_temp_new_i32();
ele2 = tcg_temp_new_i32();
ele3 = tcg_temp_new_i32();
read_vec_element_i32(s, ele1, rn, 0, size);
read_vec_element_i32(s, ele2, rm, 0, size);
read_vec_element_i32(s, ele3, rd, 0, size);
switch (opcode) {
case 0x0: /* SQRDMLAH */
if (size == 1) {
gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3);
} else {
gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3);
}
break;
case 0x1: /* SQRDMLSH */
if (size == 1) {
gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3);
} else {
gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3);
}
break;
default:
g_assert_not_reached();
}
res = tcg_temp_new_i64();
tcg_gen_extu_i32_i64(res, ele3);
write_fp_dreg(s, rd, res);
}
static void handle_2misc_64(DisasContext *s, int opcode, bool u,
TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
{
/* Handle 64->64 opcodes which are shared between the scalar and
* vector 2-reg-misc groups. We cover every integer opcode where size == 3
* is valid in either group and also the double-precision fp ops.
* The caller only need provide tcg_rmode and tcg_fpstatus if the op
* requires them.
*/
TCGCond cond;
switch (opcode) {
case 0x4: /* CLS, CLZ */
if (u) {
tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
} else {
tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
}
break;
case 0x5: /* NOT */
/* This opcode is shared with CNT and RBIT but we have earlier
* enforced that size == 3 if and only if this is the NOT insn.
*/
tcg_gen_not_i64(tcg_rd, tcg_rn);
break;
case 0x7: /* SQABS, SQNEG */
if (u) {
gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn);
} else {
gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn);
}
break;
case 0xa: /* CMLT */
cond = TCG_COND_LT;
do_cmop:
/* 64 bit integer comparison against zero, result is test ? -1 : 0. */
tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0));
break;
case 0x8: /* CMGT, CMGE */
cond = u ? TCG_COND_GE : TCG_COND_GT;
goto do_cmop;
case 0x9: /* CMEQ, CMLE */
cond = u ? TCG_COND_LE : TCG_COND_EQ;
goto do_cmop;
case 0xb: /* ABS, NEG */
if (u) {
tcg_gen_neg_i64(tcg_rd, tcg_rn);
} else {
tcg_gen_abs_i64(tcg_rd, tcg_rn);
}
break;
case 0x2f: /* FABS */
gen_vfp_absd(tcg_rd, tcg_rn);
break;
case 0x6f: /* FNEG */
gen_vfp_negd(tcg_rd, tcg_rn);
break;
case 0x7f: /* FSQRT */
gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env);
break;
case 0x1a: /* FCVTNS */
case 0x1b: /* FCVTMS */
case 0x1c: /* FCVTAS */
case 0x3a: /* FCVTPS */
case 0x3b: /* FCVTZS */
gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
break;
case 0x5a: /* FCVTNU */
case 0x5b: /* FCVTMU */
case 0x5c: /* FCVTAU */
case 0x7a: /* FCVTPU */
case 0x7b: /* FCVTZU */
gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
break;
case 0x18: /* FRINTN */
case 0x19: /* FRINTM */
case 0x38: /* FRINTP */
case 0x39: /* FRINTZ */
case 0x58: /* FRINTA */
case 0x79: /* FRINTI */
gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
break;
case 0x59: /* FRINTX */
gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
break;
case 0x1e: /* FRINT32Z */
case 0x5e: /* FRINT32X */
gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
break;
case 0x1f: /* FRINT64Z */
case 0x5f: /* FRINT64X */
gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
break;
default:
g_assert_not_reached();
}
}
static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
bool is_scalar, bool is_u, bool is_q,
int size, int rn, int rd)
{
bool is_double = (size == MO_64);
TCGv_ptr fpst;
if (!fp_access_check(s)) {
return;
}
fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
if (is_double) {
TCGv_i64 tcg_op = tcg_temp_new_i64();
TCGv_i64 tcg_zero = tcg_constant_i64(0);
TCGv_i64 tcg_res = tcg_temp_new_i64();
NeonGenTwoDoubleOpFn *genfn;
bool swap = false;
int pass;
switch (opcode) {
case 0x2e: /* FCMLT (zero) */
swap = true;
/* fallthrough */
case 0x2c: /* FCMGT (zero) */
genfn = gen_helper_neon_cgt_f64;
break;
case 0x2d: /* FCMEQ (zero) */
genfn = gen_helper_neon_ceq_f64;
break;
case 0x6d: /* FCMLE (zero) */
swap = true;
/* fall through */
case 0x6c: /* FCMGE (zero) */
genfn = gen_helper_neon_cge_f64;
break;
default:
g_assert_not_reached();
}
for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
read_vec_element(s, tcg_op, rn, pass, MO_64);
if (swap) {
genfn(tcg_res, tcg_zero, tcg_op, fpst);
} else {
genfn(tcg_res, tcg_op, tcg_zero, fpst);
}
write_vec_element(s, tcg_res, rd, pass, MO_64);
}
clear_vec_high(s, !is_scalar, rd);
} else {
TCGv_i32 tcg_op = tcg_temp_new_i32();
TCGv_i32 tcg_zero = tcg_constant_i32(0);
TCGv_i32 tcg_res = tcg_temp_new_i32();
NeonGenTwoSingleOpFn *genfn;
bool swap = false;
int pass, maxpasses;
if (size == MO_16) {
switch (opcode) {
case 0x2e: /* FCMLT (zero) */
swap = true;
/* fall through */
case 0x2c: /* FCMGT (zero) */
genfn = gen_helper_advsimd_cgt_f16;
break;
case 0x2d: /* FCMEQ (zero) */
genfn = gen_helper_advsimd_ceq_f16;
break;
case 0x6d: /* FCMLE (zero) */
swap = true;
/* fall through */
case 0x6c: /* FCMGE (zero) */
genfn = gen_helper_advsimd_cge_f16;
break;
default:
g_assert_not_reached();
}
} else {
switch (opcode) {
case 0x2e: /* FCMLT (zero) */
swap = true;
/* fall through */
case 0x2c: /* FCMGT (zero) */
genfn = gen_helper_neon_cgt_f32;
break;
case 0x2d: /* FCMEQ (zero) */
genfn = gen_helper_neon_ceq_f32;
break;
case 0x6d: /* FCMLE (zero) */
swap = true;
/* fall through */
case 0x6c: /* FCMGE (zero) */
genfn = gen_helper_neon_cge_f32;
break;
default:
g_assert_not_reached();
}
}
if (is_scalar) {
maxpasses = 1;
} else {
int vector_size = 8 << is_q;
maxpasses = vector_size >> size;
}
for (pass = 0; pass < maxpasses; pass++) {
read_vec_element_i32(s, tcg_op, rn, pass, size);
if (swap) {
genfn(tcg_res, tcg_zero, tcg_op, fpst);
} else {
genfn(tcg_res, tcg_op, tcg_zero, fpst);
}
if (is_scalar) {
write_fp_sreg(s, rd, tcg_res);
} else {
write_vec_element_i32(s, tcg_res, rd, pass, size);
}
}
if (!is_scalar) {
clear_vec_high(s, is_q, rd);
}
}
}
static void handle_2misc_reciprocal(DisasContext *s, int opcode,
bool is_scalar, bool is_u, bool is_q,
int size, int rn, int rd)
{
bool is_double = (size == 3);
TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
if (is_double) {
TCGv_i64 tcg_op = tcg_temp_new_i64();
TCGv_i64 tcg_res = tcg_temp_new_i64();
int pass;
for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
read_vec_element(s, tcg_op, rn, pass, MO_64);
switch (opcode) {
case 0x3d: /* FRECPE */
gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
break;
case 0x3f: /* FRECPX */
gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
break;
case 0x7d: /* FRSQRTE */
gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
break;
default:
g_assert_not_reached();
}
write_vec_element(s, tcg_res, rd, pass, MO_64);
}
clear_vec_high(s, !is_scalar, rd);
} else {
TCGv_i32 tcg_op = tcg_temp_new_i32();
TCGv_i32 tcg_res = tcg_temp_new_i32();
int pass, maxpasses;
if (is_scalar) {
maxpasses = 1;
} else {
maxpasses = is_q ? 4 : 2;
}
for (pass = 0; pass < maxpasses; pass++) {
read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
switch (opcode) {
case 0x3c: /* URECPE */
gen_helper_recpe_u32(tcg_res, tcg_op);
break;
case 0x3d: /* FRECPE */
gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
break;
case 0x3f: /* FRECPX */
gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
break;
case 0x7d: /* FRSQRTE */
gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
break;
default:
g_assert_not_reached();
}
if (is_scalar) {
write_fp_sreg(s, rd, tcg_res);
} else {
write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
}
}
if (!is_scalar) {
clear_vec_high(s, is_q, rd);
}
}
}
static void handle_2misc_narrow(DisasContext *s, bool scalar,
int opcode, bool u, bool is_q,
int size, int rn, int rd)
{
/* Handle 2-reg-misc ops which are narrowing (so each 2*size element
* in the source becomes a size element in the destination).
