| /* |
| * AArch64 translation |
| * |
| * Copyright (c) 2013 Alexander Graf <agraf@suse.de> |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include "qemu/osdep.h" |
| |
| #include "exec/exec-all.h" |
| #include "translate.h" |
| #include "translate-a64.h" |
| #include "qemu/log.h" |
| #include "arm_ldst.h" |
| #include "semihosting/semihost.h" |
| #include "cpregs.h" |
| |
| static TCGv_i64 cpu_X[32]; |
| static TCGv_i64 cpu_pc; |
| |
| /* Load/store exclusive handling */ |
| static TCGv_i64 cpu_exclusive_high; |
| |
| static const char *regnames[] = { |
| "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", |
| "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", |
| "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", |
| "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" |
| }; |
| |
| enum a64_shift_type { |
| A64_SHIFT_TYPE_LSL = 0, |
| A64_SHIFT_TYPE_LSR = 1, |
| A64_SHIFT_TYPE_ASR = 2, |
| A64_SHIFT_TYPE_ROR = 3 |
| }; |
| |
| /* |
| * Helpers for extracting complex instruction fields |
| */ |
| |
| /* |
| * For load/store with an unsigned 12 bit immediate scaled by the element |
| * size. The input has the immediate field in bits [14:3] and the element |
| * size in [2:0]. |
| */ |
| static int uimm_scaled(DisasContext *s, int x) |
| { |
| unsigned imm = x >> 3; |
| unsigned scale = extract32(x, 0, 3); |
| return imm << scale; |
| } |
| |
| /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */ |
| static int scale_by_log2_tag_granule(DisasContext *s, int x) |
| { |
| return x << LOG2_TAG_GRANULE; |
| } |
| |
| /* |
| * Include the generated decoders. |
| */ |
| |
| #include "decode-sme-fa64.c.inc" |
| #include "decode-a64.c.inc" |
| |
| /* Table based decoder typedefs - used when the relevant bits for decode |
| * are too awkwardly scattered across the instruction (eg SIMD). |
| */ |
| typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); |
| |
| typedef struct AArch64DecodeTable { |
| uint32_t pattern; |
| uint32_t mask; |
| AArch64DecodeFn *disas_fn; |
| } AArch64DecodeTable; |
| |
| /* initialize TCG globals. */ |
| void a64_translate_init(void) |
| { |
| int i; |
| |
| cpu_pc = tcg_global_mem_new_i64(tcg_env, |
| offsetof(CPUARMState, pc), |
| "pc"); |
| for (i = 0; i < 32; i++) { |
| cpu_X[i] = tcg_global_mem_new_i64(tcg_env, |
| offsetof(CPUARMState, xregs[i]), |
| regnames[i]); |
| } |
| |
| cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env, |
| offsetof(CPUARMState, exclusive_high), "exclusive_high"); |
| } |
| |
| /* |
| * Return the core mmu_idx to use for A64 load/store insns which |
| * have a "unprivileged load/store" variant. Those insns access |
| * EL0 if executed from an EL which has control over EL0 (usually |
| * EL1) but behave like normal loads and stores if executed from |
| * elsewhere (eg EL3). |
| * |
| * @unpriv : true for the unprivileged encoding; false for the |
| * normal encoding (in which case we will return the same |
| * thing as get_mem_index(). |
| */ |
| static int get_a64_user_mem_index(DisasContext *s, bool unpriv) |
| { |
| /* |
| * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL, |
| * which is the usual mmu_idx for this cpu state. |
| */ |
| ARMMMUIdx useridx = s->mmu_idx; |
| |
| if (unpriv && s->unpriv) { |
| /* |
| * We have pre-computed the condition for AccType_UNPRIV. |
| * Therefore we should never get here with a mmu_idx for |
| * which we do not know the corresponding user mmu_idx. |
| */ |
| switch (useridx) { |
| case ARMMMUIdx_E10_1: |
| case ARMMMUIdx_E10_1_PAN: |
| useridx = ARMMMUIdx_E10_0; |
| break; |
| case ARMMMUIdx_E20_2: |
| case ARMMMUIdx_E20_2_PAN: |
| useridx = ARMMMUIdx_E20_0; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| return arm_to_core_mmu_idx(useridx); |
| } |
| |
| static void set_btype_raw(int val) |
| { |
| tcg_gen_st_i32(tcg_constant_i32(val), tcg_env, |
| offsetof(CPUARMState, btype)); |
| } |
| |
| static void set_btype(DisasContext *s, int val) |
| { |
| /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */ |
| tcg_debug_assert(val >= 1 && val <= 3); |
| set_btype_raw(val); |
| s->btype = -1; |
| } |
| |
| static void reset_btype(DisasContext *s) |
| { |
| if (s->btype != 0) { |
| set_btype_raw(0); |
| s->btype = 0; |
| } |
| } |
| |
| static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff) |
| { |
| assert(s->pc_save != -1); |
| if (tb_cflags(s->base.tb) & CF_PCREL) { |
| tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff); |
| } else { |
| tcg_gen_movi_i64(dest, s->pc_curr + diff); |
| } |
| } |
| |
| void gen_a64_update_pc(DisasContext *s, target_long diff) |
| { |
| gen_pc_plus_diff(s, cpu_pc, diff); |
| s->pc_save = s->pc_curr + diff; |
| } |
| |
| /* |
| * Handle Top Byte Ignore (TBI) bits. |
| * |
| * If address tagging is enabled via the TCR TBI bits: |
| * + for EL2 and EL3 there is only one TBI bit, and if it is set |
| * then the address is zero-extended, clearing bits [63:56] |
| * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 |
| * and TBI1 controls addresses with bit 55 == 1. |
| * If the appropriate TBI bit is set for the address then |
| * the address is sign-extended from bit 55 into bits [63:56] |
| * |
| * Here We have concatenated TBI{1,0} into tbi. |
| */ |
| static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst, |
| TCGv_i64 src, int tbi) |
| { |
| if (tbi == 0) { |
| /* Load unmodified address */ |
| tcg_gen_mov_i64(dst, src); |
| } else if (!regime_has_2_ranges(s->mmu_idx)) { |
| /* Force tag byte to all zero */ |
| tcg_gen_extract_i64(dst, src, 0, 56); |
| } else { |
| /* Sign-extend from bit 55. */ |
| tcg_gen_sextract_i64(dst, src, 0, 56); |
| |
| switch (tbi) { |
| case 1: |
| /* tbi0 but !tbi1: only use the extension if positive */ |
| tcg_gen_and_i64(dst, dst, src); |
| break; |
| case 2: |
| /* !tbi0 but tbi1: only use the extension if negative */ |
| tcg_gen_or_i64(dst, dst, src); |
| break; |
| case 3: |
| /* tbi0 and tbi1: always use the extension */ |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| } |
| |
| static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) |
| { |
| /* |
| * If address tagging is enabled for instructions via the TCR TBI bits, |
| * then loading an address into the PC will clear out any tag. |
| */ |
| gen_top_byte_ignore(s, cpu_pc, src, s->tbii); |
| s->pc_save = -1; |
| } |
| |
| /* |
| * Handle MTE and/or TBI. |
| * |
| * For TBI, ideally, we would do nothing. Proper behaviour on fault is |
| * for the tag to be present in the FAR_ELx register. But for user-only |
| * mode we do not have a TLB with which to implement this, so we must |
| * remove the top byte now. |
| * |
| * Always return a fresh temporary that we can increment independently |
| * of the write-back address. |
| */ |
| |
| TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr) |
| { |
| TCGv_i64 clean = tcg_temp_new_i64(); |
| #ifdef CONFIG_USER_ONLY |
| gen_top_byte_ignore(s, clean, addr, s->tbid); |
| #else |
| tcg_gen_mov_i64(clean, addr); |
| #endif |
| return clean; |
| } |
| |
| /* Insert a zero tag into src, with the result at dst. */ |
| static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src) |
| { |
| tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4)); |
| } |
| |
| static void gen_probe_access(DisasContext *s, TCGv_i64 ptr, |
| MMUAccessType acc, int log2_size) |
| { |
| gen_helper_probe_access(tcg_env, ptr, |
| tcg_constant_i32(acc), |
| tcg_constant_i32(get_mem_index(s)), |
| tcg_constant_i32(1 << log2_size)); |
| } |
| |
| /* |
| * For MTE, check a single logical or atomic access. This probes a single |
| * address, the exact one specified. The size and alignment of the access |
| * is not relevant to MTE, per se, but watchpoints do require the size, |
| * and we want to recognize those before making any other changes to state. |
| */ |
| static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr, |
| bool is_write, bool tag_checked, |
| MemOp memop, bool is_unpriv, |
| int core_idx) |
| { |
| if (tag_checked && s->mte_active[is_unpriv]) { |
| TCGv_i64 ret; |
| int desc = 0; |
| |
| desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx); |
| desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); |
| desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); |
| desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); |
| desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop)); |
| desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1); |
| |
| ret = tcg_temp_new_i64(); |
| gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); |
| |
| return ret; |
| } |
| return clean_data_tbi(s, addr); |
| } |
| |
| TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write, |
| bool tag_checked, MemOp memop) |
| { |
| return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop, |
| false, get_mem_index(s)); |
| } |
| |
| /* |
| * For MTE, check multiple logical sequential accesses. |
| */ |
| TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write, |
| bool tag_checked, int total_size, MemOp single_mop) |
| { |
| if (tag_checked && s->mte_active[0]) { |
| TCGv_i64 ret; |
| int desc = 0; |
| |
| desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); |
| desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); |
| desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); |
| desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write); |
| desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop)); |
| desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1); |
| |
| ret = tcg_temp_new_i64(); |
| gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr); |
| |
| return ret; |
| } |
| return clean_data_tbi(s, addr); |
| } |
| |
| /* |
| * Generate the special alignment check that applies to AccType_ATOMIC |
| * and AccType_ORDERED insns under FEAT_LSE2: the access need not be |
| * naturally aligned, but it must not cross a 16-byte boundary. |
| * See AArch64.CheckAlignment(). |
| */ |
| static void check_lse2_align(DisasContext *s, int rn, int imm, |
| bool is_write, MemOp mop) |
| { |
| TCGv_i32 tmp; |
| TCGv_i64 addr; |
| TCGLabel *over_label; |
| MMUAccessType type; |
| int mmu_idx; |
| |
| tmp = tcg_temp_new_i32(); |
| tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn)); |
| tcg_gen_addi_i32(tmp, tmp, imm & 15); |
| tcg_gen_andi_i32(tmp, tmp, 15); |
| tcg_gen_addi_i32(tmp, tmp, memop_size(mop)); |
| |
| over_label = gen_new_label(); |
| tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label); |
| |
| addr = tcg_temp_new_i64(); |
| tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm); |
| |
| type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD, |
| mmu_idx = get_mem_index(s); |
| gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type), |
| tcg_constant_i32(mmu_idx)); |
| |
| gen_set_label(over_label); |
| |
| } |
| |
| /* Handle the alignment check for AccType_ATOMIC instructions. */ |
| static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop) |
| { |
| MemOp size = mop & MO_SIZE; |
| |
| if (size == MO_8) { |
| return mop; |
| } |
| |
| /* |
| * If size == MO_128, this is a LDXP, and the operation is single-copy |
| * atomic for each doubleword, not the entire quadword; it still must |
| * be quadword aligned. |
| */ |
| if (size == MO_128) { |
| return finalize_memop_atom(s, MO_128 | MO_ALIGN, |
| MO_ATOM_IFALIGN_PAIR); |
| } |
| if (dc_isar_feature(aa64_lse2, s)) { |
| check_lse2_align(s, rn, 0, true, mop); |
| } else { |
| mop |= MO_ALIGN; |
| } |
| return finalize_memop(s, mop); |
| } |
| |
| /* Handle the alignment check for AccType_ORDERED instructions. */ |
| static MemOp check_ordered_align(DisasContext *s, int rn, int imm, |
| bool is_write, MemOp mop) |
| { |
| MemOp size = mop & MO_SIZE; |
| |
| if (size == MO_8) { |
| return mop; |
| } |
| if (size == MO_128) { |
| return finalize_memop_atom(s, MO_128 | MO_ALIGN, |
| MO_ATOM_IFALIGN_PAIR); |
| } |
| if (!dc_isar_feature(aa64_lse2, s)) { |
| mop |= MO_ALIGN; |
| } else if (!s->naa) { |
| check_lse2_align(s, rn, imm, is_write, mop); |
| } |
| return finalize_memop(s, mop); |
| } |
| |
| typedef struct DisasCompare64 { |
| TCGCond cond; |
| TCGv_i64 value; |
| } DisasCompare64; |
| |
| static void a64_test_cc(DisasCompare64 *c64, int cc) |
| { |
| DisasCompare c32; |
| |
| arm_test_cc(&c32, cc); |
| |
| /* |
| * Sign-extend the 32-bit value so that the GE/LT comparisons work |
| * properly. The NE/EQ comparisons are also fine with this choice. |
| */ |
| c64->cond = c32.cond; |
| c64->value = tcg_temp_new_i64(); |
| tcg_gen_ext_i32_i64(c64->value, c32.value); |
| } |
| |
| static void gen_rebuild_hflags(DisasContext *s) |
| { |
| gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el)); |
| } |
| |
| static void gen_exception_internal(int excp) |
| { |
| assert(excp_is_internal(excp)); |
| gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp)); |
| } |
| |
| static void gen_exception_internal_insn(DisasContext *s, int excp) |
| { |
| gen_a64_update_pc(s, 0); |
| gen_exception_internal(excp); |
| s->base.is_jmp = DISAS_NORETURN; |
| } |
| |
| static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome) |
| { |
| gen_a64_update_pc(s, 0); |
| gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome)); |
| s->base.is_jmp = DISAS_NORETURN; |
| } |
| |
| static void gen_step_complete_exception(DisasContext *s) |
| { |
| /* We just completed step of an insn. Move from Active-not-pending |
| * to Active-pending, and then also take the swstep exception. |
| * This corresponds to making the (IMPDEF) choice to prioritize |
| * swstep exceptions over asynchronous exceptions taken to an exception |
| * level where debug is disabled. This choice has the advantage that |
| * we do not need to maintain internal state corresponding to the |
| * ISV/EX syndrome bits between completion of the step and generation |
| * of the exception, and our syndrome information is always correct. |
| */ |
| gen_ss_advance(s); |
| gen_swstep_exception(s, 1, s->is_ldex); |
| s->base.is_jmp = DISAS_NORETURN; |
| } |
| |
| static inline bool use_goto_tb(DisasContext *s, uint64_t dest) |
| { |
| if (s->ss_active) { |
| return false; |
| } |
| return translator_use_goto_tb(&s->base, dest); |
| } |
| |
| static void gen_goto_tb(DisasContext *s, int n, int64_t diff) |
| { |
| if (use_goto_tb(s, s->pc_curr + diff)) { |
| /* |
| * For pcrel, the pc must always be up-to-date on entry to |
| * the linked TB, so that it can use simple additions for all |
| * further adjustments. For !pcrel, the linked TB is compiled |
| * to know its full virtual address, so we can delay the |
| * update to pc to the unlinked path. A long chain of links |
| * can thus avoid many updates to the PC. |
| */ |
| if (tb_cflags(s->base.tb) & CF_PCREL) { |
| gen_a64_update_pc(s, diff); |
| tcg_gen_goto_tb(n); |
| } else { |
| tcg_gen_goto_tb(n); |
| gen_a64_update_pc(s, diff); |
| } |
| tcg_gen_exit_tb(s->base.tb, n); |
| s->base.is_jmp = DISAS_NORETURN; |
| } else { |
| gen_a64_update_pc(s, diff); |
| if (s->ss_active) { |
| gen_step_complete_exception(s); |
| } else { |
| tcg_gen_lookup_and_goto_ptr(); |
| s->base.is_jmp = DISAS_NORETURN; |
| } |
| } |
| } |
| |
| /* |
| * Register access functions |
| * |
| * These functions are used for directly accessing a register in where |
| * changes to the final register value are likely to be made. If you |
| * need to use a register for temporary calculation (e.g. index type |
| * operations) use the read_* form. |
| * |
| * B1.2.1 Register mappings |
| * |
| * In instruction register encoding 31 can refer to ZR (zero register) or |
| * the SP (stack pointer) depending on context. In QEMU's case we map SP |
| * to cpu_X[31] and ZR accesses to a temporary which can be discarded. |
| * This is the point of the _sp forms. |
| */ |
| TCGv_i64 cpu_reg(DisasContext *s, int reg) |
| { |
| if (reg == 31) { |
| TCGv_i64 t = tcg_temp_new_i64(); |
| tcg_gen_movi_i64(t, 0); |
| return t; |
| } else { |
| return cpu_X[reg]; |
| } |
| } |
| |
| /* register access for when 31 == SP */ |
| TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) |
| { |
| return cpu_X[reg]; |
| } |
| |
| /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 |
| * representing the register contents. This TCGv is an auto-freed |
| * temporary so it need not be explicitly freed, and may be modified. |
| */ |
| TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) |
| { |
| TCGv_i64 v = tcg_temp_new_i64(); |
| if (reg != 31) { |
| if (sf) { |
| tcg_gen_mov_i64(v, cpu_X[reg]); |
| } else { |
| tcg_gen_ext32u_i64(v, cpu_X[reg]); |
| } |
| } else { |
| tcg_gen_movi_i64(v, 0); |
| } |
| return v; |
| } |
| |
| TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) |
| { |
| TCGv_i64 v = tcg_temp_new_i64(); |
| if (sf) { |
| tcg_gen_mov_i64(v, cpu_X[reg]); |
| } else { |
| tcg_gen_ext32u_i64(v, cpu_X[reg]); |
| } |
| return v; |
| } |
| |
| /* Return the offset into CPUARMState of a slice (from |
| * the least significant end) of FP register Qn (ie |
| * Dn, Sn, Hn or Bn). |
| * (Note that this is not the same mapping as for A32; see cpu.h) |
| */ |
| static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size) |