*/
int pass;
TCGv_i32 tcg_res[2];
int destelt = is_q ? 2 : 0;
int passes = scalar ? 1 : 2;
if (scalar) {
tcg_res[1] = tcg_constant_i32(0);
}
for (pass = 0; pass < passes; pass++) {
TCGv_i64 tcg_op = tcg_temp_new_i64();
NeonGenNarrowFn *genfn = NULL;
NeonGenNarrowEnvFn *genenvfn = NULL;
if (scalar) {
read_vec_element(s, tcg_op, rn, pass, size + 1);
} else {
read_vec_element(s, tcg_op, rn, pass, MO_64);
}
tcg_res[pass] = tcg_temp_new_i32();
switch (opcode) {
case 0x12: /* XTN, SQXTUN */
{
static NeonGenNarrowFn * const xtnfns[3] = {
gen_helper_neon_narrow_u8,
gen_helper_neon_narrow_u16,
tcg_gen_extrl_i64_i32,
};
static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
gen_helper_neon_unarrow_sat8,
gen_helper_neon_unarrow_sat16,
gen_helper_neon_unarrow_sat32,
};
if (u) {
genenvfn = sqxtunfns[size];
} else {
genfn = xtnfns[size];
}
break;
}
case 0x14: /* SQXTN, UQXTN */
{
static NeonGenNarrowEnvFn * const fns[3][2] = {
{ gen_helper_neon_narrow_sat_s8,
gen_helper_neon_narrow_sat_u8 },
{ gen_helper_neon_narrow_sat_s16,
gen_helper_neon_narrow_sat_u16 },
{ gen_helper_neon_narrow_sat_s32,
gen_helper_neon_narrow_sat_u32 },
};
genenvfn = fns[size][u];
break;
}
case 0x16: /* FCVTN, FCVTN2 */
/* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
if (size == 2) {
gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env);
} else {
TCGv_i32 tcg_lo = tcg_temp_new_i32();
TCGv_i32 tcg_hi = tcg_temp_new_i32();
TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
TCGv_i32 ahp = get_ahp_flag();
tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
}
break;
case 0x36: /* BFCVTN, BFCVTN2 */
{
TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
}
break;
case 0x56: /* FCVTXN, FCVTXN2 */
/* 64 bit to 32 bit float conversion
* with von Neumann rounding (round to odd)
*/
assert(size == 2);
gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env);
break;
default:
g_assert_not_reached();
}
if (genfn) {
genfn(tcg_res[pass], tcg_op);
} else if (genenvfn) {
genenvfn(tcg_res[pass], tcg_env, tcg_op);
}
}
for (pass = 0; pass < 2; pass++) {
write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
}
clear_vec_high(s, is_q, rd);
}
/* AdvSIMD scalar two reg misc
* 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
* +-----+---+-----------+------+-----------+--------+-----+------+------+
* | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
* +-----+---+-----------+------+-----------+--------+-----+------+------+
*/
static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int opcode = extract32(insn, 12, 5);
int size = extract32(insn, 22, 2);
bool u = extract32(insn, 29, 1);
bool is_fcvt = false;
int rmode;
TCGv_i32 tcg_rmode;
TCGv_ptr tcg_fpstatus;
switch (opcode) {
case 0x7: /* SQABS / SQNEG */
break;
case 0xa: /* CMLT */
if (u) {
unallocated_encoding(s);
return;
}
/* fall through */
case 0x8: /* CMGT, CMGE */
case 0x9: /* CMEQ, CMLE */
case 0xb: /* ABS, NEG */
if (size != 3) {
unallocated_encoding(s);
return;
}
break;
case 0x12: /* SQXTUN */
if (!u) {
unallocated_encoding(s);
return;
}
/* fall through */
case 0x14: /* SQXTN, UQXTN */
if (size == 3) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
return;
case 0xc ... 0xf:
case 0x16 ... 0x1d:
case 0x1f:
/* Floating point: U, size[1] and opcode indicate operation;
* size[0] indicates single or double precision.
*/
opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
size = extract32(size, 0, 1) ? 3 : 2;
switch (opcode) {
case 0x2c: /* FCMGT (zero) */
case 0x2d: /* FCMEQ (zero) */
case 0x2e: /* FCMLT (zero) */
case 0x6c: /* FCMGE (zero) */
case 0x6d: /* FCMLE (zero) */
handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
return;
case 0x1d: /* SCVTF */
case 0x5d: /* UCVTF */
{
bool is_signed = (opcode == 0x1d);
if (!fp_access_check(s)) {
return;
}
handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
return;
}
case 0x3d: /* FRECPE */
case 0x3f: /* FRECPX */
case 0x7d: /* FRSQRTE */
if (!fp_access_check(s)) {
return;
}
handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
return;
case 0x1a: /* FCVTNS */
case 0x1b: /* FCVTMS */
case 0x3a: /* FCVTPS */
case 0x3b: /* FCVTZS */
case 0x5a: /* FCVTNU */
case 0x5b: /* FCVTMU */
case 0x7a: /* FCVTPU */
case 0x7b: /* FCVTZU */
is_fcvt = true;
rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
break;
case 0x1c: /* FCVTAS */
case 0x5c: /* FCVTAU */
/* TIEAWAY doesn't fit in the usual rounding mode encoding */
is_fcvt = true;
rmode = FPROUNDING_TIEAWAY;
break;
case 0x56: /* FCVTXN, FCVTXN2 */
if (size == 2) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
return;
default:
unallocated_encoding(s);
return;
}
break;
default:
case 0x3: /* USQADD / SUQADD */
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
if (is_fcvt) {
tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
} else {
tcg_fpstatus = NULL;
tcg_rmode = NULL;
}
if (size == 3) {
TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
TCGv_i64 tcg_rd = tcg_temp_new_i64();
handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
write_fp_dreg(s, rd, tcg_rd);
} else {
TCGv_i32 tcg_rn = tcg_temp_new_i32();
TCGv_i32 tcg_rd = tcg_temp_new_i32();
read_vec_element_i32(s, tcg_rn, rn, 0, size);
switch (opcode) {
case 0x7: /* SQABS, SQNEG */
{
NeonGenOneOpEnvFn *genfn;
static NeonGenOneOpEnvFn * const fns[3][2] = {
{ gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
{ gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
{ gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
};
genfn = fns[size][u];
genfn(tcg_rd, tcg_env, tcg_rn);
break;
}
case 0x1a: /* FCVTNS */
case 0x1b: /* FCVTMS */
case 0x1c: /* FCVTAS */
case 0x3a: /* FCVTPS */
case 0x3b: /* FCVTZS */
gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
tcg_fpstatus);
break;
case 0x5a: /* FCVTNU */
case 0x5b: /* FCVTMU */
case 0x5c: /* FCVTAU */
case 0x7a: /* FCVTPU */
case 0x7b: /* FCVTZU */
gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
tcg_fpstatus);
break;
default:
g_assert_not_reached();
}
write_fp_sreg(s, rd, tcg_rd);
}
if (is_fcvt) {
gen_restore_rmode(tcg_rmode, tcg_fpstatus);
}
}
/* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
int immh, int immb, int opcode, int rn, int rd)
{
int size = 32 - clz32(immh) - 1;
int immhb = immh << 3 | immb;
int shift = 2 * (8 << size) - immhb;
GVecGen2iFn *gvec_fn;
if (extract32(immh, 3, 1) && !is_q) {
unallocated_encoding(s);
return;
}
tcg_debug_assert(size <= 3);
if (!fp_access_check(s)) {
return;
}
switch (opcode) {
case 0x02: /* SSRA / USRA (accumulate) */
gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
break;
case 0x08: /* SRI */
gvec_fn = gen_gvec_sri;
break;
case 0x00: /* SSHR / USHR */
if (is_u) {
if (shift == 8 << size) {
/* Shift count the same size as element size produces zero. */
tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
is_q ? 16 : 8, vec_full_reg_size(s), 0);
return;
}
gvec_fn = tcg_gen_gvec_shri;
} else {
/* Shift count the same size as element size produces all sign. */
if (shift == 8 << size) {
shift -= 1;
}
gvec_fn = tcg_gen_gvec_sari;
}
break;
case 0x04: /* SRSHR / URSHR (rounding) */
gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
break;
case 0x06: /* SRSRA / URSRA (accum + rounding) */
gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
break;
default:
g_assert_not_reached();
}
gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
}
/* SHL/SLI - Vector shift left */
static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
int immh, int immb, int opcode, int rn, int rd)
{
int size = 32 - clz32(immh) - 1;
int immhb = immh << 3 | immb;
int shift = immhb - (8 << size);
/* Range of size is limited by decode: immh is a non-zero 4 bit field */
assert(size >= 0 && size <= 3);
if (extract32(immh, 3, 1) && !is_q) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
if (insert) {
gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
} else {
gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
}
}
/* USHLL/SHLL - Vector shift left with widening */
static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
int immh, int immb, int opcode, int rn, int rd)
{
int size = 32 - clz32(immh) - 1;
int immhb = immh << 3 | immb;
int shift = immhb - (8 << size);
int dsize = 64;
int esize = 8 << size;
int elements = dsize/esize;
TCGv_i64 tcg_rn = tcg_temp_new_i64();
TCGv_i64 tcg_rd = tcg_temp_new_i64();
int i;
if (size >= 3) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
/* For the LL variants the store is larger than the load,
* so if rd == rn we would overwrite parts of our input.
* So load everything right now and use shifts in the main loop.
*/
read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
for (i = 0; i < elements; i++) {
tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
write_vec_element(s, tcg_rd, rd, i, size + 1);
}
}
/* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
int immh, int immb, int opcode, int rn, int rd)
{
int immhb = immh << 3 | immb;
int size = 32 - clz32(immh) - 1;
int dsize = 64;
int esize = 8 << size;
int elements = dsize/esize;
int shift = (2 * esize) - immhb;
bool round = extract32(opcode, 0, 1);
TCGv_i64 tcg_rn, tcg_rd, tcg_final;
TCGv_i64 tcg_round;
int i;
if (extract32(immh, 3, 1)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
tcg_rn = tcg_temp_new_i64();
tcg_rd = tcg_temp_new_i64();
tcg_final = tcg_temp_new_i64();
read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
if (round) {
tcg_round = tcg_constant_i64(1ULL << (shift - 1));
} else {
tcg_round = NULL;
}
for (i = 0; i < elements; i++) {
read_vec_element(s, tcg_rn, rn, i, size+1);
handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
false, true, size+1, shift);
tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
}
if (!is_q) {
write_vec_element(s, tcg_final, rd, 0, MO_64);
} else {
write_vec_element(s, tcg_final, rd, 1, MO_64);
}
clear_vec_high(s, is_q, rd);
}
/* AdvSIMD shift by immediate
* 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
* +---+---+---+-------------+------+------+--------+---+------+------+
* | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
* +---+---+---+-------------+------+------+--------+---+------+------+
*/
static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int opcode = extract32(insn, 11, 5);
int immb = extract32(insn, 16, 3);
int immh = extract32(insn, 19, 4);
bool is_u = extract32(insn, 29, 1);
bool is_q = extract32(insn, 30, 1);
/* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
assert(immh != 0);
switch (opcode) {
case 0x08: /* SRI */
if (!is_u) {
unallocated_encoding(s);
return;
}
/* fall through */
case 0x00: /* SSHR / USHR */
case 0x02: /* SSRA / USRA (accumulate) */
case 0x04: /* SRSHR / URSHR (rounding) */
case 0x06: /* SRSRA / URSRA (accum + rounding) */
handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
break;
case 0x0a: /* SHL / SLI */
handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
break;
case 0x10: /* SHRN */
case 0x11: /* RSHRN / SQRSHRUN */
if (is_u) {
handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
opcode, rn, rd);
} else {
handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
}
break;
case 0x12: /* SQSHRN / UQSHRN */
case 0x13: /* SQRSHRN / UQRSHRN */
handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
opcode, rn, rd);
break;
case 0x14: /* SSHLL / USHLL */
handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
break;
case 0x1c: /* SCVTF / UCVTF */
handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
opcode, rn, rd);
break;
case 0xc: /* SQSHLU */
if (!is_u) {
unallocated_encoding(s);
return;
}
handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
break;
case 0xe: /* SQSHL, UQSHL */
handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
break;
case 0x1f: /* FCVTZS/ FCVTZU */
handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
return;
default:
unallocated_encoding(s);
return;
}
}
/* Generate code to do a "long" addition or subtraction, ie one done in
* TCGv_i64 on vector lanes twice the width specified by size.