| { |
| return vec_reg_offset(s, regno, 0, size); |
| } |
| |
| /* Offset of the high half of the 128 bit vector Qn */ |
| static inline int fp_reg_hi_offset(DisasContext *s, int regno) |
| { |
| return vec_reg_offset(s, regno, 1, MO_64); |
| } |
| |
| /* Convenience accessors for reading and writing single and double |
| * FP registers. Writing clears the upper parts of the associated |
| * 128 bit vector register, as required by the architecture. |
| * Note that unlike the GP register accessors, the values returned |
| * by the read functions must be manually freed. |
| */ |
| static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) |
| { |
| TCGv_i64 v = tcg_temp_new_i64(); |
| |
| tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64)); |
| return v; |
| } |
| |
| static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) |
| { |
| TCGv_i32 v = tcg_temp_new_i32(); |
| |
| tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32)); |
| return v; |
| } |
| |
| static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) |
| { |
| TCGv_i32 v = tcg_temp_new_i32(); |
| |
| tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16)); |
| return v; |
| } |
| |
| /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). |
| * If SVE is not enabled, then there are only 128 bits in the vector. |
| */ |
| static void clear_vec_high(DisasContext *s, bool is_q, int rd) |
| { |
| unsigned ofs = fp_reg_offset(s, rd, MO_64); |
| unsigned vsz = vec_full_reg_size(s); |
| |
| /* Nop move, with side effect of clearing the tail. */ |
| tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz); |
| } |
| |
| void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) |
| { |
| unsigned ofs = fp_reg_offset(s, reg, MO_64); |
| |
| tcg_gen_st_i64(v, tcg_env, ofs); |
| clear_vec_high(s, false, reg); |
| } |
| |
| static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) |
| { |
| TCGv_i64 tmp = tcg_temp_new_i64(); |
| |
| tcg_gen_extu_i32_i64(tmp, v); |
| write_fp_dreg(s, reg, tmp); |
| } |
| |
| /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ |
| static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, |
| GVecGen2Fn *gvec_fn, int vece) |
| { |
| gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), |
| is_q ? 16 : 8, vec_full_reg_size(s)); |
| } |
| |
| /* Expand a 2-operand + immediate AdvSIMD vector operation using |
| * an expander function. |
| */ |
| static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, |
| int64_t imm, GVecGen2iFn *gvec_fn, int vece) |
| { |
| gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), |
| imm, is_q ? 16 : 8, vec_full_reg_size(s)); |
| } |
| |
| /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ |
| static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, |
| GVecGen3Fn *gvec_fn, int vece) |
| { |
| gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), |
| vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); |
| } |
| |
| /* Expand a 4-operand AdvSIMD vector operation using an expander function. */ |
| static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm, |
| int rx, GVecGen4Fn *gvec_fn, int vece) |
| { |
| gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), |
| vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx), |
| is_q ? 16 : 8, vec_full_reg_size(s)); |
| } |
| |
| /* Expand a 2-operand operation using an out-of-line helper. */ |
| static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd, |
| int rn, int data, gen_helper_gvec_2 *fn) |
| { |
| tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), |
| vec_full_reg_offset(s, rn), |
| is_q ? 16 : 8, vec_full_reg_size(s), data, fn); |
| } |
| |
| /* Expand a 3-operand operation using an out-of-line helper. */ |
| static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, |
| int rn, int rm, int data, gen_helper_gvec_3 *fn) |
| { |
| tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), |
| vec_full_reg_offset(s, rn), |
| vec_full_reg_offset(s, rm), |
| is_q ? 16 : 8, vec_full_reg_size(s), data, fn); |
| } |
| |
| /* Expand a 3-operand + fpstatus pointer + simd data value operation using |
| * an out-of-line helper. |
| */ |
| static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, |
| int rm, bool is_fp16, int data, |
| gen_helper_gvec_3_ptr *fn) |
| { |
| TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); |
| tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), |
| vec_full_reg_offset(s, rn), |
| vec_full_reg_offset(s, rm), fpst, |
| is_q ? 16 : 8, vec_full_reg_size(s), data, fn); |
| } |
| |
| /* Expand a 4-operand operation using an out-of-line helper. */ |
| static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn, |
| int rm, int ra, int data, gen_helper_gvec_4 *fn) |
| { |
| tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd), |
| vec_full_reg_offset(s, rn), |
| vec_full_reg_offset(s, rm), |
| vec_full_reg_offset(s, ra), |
| is_q ? 16 : 8, vec_full_reg_size(s), data, fn); |
| } |
| |
| /* |
| * Expand a 4-operand + fpstatus pointer + simd data value operation using |
| * an out-of-line helper. |
| */ |
| static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn, |
| int rm, int ra, bool is_fp16, int data, |
| gen_helper_gvec_4_ptr *fn) |
| { |
| TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); |
| tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), |
| vec_full_reg_offset(s, rn), |
| vec_full_reg_offset(s, rm), |
| vec_full_reg_offset(s, ra), fpst, |
| is_q ? 16 : 8, vec_full_reg_size(s), data, fn); |
| } |
| |
| /* Set ZF and NF based on a 64 bit result. This is alas fiddlier |
| * than the 32 bit equivalent. |
| */ |
| static inline void gen_set_NZ64(TCGv_i64 result) |
| { |
| tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); |
| tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); |
| } |
| |
| /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ |
| static inline void gen_logic_CC(int sf, TCGv_i64 result) |
| { |
| if (sf) { |
| gen_set_NZ64(result); |
| } else { |
| tcg_gen_extrl_i64_i32(cpu_ZF, result); |
| tcg_gen_mov_i32(cpu_NF, cpu_ZF); |
| } |
| tcg_gen_movi_i32(cpu_CF, 0); |
| tcg_gen_movi_i32(cpu_VF, 0); |
| } |
| |
| /* dest = T0 + T1; compute C, N, V and Z flags */ |
| static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) |
| { |
| TCGv_i64 result, flag, tmp; |
| result = tcg_temp_new_i64(); |
| flag = tcg_temp_new_i64(); |
| tmp = tcg_temp_new_i64(); |
| |
| tcg_gen_movi_i64(tmp, 0); |
| tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); |
| |
| tcg_gen_extrl_i64_i32(cpu_CF, flag); |
| |
| gen_set_NZ64(result); |
| |
| tcg_gen_xor_i64(flag, result, t0); |
| tcg_gen_xor_i64(tmp, t0, t1); |
| tcg_gen_andc_i64(flag, flag, tmp); |
| tcg_gen_extrh_i64_i32(cpu_VF, flag); |
| |
| tcg_gen_mov_i64(dest, result); |
| } |
| |
| static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) |
| { |
| TCGv_i32 t0_32 = tcg_temp_new_i32(); |
| TCGv_i32 t1_32 = tcg_temp_new_i32(); |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| |
| tcg_gen_movi_i32(tmp, 0); |
| tcg_gen_extrl_i64_i32(t0_32, t0); |
| tcg_gen_extrl_i64_i32(t1_32, t1); |
| tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); |
| tcg_gen_mov_i32(cpu_ZF, cpu_NF); |
| tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); |
| tcg_gen_xor_i32(tmp, t0_32, t1_32); |
| tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); |
| tcg_gen_extu_i32_i64(dest, cpu_NF); |
| } |
| |
| static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) |
| { |
| if (sf) { |
| gen_add64_CC(dest, t0, t1); |
| } else { |
| gen_add32_CC(dest, t0, t1); |
| } |
| } |
| |
| /* dest = T0 - T1; compute C, N, V and Z flags */ |
| static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) |
| { |
| /* 64 bit arithmetic */ |
| TCGv_i64 result, flag, tmp; |
| |
| result = tcg_temp_new_i64(); |
| flag = tcg_temp_new_i64(); |
| tcg_gen_sub_i64(result, t0, t1); |
| |
| gen_set_NZ64(result); |
| |
| tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); |
| tcg_gen_extrl_i64_i32(cpu_CF, flag); |
| |
| tcg_gen_xor_i64(flag, result, t0); |
| tmp = tcg_temp_new_i64(); |
| tcg_gen_xor_i64(tmp, t0, t1); |
| tcg_gen_and_i64(flag, flag, tmp); |
| tcg_gen_extrh_i64_i32(cpu_VF, flag); |
| tcg_gen_mov_i64(dest, result); |
| } |
| |
| static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) |
| { |
| /* 32 bit arithmetic */ |
| TCGv_i32 t0_32 = tcg_temp_new_i32(); |
| TCGv_i32 t1_32 = tcg_temp_new_i32(); |
| TCGv_i32 tmp; |
| |
| tcg_gen_extrl_i64_i32(t0_32, t0); |
| tcg_gen_extrl_i64_i32(t1_32, t1); |
| tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); |
| tcg_gen_mov_i32(cpu_ZF, cpu_NF); |
| tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); |
| tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); |
| tmp = tcg_temp_new_i32(); |
| tcg_gen_xor_i32(tmp, t0_32, t1_32); |
| tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); |
| tcg_gen_extu_i32_i64(dest, cpu_NF); |
| } |
| |
| static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) |
| { |
| if (sf) { |
| gen_sub64_CC(dest, t0, t1); |
| } else { |
| gen_sub32_CC(dest, t0, t1); |
| } |
| } |
| |
| /* dest = T0 + T1 + CF; do not compute flags. */ |
| static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) |
| { |
| TCGv_i64 flag = tcg_temp_new_i64(); |
| tcg_gen_extu_i32_i64(flag, cpu_CF); |
| tcg_gen_add_i64(dest, t0, t1); |
| tcg_gen_add_i64(dest, dest, flag); |
| |
| if (!sf) { |
| tcg_gen_ext32u_i64(dest, dest); |
| } |
| } |
| |
| /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ |
| static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) |
| { |
| if (sf) { |
| TCGv_i64 result = tcg_temp_new_i64(); |
| TCGv_i64 cf_64 = tcg_temp_new_i64(); |
| TCGv_i64 vf_64 = tcg_temp_new_i64(); |
| TCGv_i64 tmp = tcg_temp_new_i64(); |
| TCGv_i64 zero = tcg_constant_i64(0); |
| |
| tcg_gen_extu_i32_i64(cf_64, cpu_CF); |
| tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero); |
| tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero); |
| tcg_gen_extrl_i64_i32(cpu_CF, cf_64); |
| gen_set_NZ64(result); |
| |
| tcg_gen_xor_i64(vf_64, result, t0); |
| tcg_gen_xor_i64(tmp, t0, t1); |
| tcg_gen_andc_i64(vf_64, vf_64, tmp); |
| tcg_gen_extrh_i64_i32(cpu_VF, vf_64); |
| |
| tcg_gen_mov_i64(dest, result); |
| } else { |
| TCGv_i32 t0_32 = tcg_temp_new_i32(); |
| TCGv_i32 t1_32 = tcg_temp_new_i32(); |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| TCGv_i32 zero = tcg_constant_i32(0); |
| |
| tcg_gen_extrl_i64_i32(t0_32, t0); |
| tcg_gen_extrl_i64_i32(t1_32, t1); |
| tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero); |
| tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero); |
| |
| tcg_gen_mov_i32(cpu_ZF, cpu_NF); |
| tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); |
| tcg_gen_xor_i32(tmp, t0_32, t1_32); |
| tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); |
| tcg_gen_extu_i32_i64(dest, cpu_NF); |
| } |
| } |
| |
| /* |
| * Load/Store generators |
| */ |
| |
| /* |
| * Store from GPR register to memory. |
| */ |
| static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, |
| TCGv_i64 tcg_addr, MemOp memop, int memidx, |
| bool iss_valid, |
| unsigned int iss_srt, |
| bool iss_sf, bool iss_ar) |
| { |
| tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop); |
| |
| if (iss_valid) { |
| uint32_t syn; |
| |
| syn = syn_data_abort_with_iss(0, |
| (memop & MO_SIZE), |
| false, |
| iss_srt, |
| iss_sf, |
| iss_ar, |
| 0, 0, 0, 0, 0, false); |
| disas_set_insn_syndrome(s, syn); |
| } |
| } |
| |
| static void do_gpr_st(DisasContext *s, TCGv_i64 source, |
| TCGv_i64 tcg_addr, MemOp memop, |
| bool iss_valid, |
| unsigned int iss_srt, |
| bool iss_sf, bool iss_ar) |
| { |
| do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s), |
| iss_valid, iss_srt, iss_sf, iss_ar); |
| } |
| |
| /* |
| * Load from memory to GPR register |
| */ |
| static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, |
| MemOp memop, bool extend, int memidx, |
| bool iss_valid, unsigned int iss_srt, |
| bool iss_sf, bool iss_ar) |
| { |
| tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); |
| |
| if (extend && (memop & MO_SIGN)) { |
| g_assert((memop & MO_SIZE) <= MO_32); |
| tcg_gen_ext32u_i64(dest, dest); |
| } |
| |
| if (iss_valid) { |
| uint32_t syn; |
| |
| syn = syn_data_abort_with_iss(0, |
| (memop & MO_SIZE), |
| (memop & MO_SIGN) != 0, |
| iss_srt, |
| iss_sf, |
| iss_ar, |
| 0, 0, 0, 0, 0, false); |
| disas_set_insn_syndrome(s, syn); |
| } |
| } |
| |
| static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, |
| MemOp memop, bool extend, |
| bool iss_valid, unsigned int iss_srt, |
| bool iss_sf, bool iss_ar) |
| { |
| do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s), |
| iss_valid, iss_srt, iss_sf, iss_ar); |
| } |
| |
| /* |
| * Store from FP register to memory |
| */ |
| static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop) |
| { |
| /* This writes the bottom N bits of a 128 bit wide vector to memory */ |
| TCGv_i64 tmplo = tcg_temp_new_i64(); |
| |
| tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64)); |
| |
| if ((mop & MO_SIZE) < MO_128) { |
| tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop); |
| } else { |
| TCGv_i64 tmphi = tcg_temp_new_i64(); |
| TCGv_i128 t16 = tcg_temp_new_i128(); |
| |
| tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx)); |
| tcg_gen_concat_i64_i128(t16, tmplo, tmphi); |
| |
| tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop); |
| } |
| } |
| |
| /* |
| * Load from memory to FP register |
| */ |
| static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop) |
| { |
| /* This always zero-extends and writes to a full 128 bit wide vector */ |
| TCGv_i64 tmplo = tcg_temp_new_i64(); |
| TCGv_i64 tmphi = NULL; |
| |
| if ((mop & MO_SIZE) < MO_128) { |
| tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop); |
| } else { |
| TCGv_i128 t16 = tcg_temp_new_i128(); |
| |
| tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop); |
| |
| tmphi = tcg_temp_new_i64(); |
| tcg_gen_extr_i128_i64(tmplo, tmphi, t16); |
| } |
| |
| tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64)); |
| |
| if (tmphi) { |
| tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx)); |
| } |
| clear_vec_high(s, tmphi != NULL, destidx); |
| } |
| |
| /* |
| * Vector load/store helpers. |
| * |
| * The principal difference between this and a FP load is that we don't |
| * zero extend as we are filling a partial chunk of the vector register. |
| * These functions don't support 128 bit loads/stores, which would be |
| * normal load/store operations. |
| * |
| * The _i32 versions are useful when operating on 32 bit quantities |
| * (eg for floating point single or using Neon helper functions). |
| */ |
| |
| /* Get value of an element within a vector register */ |
| static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, |
| int element, MemOp memop) |
| { |
| int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); |
| switch ((unsigned)memop) { |
| case MO_8: |
| tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off); |
| break; |
| case MO_16: |
| tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off); |
| break; |
| case MO_32: |
| tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off); |
| break; |
| case MO_8|MO_SIGN: |
| tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off); |
| break; |
| case MO_16|MO_SIGN: |
| tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off); |
| break; |
| case MO_32|MO_SIGN: |
| tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off); |
| break; |
| case MO_64: |
| case MO_64|MO_SIGN: |
| tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, |
| int element, MemOp memop) |
| { |
| int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); |
| switch (memop) { |
| case MO_8: |
| tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off); |
| break; |
| case MO_16: |
| tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off); |
| break; |
| case MO_8|MO_SIGN: |
| tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off); |
| break; |
| case MO_16|MO_SIGN: |
| tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off); |
| break; |
| case MO_32: |
| case MO_32|MO_SIGN: |
| tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| /* Set value of an element within a vector register */ |
| static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, |
| int element, MemOp memop) |
| { |
| int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); |
| switch (memop) { |
| case MO_8: |
| tcg_gen_st8_i64(tcg_src, tcg_env, vect_off); |
| break; |
| case MO_16: |
| tcg_gen_st16_i64(tcg_src, tcg_env, vect_off); |
| break; |
| case MO_32: |
| tcg_gen_st32_i64(tcg_src, tcg_env, vect_off); |
| break; |
| case MO_64: |
| tcg_gen_st_i64(tcg_src, tcg_env, vect_off); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, |
| int destidx, int element, MemOp memop) |
| { |
| int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); |
| switch (memop) { |
| case MO_8: |
| tcg_gen_st8_i32(tcg_src, tcg_env, vect_off); |
| break; |
| case MO_16: |
| tcg_gen_st16_i32(tcg_src, tcg_env, vect_off); |
| break; |
| case MO_32: |