*/
static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
{
static NeonGenTwo64OpFn * const fns[3][2] = {
{ gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
{ gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
{ tcg_gen_add_i64, tcg_gen_sub_i64 },
};
NeonGenTwo64OpFn *genfn;
assert(size < 3);
genfn = fns[size][is_sub];
genfn(tcg_res, tcg_op1, tcg_op2);
}
static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
int opcode, int rd, int rn, int rm)
{
/* 3-reg-different widening insns: 64 x 64 -> 128 */
TCGv_i64 tcg_res[2];
int pass, accop;
tcg_res[0] = tcg_temp_new_i64();
tcg_res[1] = tcg_temp_new_i64();
/* Does this op do an adding accumulate, a subtracting accumulate,
* or no accumulate at all?
*/
switch (opcode) {
case 5:
case 8:
case 9:
accop = 1;
break;
case 10:
case 11:
accop = -1;
break;
default:
accop = 0;
break;
}
if (accop != 0) {
read_vec_element(s, tcg_res[0], rd, 0, MO_64);
read_vec_element(s, tcg_res[1], rd, 1, MO_64);
}
/* size == 2 means two 32x32->64 operations; this is worth special
* casing because we can generally handle it inline.
*/
if (size == 2) {
for (pass = 0; pass < 2; pass++) {
TCGv_i64 tcg_op1 = tcg_temp_new_i64();
TCGv_i64 tcg_op2 = tcg_temp_new_i64();
TCGv_i64 tcg_passres;
MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
int elt = pass + is_q * 2;
read_vec_element(s, tcg_op1, rn, elt, memop);
read_vec_element(s, tcg_op2, rm, elt, memop);
if (accop == 0) {
tcg_passres = tcg_res[pass];
} else {
tcg_passres = tcg_temp_new_i64();
}
switch (opcode) {
case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
break;
case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
break;
case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
{
TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
tcg_passres,
tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
break;
}
case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
break;
case 9: /* SQDMLAL, SQDMLAL2 */
case 11: /* SQDMLSL, SQDMLSL2 */
case 13: /* SQDMULL, SQDMULL2 */
tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
tcg_passres, tcg_passres);
break;
default:
g_assert_not_reached();
}
if (opcode == 9 || opcode == 11) {
/* saturating accumulate ops */
if (accop < 0) {
tcg_gen_neg_i64(tcg_passres, tcg_passres);
}
gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
tcg_res[pass], tcg_passres);
} else if (accop > 0) {
tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
} else if (accop < 0) {
tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
}
}
} else {
/* size 0 or 1, generally helper functions */
for (pass = 0; pass < 2; pass++) {
TCGv_i32 tcg_op1 = tcg_temp_new_i32();
TCGv_i32 tcg_op2 = tcg_temp_new_i32();
TCGv_i64 tcg_passres;
int elt = pass + is_q * 2;
read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
if (accop == 0) {
tcg_passres = tcg_res[pass];
} else {
tcg_passres = tcg_temp_new_i64();
}
switch (opcode) {
case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
{
TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
static NeonGenWidenFn * const widenfns[2][2] = {
{ gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
{ gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
};
NeonGenWidenFn *widenfn = widenfns[size][is_u];
widenfn(tcg_op2_64, tcg_op2);
widenfn(tcg_passres, tcg_op1);
gen_neon_addl(size, (opcode == 2), tcg_passres,
tcg_passres, tcg_op2_64);
break;
}
case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
if (size == 0) {
if (is_u) {
gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
} else {
gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
}
} else {
if (is_u) {
gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
} else {
gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
}
}
break;
case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
if (size == 0) {
if (is_u) {
gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
} else {
gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
}
} else {
if (is_u) {
gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
} else {
gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
}
}
break;
case 9: /* SQDMLAL, SQDMLAL2 */
case 11: /* SQDMLSL, SQDMLSL2 */
case 13: /* SQDMULL, SQDMULL2 */
assert(size == 1);
gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
tcg_passres, tcg_passres);
break;
default:
g_assert_not_reached();
}
if (accop != 0) {
if (opcode == 9 || opcode == 11) {
/* saturating accumulate ops */
if (accop < 0) {
gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
}
gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
tcg_res[pass],
tcg_passres);
} else {
gen_neon_addl(size, (accop < 0), tcg_res[pass],
tcg_res[pass], tcg_passres);
}
}
}
}
write_vec_element(s, tcg_res[0], rd, 0, MO_64);
write_vec_element(s, tcg_res[1], rd, 1, MO_64);
}
static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
int opcode, int rd, int rn, int rm)
{
TCGv_i64 tcg_res[2];
int part = is_q ? 2 : 0;
int pass;
for (pass = 0; pass < 2; pass++) {
TCGv_i64 tcg_op1 = tcg_temp_new_i64();
TCGv_i32 tcg_op2 = tcg_temp_new_i32();
TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
static NeonGenWidenFn * const widenfns[3][2] = {
{ gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
{ gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
{ tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
};
NeonGenWidenFn *widenfn = widenfns[size][is_u];
read_vec_element(s, tcg_op1, rn, pass, MO_64);
read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
widenfn(tcg_op2_wide, tcg_op2);
tcg_res[pass] = tcg_temp_new_i64();
gen_neon_addl(size, (opcode == 3),
tcg_res[pass], tcg_op1, tcg_op2_wide);
}
for (pass = 0; pass < 2; pass++) {
write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
}
}
static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
{
tcg_gen_addi_i64(in, in, 1U << 31);
tcg_gen_extrh_i64_i32(res, in);
}
static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
int opcode, int rd, int rn, int rm)
{
TCGv_i32 tcg_res[2];
int part = is_q ? 2 : 0;
int pass;
for (pass = 0; pass < 2; pass++) {
TCGv_i64 tcg_op1 = tcg_temp_new_i64();
TCGv_i64 tcg_op2 = tcg_temp_new_i64();
TCGv_i64 tcg_wideres = tcg_temp_new_i64();
static NeonGenNarrowFn * const narrowfns[3][2] = {
{ gen_helper_neon_narrow_high_u8,
gen_helper_neon_narrow_round_high_u8 },
{ gen_helper_neon_narrow_high_u16,
gen_helper_neon_narrow_round_high_u16 },
{ tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
};
NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
read_vec_element(s, tcg_op1, rn, pass, MO_64);
read_vec_element(s, tcg_op2, rm, pass, MO_64);
gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
tcg_res[pass] = tcg_temp_new_i32();
gennarrow(tcg_res[pass], tcg_wideres);
}
for (pass = 0; pass < 2; pass++) {
write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
}
clear_vec_high(s, is_q, rd);
}
/* AdvSIMD three different
* 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
* +---+---+---+-----------+------+---+------+--------+-----+------+------+
* | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
* +---+---+---+-----------+------+---+------+--------+-----+------+------+
*/
static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
{
/* Instructions in this group fall into three basic classes
* (in each case with the operation working on each element in
* the input vectors):
* (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
* 128 bit input)
* (2) wide 64 x 128 -> 128
* (3) narrowing 128 x 128 -> 64
* Here we do initial decode, catch unallocated cases and
* dispatch to separate functions for each class.
*/
int is_q = extract32(insn, 30, 1);
int is_u = extract32(insn, 29, 1);
int size = extract32(insn, 22, 2);
int opcode = extract32(insn, 12, 4);
int rm = extract32(insn, 16, 5);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
switch (opcode) {
case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
/* 64 x 128 -> 128 */
if (size == 3) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
break;
case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
/* 128 x 128 -> 64 */
if (size == 3) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
break;
case 14: /* PMULL, PMULL2 */
if (is_u) {
unallocated_encoding(s);
return;
}
switch (size) {
case 0: /* PMULL.P8 */
if (!fp_access_check(s)) {
return;
}
/* The Q field specifies lo/hi half input for this insn. */
gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
gen_helper_neon_pmull_h);
break;
case 3: /* PMULL.P64 */
if (!dc_isar_feature(aa64_pmull, s)) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
/* The Q field specifies lo/hi half input for this insn. */
gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
gen_helper_gvec_pmull_q);
break;
default:
unallocated_encoding(s);
break;
}
return;
case 9: /* SQDMLAL, SQDMLAL2 */
case 11: /* SQDMLSL, SQDMLSL2 */
case 13: /* SQDMULL, SQDMULL2 */
if (is_u || size == 0) {
unallocated_encoding(s);
return;
}
/* fall through */
case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
/* 64 x 64 -> 128 */
if (size == 3) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
break;
default:
/* opcode 15 not allocated */
unallocated_encoding(s);
break;
}
}
/* AdvSIMD three same extra
* 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
* +---+---+---+-----------+------+---+------+---+--------+---+----+----+
* | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
* +---+---+---+-----------+------+---+------+---+--------+---+----+----+
*/
static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int opcode = extract32(insn, 11, 4);
int rm = extract32(insn, 16, 5);
int size = extract32(insn, 22, 2);
bool u = extract32(insn, 29, 1);
bool is_q = extract32(insn, 30, 1);
bool feature;
int rot;
switch (u * 16 + opcode) {
case 0x10: /* SQRDMLAH (vector) */
case 0x11: /* SQRDMLSH (vector) */
if (size != 1 && size != 2) {
unallocated_encoding(s);
return;
}
feature = dc_isar_feature(aa64_rdm, s);
break;
case 0x02: /* SDOT (vector) */
case 0x12: /* UDOT (vector) */
if (size != MO_32) {
unallocated_encoding(s);
return;
}
feature = dc_isar_feature(aa64_dp, s);
break;
case 0x03: /* USDOT */
if (size != MO_32) {
unallocated_encoding(s);
return;
}
feature = dc_isar_feature(aa64_i8mm, s);
break;
case 0x04: /* SMMLA */
case 0x14: /* UMMLA */
case 0x05: /* USMMLA */
if (!is_q || size != MO_32) {
unallocated_encoding(s);
return;
}
feature = dc_isar_feature(aa64_i8mm, s);
break;
case 0x18: /* FCMLA, #0 */
case 0x19: /* FCMLA, #90 */
case 0x1a: /* FCMLA, #180 */
case 0x1b: /* FCMLA, #270 */
case 0x1c: /* FCADD, #90 */
case 0x1e: /* FCADD, #270 */
if (size == 0
|| (size == 1 && !dc_isar_feature(aa64_fp16, s))
|| (size == 3 && !is_q)) {
unallocated_encoding(s);
return;
}
feature = dc_isar_feature(aa64_fcma, s);
break;
case 0x1d: /* BFMMLA */
if (size != MO_16 || !is_q) {
unallocated_encoding(s);
return;
}
feature = dc_isar_feature(aa64_bf16, s);
break;
case 0x1f:
switch (size) {
case 1: /* BFDOT */
case 3: /* BFMLAL{B,T} */
feature = dc_isar_feature(aa64_bf16, s);
break;
default:
unallocated_encoding(s);
return;
}
break;
default:
unallocated_encoding(s);
return;
}
if (!feature) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
switch (opcode) {
case 0x0: /* SQRDMLAH (vector) */
gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
return;
case 0x1: /* SQRDMLSH (vector) */
gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
return;
case 0x2: /* SDOT / UDOT */
gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0,
u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
return;
case 0x3: /* USDOT */
gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
return;
case 0x04: /* SMMLA, UMMLA */
gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
u ? gen_helper_gvec_ummla_b
: gen_helper_gvec_smmla_b);
return;
case 0x05: /* USMMLA */
gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
return;
case 0x8: /* FCMLA, #0 */
case 0x9: /* FCMLA, #90 */
case 0xa: /* FCMLA, #180 */
case 0xb: /* FCMLA, #270 */
rot = extract32(opcode, 0, 2);
switch (size) {
case 1:
gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
gen_helper_gvec_fcmlah);
break;
case 2:
gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
gen_helper_gvec_fcmlas);
break;
case 3:
gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
gen_helper_gvec_fcmlad);
break;
default:
g_assert_not_reached();
}
return;
case 0xc: /* FCADD, #90 */
case 0xe: /* FCADD, #270 */
rot = extract32(opcode, 1, 1);
switch (size) {
case 1:
gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
gen_helper_gvec_fcaddh);
break;
case 2:
gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
gen_helper_gvec_fcadds);
break;
case 3:
gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
gen_helper_gvec_fcaddd);
break;
default:
g_assert_not_reached();
}
return;
case 0xd: /* BFMMLA */
gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
return;
case 0xf:
switch (size) {
case 1: /* BFDOT */
gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
break;
case 3: /* BFMLAL{B,T} */
gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
gen_helper_gvec_bfmlal);
break;
default:
g_assert_not_reached();
}
return;
default:
g_assert_not_reached();
}
}
static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
int size, int rn, int rd)
{
/* Handle 2-reg-misc ops which are widening (so each size element
* in the source becomes a 2*size element in the destination.
* The only instruction like this is FCVTL.
*/
int pass;
if (size == 3) {
/* 32 -> 64 bit fp conversion */
TCGv_i64 tcg_res[2];
int srcelt = is_q ? 2 : 0;
for (pass = 0; pass < 2; pass++) {
TCGv_i32 tcg_op = tcg_temp_new_i32();
tcg_res[pass] = tcg_temp_new_i64();
read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env);
}
for (pass = 0; pass < 2; pass++) {
write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
}
} else {
/* 16 -> 32 bit fp conversion */
int srcelt = is_q ? 4 : 0;
TCGv_i32 tcg_res[4];
TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
TCGv_i32 ahp = get_ahp_flag();
for (pass = 0; pass < 4; pass++) {
tcg_res[pass] = tcg_temp_new_i32();
read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
fpst, ahp);
}
for (pass = 0; pass < 4; pass++) {
write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
}
}
}
static void handle_rev(DisasContext *s, int opcode, bool u,
bool is_q, int size, int rn, int rd)
{
int op = (opcode << 1) | u;
int opsz = op + size;
int grp_size = 3 - opsz;
int dsize = is_q ? 128 : 64;
int i;
if (opsz >= 3) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
if (size == 0) {
/* Special case bytes, use bswap op on each group of elements */
int groups = dsize / (8 << grp_size);
for (i = 0; i < groups; i++) {
TCGv_i64 tcg_tmp = tcg_temp_new_i64();
read_vec_element(s, tcg_tmp, rn, i, grp_size);
switch (grp_size) {
case MO_16:
tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
break;
case MO_32:
tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
break;
case MO_64:
tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
break;
default:
g_assert_not_reached();
}
write_vec_element(s, tcg_tmp, rd, i, grp_size);
}
clear_vec_high(s, is_q, rd);
} else {
int revmask = (1 << grp_size) - 1;
int esize = 8 << size;
int elements = dsize / esize;
TCGv_i64 tcg_rn = tcg_temp_new_i64();
TCGv_i64 tcg_rd[2];
for (i = 0; i < 2; i++) {
tcg_rd[i] = tcg_temp_new_i64();
tcg_gen_movi_i64(tcg_rd[i], 0);
}
for (i = 0; i < elements; i++) {
int e_rev = (i & 0xf) ^ revmask;
int w = (e_rev * esize) / 64;
int o = (e_rev * esize) % 64;
read_vec_element(s, tcg_rn, rn, i, size);
tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
}
for (i = 0; i < 2; i++) {
write_vec_element(s, tcg_rd[i], rd, i, MO_64);
}
clear_vec_high(s, true, rd);
}
}
static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
bool is_q, int size, int rn, int rd)
{
/* Implement the pairwise operations from 2-misc:
* SADDLP, UADDLP, SADALP, UADALP.
* These all add pairs of elements in the input to produce a
* double-width result element in the output (possibly accumulating).
*/
bool accum = (opcode == 0x6);
int maxpass = is_q ? 2 : 1;
int pass;
TCGv_i64 tcg_res[2];
if (size == 2) {
/* 32 + 32 -> 64 op */
MemOp memop = size + (u ? 0 : MO_SIGN);
for (pass = 0; pass < maxpass; pass++) {
TCGv_i64 tcg_op1 = tcg_temp_new_i64();
TCGv_i64 tcg_op2 = tcg_temp_new_i64();
tcg_res[pass] = tcg_temp_new_i64();
read_vec_element(s, tcg_op1, rn, pass * 2, memop);
read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
if (accum) {
read_vec_element(s, tcg_op1, rd, pass, MO_64);
tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
}
}
} else {
for (pass = 0; pass < maxpass; pass++) {
TCGv_i64 tcg_op = tcg_temp_new_i64();
NeonGenOne64OpFn *genfn;
static NeonGenOne64OpFn * const fns[2][2] = {
{ gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
{ gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
};
genfn = fns[size][u];
tcg_res[pass] = tcg_temp_new_i64();
read_vec_element(s, tcg_op, rn, pass, MO_64);
genfn(tcg_res[pass], tcg_op);
if (accum) {
read_vec_element(s, tcg_op, rd, pass, MO_64);
if (size == 0) {
gen_helper_neon_addl_u16(tcg_res[pass],
tcg_res[pass], tcg_op);
} else {
gen_helper_neon_addl_u32(tcg_res[pass],
tcg_res[pass], tcg_op);
}
}
}
}
if (!is_q) {
tcg_res[1] = tcg_constant_i64(0);
}
for (pass = 0; pass < 2; pass++) {
write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
}
}
static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
{
/* Implement SHLL and SHLL2 */
int pass;
int part = is_q ? 2 : 0;
TCGv_i64 tcg_res[2];
for (pass = 0; pass < 2; pass++) {
static NeonGenWidenFn * const widenfns[3] = {
gen_helper_neon_widen_u8,
gen_helper_neon_widen_u16,
tcg_gen_extu_i32_i64,
};
NeonGenWidenFn *widenfn = widenfns[size];
TCGv_i32 tcg_op = tcg_temp_new_i32();
read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
tcg_res[pass] = tcg_temp_new_i64();
widenfn(tcg_res[pass], tcg_op);
tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
}
for (pass = 0; pass < 2; pass++) {
write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
}
}
/* AdvSIMD two reg misc
* 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
* +---+---+---+-----------+------+-----------+--------+-----+------+------+
* | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
* +---+---+---+-----------+------+-----------+--------+-----+------+------+
*/
static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
{
int size = extract32(insn, 22, 2);
int opcode = extract32(insn, 12, 5);
bool u = extract32(insn, 29, 1);
bool is_q = extract32(insn, 30, 1);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
bool need_fpstatus = false;
int rmode = -1;
TCGv_i32 tcg_rmode;
TCGv_ptr tcg_fpstatus;
switch (opcode) {
case 0x0: /* REV64, REV32 */
case 0x1: /* REV16 */
handle_rev(s, opcode, u, is_q, size, rn, rd);
return;
case 0x5: /* CNT, NOT, RBIT */
if (u && size == 0) {
/* NOT */
break;
} else if (u && size == 1) {
/* RBIT */
break;
} else if (!u && size == 0) {
/* CNT */
break;
}
unallocated_encoding(s);
return;
case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
if (size == 3) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
return;
case 0x4: /* CLS, CLZ */
if (size == 3) {
unallocated_encoding(s);
return;
}
break;
case 0x2: /* SADDLP, UADDLP */
case 0x6: /* SADALP, UADALP */
if (size == 3) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
return;
case 0x13: /* SHLL, SHLL2 */
if (u == 0 || size == 3) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_shll(s, is_q, size, rn, rd);
return;
case 0xa: /* CMLT */
if (u == 1) {
unallocated_encoding(s);
return;
}
/* fall through */
case 0x8: /* CMGT, CMGE */
case 0x9: /* CMEQ, CMLE */
case 0xb: /* ABS, NEG */
if (size == 3 && !is_q) {
unallocated_encoding(s);
return;
}
break;
case 0x7: /* SQABS, SQNEG */
if (size == 3 && !is_q) {
unallocated_encoding(s);
return;
}
break;
case 0xc ... 0xf:
case 0x16 ... 0x1f:
{
/* Floating point: U, size[1] and opcode indicate operation;
* size[0] indicates single or double precision.