| tcg_gen_st_i32(tcg_src, tcg_env, vect_off); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| /* Store from vector register to memory */ |
| static void do_vec_st(DisasContext *s, int srcidx, int element, |
| TCGv_i64 tcg_addr, MemOp mop) |
| { |
| TCGv_i64 tcg_tmp = tcg_temp_new_i64(); |
| |
| read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE); |
| tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); |
| } |
| |
| /* Load from memory to vector register */ |
| static void do_vec_ld(DisasContext *s, int destidx, int element, |
| TCGv_i64 tcg_addr, MemOp mop) |
| { |
| TCGv_i64 tcg_tmp = tcg_temp_new_i64(); |
| |
| tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop); |
| write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE); |
| } |
| |
| /* Check that FP/Neon access is enabled. If it is, return |
| * true. If not, emit code to generate an appropriate exception, |
| * and return false; the caller should not emit any code for |
| * the instruction. Note that this check must happen after all |
| * unallocated-encoding checks (otherwise the syndrome information |
| * for the resulting exception will be incorrect). |
| */ |
| static bool fp_access_check_only(DisasContext *s) |
| { |
| if (s->fp_excp_el) { |
| assert(!s->fp_access_checked); |
| s->fp_access_checked = true; |
| |
| gen_exception_insn_el(s, 0, EXCP_UDEF, |
| syn_fp_access_trap(1, 0xe, false, 0), |
| s->fp_excp_el); |
| return false; |
| } |
| s->fp_access_checked = true; |
| return true; |
| } |
| |
| static bool fp_access_check(DisasContext *s) |
| { |
| if (!fp_access_check_only(s)) { |
| return false; |
| } |
| if (s->sme_trap_nonstreaming && s->is_nonstreaming) { |
| gen_exception_insn(s, 0, EXCP_UDEF, |
| syn_smetrap(SME_ET_Streaming, false)); |
| return false; |
| } |
| return true; |
| } |
| |
| /* |
| * Check that SVE access is enabled. If it is, return true. |
| * If not, emit code to generate an appropriate exception and return false. |
| * This function corresponds to CheckSVEEnabled(). |
| */ |
| bool sve_access_check(DisasContext *s) |
| { |
| if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) { |
| assert(dc_isar_feature(aa64_sme, s)); |
| if (!sme_sm_enabled_check(s)) { |
| goto fail_exit; |
| } |
| } else if (s->sve_excp_el) { |
| gen_exception_insn_el(s, 0, EXCP_UDEF, |
| syn_sve_access_trap(), s->sve_excp_el); |
| goto fail_exit; |
| } |
| s->sve_access_checked = true; |
| return fp_access_check(s); |
| |
| fail_exit: |
| /* Assert that we only raise one exception per instruction. */ |
| assert(!s->sve_access_checked); |
| s->sve_access_checked = true; |
| return false; |
| } |
| |
| /* |
| * Check that SME access is enabled, raise an exception if not. |
| * Note that this function corresponds to CheckSMEAccess and is |
| * only used directly for cpregs. |
| */ |
| static bool sme_access_check(DisasContext *s) |
| { |
| if (s->sme_excp_el) { |
| gen_exception_insn_el(s, 0, EXCP_UDEF, |
| syn_smetrap(SME_ET_AccessTrap, false), |
| s->sme_excp_el); |
| return false; |
| } |
| return true; |
| } |
| |
| /* This function corresponds to CheckSMEEnabled. */ |
| bool sme_enabled_check(DisasContext *s) |
| { |
| /* |
| * Note that unlike sve_excp_el, we have not constrained sme_excp_el |
| * to be zero when fp_excp_el has priority. This is because we need |
| * sme_excp_el by itself for cpregs access checks. |
| */ |
| if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) { |
| s->fp_access_checked = true; |
| return sme_access_check(s); |
| } |
| return fp_access_check_only(s); |
| } |
| |
| /* Common subroutine for CheckSMEAnd*Enabled. */ |
| bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req) |
| { |
| if (!sme_enabled_check(s)) { |
| return false; |
| } |
| if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) { |
| gen_exception_insn(s, 0, EXCP_UDEF, |
| syn_smetrap(SME_ET_NotStreaming, false)); |
| return false; |
| } |
| if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) { |
| gen_exception_insn(s, 0, EXCP_UDEF, |
| syn_smetrap(SME_ET_InactiveZA, false)); |
| return false; |
| } |
| return true; |
| } |
| |
| /* |
| * Expanders for AdvSIMD translation functions. |
| */ |
| |
| static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data, |
| gen_helper_gvec_2 *fn) |
| { |
| if (!a->q && a->esz == MO_64) { |
| return false; |
| } |
| if (fp_access_check(s)) { |
| gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn); |
| } |
| return true; |
| } |
| |
| static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data, |
| gen_helper_gvec_3 *fn) |
| { |
| if (!a->q && a->esz == MO_64) { |
| return false; |
| } |
| if (fp_access_check(s)) { |
| gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn); |
| } |
| return true; |
| } |
| |
| static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) |
| { |
| if (!a->q && a->esz == MO_64) { |
| return false; |
| } |
| if (fp_access_check(s)) { |
| gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz); |
| } |
| return true; |
| } |
| |
| static bool do_gvec_fn3_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) |
| { |
| if (a->esz == MO_64) { |
| return false; |
| } |
| if (fp_access_check(s)) { |
| gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz); |
| } |
| return true; |
| } |
| |
| static bool do_gvec_fn3_no8_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn) |
| { |
| if (a->esz == MO_8) { |
| return false; |
| } |
| return do_gvec_fn3_no64(s, a, fn); |
| } |
| |
| static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn) |
| { |
| if (!a->q && a->esz == MO_64) { |
| return false; |
| } |
| if (fp_access_check(s)) { |
| gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz); |
| } |
| return true; |
| } |
| |
| /* |
| * This utility function is for doing register extension with an |
| * optional shift. You will likely want to pass a temporary for the |
| * destination register. See DecodeRegExtend() in the ARM ARM. |
| */ |
| static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, |
| int option, unsigned int shift) |
| { |
| int extsize = extract32(option, 0, 2); |
| bool is_signed = extract32(option, 2, 1); |
| |
| tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0)); |
| tcg_gen_shli_i64(tcg_out, tcg_out, shift); |
| } |
| |
| static inline void gen_check_sp_alignment(DisasContext *s) |
| { |
| /* The AArch64 architecture mandates that (if enabled via PSTATE |
| * or SCTLR bits) there is a check that SP is 16-aligned on every |
| * SP-relative load or store (with an exception generated if it is not). |
| * In line with general QEMU practice regarding misaligned accesses, |
| * we omit these checks for the sake of guest program performance. |
| * This function is provided as a hook so we can more easily add these |
| * checks in future (possibly as a "favour catching guest program bugs |
| * over speed" user selectable option). |
| */ |
| } |
| |
| /* |
| * This provides a simple table based table lookup decoder. It is |
| * intended to be used when the relevant bits for decode are too |
| * awkwardly placed and switch/if based logic would be confusing and |
| * deeply nested. Since it's a linear search through the table, tables |
| * should be kept small. |
| * |
| * It returns the first handler where insn & mask == pattern, or |
| * NULL if there is no match. |
| * The table is terminated by an empty mask (i.e. 0) |
| */ |
| static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, |
| uint32_t insn) |
| { |
| const AArch64DecodeTable *tptr = table; |
| |
| while (tptr->mask) { |
| if ((insn & tptr->mask) == tptr->pattern) { |
| return tptr->disas_fn; |
| } |
| tptr++; |
| } |
| return NULL; |
| } |
| |
| /* |
| * The instruction disassembly implemented here matches |
| * the instruction encoding classifications in chapter C4 |
| * of the ARM Architecture Reference Manual (DDI0487B_a); |
| * classification names and decode diagrams here should generally |
| * match up with those in the manual. |
| */ |
| |
| static bool trans_B(DisasContext *s, arg_i *a) |
| { |
| reset_btype(s); |
| gen_goto_tb(s, 0, a->imm); |
| return true; |
| } |
| |
| static bool trans_BL(DisasContext *s, arg_i *a) |
| { |
| gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s)); |
| reset_btype(s); |
| gen_goto_tb(s, 0, a->imm); |
| return true; |
| } |
| |
| |
| static bool trans_CBZ(DisasContext *s, arg_cbz *a) |
| { |
| DisasLabel match; |
| TCGv_i64 tcg_cmp; |
| |
| tcg_cmp = read_cpu_reg(s, a->rt, a->sf); |
| reset_btype(s); |
| |
| match = gen_disas_label(s); |
| tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, |
| tcg_cmp, 0, match.label); |
| gen_goto_tb(s, 0, 4); |
| set_disas_label(s, match); |
| gen_goto_tb(s, 1, a->imm); |
| return true; |
| } |
| |
| static bool trans_TBZ(DisasContext *s, arg_tbz *a) |
| { |
| DisasLabel match; |
| TCGv_i64 tcg_cmp; |
| |
| tcg_cmp = tcg_temp_new_i64(); |
| tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos); |
| |
| reset_btype(s); |
| |
| match = gen_disas_label(s); |
| tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ, |
| tcg_cmp, 0, match.label); |
| gen_goto_tb(s, 0, 4); |
| set_disas_label(s, match); |
| gen_goto_tb(s, 1, a->imm); |
| return true; |
| } |
| |
| static bool trans_B_cond(DisasContext *s, arg_B_cond *a) |
| { |
| /* BC.cond is only present with FEAT_HBC */ |
| if (a->c && !dc_isar_feature(aa64_hbc, s)) { |
| return false; |
| } |
| reset_btype(s); |
| if (a->cond < 0x0e) { |
| /* genuinely conditional branches */ |
| DisasLabel match = gen_disas_label(s); |
| arm_gen_test_cc(a->cond, match.label); |
| gen_goto_tb(s, 0, 4); |
| set_disas_label(s, match); |
| gen_goto_tb(s, 1, a->imm); |
| } else { |
| /* 0xe and 0xf are both "always" conditions */ |
| gen_goto_tb(s, 0, a->imm); |
| } |
| return true; |
| } |
| |
| static void set_btype_for_br(DisasContext *s, int rn) |
| { |
| if (dc_isar_feature(aa64_bti, s)) { |
| /* BR to {x16,x17} or !guard -> 1, else 3. */ |
| set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3); |
| } |
| } |
| |
| static void set_btype_for_blr(DisasContext *s) |
| { |
| if (dc_isar_feature(aa64_bti, s)) { |
| /* BLR sets BTYPE to 2, regardless of source guarded page. */ |
| set_btype(s, 2); |
| } |
| } |
| |
| static bool trans_BR(DisasContext *s, arg_r *a) |
| { |
| gen_a64_set_pc(s, cpu_reg(s, a->rn)); |
| set_btype_for_br(s, a->rn); |
| s->base.is_jmp = DISAS_JUMP; |
| return true; |
| } |
| |
| static bool trans_BLR(DisasContext *s, arg_r *a) |
| { |
| TCGv_i64 dst = cpu_reg(s, a->rn); |
| TCGv_i64 lr = cpu_reg(s, 30); |
| if (dst == lr) { |
| TCGv_i64 tmp = tcg_temp_new_i64(); |
| tcg_gen_mov_i64(tmp, dst); |
| dst = tmp; |
| } |
| gen_pc_plus_diff(s, lr, curr_insn_len(s)); |
| gen_a64_set_pc(s, dst); |
| set_btype_for_blr(s); |
| s->base.is_jmp = DISAS_JUMP; |
| return true; |
| } |
| |
| static bool trans_RET(DisasContext *s, arg_r *a) |
| { |
| gen_a64_set_pc(s, cpu_reg(s, a->rn)); |
| s->base.is_jmp = DISAS_JUMP; |
| return true; |
| } |
| |
| static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst, |
| TCGv_i64 modifier, bool use_key_a) |
| { |
| TCGv_i64 truedst; |
| /* |
| * Return the branch target for a BRAA/RETA/etc, which is either |
| * just the destination dst, or that value with the pauth check |
| * done and the code removed from the high bits. |
| */ |
| if (!s->pauth_active) { |
| return dst; |
| } |
| |
| truedst = tcg_temp_new_i64(); |
| if (use_key_a) { |
| gen_helper_autia_combined(truedst, tcg_env, dst, modifier); |
| } else { |
| gen_helper_autib_combined(truedst, tcg_env, dst, modifier); |
| } |
| return truedst; |
| } |
| |
| static bool trans_BRAZ(DisasContext *s, arg_braz *a) |
| { |
| TCGv_i64 dst; |
| |
| if (!dc_isar_feature(aa64_pauth, s)) { |
| return false; |
| } |
| |
| dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); |
| gen_a64_set_pc(s, dst); |
| set_btype_for_br(s, a->rn); |
| s->base.is_jmp = DISAS_JUMP; |
| return true; |
| } |
| |
| static bool trans_BLRAZ(DisasContext *s, arg_braz *a) |
| { |
| TCGv_i64 dst, lr; |
| |
| if (!dc_isar_feature(aa64_pauth, s)) { |
| return false; |
| } |
| |
| dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m); |
| lr = cpu_reg(s, 30); |
| if (dst == lr) { |
| TCGv_i64 tmp = tcg_temp_new_i64(); |
| tcg_gen_mov_i64(tmp, dst); |
| dst = tmp; |
| } |
| gen_pc_plus_diff(s, lr, curr_insn_len(s)); |
| gen_a64_set_pc(s, dst); |
| set_btype_for_blr(s); |
| s->base.is_jmp = DISAS_JUMP; |
| return true; |
| } |
| |
| static bool trans_RETA(DisasContext *s, arg_reta *a) |
| { |
| TCGv_i64 dst; |
| |
| dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m); |
| gen_a64_set_pc(s, dst); |
| s->base.is_jmp = DISAS_JUMP; |
| return true; |
| } |
| |
| static bool trans_BRA(DisasContext *s, arg_bra *a) |
| { |
| TCGv_i64 dst; |
| |
| if (!dc_isar_feature(aa64_pauth, s)) { |
| return false; |
| } |
| dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m); |
| gen_a64_set_pc(s, dst); |
| set_btype_for_br(s, a->rn); |
| s->base.is_jmp = DISAS_JUMP; |
| return true; |
| } |
| |
| static bool trans_BLRA(DisasContext *s, arg_bra *a) |
| { |
| TCGv_i64 dst, lr; |
| |
| if (!dc_isar_feature(aa64_pauth, s)) { |
| return false; |
| } |
| dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m); |
| lr = cpu_reg(s, 30); |
| if (dst == lr) { |
| TCGv_i64 tmp = tcg_temp_new_i64(); |
| tcg_gen_mov_i64(tmp, dst); |
| dst = tmp; |
| } |
| gen_pc_plus_diff(s, lr, curr_insn_len(s)); |
| gen_a64_set_pc(s, dst); |
| set_btype_for_blr(s); |
| s->base.is_jmp = DISAS_JUMP; |
| return true; |
| } |
| |
| static bool trans_ERET(DisasContext *s, arg_ERET *a) |
| { |
| TCGv_i64 dst; |
| |
| if (s->current_el == 0) { |
| return false; |
| } |
| if (s->trap_eret) { |
| gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2); |
| return true; |
| } |
| dst = tcg_temp_new_i64(); |
| tcg_gen_ld_i64(dst, tcg_env, |
| offsetof(CPUARMState, elr_el[s->current_el])); |
| |
| translator_io_start(&s->base); |
| |
| gen_helper_exception_return(tcg_env, dst); |
| /* Must exit loop to check un-masked IRQs */ |
| s->base.is_jmp = DISAS_EXIT; |
| return true; |
| } |
| |
| static bool trans_ERETA(DisasContext *s, arg_reta *a) |
| { |
| TCGv_i64 dst; |
| |
| if (!dc_isar_feature(aa64_pauth, s)) { |
| return false; |
| } |
| if (s->current_el == 0) { |
| return false; |
| } |
| /* The FGT trap takes precedence over an auth trap. */ |
| if (s->trap_eret) { |
| gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2); |
| return true; |
| } |
| dst = tcg_temp_new_i64(); |
| tcg_gen_ld_i64(dst, tcg_env, |
| offsetof(CPUARMState, elr_el[s->current_el])); |
| |
| dst = auth_branch_target(s, dst, cpu_X[31], !a->m); |
| |
| translator_io_start(&s->base); |
| |
| gen_helper_exception_return(tcg_env, dst); |
| /* Must exit loop to check un-masked IRQs */ |
| s->base.is_jmp = DISAS_EXIT; |
| return true; |
| } |
| |
| static bool trans_NOP(DisasContext *s, arg_NOP *a) |
| { |
| return true; |
| } |
| |
| static bool trans_YIELD(DisasContext *s, arg_YIELD *a) |
| { |
| /* |
| * When running in MTTCG we don't generate jumps to the yield and |
| * WFE helpers as it won't affect the scheduling of other vCPUs. |
| * If we wanted to more completely model WFE/SEV so we don't busy |
| * spin unnecessarily we would need to do something more involved. |
| */ |
| if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { |
| s->base.is_jmp = DISAS_YIELD; |
| } |
| return true; |
| } |
| |
| static bool trans_WFI(DisasContext *s, arg_WFI *a) |
| { |
| s->base.is_jmp = DISAS_WFI; |
| return true; |
| } |
| |
| static bool trans_WFE(DisasContext *s, arg_WFI *a) |
| { |
| /* |
| * When running in MTTCG we don't generate jumps to the yield and |
| * WFE helpers as it won't affect the scheduling of other vCPUs. |
| * If we wanted to more completely model WFE/SEV so we don't busy |
| * spin unnecessarily we would need to do something more involved. |
| */ |
| if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { |
| s->base.is_jmp = DISAS_WFE; |
| } |
| return true; |
| } |
| |
| static bool trans_WFIT(DisasContext *s, arg_WFIT *a) |
| { |
| if (!dc_isar_feature(aa64_wfxt, s)) { |
| return false; |
| } |
| |
| /* |
| * Because we need to pass the register value to the helper, |
| * it's easier to emit the code now, unlike trans_WFI which |
| * defers it to aarch64_tr_tb_stop(). That means we need to |
| * check ss_active so that single-stepping a WFIT doesn't halt. |
| */ |
| if (s->ss_active) { |
| /* Act like a NOP under architectural singlestep */ |
| return true; |
| } |
| |
| gen_a64_update_pc(s, 4); |
| gen_helper_wfit(tcg_env, cpu_reg(s, a->rd)); |
| /* Go back to the main loop to check for interrupts */ |
| s->base.is_jmp = DISAS_EXIT; |
| return true; |
| } |
| |
| static bool trans_WFET(DisasContext *s, arg_WFET *a) |
| { |
| if (!dc_isar_feature(aa64_wfxt, s)) { |
| return false; |
| } |
| |
| /* |
| * We rely here on our WFE implementation being a NOP, so we |
| * don't need to do anything different to handle the WFET timeout |
| * from what trans_WFE does. |
| */ |
| if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { |
| s->base.is_jmp = DISAS_WFE; |
| } |
| return true; |
| } |