*/
int is_double = extract32(size, 0, 1);
opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
size = is_double ? 3 : 2;
switch (opcode) {
case 0x2f: /* FABS */
case 0x6f: /* FNEG */
if (size == 3 && !is_q) {
unallocated_encoding(s);
return;
}
break;
case 0x1d: /* SCVTF */
case 0x5d: /* UCVTF */
{
bool is_signed = (opcode == 0x1d) ? true : false;
int elements = is_double ? 2 : is_q ? 4 : 2;
if (is_double && !is_q) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
return;
}
case 0x2c: /* FCMGT (zero) */
case 0x2d: /* FCMEQ (zero) */
case 0x2e: /* FCMLT (zero) */
case 0x6c: /* FCMGE (zero) */
case 0x6d: /* FCMLE (zero) */
if (size == 3 && !is_q) {
unallocated_encoding(s);
return;
}
handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
return;
case 0x7f: /* FSQRT */
if (size == 3 && !is_q) {
unallocated_encoding(s);
return;
}
break;
case 0x1a: /* FCVTNS */
case 0x1b: /* FCVTMS */
case 0x3a: /* FCVTPS */
case 0x3b: /* FCVTZS */
case 0x5a: /* FCVTNU */
case 0x5b: /* FCVTMU */
case 0x7a: /* FCVTPU */
case 0x7b: /* FCVTZU */
need_fpstatus = true;
rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
if (size == 3 && !is_q) {
unallocated_encoding(s);
return;
}
break;
case 0x5c: /* FCVTAU */
case 0x1c: /* FCVTAS */
need_fpstatus = true;
rmode = FPROUNDING_TIEAWAY;
if (size == 3 && !is_q) {
unallocated_encoding(s);
return;
}
break;
case 0x3c: /* URECPE */
if (size == 3) {
unallocated_encoding(s);
return;
}
/* fall through */
case 0x3d: /* FRECPE */
case 0x7d: /* FRSQRTE */
if (size == 3 && !is_q) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
return;
case 0x56: /* FCVTXN, FCVTXN2 */
if (size == 2) {
unallocated_encoding(s);
return;
}
/* fall through */
case 0x16: /* FCVTN, FCVTN2 */
/* handle_2misc_narrow does a 2*size -> size operation, but these
* instructions encode the source size rather than dest size.
*/
if (!fp_access_check(s)) {
return;
}
handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
return;
case 0x36: /* BFCVTN, BFCVTN2 */
if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
return;
case 0x17: /* FCVTL, FCVTL2 */
if (!fp_access_check(s)) {
return;
}
handle_2misc_widening(s, opcode, is_q, size, rn, rd);
return;
case 0x18: /* FRINTN */
case 0x19: /* FRINTM */
case 0x38: /* FRINTP */
case 0x39: /* FRINTZ */
rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
/* fall through */
case 0x59: /* FRINTX */
case 0x79: /* FRINTI */
need_fpstatus = true;
if (size == 3 && !is_q) {
unallocated_encoding(s);
return;
}
break;
case 0x58: /* FRINTA */
rmode = FPROUNDING_TIEAWAY;
need_fpstatus = true;
if (size == 3 && !is_q) {
unallocated_encoding(s);
return;
}
break;
case 0x7c: /* URSQRTE */
if (size == 3) {
unallocated_encoding(s);
return;
}
break;
case 0x1e: /* FRINT32Z */
case 0x1f: /* FRINT64Z */
rmode = FPROUNDING_ZERO;
/* fall through */
case 0x5e: /* FRINT32X */
case 0x5f: /* FRINT64X */
need_fpstatus = true;
if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
unallocated_encoding(s);
return;
}
break;
default:
unallocated_encoding(s);
return;
}
break;
}
default:
case 0x3: /* SUQADD, USQADD */
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
if (need_fpstatus || rmode >= 0) {
tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
} else {
tcg_fpstatus = NULL;
}
if (rmode >= 0) {
tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
} else {
tcg_rmode = NULL;
}
switch (opcode) {
case 0x5:
if (u && size == 0) { /* NOT */
gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
return;
}
break;
case 0x8: /* CMGT, CMGE */
if (u) {
gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
} else {
gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
}
return;
case 0x9: /* CMEQ, CMLE */
if (u) {
gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
} else {
gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
}
return;
case 0xa: /* CMLT */
gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
return;
case 0xb:
if (u) { /* ABS, NEG */
gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
} else {
gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
}
return;
}
if (size == 3) {
/* All 64-bit element operations can be shared with scalar 2misc */
int pass;
/* Coverity claims (size == 3 && !is_q) has been eliminated
* from all paths leading to here.
*/
tcg_debug_assert(is_q);
for (pass = 0; pass < 2; pass++) {
TCGv_i64 tcg_op = tcg_temp_new_i64();
TCGv_i64 tcg_res = tcg_temp_new_i64();
read_vec_element(s, tcg_op, rn, pass, MO_64);
handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
tcg_rmode, tcg_fpstatus);
write_vec_element(s, tcg_res, rd, pass, MO_64);
}
} else {
int pass;
for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
TCGv_i32 tcg_op = tcg_temp_new_i32();
TCGv_i32 tcg_res = tcg_temp_new_i32();
read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
if (size == 2) {
/* Special cases for 32 bit elements */
switch (opcode) {
case 0x4: /* CLS */
if (u) {
tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
} else {
tcg_gen_clrsb_i32(tcg_res, tcg_op);
}
break;
case 0x7: /* SQABS, SQNEG */
if (u) {
gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op);
} else {
gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op);
}
break;
case 0x2f: /* FABS */
gen_vfp_abss(tcg_res, tcg_op);
break;
case 0x6f: /* FNEG */
gen_vfp_negs(tcg_res, tcg_op);
break;
case 0x7f: /* FSQRT */
gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
break;
case 0x1a: /* FCVTNS */
case 0x1b: /* FCVTMS */
case 0x1c: /* FCVTAS */
case 0x3a: /* FCVTPS */
case 0x3b: /* FCVTZS */
gen_helper_vfp_tosls(tcg_res, tcg_op,
tcg_constant_i32(0), tcg_fpstatus);
break;
case 0x5a: /* FCVTNU */
case 0x5b: /* FCVTMU */
case 0x5c: /* FCVTAU */
case 0x7a: /* FCVTPU */
case 0x7b: /* FCVTZU */
gen_helper_vfp_touls(tcg_res, tcg_op,
tcg_constant_i32(0), tcg_fpstatus);
break;
case 0x18: /* FRINTN */
case 0x19: /* FRINTM */
case 0x38: /* FRINTP */
case 0x39: /* FRINTZ */
case 0x58: /* FRINTA */
case 0x79: /* FRINTI */
gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
break;
case 0x59: /* FRINTX */
gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
break;
case 0x7c: /* URSQRTE */
gen_helper_rsqrte_u32(tcg_res, tcg_op);
break;
case 0x1e: /* FRINT32Z */
case 0x5e: /* FRINT32X */
gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
break;
case 0x1f: /* FRINT64Z */
case 0x5f: /* FRINT64X */
gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
break;
default:
g_assert_not_reached();
}
} else {
/* Use helpers for 8 and 16 bit elements */
switch (opcode) {
case 0x5: /* CNT, RBIT */
/* For these two insns size is part of the opcode specifier
* (handled earlier); they always operate on byte elements.
*/
if (u) {
gen_helper_neon_rbit_u8(tcg_res, tcg_op);
} else {
gen_helper_neon_cnt_u8(tcg_res, tcg_op);
}
break;
case 0x7: /* SQABS, SQNEG */
{
NeonGenOneOpEnvFn *genfn;
static NeonGenOneOpEnvFn * const fns[2][2] = {
{ gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
{ gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
};
genfn = fns[size][u];
genfn(tcg_res, tcg_env, tcg_op);
break;
}
case 0x4: /* CLS, CLZ */
if (u) {
if (size == 0) {
gen_helper_neon_clz_u8(tcg_res, tcg_op);
} else {
gen_helper_neon_clz_u16(tcg_res, tcg_op);
}
} else {
if (size == 0) {
gen_helper_neon_cls_s8(tcg_res, tcg_op);
} else {
gen_helper_neon_cls_s16(tcg_res, tcg_op);
}
}
break;
default:
g_assert_not_reached();
}
}
write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
}
}
clear_vec_high(s, is_q, rd);
if (tcg_rmode) {
gen_restore_rmode(tcg_rmode, tcg_fpstatus);
}
}
/* AdvSIMD [scalar] two register miscellaneous (FP16)
*
* 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0
* +---+---+---+---+---------+---+-------------+--------+-----+------+------+
* | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd |
* +---+---+---+---+---------+---+-------------+--------+-----+------+------+
* mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
* val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
*
* This actually covers two groups where scalar access is governed by
* bit 28. A bunch of the instructions (float to integral) only exist
* in the vector form and are un-allocated for the scalar decode. Also
* in the scalar decode Q is always 1.
*/
static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
{
int fpop, opcode, a, u;
int rn, rd;
bool is_q;
bool is_scalar;
bool only_in_vector = false;
int pass;
TCGv_i32 tcg_rmode = NULL;
TCGv_ptr tcg_fpstatus = NULL;
bool need_fpst = true;
int rmode = -1;
if (!dc_isar_feature(aa64_fp16, s)) {
unallocated_encoding(s);
return;
}
rd = extract32(insn, 0, 5);
rn = extract32(insn, 5, 5);
a = extract32(insn, 23, 1);
u = extract32(insn, 29, 1);
is_scalar = extract32(insn, 28, 1);
is_q = extract32(insn, 30, 1);
opcode = extract32(insn, 12, 5);
fpop = deposit32(opcode, 5, 1, a);
fpop = deposit32(fpop, 6, 1, u);
switch (fpop) {
case 0x1d: /* SCVTF */
case 0x5d: /* UCVTF */
{
int elements;
if (is_scalar) {
elements = 1;
} else {
elements = (is_q ? 8 : 4);
}
if (!fp_access_check(s)) {
return;
}
handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
return;
}
break;
case 0x2c: /* FCMGT (zero) */
case 0x2d: /* FCMEQ (zero) */
case 0x2e: /* FCMLT (zero) */
case 0x6c: /* FCMGE (zero) */
case 0x6d: /* FCMLE (zero) */
handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
return;
case 0x3d: /* FRECPE */
case 0x3f: /* FRECPX */
break;
case 0x18: /* FRINTN */
only_in_vector = true;
rmode = FPROUNDING_TIEEVEN;
break;
case 0x19: /* FRINTM */
only_in_vector = true;
rmode = FPROUNDING_NEGINF;
break;
case 0x38: /* FRINTP */
only_in_vector = true;
rmode = FPROUNDING_POSINF;
break;
case 0x39: /* FRINTZ */
only_in_vector = true;
rmode = FPROUNDING_ZERO;
break;
case 0x58: /* FRINTA */
only_in_vector = true;
rmode = FPROUNDING_TIEAWAY;
break;
case 0x59: /* FRINTX */
case 0x79: /* FRINTI */
only_in_vector = true;
/* current rounding mode */
break;
case 0x1a: /* FCVTNS */
rmode = FPROUNDING_TIEEVEN;
break;
case 0x1b: /* FCVTMS */
rmode = FPROUNDING_NEGINF;
break;
case 0x1c: /* FCVTAS */
rmode = FPROUNDING_TIEAWAY;
break;
case 0x3a: /* FCVTPS */
rmode = FPROUNDING_POSINF;
break;
case 0x3b: /* FCVTZS */
rmode = FPROUNDING_ZERO;
break;
case 0x5a: /* FCVTNU */
rmode = FPROUNDING_TIEEVEN;
break;
case 0x5b: /* FCVTMU */
rmode = FPROUNDING_NEGINF;
break;
case 0x5c: /* FCVTAU */
rmode = FPROUNDING_TIEAWAY;
break;
case 0x7a: /* FCVTPU */
rmode = FPROUNDING_POSINF;
break;
case 0x7b: /* FCVTZU */
rmode = FPROUNDING_ZERO;
break;
case 0x2f: /* FABS */
case 0x6f: /* FNEG */
need_fpst = false;
break;
case 0x7d: /* FRSQRTE */
case 0x7f: /* FSQRT (vector) */
break;
default:
unallocated_encoding(s);
return;
}
/* Check additional constraints for the scalar encoding */
if (is_scalar) {
if (!is_q) {
unallocated_encoding(s);
return;
}
/* FRINTxx is only in the vector form */
if (only_in_vector) {
unallocated_encoding(s);
return;
}
}
if (!fp_access_check(s)) {
return;
}
if (rmode >= 0 || need_fpst) {
tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
}
if (rmode >= 0) {
tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
}
if (is_scalar) {
TCGv_i32 tcg_op = read_fp_hreg(s, rn);
TCGv_i32 tcg_res = tcg_temp_new_i32();
switch (fpop) {
case 0x1a: /* FCVTNS */
case 0x1b: /* FCVTMS */
case 0x1c: /* FCVTAS */
case 0x3a: /* FCVTPS */
case 0x3b: /* FCVTZS */
gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
break;
case 0x3d: /* FRECPE */
gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
break;
case 0x3f: /* FRECPX */
gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
break;
case 0x5a: /* FCVTNU */
case 0x5b: /* FCVTMU */
case 0x5c: /* FCVTAU */
case 0x7a: /* FCVTPU */
case 0x7b: /* FCVTZU */
gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
break;
case 0x6f: /* FNEG */
tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
break;
case 0x7d: /* FRSQRTE */
gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
break;
default:
g_assert_not_reached();
}
/* limit any sign extension going on */
tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
write_fp_sreg(s, rd, tcg_res);
} else {
for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
TCGv_i32 tcg_op = tcg_temp_new_i32();
TCGv_i32 tcg_res = tcg_temp_new_i32();
read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
switch (fpop) {
case 0x1a: /* FCVTNS */
case 0x1b: /* FCVTMS */
case 0x1c: /* FCVTAS */
case 0x3a: /* FCVTPS */
case 0x3b: /* FCVTZS */
gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
break;
case 0x3d: /* FRECPE */
gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
break;
case 0x5a: /* FCVTNU */
case 0x5b: /* FCVTMU */
case 0x5c: /* FCVTAU */
case 0x7a: /* FCVTPU */
case 0x7b: /* FCVTZU */
gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
break;
case 0x18: /* FRINTN */
case 0x19: /* FRINTM */
case 0x38: /* FRINTP */
case 0x39: /* FRINTZ */
case 0x58: /* FRINTA */
case 0x79: /* FRINTI */
gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
break;
case 0x59: /* FRINTX */
gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
break;
case 0x2f: /* FABS */
tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
break;
case 0x6f: /* FNEG */
tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
break;
case 0x7d: /* FRSQRTE */
gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
break;
case 0x7f: /* FSQRT */
gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
break;
default:
g_assert_not_reached();
}
write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
}
clear_vec_high(s, is_q, rd);
}
if (tcg_rmode) {
gen_restore_rmode(tcg_rmode, tcg_fpstatus);
}
}
/* AdvSIMD scalar x indexed element
* 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
* +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
* | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
* +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
* AdvSIMD vector x indexed element
* 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
* +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
* | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
* +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
*/
static void disas_simd_indexed(DisasContext *s, uint32_t insn)
{
/* This encoding has two kinds of instruction:
* normal, where we perform elt x idxelt => elt for each
* element in the vector
* long, where we perform elt x idxelt and generate a result of
* double the width of the input element
* The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
*/
bool is_scalar = extract32(insn, 28, 1);
bool is_q = extract32(insn, 30, 1);
bool u = extract32(insn, 29, 1);
int size = extract32(insn, 22, 2);
int l = extract32(insn, 21, 1);
int m = extract32(insn, 20, 1);
/* Note that the Rm field here is only 4 bits, not 5 as it usually is */
int rm = extract32(insn, 16, 4);
int opcode = extract32(insn, 12, 4);
int h = extract32(insn, 11, 1);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
bool is_long = false;
int is_fp = 0;
bool is_fp16 = false;
int index;
TCGv_ptr fpst;
switch (16 * u + opcode) {
case 0x02: /* SMLAL, SMLAL2 */
case 0x12: /* UMLAL, UMLAL2 */
case 0x06: /* SMLSL, SMLSL2 */
case 0x16: /* UMLSL, UMLSL2 */
case 0x0a: /* SMULL, SMULL2 */
case 0x1a: /* UMULL, UMULL2 */
if (is_scalar) {
unallocated_encoding(s);
return;
}
is_long = true;
break;
case 0x03: /* SQDMLAL, SQDMLAL2 */
case 0x07: /* SQDMLSL, SQDMLSL2 */
case 0x0b: /* SQDMULL, SQDMULL2 */
is_long = true;
break;
case 0x1d: /* SQRDMLAH */
case 0x1f: /* SQRDMLSH */
if (!dc_isar_feature(aa64_rdm, s)) {
unallocated_encoding(s);
return;
}
break;
case 0x0e: /* SDOT */
case 0x1e: /* UDOT */
if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
unallocated_encoding(s);
return;
}
break;
case 0x0f:
switch (size) {
case 0: /* SUDOT */
case 2: /* USDOT */
if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
unallocated_encoding(s);
return;
}
size = MO_32;
break;
case 1: /* BFDOT */
if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
unallocated_encoding(s);
return;
}
size = MO_32;
break;
case 3: /* BFMLAL{B,T} */
if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
unallocated_encoding(s);
return;
}
/* can't set is_fp without other incorrect size checks */
size = MO_16;
break;
default:
unallocated_encoding(s);
return;
}
break;
case 0x11: /* FCMLA #0 */
case 0x13: /* FCMLA #90 */
case 0x15: /* FCMLA #180 */
case 0x17: /* FCMLA #270 */
if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
unallocated_encoding(s);
return;
}
is_fp = 2;
break;
default:
case 0x00: /* FMLAL */
case 0x01: /* FMLA */
case 0x04: /* FMLSL */
case 0x05: /* FMLS */
case 0x08: /* MUL */
case 0x09: /* FMUL */
case 0x0c: /* SQDMULH */
case 0x0d: /* SQRDMULH */
case 0x10: /* MLA */
case 0x14: /* MLS */
case 0x18: /* FMLAL2 */
case 0x19: /* FMULX */
case 0x1c: /* FMLSL2 */
unallocated_encoding(s);
return;
}
switch (is_fp) {
case 1: /* normal fp */
unallocated_encoding(s); /* in decodetree */
return;
case 2: /* complex fp */
/* Each indexable element is a complex pair. */
size += 1;
switch (size) {
case MO_32:
if (h && !is_q) {
unallocated_encoding(s);
return;
}
is_fp16 = true;
break;
case MO_64:
break;
default:
unallocated_encoding(s);
return;
}
break;
default: /* integer */
switch (size) {
case MO_8:
case MO_64:
unallocated_encoding(s);
return;
}
break;
}
if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
unallocated_encoding(s);
return;
}
/* Given MemOp size, adjust register and indexing. */
switch (size) {
case MO_16:
index = h << 2 | l << 1 | m;
break;
case MO_32:
index = h << 1 | l;
rm |= m << 4;
break;
case MO_64:
if (l || !is_q) {
unallocated_encoding(s);
return;
}
index = h;
rm |= m << 4;
break;
default:
g_assert_not_reached();
}
if (!fp_access_check(s)) {
return;
}
if (is_fp) {
fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
} else {
fpst = NULL;
}
switch (16 * u + opcode) {
case 0x0e: /* SDOT */
case 0x1e: /* UDOT */
gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
u ? gen_helper_gvec_udot_idx_b
: gen_helper_gvec_sdot_idx_b);
return;
case 0x0f:
switch (extract32(insn, 22, 2)) {
case 0: /* SUDOT */
gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
gen_helper_gvec_sudot_idx_b);
return;
case 1: /* BFDOT */
gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
gen_helper_gvec_bfdot_idx);
return;
case 2: /* USDOT */
gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
gen_helper_gvec_usdot_idx_b);
return;
case 3: /* BFMLAL{B,T} */
gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
gen_helper_gvec_bfmlal_idx);
return;
}
g_assert_not_reached();
case 0x11: /* FCMLA #0 */
case 0x13: /* FCMLA #90 */
case 0x15: /* FCMLA #180 */
case 0x17: /* FCMLA #270 */
{
int rot = extract32(insn, 13, 2);
int data = (index << 2) | rot;
tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
vec_full_reg_offset(s, rn),
vec_full_reg_offset(s, rm),
vec_full_reg_offset(s, rd), fpst,
is_q ? 16 : 8, vec_full_reg_size(s), data,
size == MO_64
? gen_helper_gvec_fcmlas_idx
: gen_helper_gvec_fcmlah_idx);
}
return;
}
if (size == 3) {
g_assert_not_reached();
} else if (!is_long) {
/* 32 bit floating point, or 16 or 32 bit integer.