| |
| static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a) |
| { |
| if (s->pauth_active) { |
| gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]); |
| } |
| return true; |
| } |
| |
| static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a) |
| { |
| if (s->pauth_active) { |
| gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); |
| } |
| return true; |
| } |
| |
| static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a) |
| { |
| if (s->pauth_active) { |
| gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); |
| } |
| return true; |
| } |
| |
| static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a) |
| { |
| if (s->pauth_active) { |
| gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); |
| } |
| return true; |
| } |
| |
| static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a) |
| { |
| if (s->pauth_active) { |
| gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]); |
| } |
| return true; |
| } |
| |
| static bool trans_ESB(DisasContext *s, arg_ESB *a) |
| { |
| /* Without RAS, we must implement this as NOP. */ |
| if (dc_isar_feature(aa64_ras, s)) { |
| /* |
| * QEMU does not have a source of physical SErrors, |
| * so we are only concerned with virtual SErrors. |
| * The pseudocode in the ARM for this case is |
| * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then |
| * AArch64.vESBOperation(); |
| * Most of the condition can be evaluated at translation time. |
| * Test for EL2 present, and defer test for SEL2 to runtime. |
| */ |
| if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { |
| gen_helper_vesb(tcg_env); |
| } |
| } |
| return true; |
| } |
| |
| static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a) |
| { |
| if (s->pauth_active) { |
| gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); |
| } |
| return true; |
| } |
| |
| static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a) |
| { |
| if (s->pauth_active) { |
| gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); |
| } |
| return true; |
| } |
| |
| static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a) |
| { |
| if (s->pauth_active) { |
| gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); |
| } |
| return true; |
| } |
| |
| static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a) |
| { |
| if (s->pauth_active) { |
| gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); |
| } |
| return true; |
| } |
| |
| static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a) |
| { |
| if (s->pauth_active) { |
| gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); |
| } |
| return true; |
| } |
| |
| static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a) |
| { |
| if (s->pauth_active) { |
| gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); |
| } |
| return true; |
| } |
| |
| static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a) |
| { |
| if (s->pauth_active) { |
| gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0)); |
| } |
| return true; |
| } |
| |
| static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a) |
| { |
| if (s->pauth_active) { |
| gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]); |
| } |
| return true; |
| } |
| |
| static bool trans_CLREX(DisasContext *s, arg_CLREX *a) |
| { |
| tcg_gen_movi_i64(cpu_exclusive_addr, -1); |
| return true; |
| } |
| |
| static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a) |
| { |
| /* We handle DSB and DMB the same way */ |
| TCGBar bar; |
| |
| switch (a->types) { |
| case 1: /* MBReqTypes_Reads */ |
| bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; |
| break; |
| case 2: /* MBReqTypes_Writes */ |
| bar = TCG_BAR_SC | TCG_MO_ST_ST; |
| break; |
| default: /* MBReqTypes_All */ |
| bar = TCG_BAR_SC | TCG_MO_ALL; |
| break; |
| } |
| tcg_gen_mb(bar); |
| return true; |
| } |
| |
| static bool trans_ISB(DisasContext *s, arg_ISB *a) |
| { |
| /* |
| * We need to break the TB after this insn to execute |
| * self-modifying code correctly and also to take |
| * any pending interrupts immediately. |
| */ |
| reset_btype(s); |
| gen_goto_tb(s, 0, 4); |
| return true; |
| } |
| |
| static bool trans_SB(DisasContext *s, arg_SB *a) |
| { |
| if (!dc_isar_feature(aa64_sb, s)) { |
| return false; |
| } |
| /* |
| * TODO: There is no speculation barrier opcode for TCG; |
| * MB and end the TB instead. |
| */ |
| tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); |
| gen_goto_tb(s, 0, 4); |
| return true; |
| } |
| |
| static bool trans_CFINV(DisasContext *s, arg_CFINV *a) |
| { |
| if (!dc_isar_feature(aa64_condm_4, s)) { |
| return false; |
| } |
| tcg_gen_xori_i32(cpu_CF, cpu_CF, 1); |
| return true; |
| } |
| |
| static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a) |
| { |
| TCGv_i32 z; |
| |
| if (!dc_isar_feature(aa64_condm_5, s)) { |
| return false; |
| } |
| |
| z = tcg_temp_new_i32(); |
| |
| tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0); |
| |
| /* |
| * (!C & !Z) << 31 |
| * (!(C | Z)) << 31 |
| * ~((C | Z) << 31) |
| * ~-(C | Z) |
| * (C | Z) - 1 |
| */ |
| tcg_gen_or_i32(cpu_NF, cpu_CF, z); |
| tcg_gen_subi_i32(cpu_NF, cpu_NF, 1); |
| |
| /* !(Z & C) */ |
| tcg_gen_and_i32(cpu_ZF, z, cpu_CF); |
| tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1); |
| |
| /* (!C & Z) << 31 -> -(Z & ~C) */ |
| tcg_gen_andc_i32(cpu_VF, z, cpu_CF); |
| tcg_gen_neg_i32(cpu_VF, cpu_VF); |
| |
| /* C | Z */ |
| tcg_gen_or_i32(cpu_CF, cpu_CF, z); |
| |
| return true; |
| } |
| |
| static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a) |
| { |
| if (!dc_isar_feature(aa64_condm_5, s)) { |
| return false; |
| } |
| |
| tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */ |
| tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */ |
| |
| /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */ |
| tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF); |
| |
| tcg_gen_movi_i32(cpu_NF, 0); |
| tcg_gen_movi_i32(cpu_VF, 0); |
| |
| return true; |
| } |
| |
| static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a) |
| { |
| if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) { |
| return false; |
| } |
| if (a->imm & 1) { |
| set_pstate_bits(PSTATE_UAO); |
| } else { |
| clear_pstate_bits(PSTATE_UAO); |
| } |
| gen_rebuild_hflags(s); |
| s->base.is_jmp = DISAS_TOO_MANY; |
| return true; |
| } |
| |
| static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a) |
| { |
| if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) { |
| return false; |
| } |
| if (a->imm & 1) { |
| set_pstate_bits(PSTATE_PAN); |
| } else { |
| clear_pstate_bits(PSTATE_PAN); |
| } |
| gen_rebuild_hflags(s); |
| s->base.is_jmp = DISAS_TOO_MANY; |
| return true; |
| } |
| |
| static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a) |
| { |
| if (s->current_el == 0) { |
| return false; |
| } |
| gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP)); |
| s->base.is_jmp = DISAS_TOO_MANY; |
| return true; |
| } |
| |
| static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a) |
| { |
| if (!dc_isar_feature(aa64_ssbs, s)) { |
| return false; |
| } |
| if (a->imm & 1) { |
| set_pstate_bits(PSTATE_SSBS); |
| } else { |
| clear_pstate_bits(PSTATE_SSBS); |
| } |
| /* Don't need to rebuild hflags since SSBS is a nop */ |
| s->base.is_jmp = DISAS_TOO_MANY; |
| return true; |
| } |
| |
| static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a) |
| { |
| if (!dc_isar_feature(aa64_dit, s)) { |
| return false; |
| } |
| if (a->imm & 1) { |
| set_pstate_bits(PSTATE_DIT); |
| } else { |
| clear_pstate_bits(PSTATE_DIT); |
| } |
| /* There's no need to rebuild hflags because DIT is a nop */ |
| s->base.is_jmp = DISAS_TOO_MANY; |
| return true; |
| } |
| |
| static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a) |
| { |
| if (dc_isar_feature(aa64_mte, s)) { |
| /* Full MTE is enabled -- set the TCO bit as directed. */ |
| if (a->imm & 1) { |
| set_pstate_bits(PSTATE_TCO); |
| } else { |
| clear_pstate_bits(PSTATE_TCO); |
| } |
| gen_rebuild_hflags(s); |
| /* Many factors, including TCO, go into MTE_ACTIVE. */ |
| s->base.is_jmp = DISAS_UPDATE_NOCHAIN; |
| return true; |
| } else if (dc_isar_feature(aa64_mte_insn_reg, s)) { |
| /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */ |
| return true; |
| } else { |
| /* Insn not present */ |
| return false; |
| } |
| } |
| |
| static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a) |
| { |
| gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm)); |
| s->base.is_jmp = DISAS_TOO_MANY; |
| return true; |
| } |
| |
| static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a) |
| { |
| gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm)); |
| /* Exit the cpu loop to re-evaluate pending IRQs. */ |
| s->base.is_jmp = DISAS_UPDATE_EXIT; |
| return true; |
| } |
| |
| static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a) |
| { |
| if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) { |
| return false; |
| } |
| |
| if (a->imm == 0) { |
| clear_pstate_bits(PSTATE_ALLINT); |
| } else if (s->current_el > 1) { |
| set_pstate_bits(PSTATE_ALLINT); |
| } else { |
| gen_helper_msr_set_allint_el1(tcg_env); |
| } |
| |
| /* Exit the cpu loop to re-evaluate pending IRQs. */ |
| s->base.is_jmp = DISAS_UPDATE_EXIT; |
| return true; |
| } |
| |
| static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a) |
| { |
| if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) { |
| return false; |
| } |
| if (sme_access_check(s)) { |
| int old = s->pstate_sm | (s->pstate_za << 1); |
| int new = a->imm * 3; |
| |
| if ((old ^ new) & a->mask) { |
| /* At least one bit changes. */ |
| gen_helper_set_svcr(tcg_env, tcg_constant_i32(new), |
| tcg_constant_i32(a->mask)); |
| s->base.is_jmp = DISAS_TOO_MANY; |
| } |
| } |
| return true; |
| } |
| |
| static void gen_get_nzcv(TCGv_i64 tcg_rt) |
| { |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| TCGv_i32 nzcv = tcg_temp_new_i32(); |
| |
| /* build bit 31, N */ |
| tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); |
| /* build bit 30, Z */ |
| tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); |
| tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); |
| /* build bit 29, C */ |
| tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); |
| /* build bit 28, V */ |
| tcg_gen_shri_i32(tmp, cpu_VF, 31); |
| tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); |
| /* generate result */ |
| tcg_gen_extu_i32_i64(tcg_rt, nzcv); |
| } |
| |
| static void gen_set_nzcv(TCGv_i64 tcg_rt) |
| { |
| TCGv_i32 nzcv = tcg_temp_new_i32(); |
| |
| /* take NZCV from R[t] */ |
| tcg_gen_extrl_i64_i32(nzcv, tcg_rt); |
| |
| /* bit 31, N */ |
| tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); |
| /* bit 30, Z */ |
| tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); |
| tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); |
| /* bit 29, C */ |
| tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); |
| tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); |
| /* bit 28, V */ |
| tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); |
| tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); |
| } |
| |
| static void gen_sysreg_undef(DisasContext *s, bool isread, |
| uint8_t op0, uint8_t op1, uint8_t op2, |
| uint8_t crn, uint8_t crm, uint8_t rt) |
| { |
| /* |
| * Generate code to emit an UNDEF with correct syndrome |
| * information for a failed system register access. |
| * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases, |
| * but if FEAT_IDST is implemented then read accesses to registers |
| * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP |
| * syndrome. |
| */ |
| uint32_t syndrome; |
| |
| if (isread && dc_isar_feature(aa64_ids, s) && |
| arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) { |
| syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); |
| } else { |
| syndrome = syn_uncategorized(); |
| } |
| gen_exception_insn(s, 0, EXCP_UDEF, syndrome); |
| } |
| |
| /* MRS - move from system register |
| * MSR (register) - move to system register |
| * SYS |
| * SYSL |
| * These are all essentially the same insn in 'read' and 'write' |
| * versions, with varying op0 fields. |
| */ |
| static void handle_sys(DisasContext *s, bool isread, |
| unsigned int op0, unsigned int op1, unsigned int op2, |
| unsigned int crn, unsigned int crm, unsigned int rt) |
| { |
| uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, |
| crn, crm, op0, op1, op2); |
| const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); |
| bool need_exit_tb = false; |
| bool nv_trap_to_el2 = false; |
| bool nv_redirect_reg = false; |
| bool skip_fp_access_checks = false; |
| bool nv2_mem_redirect = false; |
| TCGv_ptr tcg_ri = NULL; |
| TCGv_i64 tcg_rt; |
| uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); |
| |
| if (crn == 11 || crn == 15) { |
| /* |
| * Check for TIDCP trap, which must take precedence over |
| * the UNDEF for "no such register" etc. |
| */ |
| switch (s->current_el) { |
| case 0: |
| if (dc_isar_feature(aa64_tidcp1, s)) { |
| gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome)); |
| } |
| break; |
| case 1: |
| gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome)); |
| break; |
| } |
| } |
| |
| if (!ri) { |
| /* Unknown register; this might be a guest error or a QEMU |
| * unimplemented feature. |
| */ |
| qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " |
| "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", |
| isread ? "read" : "write", op0, op1, crn, crm, op2); |
| gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); |
| return; |
| } |
| |
| if (s->nv2 && ri->nv2_redirect_offset) { |
| /* |
| * Some registers always redirect to memory; some only do so if |
| * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in |
| * pairs which share an offset; see the table in R_CSRPQ). |
| */ |
| if (ri->nv2_redirect_offset & NV2_REDIR_NV1) { |
| nv2_mem_redirect = s->nv1; |
| } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) { |
| nv2_mem_redirect = !s->nv1; |
| } else { |
| nv2_mem_redirect = true; |
| } |
| } |
| |
| /* Check access permissions */ |
| if (!cp_access_ok(s->current_el, ri, isread)) { |
| /* |
| * FEAT_NV/NV2 handling does not do the usual FP access checks |
| * for registers only accessible at EL2 (though it *does* do them |
| * for registers accessible at EL1). |
| */ |
| skip_fp_access_checks = true; |
| if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) { |
| /* |
| * This is one of the few EL2 registers which should redirect |
| * to the equivalent EL1 register. We do that after running |
| * the EL2 register's accessfn. |
| */ |
| nv_redirect_reg = true; |
| assert(!nv2_mem_redirect); |
| } else if (nv2_mem_redirect) { |
| /* |
| * NV2 redirect-to-memory takes precedence over trap to EL2 or |
| * UNDEF to EL1. |
| */ |
| } else if (s->nv && arm_cpreg_traps_in_nv(ri)) { |
| /* |
| * This register / instruction exists and is an EL2 register, so |
| * we must trap to EL2 if accessed in nested virtualization EL1 |
| * instead of UNDEFing. We'll do that after the usual access checks. |
| * (This makes a difference only for a couple of registers like |
| * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority |
| * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have |
| * an accessfn which does nothing when called from EL1, because |
| * the trap-to-EL3 controls which would apply to that register |
| * at EL2 don't take priority over the FEAT_NV trap-to-EL2.) |
| */ |
| nv_trap_to_el2 = true; |
| } else { |
| gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt); |
| return; |
| } |
| } |
| |
| if (ri->accessfn || (ri->fgt && s->fgt_active)) { |
| /* Emit code to perform further access permissions checks at |
| * runtime; this may result in an exception. |
| */ |
| gen_a64_update_pc(s, 0); |
| tcg_ri = tcg_temp_new_ptr(); |
| gen_helper_access_check_cp_reg(tcg_ri, tcg_env, |
| tcg_constant_i32(key), |
| tcg_constant_i32(syndrome), |
| tcg_constant_i32(isread)); |
| } else if (ri->type & ARM_CP_RAISES_EXC) { |
| /* |
| * The readfn or writefn might raise an exception; |
| * synchronize the CPU state in case it does. |
| */ |
| gen_a64_update_pc(s, 0); |
| } |
| |
| if (!skip_fp_access_checks) { |
| if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) { |
| return; |
| } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { |
| return; |
| } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) { |
| return; |
| } |
| } |
| |
| if (nv_trap_to_el2) { |
| gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); |
| return; |
| } |
| |
| if (nv_redirect_reg) { |
| /* |
| * FEAT_NV2 redirection of an EL2 register to an EL1 register. |
| * Conveniently in all cases the encoding of the EL1 register is |
| * identical to the EL2 register except that opc1 is 0. |
| * Get the reginfo for the EL1 register to use for the actual access. |
| * We don't use the EL1 register's access function, and |
| * fine-grained-traps on EL1 also do not apply here. |
| */ |
| key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, |
| crn, crm, op0, 0, op2); |
| ri = get_arm_cp_reginfo(s->cp_regs, key); |
| assert(ri); |