* For the 16 bit scalar case we use the usual Neon helpers and
* rely on the fact that 0 op 0 == 0 with no side effects.
*/
TCGv_i32 tcg_idx = tcg_temp_new_i32();
int pass, maxpasses;
if (is_scalar) {
maxpasses = 1;
} else {
maxpasses = is_q ? 4 : 2;
}
read_vec_element_i32(s, tcg_idx, rm, index, size);
if (size == 1 && !is_scalar) {
/* The simplest way to handle the 16x16 indexed ops is to duplicate
* the index into both halves of the 32 bit tcg_idx and then use
* the usual Neon helpers.
*/
tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
}
for (pass = 0; pass < maxpasses; pass++) {
TCGv_i32 tcg_op = tcg_temp_new_i32();
TCGv_i32 tcg_res = tcg_temp_new_i32();
read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
switch (16 * u + opcode) {
case 0x10: /* MLA */
case 0x14: /* MLS */
{
static NeonGenTwoOpFn * const fns[2][2] = {
{ gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
{ tcg_gen_add_i32, tcg_gen_sub_i32 },
};
NeonGenTwoOpFn *genfn;
bool is_sub = opcode == 0x4;
if (size == 1) {
gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
} else {
tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
}
if (opcode == 0x8) {
break;
}
read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
genfn = fns[size - 1][is_sub];
genfn(tcg_res, tcg_op, tcg_res);
break;
}
case 0x0c: /* SQDMULH */
if (size == 1) {
gen_helper_neon_qdmulh_s16(tcg_res, tcg_env,
tcg_op, tcg_idx);
} else {
gen_helper_neon_qdmulh_s32(tcg_res, tcg_env,
tcg_op, tcg_idx);
}
break;
case 0x0d: /* SQRDMULH */
if (size == 1) {
gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env,
tcg_op, tcg_idx);
} else {
gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env,
tcg_op, tcg_idx);
}
break;
case 0x1d: /* SQRDMLAH */
read_vec_element_i32(s, tcg_res, rd, pass,
is_scalar ? size : MO_32);
if (size == 1) {
gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env,
tcg_op, tcg_idx, tcg_res);
} else {
gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env,
tcg_op, tcg_idx, tcg_res);
}
break;
case 0x1f: /* SQRDMLSH */
read_vec_element_i32(s, tcg_res, rd, pass,
is_scalar ? size : MO_32);
if (size == 1) {
gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env,
tcg_op, tcg_idx, tcg_res);
} else {
gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env,
tcg_op, tcg_idx, tcg_res);
}
break;
default:
case 0x01: /* FMLA */
case 0x05: /* FMLS */
case 0x09: /* FMUL */
case 0x19: /* FMULX */
g_assert_not_reached();
}
if (is_scalar) {
write_fp_sreg(s, rd, tcg_res);
} else {
write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
}
}
clear_vec_high(s, is_q, rd);
} else {
/* long ops: 16x16->32 or 32x32->64 */
TCGv_i64 tcg_res[2];
int pass;
bool satop = extract32(opcode, 0, 1);
MemOp memop = MO_32;
if (satop || !u) {
memop |= MO_SIGN;
}
if (size == 2) {
TCGv_i64 tcg_idx = tcg_temp_new_i64();
read_vec_element(s, tcg_idx, rm, index, memop);
for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
TCGv_i64 tcg_op = tcg_temp_new_i64();
TCGv_i64 tcg_passres;
int passelt;
if (is_scalar) {
passelt = 0;
} else {
passelt = pass + (is_q * 2);
}
read_vec_element(s, tcg_op, rn, passelt, memop);
tcg_res[pass] = tcg_temp_new_i64();
if (opcode == 0xa || opcode == 0xb) {
/* Non-accumulating ops */
tcg_passres = tcg_res[pass];
} else {
tcg_passres = tcg_temp_new_i64();
}
tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
if (satop) {
/* saturating, doubling */
gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
tcg_passres, tcg_passres);
}
if (opcode == 0xa || opcode == 0xb) {
continue;
}
/* Accumulating op: handle accumulate step */
read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
switch (opcode) {
case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
break;
case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
break;
case 0x7: /* SQDMLSL, SQDMLSL2 */
tcg_gen_neg_i64(tcg_passres, tcg_passres);
/* fall through */
case 0x3: /* SQDMLAL, SQDMLAL2 */
gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
tcg_res[pass],
tcg_passres);
break;
default:
g_assert_not_reached();
}
}
clear_vec_high(s, !is_scalar, rd);
} else {
TCGv_i32 tcg_idx = tcg_temp_new_i32();
assert(size == 1);
read_vec_element_i32(s, tcg_idx, rm, index, size);
if (!is_scalar) {
/* The simplest way to handle the 16x16 indexed ops is to
* duplicate the index into both halves of the 32 bit tcg_idx
* and then use the usual Neon helpers.
*/
tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
}
for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
TCGv_i32 tcg_op = tcg_temp_new_i32();
TCGv_i64 tcg_passres;
if (is_scalar) {
read_vec_element_i32(s, tcg_op, rn, pass, size);
} else {
read_vec_element_i32(s, tcg_op, rn,
pass + (is_q * 2), MO_32);
}
tcg_res[pass] = tcg_temp_new_i64();
if (opcode == 0xa || opcode == 0xb) {
/* Non-accumulating ops */
tcg_passres = tcg_res[pass];
} else {
tcg_passres = tcg_temp_new_i64();
}
if (memop & MO_SIGN) {
gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
} else {
gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
}
if (satop) {
gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
tcg_passres, tcg_passres);
}
if (opcode == 0xa || opcode == 0xb) {
continue;
}
/* Accumulating op: handle accumulate step */
read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
switch (opcode) {
case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
tcg_passres);
break;
case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
tcg_passres);
break;
case 0x7: /* SQDMLSL, SQDMLSL2 */
gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
/* fall through */
case 0x3: /* SQDMLAL, SQDMLAL2 */
gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
tcg_res[pass],
tcg_passres);
break;
default:
g_assert_not_reached();
}
}
if (is_scalar) {
tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
}
}
if (is_scalar) {
tcg_res[1] = tcg_constant_i64(0);
}
for (pass = 0; pass < 2; pass++) {
write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
}
}
}
/* C3.6 Data processing - SIMD, inc Crypto
*
* As the decode gets a little complex we are using a table based
* approach for this part of the decode.
*/
static const AArch64DecodeTable data_proc_simd[] = {
/* pattern , mask , fn */
{ 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
{ 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
{ 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
{ 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
{ 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
/* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
{ 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
{ 0x0f000400, 0x9f800400, disas_simd_shift_imm },
{ 0x0e000000, 0xbf208c00, disas_simd_tb },
{ 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
{ 0x2e000000, 0xbf208400, disas_simd_ext },
{ 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
{ 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
{ 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
{ 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
{ 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
{ 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
{ 0x00000000, 0x00000000, NULL }
};
static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
{
/* Note that this is called with all non-FP cases from
* table C3-6 so it must UNDEF for entries not specifically
* allocated to instructions in that table.
*/
AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
if (fn) {
fn(s, insn);
} else {
unallocated_encoding(s);
}
}
/* C3.6 Data processing - SIMD and floating point */
static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
{
if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
disas_data_proc_fp(s, insn);
} else {
/* SIMD, including crypto */
disas_data_proc_simd(s, insn);
}
}
static bool trans_OK(DisasContext *s, arg_OK *a)
{
return true;
}
static bool trans_FAIL(DisasContext *s, arg_OK *a)
{
s->is_nonstreaming = true;
return true;
}
/**
* is_guarded_page:
* @env: The cpu environment
* @s: The DisasContext
*
* Return true if the page is guarded.
*/
static bool is_guarded_page(CPUARMState *env, DisasContext *s)
{
uint64_t addr = s->base.pc_first;
#ifdef CONFIG_USER_ONLY
return page_get_flags(addr) & PAGE_BTI;
#else
CPUTLBEntryFull *full;
void *host;
int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
int flags;
/*
* We test this immediately after reading an insn, which means
* that the TLB entry must be present and valid, and thus this
* access will never raise an exception.
*/
flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
false, &host, &full, 0);
assert(!(flags & TLB_INVALID_MASK));
return full->extra.arm.guarded;
#endif
}
/**
* btype_destination_ok:
* @insn: The instruction at the branch destination
* @bt: SCTLR_ELx.BT
* @btype: PSTATE.BTYPE, and is non-zero
*
* On a guarded page, there are a limited number of insns
* that may be present at the branch target:
* - branch target identifiers,
* - paciasp, pacibsp,
* - BRK insn
* - HLT insn
* Anything else causes a Branch Target Exception.
*
* Return true if the branch is compatible, false to raise BTITRAP.
*/
static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
{
if ((insn & 0xfffff01fu) == 0xd503201fu) {
/* HINT space */
switch (extract32(insn, 5, 7)) {
case 0b011001: /* PACIASP */
case 0b011011: /* PACIBSP */
/*
* If SCTLR_ELx.BT, then PACI*SP are not compatible
* with btype == 3. Otherwise all btype are ok.
*/
return !bt || btype != 3;
case 0b100000: /* BTI */
/* Not compatible with any btype. */
return false;
case 0b100010: /* BTI c */
/* Not compatible with btype == 3 */
return btype != 3;
case 0b100100: /* BTI j */
/* Not compatible with btype == 2 */
return btype != 2;
case 0b100110: /* BTI jc */
/* Compatible with any btype. */
return true;
}
} else {
switch (insn & 0xffe0001fu) {
case 0xd4200000u: /* BRK */
case 0xd4400000u: /* HLT */
/* Give priority to the breakpoint exception. */
return true;
}
}
return false;
}
/* C3.1 A64 instruction index by encoding */
static void disas_a64_legacy(DisasContext *s, uint32_t insn)
{
switch (extract32(insn, 25, 4)) {
case 0x5:
case 0xd: /* Data processing - register */
disas_data_proc_reg(s, insn);
break;
case 0x7:
case 0xf: /* Data processing - SIMD and floating point */
disas_data_proc_simd_fp(s, insn);
break;
default:
unallocated_encoding(s);
break;
}
}
static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
CPUState *cpu)
{
DisasContext *dc = container_of(dcbase, DisasContext, base);
CPUARMState *env = cpu_env(cpu);
ARMCPU *arm_cpu = env_archcpu(env);
CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
int bound, core_mmu_idx;
dc->isar = &arm_cpu->isar;
dc->condjmp = 0;
dc->pc_save = dc->base.pc_first;
dc->aarch64 = true;
dc->thumb = false;
dc->sctlr_b = 0;
dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
dc->condexec_mask = 0;
dc->condexec_cond = 0;
core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
#if !defined(CONFIG_USER_ONLY)
dc->user = (dc->current_el == 0);
#endif
dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET);
dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
dc->bt = EX_TBFLAG_A64(tb_flags, BT);
dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA);
dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0);
dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
dc->nv = EX_TBFLAG_A64(tb_flags, NV);
dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1);
dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2);
dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20);
dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE);
dc->vec_len = 0;
dc->vec_stride = 0;
dc->cp_regs = arm_cpu->cp_regs;
dc->features = env->features;
dc->dcz_blocksize = arm_cpu->dcz_blocksize;
dc->gm_blocksize = arm_cpu->gm_blocksize;
#ifdef CONFIG_USER_ONLY
/* In sve_probe_page, we assume TBI is enabled. */
tcg_debug_assert(dc->tbid & 1);
#endif
dc->lse2 = dc_isar_feature(aa64_lse2, dc);
/* Single step state. The code-generation logic here is:
* SS_ACTIVE == 0:
* generate code with no special handling for single-stepping (except
* that anything that can make us go to SS_ACTIVE == 1 must end the TB;
* this happens anyway because those changes are all system register or
* PSTATE writes).
* SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
* emit code for one insn
* emit code to clear PSTATE.SS
* emit code to generate software step exception for completed step
* end TB (as usual for having generated an exception)
* SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
* emit code to generate a software step exception
* end the TB
*/
dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
dc->is_ldex = false;
/* Bound the number of insns to execute to those left on the page. */
bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
/* If architectural single step active, limit to 1. */
if (dc->ss_active) {
bound = 1;
}
dc->base.max_insns = MIN(dc->base.max_insns, bound);
}
static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
{
}
static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
{
DisasContext *dc = container_of(dcbase, DisasContext, base);
target_ulong pc_arg = dc->base.pc_next;
if (tb_cflags(dcbase->tb) & CF_PCREL) {
pc_arg &= ~TARGET_PAGE_MASK;
}
tcg_gen_insn_start(pc_arg, 0, 0);
dc->insn_start_updated = false;
}
static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
{
DisasContext *s = container_of(dcbase, DisasContext, base);
CPUARMState *env = cpu_env(cpu);
uint64_t pc = s->base.pc_next;
uint32_t insn;
/* Singlestep exceptions have the highest priority. */
if (s->ss_active && !s->pstate_ss) {
/* Singlestep state is Active-pending.
* If we're in this state at the start of a TB then either
* a) we just took an exception to an EL which is being debugged
* and this is the first insn in the exception handler
* b) debug exceptions were masked and we just unmasked them
* without changing EL (eg by clearing PSTATE.D)
* In either case we're going to take a swstep exception in the
* "did not step an insn" case, and so the syndrome ISV and EX
* bits should be zero.
*/
assert(s->base.num_insns == 1);
gen_swstep_exception(s, 0, 0);
s->base.is_jmp = DISAS_NORETURN;
s->base.pc_next = pc + 4;
return;
}
if (pc & 3) {
/*
* PC alignment fault. This has priority over the instruction abort
* that we would receive from a translation fault via arm_ldl_code.
* This should only be possible after an indirect branch, at the
* start of the TB.
*/
assert(s->base.num_insns == 1);
gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc));
s->base.is_jmp = DISAS_NORETURN;
s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
return;
}
s->pc_curr = pc;
insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
s->insn = insn;
s->base.pc_next = pc + 4;
s->fp_access_checked = false;
s->sve_access_checked = false;
if (s->pstate_il) {
/*
* Illegal execution state. This has priority over BTI
* exceptions, but comes after instruction abort exceptions.
*/
gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
return;
}
if (dc_isar_feature(aa64_bti, s)) {
if (s->base.num_insns == 1) {
/*
* At the first insn of the TB, compute s->guarded_page.
* We delayed computing this until successfully reading
* the first insn of the TB, above. This (mostly) ensures
* that the softmmu tlb entry has been populated, and the
* page table GP bit is available.
*
* Note that we need to compute this even if btype == 0,
* because this value is used for BR instructions later
* where ENV is not available.
*/
s->guarded_page = is_guarded_page(env, s);
/* First insn can have btype set to non-zero. */
tcg_debug_assert(s->btype >= 0);
/*
* Note that the Branch Target Exception has fairly high
* priority -- below debugging exceptions but above most
* everything else. This allows us to handle this now
* instead of waiting until the insn is otherwise decoded.
*/
if (s->btype != 0
&& s->guarded_page
&& !btype_destination_ok(insn, s->bt, s->btype)) {
gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
return;
}
} else {
/* Not the first insn: btype must be 0. */
tcg_debug_assert(s->btype == 0);
}
}
s->is_nonstreaming = false;
if (s->sme_trap_nonstreaming) {
disas_sme_fa64(s, insn);
}
if (!disas_a64(s, insn) &&
!disas_sme(s, insn) &&
!disas_sve(s, insn)) {
disas_a64_legacy(s, insn);
}
/*
* After execution of most insns, btype is reset to 0.
* Note that we set btype == -1 when the insn sets btype.
*/
if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
reset_btype(s);
}
}
static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
{
DisasContext *dc = container_of(dcbase, DisasContext, base);
if (unlikely(dc->ss_active)) {
/* Note that this means single stepping WFI doesn't halt the CPU.
* For conditional branch insns this is harmless unreachable code as
* gen_goto_tb() has already handled emitting the debug exception
* (and thus a tb-jump is not possible when singlestepping).
*/
switch (dc->base.is_jmp) {
default:
gen_a64_update_pc(dc, 4);
/* fall through */
case DISAS_EXIT:
case DISAS_JUMP:
gen_step_complete_exception(dc);
break;
case DISAS_NORETURN:
break;
}
} else {
switch (dc->base.is_jmp) {
case DISAS_NEXT:
case DISAS_TOO_MANY:
gen_goto_tb(dc, 1, 4);
break;
default:
case DISAS_UPDATE_EXIT:
gen_a64_update_pc(dc, 4);
/* fall through */
case DISAS_EXIT:
tcg_gen_exit_tb(NULL, 0);
break;
case DISAS_UPDATE_NOCHAIN:
gen_a64_update_pc(dc, 4);
/* fall through */
case DISAS_JUMP:
tcg_gen_lookup_and_goto_ptr();
break;
case DISAS_NORETURN:
case DISAS_SWI:
break;
case DISAS_WFE:
gen_a64_update_pc(dc, 4);
gen_helper_wfe(tcg_env);
break;
case DISAS_YIELD:
gen_a64_update_pc(dc, 4);
gen_helper_yield(tcg_env);
break;
case DISAS_WFI:
/*
* This is a special case because we don't want to just halt
* the CPU if trying to debug across a WFI.
*/
gen_a64_update_pc(dc, 4);
gen_helper_wfi(tcg_env, tcg_constant_i32(4));
/*
* The helper doesn't necessarily throw an exception, but we
* must go back to the main loop to check for interrupts anyway.
*/
tcg_gen_exit_tb(NULL, 0);
break;
}
}
}
const TranslatorOps aarch64_translator_ops = {
.init_disas_context = aarch64_tr_init_disas_context,
.tb_start = aarch64_tr_tb_start,
.insn_start = aarch64_tr_insn_start,
.translate_insn = aarch64_tr_translate_insn,
.tb_stop = aarch64_tr_tb_stop,
};