| assert(cp_access_ok(s->current_el, ri, isread)); |
| /* |
| * We might not have done an update_pc earlier, so check we don't |
| * need it. We could support this in future if necessary. |
| */ |
| assert(!(ri->type & ARM_CP_RAISES_EXC)); |
| } |
| |
| if (nv2_mem_redirect) { |
| /* |
| * This system register is being redirected into an EL2 memory access. |
| * This means it is not an IO operation, doesn't change hflags, |
| * and need not end the TB, because it has no side effects. |
| * |
| * The access is 64-bit single copy atomic, guaranteed aligned because |
| * of the definition of VCNR_EL2. Its endianness depends on |
| * SCTLR_EL2.EE, not on the data endianness of EL1. |
| * It is done under either the EL2 translation regime or the EL2&0 |
| * translation regime, depending on HCR_EL2.E2H. It behaves as if |
| * PSTATE.PAN is 0. |
| */ |
| TCGv_i64 ptr = tcg_temp_new_i64(); |
| MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN; |
| ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; |
| int memidx = arm_to_core_mmu_idx(armmemidx); |
| uint32_t syn; |
| |
| mop |= (s->nv2_mem_be ? MO_BE : MO_LE); |
| |
| tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2)); |
| tcg_gen_addi_i64(ptr, ptr, |
| (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK)); |
| tcg_rt = cpu_reg(s, rt); |
| |
| syn = syn_data_abort_vncr(0, !isread, 0); |
| disas_set_insn_syndrome(s, syn); |
| if (isread) { |
| tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop); |
| } else { |
| tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop); |
| } |
| return; |
| } |
| |
| /* Handle special cases first */ |
| switch (ri->type & ARM_CP_SPECIAL_MASK) { |
| case 0: |
| break; |
| case ARM_CP_NOP: |
| return; |
| case ARM_CP_NZCV: |
| tcg_rt = cpu_reg(s, rt); |
| if (isread) { |
| gen_get_nzcv(tcg_rt); |
| } else { |
| gen_set_nzcv(tcg_rt); |
| } |
| return; |
| case ARM_CP_CURRENTEL: |
| { |
| /* |
| * Reads as current EL value from pstate, which is |
| * guaranteed to be constant by the tb flags. |
| * For nested virt we should report EL2. |
| */ |
| int el = s->nv ? 2 : s->current_el; |
| tcg_rt = cpu_reg(s, rt); |
| tcg_gen_movi_i64(tcg_rt, el << 2); |
| return; |
| } |
| case ARM_CP_DC_ZVA: |
| /* Writes clear the aligned block of memory which rt points into. */ |
| if (s->mte_active[0]) { |
| int desc = 0; |
| |
| desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s)); |
| desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); |
| desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); |
| |
| tcg_rt = tcg_temp_new_i64(); |
| gen_helper_mte_check_zva(tcg_rt, tcg_env, |
| tcg_constant_i32(desc), cpu_reg(s, rt)); |
| } else { |
| tcg_rt = clean_data_tbi(s, cpu_reg(s, rt)); |
| } |
| gen_helper_dc_zva(tcg_env, tcg_rt); |
| return; |
| case ARM_CP_DC_GVA: |
| { |
| TCGv_i64 clean_addr, tag; |
| |
| /* |
| * DC_GVA, like DC_ZVA, requires that we supply the original |
| * pointer for an invalid page. Probe that address first. |
| */ |
| tcg_rt = cpu_reg(s, rt); |
| clean_addr = clean_data_tbi(s, tcg_rt); |
| gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8); |
| |
| if (s->ata[0]) { |
| /* Extract the tag from the register to match STZGM. */ |
| tag = tcg_temp_new_i64(); |
| tcg_gen_shri_i64(tag, tcg_rt, 56); |
| gen_helper_stzgm_tags(tcg_env, clean_addr, tag); |
| } |
| } |
| return; |
| case ARM_CP_DC_GZVA: |
| { |
| TCGv_i64 clean_addr, tag; |
| |
| /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */ |
| tcg_rt = cpu_reg(s, rt); |
| clean_addr = clean_data_tbi(s, tcg_rt); |
| gen_helper_dc_zva(tcg_env, clean_addr); |
| |
| if (s->ata[0]) { |
| /* Extract the tag from the register to match STZGM. */ |
| tag = tcg_temp_new_i64(); |
| tcg_gen_shri_i64(tag, tcg_rt, 56); |
| gen_helper_stzgm_tags(tcg_env, clean_addr, tag); |
| } |
| } |
| return; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if (ri->type & ARM_CP_IO) { |
| /* I/O operations must end the TB here (whether read or write) */ |
| need_exit_tb = translator_io_start(&s->base); |
| } |
| |
| tcg_rt = cpu_reg(s, rt); |
| |
| if (isread) { |
| if (ri->type & ARM_CP_CONST) { |
| tcg_gen_movi_i64(tcg_rt, ri->resetvalue); |
| } else if (ri->readfn) { |
| if (!tcg_ri) { |
| tcg_ri = gen_lookup_cp_reg(key); |
| } |
| gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri); |
| } else { |
| tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset); |
| } |
| } else { |
| if (ri->type & ARM_CP_CONST) { |
| /* If not forbidden by access permissions, treat as WI */ |
| return; |
| } else if (ri->writefn) { |
| if (!tcg_ri) { |
| tcg_ri = gen_lookup_cp_reg(key); |
| } |
| gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt); |
| } else { |
| tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset); |
| } |
| } |
| |
| if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { |
| /* |
| * A write to any coprocessor register that ends a TB |
| * must rebuild the hflags for the next TB. |
| */ |
| gen_rebuild_hflags(s); |
| /* |
| * We default to ending the TB on a coprocessor register write, |
| * but allow this to be suppressed by the register definition |
| * (usually only necessary to work around guest bugs). |
| */ |
| need_exit_tb = true; |
| } |
| if (need_exit_tb) { |
| s->base.is_jmp = DISAS_UPDATE_EXIT; |
| } |
| } |
| |
| static bool trans_SYS(DisasContext *s, arg_SYS *a) |
| { |
| handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt); |
| return true; |
| } |
| |
| static bool trans_SVC(DisasContext *s, arg_i *a) |
| { |
| /* |
| * For SVC, HVC and SMC we advance the single-step state |
| * machine before taking the exception. This is architecturally |
| * mandated, to ensure that single-stepping a system call |
| * instruction works properly. |
| */ |
| uint32_t syndrome = syn_aa64_svc(a->imm); |
| if (s->fgt_svc) { |
| gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); |
| return true; |
| } |
| gen_ss_advance(s); |
| gen_exception_insn(s, 4, EXCP_SWI, syndrome); |
| return true; |
| } |
| |
| static bool trans_HVC(DisasContext *s, arg_i *a) |
| { |
| int target_el = s->current_el == 3 ? 3 : 2; |
| |
| if (s->current_el == 0) { |
| unallocated_encoding(s); |
| return true; |
| } |
| /* |
| * The pre HVC helper handles cases when HVC gets trapped |
| * as an undefined insn by runtime configuration. |
| */ |
| gen_a64_update_pc(s, 0); |
| gen_helper_pre_hvc(tcg_env); |
| /* Architecture requires ss advance before we do the actual work */ |
| gen_ss_advance(s); |
| gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el); |
| return true; |
| } |
| |
| static bool trans_SMC(DisasContext *s, arg_i *a) |
| { |
| if (s->current_el == 0) { |
| unallocated_encoding(s); |
| return true; |
| } |
| gen_a64_update_pc(s, 0); |
| gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm))); |
| /* Architecture requires ss advance before we do the actual work */ |
| gen_ss_advance(s); |
| gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3); |
| return true; |
| } |
| |
| static bool trans_BRK(DisasContext *s, arg_i *a) |
| { |
| gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm)); |
| return true; |
| } |
| |
| static bool trans_HLT(DisasContext *s, arg_i *a) |
| { |
| /* |
| * HLT. This has two purposes. |
| * Architecturally, it is an external halting debug instruction. |
| * Since QEMU doesn't implement external debug, we treat this as |
| * it is required for halting debug disabled: it will UNDEF. |
| * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. |
| */ |
| if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) { |
| gen_exception_internal_insn(s, EXCP_SEMIHOST); |
| } else { |
| unallocated_encoding(s); |
| } |
| return true; |
| } |
| |
| /* |
| * Load/Store exclusive instructions are implemented by remembering |
| * the value/address loaded, and seeing if these are the same |
| * when the store is performed. This is not actually the architecturally |
| * mandated semantics, but it works for typical guest code sequences |
| * and avoids having to monitor regular stores. |
| * |
| * The store exclusive uses the atomic cmpxchg primitives to avoid |
| * races in multi-threaded linux-user and when MTTCG softmmu is |
| * enabled. |
| */ |
| static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn, |
| int size, bool is_pair) |
| { |
| int idx = get_mem_index(s); |
| TCGv_i64 dirty_addr, clean_addr; |
| MemOp memop = check_atomic_align(s, rn, size + is_pair); |
| |
| s->is_ldex = true; |
| dirty_addr = cpu_reg_sp(s, rn); |
| clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop); |
| |
| g_assert(size <= 3); |
| if (is_pair) { |
| g_assert(size >= 2); |
| if (size == 2) { |
| tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); |
| if (s->be_data == MO_LE) { |
| tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); |
| tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); |
| } else { |
| tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); |
| tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); |
| } |
| } else { |
| TCGv_i128 t16 = tcg_temp_new_i128(); |
| |
| tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop); |
| |
| if (s->be_data == MO_LE) { |
| tcg_gen_extr_i128_i64(cpu_exclusive_val, |
| cpu_exclusive_high, t16); |
| } else { |
| tcg_gen_extr_i128_i64(cpu_exclusive_high, |
| cpu_exclusive_val, t16); |
| } |
| tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); |
| tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); |
| } |
| } else { |
| tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop); |
| tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); |
| } |
| tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr); |
| } |
| |
| static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, |
| int rn, int size, int is_pair) |
| { |
| /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] |
| * && (!is_pair || env->exclusive_high == [addr + datasize])) { |
| * [addr] = {Rt}; |
| * if (is_pair) { |
| * [addr + datasize] = {Rt2}; |
| * } |
| * {Rd} = 0; |
| * } else { |
| * {Rd} = 1; |
| * } |
| * env->exclusive_addr = -1; |
| */ |
| TCGLabel *fail_label = gen_new_label(); |
| TCGLabel *done_label = gen_new_label(); |
| TCGv_i64 tmp, clean_addr; |
| MemOp memop; |
| |
| /* |
| * FIXME: We are out of spec here. We have recorded only the address |
| * from load_exclusive, not the entire range, and we assume that the |
| * size of the access on both sides match. The architecture allows the |
| * store to be smaller than the load, so long as the stored bytes are |
| * within the range recorded by the load. |
| */ |
| |
| /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */ |
| clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn)); |
| tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label); |
| |
| /* |
| * The write, and any associated faults, only happen if the virtual |
| * and physical addresses pass the exclusive monitor check. These |
| * faults are exceedingly unlikely, because normally the guest uses |
| * the exact same address register for the load_exclusive, and we |
| * would have recognized these faults there. |
| * |
| * It is possible to trigger an alignment fault pre-LSE2, e.g. with an |
| * unaligned 4-byte write within the range of an aligned 8-byte load. |
| * With LSE2, the store would need to cross a 16-byte boundary when the |
| * load did not, which would mean the store is outside the range |
| * recorded for the monitor, which would have failed a corrected monitor |
| * check above. For now, we assume no size change and retain the |
| * MO_ALIGN to let tcg know what we checked in the load_exclusive. |
| * |
| * It is possible to trigger an MTE fault, by performing the load with |
| * a virtual address with a valid tag and performing the store with the |
| * same virtual address and a different invalid tag. |
| */ |
| memop = size + is_pair; |
| if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) { |
| memop |= MO_ALIGN; |
| } |
| memop = finalize_memop(s, memop); |
| gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); |
| |
| tmp = tcg_temp_new_i64(); |
| if (is_pair) { |
| if (size == 2) { |
| if (s->be_data == MO_LE) { |
| tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); |
| } else { |
| tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); |
| } |
| tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, |
| cpu_exclusive_val, tmp, |
| get_mem_index(s), memop); |
| tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); |
| } else { |
| TCGv_i128 t16 = tcg_temp_new_i128(); |
| TCGv_i128 c16 = tcg_temp_new_i128(); |
| TCGv_i64 a, b; |
| |
| if (s->be_data == MO_LE) { |
| tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2)); |
| tcg_gen_concat_i64_i128(c16, cpu_exclusive_val, |
| cpu_exclusive_high); |
| } else { |
| tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt)); |
| tcg_gen_concat_i64_i128(c16, cpu_exclusive_high, |
| cpu_exclusive_val); |
| } |
| |
| tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16, |
| get_mem_index(s), memop); |
| |
| a = tcg_temp_new_i64(); |
| b = tcg_temp_new_i64(); |
| if (s->be_data == MO_LE) { |
| tcg_gen_extr_i128_i64(a, b, t16); |
| } else { |
| tcg_gen_extr_i128_i64(b, a, t16); |
| } |
| |
| tcg_gen_xor_i64(a, a, cpu_exclusive_val); |
| tcg_gen_xor_i64(b, b, cpu_exclusive_high); |
| tcg_gen_or_i64(tmp, a, b); |
| |
| tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0); |
| } |
| } else { |
| tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, |
| cpu_reg(s, rt), get_mem_index(s), memop); |
| tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); |
| } |
| tcg_gen_mov_i64(cpu_reg(s, rd), tmp); |
| tcg_gen_br(done_label); |
| |
| gen_set_label(fail_label); |
| tcg_gen_movi_i64(cpu_reg(s, rd), 1); |
| gen_set_label(done_label); |
| tcg_gen_movi_i64(cpu_exclusive_addr, -1); |
| } |
| |
| static void gen_compare_and_swap(DisasContext *s, int rs, int rt, |
| int rn, int size) |
| { |
| TCGv_i64 tcg_rs = cpu_reg(s, rs); |
| TCGv_i64 tcg_rt = cpu_reg(s, rt); |
| int memidx = get_mem_index(s); |
| TCGv_i64 clean_addr; |
| MemOp memop; |
| |
| if (rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| memop = check_atomic_align(s, rn, size); |
| clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); |
| tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, |
| memidx, memop); |
| } |
| |
| static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, |
| int rn, int size) |
| { |
| TCGv_i64 s1 = cpu_reg(s, rs); |
| TCGv_i64 s2 = cpu_reg(s, rs + 1); |
| TCGv_i64 t1 = cpu_reg(s, rt); |
| TCGv_i64 t2 = cpu_reg(s, rt + 1); |
| TCGv_i64 clean_addr; |
| int memidx = get_mem_index(s); |
| MemOp memop; |
| |
| if (rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| |
| /* This is a single atomic access, despite the "pair". */ |
| memop = check_atomic_align(s, rn, size + 1); |
| clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop); |
| |
| if (size == 2) { |
| TCGv_i64 cmp = tcg_temp_new_i64(); |
| TCGv_i64 val = tcg_temp_new_i64(); |
| |
| if (s->be_data == MO_LE) { |
| tcg_gen_concat32_i64(val, t1, t2); |
| tcg_gen_concat32_i64(cmp, s1, s2); |
| } else { |
| tcg_gen_concat32_i64(val, t2, t1); |
| tcg_gen_concat32_i64(cmp, s2, s1); |
| } |
| |
| tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop); |
| |
| if (s->be_data == MO_LE) { |
| tcg_gen_extr32_i64(s1, s2, cmp); |
| } else { |
| tcg_gen_extr32_i64(s2, s1, cmp); |
| } |
| } else { |
| TCGv_i128 cmp = tcg_temp_new_i128(); |
| TCGv_i128 val = tcg_temp_new_i128(); |
| |
| if (s->be_data == MO_LE) { |
| tcg_gen_concat_i64_i128(val, t1, t2); |
| tcg_gen_concat_i64_i128(cmp, s1, s2); |
| } else { |
| tcg_gen_concat_i64_i128(val, t2, t1); |
| tcg_gen_concat_i64_i128(cmp, s2, s1); |
| } |
| |
| tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop); |
| |
| if (s->be_data == MO_LE) { |
| tcg_gen_extr_i128_i64(s1, s2, cmp); |
| } else { |
| tcg_gen_extr_i128_i64(s2, s1, cmp); |
| } |
| } |
| } |
| |
| /* |
| * Compute the ISS.SF bit for syndrome information if an exception |
| * is taken on a load or store. This indicates whether the instruction |
| * is accessing a 32-bit or 64-bit register. This logic is derived |
| * from the ARMv8 specs for LDR (Shared decode for all encodings). |
| */ |
| static bool ldst_iss_sf(int size, bool sign, bool ext) |
| { |
| |
| if (sign) { |
| /* |
| * Signed loads are 64 bit results if we are not going to |
| * do a zero-extend from 32 to 64 after the load. |
| * (For a store, sign and ext are always false.) |
| */ |
| return !ext; |
| } else { |
| /* Unsigned loads/stores work at the specified size */ |
| return size == MO_64; |
| } |
| } |
| |
| static bool trans_STXR(DisasContext *s, arg_stxr *a) |
| { |
| if (a->rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| if (a->lasr) { |
| tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); |
| } |
| gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false); |
| return true; |
| } |
| |
| static bool trans_LDXR(DisasContext *s, arg_stxr *a) |
| { |
| if (a->rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false); |
| if (a->lasr) { |
| tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); |
| } |
| return true; |
| } |
| |
| static bool trans_STLR(DisasContext *s, arg_stlr *a) |
| { |
| TCGv_i64 clean_addr; |
| MemOp memop; |
| bool iss_sf = ldst_iss_sf(a->sz, false, false); |
| |
| /* |
| * StoreLORelease is the same as Store-Release for QEMU, but |
| * needs the feature-test. |
| */ |
| if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { |
| return false; |
| } |
| /* Generate ISS for non-exclusive accesses including LASR. */ |
| if (a->rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); |
| memop = check_ordered_align(s, a->rn, 0, true, a->sz); |
| clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), |
| true, a->rn != 31, memop); |
| do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt, |
| iss_sf, a->lasr); |
| return true; |
| } |
| |
| static bool trans_LDAR(DisasContext *s, arg_stlr *a) |
| { |
| TCGv_i64 clean_addr; |
| MemOp memop; |
| bool iss_sf = ldst_iss_sf(a->sz, false, false); |
| |
| /* LoadLOAcquire is the same as Load-Acquire for QEMU. */ |
| if (!a->lasr && !dc_isar_feature(aa64_lor, s)) { |
| return false; |
| } |
| /* Generate ISS for non-exclusive accesses including LASR. */ |
| if (a->rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| memop = check_ordered_align(s, a->rn, 0, false, a->sz); |
| clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), |
| false, a->rn != 31, memop); |
| do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true, |
| a->rt, iss_sf, a->lasr); |
| tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); |
| return true; |
| } |
| |
| static bool trans_STXP(DisasContext *s, arg_stxr *a) |
| { |
| if (a->rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| if (a->lasr) { |
| tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); |
| } |
| gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true); |
| return true; |
| } |
| |
| static bool trans_LDXP(DisasContext *s, arg_stxr *a) |
| { |
| if (a->rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true); |
| if (a->lasr) { |
| tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); |
| } |
| return true; |
| } |
| |
| static bool trans_CASP(DisasContext *s, arg_CASP *a) |
| { |
| if (!dc_isar_feature(aa64_atomics, s)) { |
| return false; |
| } |
| if (((a->rt | a->rs) & 1) != 0) { |
| return false; |
| } |
| |
| gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz); |
| return true; |
| } |
| |
| static bool trans_CAS(DisasContext *s, arg_CAS *a) |
| { |
| if (!dc_isar_feature(aa64_atomics, s)) { |
| return false; |
| } |
| gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz); |
| return true; |
| } |
| |
| static bool trans_LD_lit(DisasContext *s, arg_ldlit *a) |
| { |
| bool iss_sf = ldst_iss_sf(a->sz, a->sign, false); |
| TCGv_i64 tcg_rt = cpu_reg(s, a->rt); |
| TCGv_i64 clean_addr = tcg_temp_new_i64(); |
| MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); |
| |
| gen_pc_plus_diff(s, clean_addr, a->imm); |
| do_gpr_ld(s, tcg_rt, clean_addr, memop, |
| false, true, a->rt, iss_sf, false); |
| return true; |
| } |
| |
| static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a) |
| { |
| /* Load register (literal), vector version */ |
| TCGv_i64 clean_addr; |
| MemOp memop; |
| |
| if (!fp_access_check(s)) { |
| return true; |
| } |
| memop = finalize_memop_asimd(s, a->sz); |
| clean_addr = tcg_temp_new_i64(); |
| gen_pc_plus_diff(s, clean_addr, a->imm); |
| do_fp_ld(s, a->rt, clean_addr, memop); |
| return true; |
| } |
| |
| static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a, |
| TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, |
| uint64_t offset, bool is_store, MemOp mop) |
| { |
| if (a->rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| |
| *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); |
| if (!a->p) { |
| tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); |
| } |
| |
| *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store, |
| (a->w || a->rn != 31), 2 << a->sz, mop); |
| } |
| |
| static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a, |
| TCGv_i64 dirty_addr, uint64_t offset) |
| { |
| if (a->w) { |
| if (a->p) { |
| tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); |
| } |
| tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); |
| } |
| } |
| |
| static bool trans_STP(DisasContext *s, arg_ldstpair *a) |
| { |
| uint64_t offset = a->imm << a->sz; |
| TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; |
| MemOp mop = finalize_memop(s, a->sz); |
| |
| op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); |
| tcg_rt = cpu_reg(s, a->rt); |
| tcg_rt2 = cpu_reg(s, a->rt2); |
| /* |
| * We built mop above for the single logical access -- rebuild it |
| * now for the paired operation. |
| * |
| * With LSE2, non-sign-extending pairs are treated atomically if |
| * aligned, and if unaligned one of the pair will be completely |
| * within a 16-byte block and that element will be atomic. |
| * Otherwise each element is separately atomic. |
| * In all cases, issue one operation with the correct atomicity. |
| */ |
| mop = a->sz + 1; |
| if (s->align_mem) { |
| mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); |
| } |
| mop = finalize_memop_pair(s, mop); |
| if (a->sz == 2) { |
| TCGv_i64 tmp = tcg_temp_new_i64(); |
| |
| if (s->be_data == MO_LE) { |
| tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2); |
| } else { |
| tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt); |
| } |
| tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop); |
| } else { |
| TCGv_i128 tmp = tcg_temp_new_i128(); |
| |
| if (s->be_data == MO_LE) { |
| tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); |
| } else { |
| tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); |
| } |
| tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); |
| } |
| op_addr_ldstpair_post(s, a, dirty_addr, offset); |
| return true; |
| } |
| |
| static bool trans_LDP(DisasContext *s, arg_ldstpair *a) |
| { |
| uint64_t offset = a->imm << a->sz; |
| TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; |
| MemOp mop = finalize_memop(s, a->sz); |
| |
| op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); |
| tcg_rt = cpu_reg(s, a->rt); |
| tcg_rt2 = cpu_reg(s, a->rt2); |
| |
| /* |
| * We built mop above for the single logical access -- rebuild it |
| * now for the paired operation. |
| * |
| * With LSE2, non-sign-extending pairs are treated atomically if |
| * aligned, and if unaligned one of the pair will be completely |
| * within a 16-byte block and that element will be atomic. |
| * Otherwise each element is separately atomic. |
| * In all cases, issue one operation with the correct atomicity. |
| * |
| * This treats sign-extending loads like zero-extending loads, |
| * since that reuses the most code below. |
| */ |
| mop = a->sz + 1; |
| if (s->align_mem) { |
| mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8); |
| } |
| mop = finalize_memop_pair(s, mop); |
| if (a->sz == 2) { |
| int o2 = s->be_data == MO_LE ? 32 : 0; |
| int o1 = o2 ^ 32; |
| |
| tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop); |
| if (a->sign) { |
| tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32); |
| tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32); |
| } else { |
| tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32); |
| tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32); |
| } |
| } else { |
| TCGv_i128 tmp = tcg_temp_new_i128(); |
| |
| tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop); |
| if (s->be_data == MO_LE) { |
| tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp); |
| } else { |
| tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp); |
| } |
| } |
| op_addr_ldstpair_post(s, a, dirty_addr, offset); |
| return true; |
| } |
| |
| static bool trans_STP_v(DisasContext *s, arg_ldstpair *a) |
| { |
| uint64_t offset = a->imm << a->sz; |
| TCGv_i64 clean_addr, dirty_addr; |
| MemOp mop; |
| |
| if (!fp_access_check(s)) { |
| return true; |
| } |
| |
| /* LSE2 does not merge FP pairs; leave these as separate operations. */ |
| mop = finalize_memop_asimd(s, a->sz); |
| op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop); |
| do_fp_st(s, a->rt, clean_addr, mop); |
| tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); |
| do_fp_st(s, a->rt2, clean_addr, mop); |
| op_addr_ldstpair_post(s, a, dirty_addr, offset); |
| return true; |
| } |
| |
| static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a) |
| { |
| uint64_t offset = a->imm << a->sz; |
| TCGv_i64 clean_addr, dirty_addr; |
| MemOp mop; |
| |
| if (!fp_access_check(s)) { |
| return true; |
| } |
| |
| /* LSE2 does not merge FP pairs; leave these as separate operations. */ |
| mop = finalize_memop_asimd(s, a->sz); |
| op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop); |
| do_fp_ld(s, a->rt, clean_addr, mop); |
| tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz); |
| do_fp_ld(s, a->rt2, clean_addr, mop); |
| op_addr_ldstpair_post(s, a, dirty_addr, offset); |
| return true; |
| } |
| |
| static bool trans_STGP(DisasContext *s, arg_ldstpair *a) |
| { |
| TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2; |
| uint64_t offset = a->imm << LOG2_TAG_GRANULE; |
| MemOp mop; |
| TCGv_i128 tmp; |
| |
| /* STGP only comes in one size. */ |
| tcg_debug_assert(a->sz == MO_64); |
| |
| if (!dc_isar_feature(aa64_mte_insn_reg, s)) { |
| return false; |
| } |
| |
| if (a->rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| |
| dirty_addr = read_cpu_reg_sp(s, a->rn, 1); |
| if (!a->p) { |
| tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); |
| } |
| |
| clean_addr = clean_data_tbi(s, dirty_addr); |
| tcg_rt = cpu_reg(s, a->rt); |
| tcg_rt2 = cpu_reg(s, a->rt2); |
| |
| /* |
| * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE, |
| * and one tag operation. We implement it as one single aligned 16-byte |
| * memory operation for convenience. Note that the alignment ensures |
| * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store. |
| */ |
| mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR); |
| |
| tmp = tcg_temp_new_i128(); |
| if (s->be_data == MO_LE) { |
| tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2); |
| } else { |
| tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt); |
| } |
| tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop); |
| |
| /* Perform the tag store, if tag access enabled. */ |
| if (s->ata[0]) { |
| if (tb_cflags(s->base.tb) & CF_PARALLEL) { |
| gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr); |
| } else { |
| gen_helper_stg(tcg_env, dirty_addr, dirty_addr); |
| } |
| } |
| |
| op_addr_ldstpair_post(s, a, dirty_addr, offset); |
| return true; |
| } |
| |
| static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a, |
| TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, |
| uint64_t offset, bool is_store, MemOp mop) |
| { |
| int memidx; |
| |
| if (a->rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| |
| *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); |
| if (!a->p) { |
| tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset); |
| } |
| memidx = get_a64_user_mem_index(s, a->unpriv); |
| *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store, |
| a->w || a->rn != 31, |
| mop, a->unpriv, memidx); |
| } |
| |
| static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a, |
| TCGv_i64 dirty_addr, uint64_t offset) |
| { |
| if (a->w) { |
| if (a->p) { |
| tcg_gen_addi_i64(dirty_addr, dirty_addr, offset); |
| } |
| tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); |
| } |
| } |
| |
| static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a) |
| { |
| bool iss_sf, iss_valid = !a->w; |
| TCGv_i64 clean_addr, dirty_addr, tcg_rt; |
| int memidx = get_a64_user_mem_index(s, a->unpriv); |
| MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); |
| |
| op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); |
| |
| tcg_rt = cpu_reg(s, a->rt); |
| iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); |
| |
| do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx, |
| iss_valid, a->rt, iss_sf, false); |
| op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); |
| return true; |
| } |
| |
| static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a) |
| { |
| bool iss_sf, iss_valid = !a->w; |
| TCGv_i64 clean_addr, dirty_addr, tcg_rt; |
| int memidx = get_a64_user_mem_index(s, a->unpriv); |
| MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN); |
| |
| op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); |
| |
| tcg_rt = cpu_reg(s, a->rt); |
| iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); |
| |
| do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop, |
| a->ext, memidx, iss_valid, a->rt, iss_sf, false); |
| op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); |
| return true; |
| } |
| |
| static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a) |
| { |
| TCGv_i64 clean_addr, dirty_addr; |
| MemOp mop; |
| |
| if (!fp_access_check(s)) { |
| return true; |
| } |
| mop = finalize_memop_asimd(s, a->sz); |
| op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop); |
| do_fp_st(s, a->rt, clean_addr, mop); |
| op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); |
| return true; |
| } |
| |
| static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a) |
| { |
| TCGv_i64 clean_addr, dirty_addr; |
| MemOp mop; |
| |
| if (!fp_access_check(s)) { |
| return true; |
| } |
| mop = finalize_memop_asimd(s, a->sz); |
| op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop); |
| do_fp_ld(s, a->rt, clean_addr, mop); |
| op_addr_ldst_imm_post(s, a, dirty_addr, a->imm); |
| return true; |
| } |
| |
| static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a, |
| TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr, |
| bool is_store, MemOp memop) |
| { |
| TCGv_i64 tcg_rm; |
| |
| if (a->rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| *dirty_addr = read_cpu_reg_sp(s, a->rn, 1); |
| |
| tcg_rm = read_cpu_reg(s, a->rm, 1); |
| ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0); |
| |
| tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm); |
| *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop); |
| } |
| |
| static bool trans_LDR(DisasContext *s, arg_ldst *a) |
| { |
| TCGv_i64 clean_addr, dirty_addr, tcg_rt; |
| bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); |
| MemOp memop; |
| |
| if (extract32(a->opt, 1, 1) == 0) { |
| return false; |
| } |
| |
| memop = finalize_memop(s, a->sz + a->sign * MO_SIGN); |
| op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); |
| tcg_rt = cpu_reg(s, a->rt); |
| do_gpr_ld(s, tcg_rt, clean_addr, memop, |
| a->ext, true, a->rt, iss_sf, false); |
| return true; |
| } |
| |
| static bool trans_STR(DisasContext *s, arg_ldst *a) |
| { |
| TCGv_i64 clean_addr, dirty_addr, tcg_rt; |
| bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); |
| MemOp memop; |
| |
| if (extract32(a->opt, 1, 1) == 0) { |
| return false; |
| } |
| |
| memop = finalize_memop(s, a->sz); |
| op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); |
| tcg_rt = cpu_reg(s, a->rt); |
| do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false); |
| return true; |
| } |
| |
| static bool trans_LDR_v(DisasContext *s, arg_ldst *a) |
| { |
| TCGv_i64 clean_addr, dirty_addr; |
| MemOp memop; |
| |
| if (extract32(a->opt, 1, 1) == 0) { |
| return false; |
| } |
| |
| if (!fp_access_check(s)) { |
| return true; |
| } |
| |
| memop = finalize_memop_asimd(s, a->sz); |
| op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop); |
| do_fp_ld(s, a->rt, clean_addr, memop); |
| return true; |
| } |
| |
| static bool trans_STR_v(DisasContext *s, arg_ldst *a) |
| { |
| TCGv_i64 clean_addr, dirty_addr; |
| MemOp memop; |
| |
| if (extract32(a->opt, 1, 1) == 0) { |
| return false; |
| } |
| |
| if (!fp_access_check(s)) { |
| return true; |
| } |
| |
| memop = finalize_memop_asimd(s, a->sz); |
| op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop); |
| do_fp_st(s, a->rt, clean_addr, memop); |
| return true; |
| } |
| |
| |
| static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn, |
| int sign, bool invert) |
| { |
| MemOp mop = a->sz | sign; |
| TCGv_i64 clean_addr, tcg_rs, tcg_rt; |
| |
| if (a->rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| mop = check_atomic_align(s, a->rn, mop); |
| clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, |
| a->rn != 31, mop); |
| tcg_rs = read_cpu_reg(s, a->rs, true); |
| tcg_rt = cpu_reg(s, a->rt); |
| if (invert) { |
| tcg_gen_not_i64(tcg_rs, tcg_rs); |
| } |
| /* |
| * The tcg atomic primitives are all full barriers. Therefore we |
| * can ignore the Acquire and Release bits of this instruction. |
| */ |
| fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop); |
| |
| if (mop & MO_SIGN) { |
| switch (a->sz) { |
| case MO_8: |
| tcg_gen_ext8u_i64(tcg_rt, tcg_rt); |
| break; |
| case MO_16: |
| tcg_gen_ext16u_i64(tcg_rt, tcg_rt); |
| break; |
| case MO_32: |
| tcg_gen_ext32u_i64(tcg_rt, tcg_rt); |
| break; |
| case MO_64: |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| return true; |
| } |
| |
| TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false) |
| TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true) |
| TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false) |
| TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false) |
| TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false) |
| TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false) |
| TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false) |
| TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false) |
| TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false) |
| |
| static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a) |
| { |
| bool iss_sf = ldst_iss_sf(a->sz, false, false); |
| TCGv_i64 clean_addr; |
| MemOp mop; |
| |
| if (!dc_isar_feature(aa64_atomics, s) || |
| !dc_isar_feature(aa64_rcpc_8_3, s)) { |
| return false; |
| } |
| if (a->rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| mop = check_atomic_align(s, a->rn, a->sz); |
| clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false, |
| a->rn != 31, mop); |
| /* |
| * LDAPR* are a special case because they are a simple load, not a |
| * fetch-and-do-something op. |
| * The architectural consistency requirements here are weaker than |
| * full load-acquire (we only need "load-acquire processor consistent"), |
| * but we choose to implement them as full LDAQ. |
| */ |
| do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false, |
| true, a->rt, iss_sf, true); |
| tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); |
| return true; |
| } |
| |
| static bool trans_LDRA(DisasContext *s, arg_LDRA *a) |
| { |
| TCGv_i64 clean_addr, dirty_addr, tcg_rt; |
| MemOp memop; |
| |
| /* Load with pointer authentication */ |
| if (!dc_isar_feature(aa64_pauth, s)) { |
| return false; |
| } |
| |
| if (a->rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| dirty_addr = read_cpu_reg_sp(s, a->rn, 1); |
| |
| if (s->pauth_active) { |
| if (!a->m) { |
| gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr, |
| tcg_constant_i64(0)); |
| } else { |
| gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr, |
| tcg_constant_i64(0)); |
| } |
| } |
| |
| tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); |
| |
| memop = finalize_memop(s, MO_64); |
| |
| /* Note that "clean" and "dirty" here refer to TBI not PAC. */ |
| clean_addr = gen_mte_check1(s, dirty_addr, false, |
| a->w || a->rn != 31, memop); |
| |
| tcg_rt = cpu_reg(s, a->rt); |
| do_gpr_ld(s, tcg_rt, clean_addr, memop, |
| /* extend */ false, /* iss_valid */ !a->w, |
| /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false); |
| |
| if (a->w) { |
| tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr); |
| } |
| return true; |
| } |
| |
| static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a) |
| { |
| TCGv_i64 clean_addr, dirty_addr; |
| MemOp mop = a->sz | (a->sign ? MO_SIGN : 0); |
| bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); |
| |
| if (!dc_isar_feature(aa64_rcpc_8_4, s)) { |
| return false; |
| } |
| |
| if (a->rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| |
| mop = check_ordered_align(s, a->rn, a->imm, false, mop); |
| dirty_addr = read_cpu_reg_sp(s, a->rn, 1); |
| tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); |
| clean_addr = clean_data_tbi(s, dirty_addr); |
| |
| /* |
| * Load-AcquirePC semantics; we implement as the slightly more |
| * restrictive Load-Acquire. |
| */ |
| do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true, |
| a->rt, iss_sf, true); |
| tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); |
| return true; |
| } |
| |
| static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a) |
| { |
| TCGv_i64 clean_addr, dirty_addr; |
| MemOp mop = a->sz; |
| bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext); |
| |
| if (!dc_isar_feature(aa64_rcpc_8_4, s)) { |
| return false; |
| } |
| |
| /* TODO: ARMv8.4-LSE SCTLR.nAA */ |
| |
| if (a->rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| |
| mop = check_ordered_align(s, a->rn, a->imm, true, mop); |
| dirty_addr = read_cpu_reg_sp(s, a->rn, 1); |
| tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm); |
| clean_addr = clean_data_tbi(s, dirty_addr); |
| |
| /* Store-Release semantics */ |
| tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); |
| do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true); |
| return true; |
| } |
| |
| static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a) |
| { |
| TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; |
| MemOp endian, align, mop; |
| |
| int total; /* total bytes */ |
| int elements; /* elements per vector */ |
| int r; |
| int size = a->sz; |
| |
| if (!a->p && a->rm != 0) { |
| /* For non-postindexed accesses the Rm field must be 0 */ |
| return false; |
| } |
| if (size == 3 && !a->q && a->selem != 1) { |
| return false; |
| } |
| if (!fp_access_check(s)) { |
| return true; |
| } |
| |
| if (a->rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| |
| /* For our purposes, bytes are always little-endian. */ |
| endian = s->be_data; |
| if (size == 0) { |
| endian = MO_LE; |
| } |
| |
| total = a->rpt * a->selem * (a->q ? 16 : 8); |
| tcg_rn = cpu_reg_sp(s, a->rn); |
| |
| /* |
| * Issue the MTE check vs the logical repeat count, before we |
| * promote consecutive little-endian elements below. |
| */ |
| clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total, |
| finalize_memop_asimd(s, size)); |
| |
| /* |
| * Consecutive little-endian elements from a single register |
| * can be promoted to a larger little-endian operation. |
| */ |
| align = MO_ALIGN; |
| if (a->selem == 1 && endian == MO_LE) { |
| align = pow2_align(size); |
| size = 3; |
| } |
| if (!s->align_mem) { |
| align = 0; |
| } |
| mop = endian | size | align; |
| |
| elements = (a->q ? 16 : 8) >> size; |
| tcg_ebytes = tcg_constant_i64(1 << size); |
| for (r = 0; r < a->rpt; r++) { |
| int e; |
| for (e = 0; e < elements; e++) { |
| int xs; |
| for (xs = 0; xs < a->selem; xs++) { |
| int tt = (a->rt + r + xs) % 32; |
| do_vec_ld(s, tt, e, clean_addr, mop); |
| tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); |
| } |
| } |
| } |
| |
| /* |
| * For non-quad operations, setting a slice of the low 64 bits of |
| * the register clears the high 64 bits (in the ARM ARM pseudocode |
| * this is implicit in the fact that 'rval' is a 64 bit wide |
| * variable). For quad operations, we might still need to zero |
| * the high bits of SVE. |
| */ |
| for (r = 0; r < a->rpt * a->selem; r++) { |
| int tt = (a->rt + r) % 32; |
| clear_vec_high(s, a->q, tt); |
| } |
| |
| if (a->p) { |
| if (a->rm == 31) { |
| tcg_gen_addi_i64(tcg_rn, tcg_rn, total); |
| } else { |
| tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); |
| } |
| } |
| return true; |
| } |
| |
| static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a) |
| { |
| TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; |
| MemOp endian, align, mop; |
| |
| int total; /* total bytes */ |
| int elements; /* elements per vector */ |
| int r; |
| int size = a->sz; |
| |
| if (!a->p && a->rm != 0) { |
| /* For non-postindexed accesses the Rm field must be 0 */ |
| return false; |
| } |
| if (size == 3 && !a->q && a->selem != 1) { |
| return false; |
| } |
| if (!fp_access_check(s)) { |
| return true; |
| } |
| |
| if (a->rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| |
| /* For our purposes, bytes are always little-endian. */ |
| endian = s->be_data; |
| if (size == 0) { |
| endian = MO_LE; |
| } |
| |
| total = a->rpt * a->selem * (a->q ? 16 : 8); |
| tcg_rn = cpu_reg_sp(s, a->rn); |
| |
| /* |
| * Issue the MTE check vs the logical repeat count, before we |
| * promote consecutive little-endian elements below. |
| */ |
| clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total, |
| finalize_memop_asimd(s, size)); |
| |
| /* |
| * Consecutive little-endian elements from a single register |
| * can be promoted to a larger little-endian operation. |
| */ |
| align = MO_ALIGN; |
| if (a->selem == 1 && endian == MO_LE) { |
| align = pow2_align(size); |
| size = 3; |
| } |
| if (!s->align_mem) { |
| align = 0; |
| } |
| mop = endian | size | align; |
| |
| elements = (a->q ? 16 : 8) >> size; |
| tcg_ebytes = tcg_constant_i64(1 << size); |
| for (r = 0; r < a->rpt; r++) { |
| int e; |
| for (e = 0; e < elements; e++) { |
| int xs; |
| for (xs = 0; xs < a->selem; xs++) { |
| int tt = (a->rt + r + xs) % 32; |
| do_vec_st(s, tt, e, clean_addr, mop); |
| tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); |
| } |
| } |
| } |
| |
| if (a->p) { |
| if (a->rm == 31) { |
| tcg_gen_addi_i64(tcg_rn, tcg_rn, total); |
| } else { |
| tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); |
| } |
| } |
| return true; |
| } |
| |
| static bool trans_ST_single(DisasContext *s, arg_ldst_single *a) |
| { |
| int xs, total, rt; |
| TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; |
| MemOp mop; |
| |
| if (!a->p && a->rm != 0) { |
| return false; |
| } |
| if (!fp_access_check(s)) { |
| return true; |
| } |
| |
| if (a->rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| |
| total = a->selem << a->scale; |
| tcg_rn = cpu_reg_sp(s, a->rn); |
| |
| mop = finalize_memop_asimd(s, a->scale); |
| clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, |
| total, mop); |
| |
| tcg_ebytes = tcg_constant_i64(1 << a->scale); |
| for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { |
| do_vec_st(s, rt, a->index, clean_addr, mop); |
| tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); |
| } |
| |
| if (a->p) { |
| if (a->rm == 31) { |
| tcg_gen_addi_i64(tcg_rn, tcg_rn, total); |
| } else { |
| tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); |
| } |
| } |
| return true; |
| } |
| |
| static bool trans_LD_single(DisasContext *s, arg_ldst_single *a) |
| { |
| int xs, total, rt; |
| TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; |
| MemOp mop; |
| |
| if (!a->p && a->rm != 0) { |
| return false; |
| } |
| if (!fp_access_check(s)) { |
| return true; |
| } |
| |
| if (a->rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| |
| total = a->selem << a->scale; |
| tcg_rn = cpu_reg_sp(s, a->rn); |
| |
| mop = finalize_memop_asimd(s, a->scale); |
| clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, |
| total, mop); |
| |
| tcg_ebytes = tcg_constant_i64(1 << a->scale); |
| for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { |
| do_vec_ld(s, rt, a->index, clean_addr, mop); |
| tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); |
| } |
| |
| if (a->p) { |
| if (a->rm == 31) { |
| tcg_gen_addi_i64(tcg_rn, tcg_rn, total); |
| } else { |
| tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); |
| } |
| } |
| return true; |
| } |
| |
| static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a) |
| { |
| int xs, total, rt; |
| TCGv_i64 clean_addr, tcg_rn, tcg_ebytes; |
| MemOp mop; |
| |
| if (!a->p && a->rm != 0) { |
| return false; |
| } |
| if (!fp_access_check(s)) { |
| return true; |
| } |
| |
| if (a->rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| |
| total = a->selem << a->scale; |
| tcg_rn = cpu_reg_sp(s, a->rn); |
| |
| mop = finalize_memop_asimd(s, a->scale); |
| clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, |
| total, mop); |
| |
| tcg_ebytes = tcg_constant_i64(1 << a->scale); |
| for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) { |
| /* Load and replicate to all elements */ |
| TCGv_i64 tcg_tmp = tcg_temp_new_i64(); |
| |
| tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop); |
| tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt), |
| (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp); |
| tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes); |
| } |
| |
| if (a->p) { |
| if (a->rm == 31) { |
| tcg_gen_addi_i64(tcg_rn, tcg_rn, total); |
| } else { |
| tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm)); |
| } |
| } |
| return true; |
| } |
| |
| static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a) |
| { |
| TCGv_i64 addr, clean_addr, tcg_rt; |
| int size = 4 << s->dcz_blocksize; |
| |
| if (!dc_isar_feature(aa64_mte, s)) { |
| return false; |
| } |
| if (s->current_el == 0) { |
| return false; |
| } |
| |
| if (a->rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| |
| addr = read_cpu_reg_sp(s, a->rn, true); |
| tcg_gen_addi_i64(addr, addr, a->imm); |
| tcg_rt = cpu_reg(s, a->rt); |
| |
| if (s->ata[0]) { |
| gen_helper_stzgm_tags(tcg_env, addr, tcg_rt); |
| } |
| /* |
| * The non-tags portion of STZGM is mostly like DC_ZVA, |
| * except the alignment happens before the access. |
| */ |
| clean_addr = clean_data_tbi(s, addr); |
| tcg_gen_andi_i64(clean_addr, clean_addr, -size); |
| gen_helper_dc_zva(tcg_env, clean_addr); |
| return true; |
| } |
| |
| static bool trans_STGM(DisasContext *s, arg_ldst_tag *a) |
| { |
| TCGv_i64 addr, clean_addr, tcg_rt; |
| |
| if (!dc_isar_feature(aa64_mte, s)) { |
| return false; |
| } |
| if (s->current_el == 0) { |
| return false; |
| } |
| |
| if (a->rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| |
| addr = read_cpu_reg_sp(s, a->rn, true); |
| tcg_gen_addi_i64(addr, addr, a->imm); |
| tcg_rt = cpu_reg(s, a->rt); |
| |
| if (s->ata[0]) { |
| gen_helper_stgm(tcg_env, addr, tcg_rt); |
| } else { |
| MMUAccessType acc = MMU_DATA_STORE; |
| int size = 4 << s->gm_blocksize; |
| |
| clean_addr = clean_data_tbi(s, addr); |
| tcg_gen_andi_i64(clean_addr, clean_addr, -size); |
| gen_probe_access(s, clean_addr, acc, size); |
| } |
| return true; |
| } |
| |
| static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a) |
| { |
| TCGv_i64 addr, clean_addr, tcg_rt; |
| |
| if (!dc_isar_feature(aa64_mte, s)) { |
| return false; |
| } |
| if (s->current_el == 0) { |
| return false; |
| } |
| |
| if (a->rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| |
| addr = read_cpu_reg_sp(s, a->rn, true); |
| tcg_gen_addi_i64(addr, addr, a->imm); |
| tcg_rt = cpu_reg(s, a->rt); |
| |
| if (s->ata[0]) { |
| gen_helper_ldgm(tcg_rt, tcg_env, addr); |
| } else { |
| MMUAccessType acc = MMU_DATA_LOAD; |
| int size = 4 << s->gm_blocksize; |
| |
| clean_addr = clean_data_tbi(s, addr); |
| tcg_gen_andi_i64(clean_addr, clean_addr, -size); |
| gen_probe_access(s, clean_addr, acc, size); |
| /* The result tags are zeros. */ |
| tcg_gen_movi_i64(tcg_rt, 0); |
| } |
| return true; |
| } |
| |
| static bool trans_LDG(DisasContext *s, arg_ldst_tag *a) |
| { |
| TCGv_i64 addr, clean_addr, tcg_rt; |
| |
| if (!dc_isar_feature(aa64_mte_insn_reg, s)) { |
| return false; |
| } |
| |
| if (a->rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| |
| addr = read_cpu_reg_sp(s, a->rn, true); |
| if (!a->p) { |
| /* pre-index or signed offset */ |
| tcg_gen_addi_i64(addr, addr, a->imm); |
| } |
| |
| tcg_gen_andi_i64(addr, addr, -TAG_GRANULE); |
| tcg_rt = cpu_reg(s, a->rt); |
| if (s->ata[0]) { |
| gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt); |
| } else { |
| /* |
| * Tag access disabled: we must check for aborts on the load |
| * load from [rn+offset], and then insert a 0 tag into rt. |
| */ |
| clean_addr = clean_data_tbi(s, addr); |
| gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8); |
| gen_address_with_allocation_tag0(tcg_rt, tcg_rt); |
| } |
| |
| if (a->w) { |
| /* pre-index or post-index */ |
| if (a->p) { |
| /* post-index */ |
| tcg_gen_addi_i64(addr, addr, a->imm); |
| } |
| tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); |
| } |
| return true; |
| } |
| |
| static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair) |
| { |
| TCGv_i64 addr, tcg_rt; |
| |
| if (a->rn == 31) { |
| gen_check_sp_alignment(s); |
| } |
| |
| addr = read_cpu_reg_sp(s, a->rn, true); |
| if (!a->p) { |
| /* pre-index or signed offset */ |
| tcg_gen_addi_i64(addr, addr, a->imm); |
| } |
| tcg_rt = cpu_reg_sp(s, a->rt); |
| if (!s->ata[0]) { |
| /* |
| * For STG and ST2G, we need to check alignment and probe memory. |
| * TODO: For STZG and STZ2G, we could rely on the stores below, |
| * at least for system mode; user-only won't enforce alignment. |
| */ |
| if (is_pair) { |
| gen_helper_st2g_stub(tcg_env, addr); |
| } else { |
| gen_helper_stg_stub(tcg_env, addr); |
| } |
| } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { |
| if (is_pair) { |
| gen_helper_st2g_parallel(tcg_env, addr, tcg_rt); |
| } else { |
| gen_helper_stg_parallel(tcg_env, addr, tcg_rt); |
| } |
| } else { |
| if (is_pair) { |
| gen_helper_st2g(tcg_env, addr, tcg_rt); |
| } else { |
| gen_helper_stg(tcg_env, addr, tcg_rt); |
| } |
| } |
| |
| if (is_zero) { |
| TCGv_i64 clean_addr = clean_data_tbi(s, addr); |
| TCGv_i64 zero64 = tcg_constant_i64(0); |
| TCGv_i128 zero128 = tcg_temp_new_i128(); |
| int mem_index = get_mem_index(s); |
| MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN); |
| |
| tcg_gen_concat_i64_i128(zero128, zero64, zero64); |
| |
| /* This is 1 or 2 atomic 16-byte operations. */ |
| tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); |
| if (is_pair) { |
| tcg_gen_addi_i64(clean_addr, clean_addr, 16); |
| tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop); |
| } |
| } |
| |
| if (a->w) { |
| /* pre-index or post-index */ |
| if (a->p) { |
| /* post-index */ |
| tcg_gen_addi_i64(addr, addr, a->imm); |
| } |
| tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr); |
| } |
| return true; |
| } |
| |
| TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false) |
| TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false) |
| TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true) |
| TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true) |
| |
| typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32); |
| |
| static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue, |
| bool is_setg, SetFn fn) |
| { |
| int memidx; |
| uint32_t syndrome, desc = 0; |
| |
| if (is_setg && !dc_isar_feature(aa64_mte, s)) { |
| return false; |
| } |
| |
| /* |
| * UNPREDICTABLE cases: we choose to UNDEF, which allows |
| * us to pull this check before the CheckMOPSEnabled() test |
| * (which we do in the helper function) |
| */ |
| if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || |
| a->rd == 31 || a->rn == 31) { |
| return false; |
| } |
| |
| memidx = get_a64_user_mem_index(s, a->unpriv); |
| |
| /* |
| * We pass option_a == true, matching our implementation; |
| * we pass wrong_option == false: helper function may set that bit. |
| */ |
| syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv, |
| is_epilogue, false, true, a->rd, a->rs, a->rn); |
| |
| if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) { |
| /* We may need to do MTE tag checking, so assemble the descriptor */ |
| desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid); |
| desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma); |
| desc = FIELD_DP32(desc, MTEDESC, WRITE, true); |
| /* SIZEM1 and ALIGN we leave 0 (byte write) */ |
| } |
| /* The helper function always needs the memidx even with MTE disabled */ |
| desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx); |
| |
| /* |
| * The helper needs the register numbers, but since they're in |
| * the syndrome anyway, we let it extract them from there rather |
| * than passing in an extra three integer arguments. |
| */ |
| fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc)); |
| return true; |
| } |
| |
| TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp) |
| TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm) |
| TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete) |
| TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp) |
| TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm) |
| TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge) |
| |
| typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32); |
| |
| static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn) |
| { |
| int rmemidx, wmemidx; |
| uint32_t syndrome, rdesc = 0, wdesc = 0; |
| bool wunpriv = extract32(a->options, 0, 1); |
| bool runpriv = extract32(a->options, 1, 1); |
| |
| /* |
| * UNPREDICTABLE cases: we choose to UNDEF, which allows |
| * us to pull this check before the CheckMOPSEnabled() test |
| * (which we do in the helper function) |
| */ |
| if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd || |
| a->rd == 31 || a->rs == 31 || a->rn == 31) { |
| return false; |
| } |
| |
| rmemidx = get_a64_user_mem_index(s, runpriv); |
| wmemidx = get_a64_user_mem_index(s, wunpriv); |
| |
| /* |
| * We pass option_a == true, matching our implementation; |
| * we pass wrong_option == false: helper function may set that bit. |
| */ |
| syndrome = syn_mop(false, false, a->options, is_epilogue, |
| false, true, a->rd, a->rs, a->rn); |
| |
| /* If we need to do MTE tag checking, assemble the descriptors */ |
| if (s->mte_active[runpriv]) { |
| rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid); |
| rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma); |
| } |
| if (s->mte_active[wunpriv]) { |
| wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid); |
| wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma); |
| wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true); |
| } |
| /* The helper function needs these parts of the descriptor regardless */ |
| rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx); |
| wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx); |
| |
| /* |
| * The helper needs the register numbers, but since they're in |
| * the syndrome anyway, we let it extract them from there rather |
| * than passing in an extra three integer arguments. |
| */ |
| fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc), |
| tcg_constant_i32(rdesc)); |
| return true; |
| } |
| |
| TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp) |
| TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym) |
| TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye) |
| TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp) |
| TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm) |
| TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe) |
| |
| typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64); |
| |
| static bool gen_rri(DisasContext *s, arg_rri_sf *a, |
| bool rd_sp, bool rn_sp, ArithTwoOp *fn) |
| { |
| TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn); |
| TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd); |
| TCGv_i64 tcg_imm = tcg_constant_i64(a->imm); |
| |
| fn(tcg_rd, tcg_rn, tcg_imm); |
| if (!a->sf) { |
| tcg_gen_ext32u_i64(tcg_rd, tcg_rd); |
| } |
| return true; |
| } |
| |
| /* |
| * PC-rel. addressing |
| */ |
| |
| static bool trans_ADR(DisasContext *s, arg_ri *a) |
| { |
| gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm); |
| return true; |
| } |
| |
| static bool trans_ADRP(DisasContext *s, arg_ri *a) |
| { |
| int64_t offset = (int64_t)a->imm << 12; |
| |
| /* The page offset is ok for CF_PCREL. */ |
| offset -= s->pc_curr & 0xfff; |
| gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset); |
| return true; |
| } |
| |
| /* |
| * Add/subtract (immediate) |
| */ |
| TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64) |
| TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64) |
| TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC) |
| TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC) |
| |
| /* |
| * Add/subtract (immediate, with tags) |
| */ |
| |
| static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a, |
| bool sub_op) |
| { |
| TCGv_i64 tcg_rn, tcg_rd; |
| int imm; |
| |
| imm = a->uimm6 << LOG2_TAG_GRANULE; |
| if (sub_op) { |
| imm = -imm; |
| } |
| |
| tcg_rn = cpu_reg_sp(s, a->rn); |
| tcg_rd = cpu_reg_sp(s, a->rd); |
| |
| if (s->ata[0]) { |
| gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn, |
| tcg_constant_i32(imm), |
| tcg_constant_i32(a->uimm4)); |
| } else { |
| tcg_gen_addi_i64(tcg_rd, tcg_rn, imm); |
| gen_address_with_allocation_tag0(tcg_rd, tcg_rd); |
| } |
| return true; |
| } |
| |
| TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false) |
| TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true) |
| |
| /* The input should be a value in the bottom e bits (with higher |
| * bits zero); returns that value replicated into every element |
| * of size e in a 64 bit integer. |
| */ |
| static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) |
| { |
| assert(e != 0); |
| while (e < 64) { |
| mask |= mask << e; |
| e *= 2; |
| } |
| return mask; |
| } |
| |
| /* |
| * Logical (immediate) |
| */ |
| |
| /* |
| * Simplified variant of pseudocode DecodeBitMasks() for the case where we |
| * only require the wmask. Returns false if the imms/immr/immn are a reserved |
| * value (ie should cause a guest UNDEF exception), and true if they are |
| * valid, in which case the decoded bit pattern is written to result. |
| */ |
| bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, |
| unsigned int imms, unsigned int immr) |
| { |
| uint64_t mask; |
| unsigned e, levels, s, r; |
| int len; |
| |
| assert(immn < 2 && imms < 64 && immr < 64); |
| |
| /* The bit patterns we create here are 64 bit patterns which |
| * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or |
| * 64 bits each. Each element contains the same value: a run |
| * of between 1 and e-1 non-zero bits, rotated within the |
| * element by between 0 and e-1 bits. |
| * |
| * The element size and run length are encoded into immn (1 bit) |
| * and imms (6 bits) as follows: |
| * 64 bit elements: immn = 1, imms = <length of run - 1> |
| * 32 bit elements: immn = 0, imms = 0 : <length of run - 1> |
| * 16 bit elements: immn = 0, imms = 10 : <length of run - 1> |
| * 8 bit elements: immn = 0, imms = 110 : <length of run - 1> |
| * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1> |
| * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1> |
| * Notice that immn = 0, imms = 11111x is the only combination |
| * not covered by one of the above options; this is reserved. |
| * Further, <length of run - 1> all-ones is a reserved pattern. |
| * |
| * In all cases the rotation is by immr % e (and immr is 6 bits). |
| */ |
| |
| /* First determine the element size */ |
| len = 31 - clz32((immn << 6) | (~imms & 0x3f)); |
| if (len < 1) { |
| /* This is the immn == 0, imms == 0x11111x case */ |
| return false; |
| } |
| e = 1 << len; |
| |
| levels = e - 1; |
| s = imms & levels; |
| r = immr & levels; |
| |
| if (s == levels) { |
| /* <length of run - 1> mustn't be all-ones. */ |
| return false; |
| } |
| |
| /* Create the value of one element: s+1 set bits rotated |
| * by r within the element (which is e bits wide)... |
| */ |
| mask = MAKE_64BIT_MASK(0, s + 1); |
| if (r) { |
| mask = (mask >> r) | (mask << (e - r)); |
| mask &= MAKE_64BIT_MASK(0, e); |
| } |
| /* ...then replicate the element over the whole 64 bit value */ |
| mask = bitfield_replicate(mask, e); |
| *result = mask; |
| return true; |
| } |
| |
| static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc, |
| void (*fn)(TCGv_i64, TCGv_i64, int64_t)) |
| { |
| TCGv_i64 tcg_rd, tcg_rn; |
| uint64_t imm; |
| |
| /* Some immediate field values are reserved. */ |
| if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), |
| extract32(a->dbm, 0, 6), |
| extract32(a->dbm, 6, 6))) { |
| return false; |
| } |
| if (!a->sf) { |
| imm &= 0xffffffffull; |
| } |
| |
| tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd); |
| tcg_rn = cpu_reg(s, a->rn); |
| |
| fn(tcg_rd, tcg_rn, imm); |
| if (set_cc) { |
| gen_logic_CC(a->sf, tcg_rd); |
| } |
| if (!a->sf) { |
| tcg_gen_ext32u_i64(tcg_rd, tcg_rd); |
| } |
| return true; |
| } |
| |
| TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64) |
| TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64) |
| TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64) |
| TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64) |
| |
| /* |
| * Move wide (immediate) |
| */ |
| |
| static bool trans_MOVZ(DisasContext *s, arg_movw *a) |
| { |
| int pos = a->hw << 4; |
| tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos); |
| return true; |
| } |
| |
| static bool trans_MOVN(DisasContext *s, arg_movw *a) |
| { |
| int pos = a->hw << 4; |
| uint64_t imm = a->imm; |
| |
| imm = ~(imm << pos); |
| if (!a->sf) { |
| imm = (uint32_t)imm; |
| } |
| tcg_gen_movi_i64(cpu_reg(s, a->rd), imm); |
| return true; |
| } |
| |
| static bool trans_MOVK(DisasContext *s, arg_movw *a) |
| { |
| int pos = a->hw << 4; |
| TCGv_i64 tcg_rd, tcg_im; |
| |
| tcg_rd = cpu_reg(s, a->rd); |
| tcg_im = tcg_constant_i64(a->imm); |
| tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16); |
| if (!a->sf) { |
| tcg_gen_ext32u_i64(tcg_rd, tcg_rd); |
| } |
| return true; |
| } |
| |
| /* |
| * Bitfield |
| */ |
| |
| static bool trans_SBFM(DisasContext *s, arg_SBFM *a) |
| { |
| TCGv_i64 tcg_rd = cpu_reg(s, a->rd); |
| TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); |
| unsigned int bitsize = a->sf ? 64 : 32; |
| unsigned int ri = a->immr; |
| unsigned int si = a->imms; |
| unsigned int pos, len; |
| |
| if (si >= ri) { |
| /* Wd<s-r:0> = Wn<s:r> */ |
| len = (si - ri) + 1; |
| tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); |
| if (!a->sf) { |
| tcg_gen_ext32u_i64(tcg_rd, tcg_rd); |
| } |
| } else { |
| /* Wd<32+s-r,32-r> = Wn<s:0> */ |
| len = si + 1; |
| pos = (bitsize - ri) & (bitsize - 1); |
| |
| if (len < ri) { |
| /* |
| * Sign extend the destination field from len to fill the |
| * balance of the word. Let the deposit below insert all |
| * of those sign bits. |
| */ |
| tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); |
| len = ri; |
| } |
| |
| /* |
| * We start with zero, and we haven't modified any bits outside |
| * bitsize, therefore no final zero-extension is unneeded for !sf. |
| */ |
| tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); |
| } |
| return true; |
| } |
| |
| static bool trans_UBFM(DisasContext *s, arg_UBFM *a) |
| { |
| TCGv_i64 tcg_rd = cpu_reg(s, a->rd); |
| TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); |
| unsigned int bitsize = a->sf ? 64 : 32; |
| unsigned int ri = a->immr; |
| unsigned int si = a->imms; |
| unsigned int pos, len; |
| |
| tcg_rd = cpu_reg(s, a->rd); |
| tcg_tmp = read_cpu_reg(s, a->rn, 1); |
| |
| if (si >= ri) { |
| /* Wd<s-r:0> = Wn<s:r> */ |
| len = (si - ri) + 1; |
| tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); |
| } else { |
| /* Wd<32+s-r,32-r> = Wn<s:0> */ |
| len = si + 1; |
| pos = (bitsize - ri) & (bitsize - 1); |
| tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); |
| } |
| return true; |
| } |
| |
| static bool trans_BFM(DisasContext *s, arg_BFM *a) |
| { |
| TCGv_i64 tcg_rd = cpu_reg(s, a->rd); |
| TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1); |
| unsigned int bitsize = a->sf ? 64 : 32; |
| unsigned int ri = a->immr; |
| unsigned int si = a->imms; |
| unsigned int pos, len; |
| |
| tcg_rd = cpu_reg(s, a->rd); |
| tcg_tmp = read_cpu_reg(s, a->rn, 1); |
| |
| if (si >= ri) { |
| /* Wd<s-r:0> = Wn<s:r> */ |
| tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri); |
| len = (si - ri) + 1; |
| pos = 0; |
| } else { |
| /* Wd<32+s-r,32-r> = Wn<s:0> */ |
| len = si + 1; |
| pos = (bitsize - ri) & (bitsize - 1); |
| } |
| |
| tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); |
| if (!a->sf) { |
| tcg_gen_ext32u_i64(tcg_rd, tcg_rd); |
| } |
| return true; |
| } |
| |
| static bool trans_EXTR(DisasContext *s, arg_extract *a) |
| { |
| TCGv_i64 tcg_rd, tcg_rm, tcg_rn; |
| |
| tcg_rd = cpu_reg(s, a->rd); |
| |
| if (unlikely(a->imm == 0)) { |
| /* |
| * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, |
| * so an extract from bit 0 is a special case. |
| */ |
| if (a->sf) { |
| tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm)); |
| } else { |
| tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm)); |
| } |
| } else { |
| tcg_rm = cpu_reg(s, a->rm); |
| tcg_rn = cpu_reg(s, a->rn); |
| |
| if (a->sf) { |
| /* Specialization to ROR happens in EXTRACT2. */ |
| tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm); |
| } else { |
| TCGv_i32 t0 = tcg_temp_new_i32(); |
| |
| tcg_gen_extrl_i64_i32(t0, tcg_rm); |
| if (a->rm == a->rn) { |
| tcg_gen_rotri_i32(t0, t0, a->imm); |
| } else { |
| TCGv_i32 t1 = tcg_temp_new_i32(); |
| tcg_gen_extrl_i64_i32(t1, tcg_rn); |
| tcg_gen_extract2_i32(t0, t0, t1, a->imm); |
| } |
| tcg_gen_extu_i32_i64(tcg_rd, t0); |
| } |
| } |
| return true; |
| } |
| |
| /* |
| * Cryptographic AES, SHA, SHA512 |
| */ |
| |
| TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese) |
| TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd) |
| TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc) |
| TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc) |
| |
| TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c) |
| TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p) |
| TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m) |
| TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0) |
| |
| TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h) |
| TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2) |
| TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1) |
| |
| TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h) |
| TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1) |
| TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0) |
| |
| TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h) |
| TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2) |
| TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1) |
| TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1) |
| TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1) |
| TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2) |
| TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey) |
| |
| TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0) |
| TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e) |
| |
| TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3) |
| TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax) |
| |
| static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a) |
| { |
| if (!dc_isar_feature(aa64_sm3, s)) { |
| return false; |
| } |
| if (fp_access_check(s)) { |
| TCGv_i32 tcg_op1 = tcg_temp_new_i32(); |
| TCGv_i32 tcg_op2 = tcg_temp_new_i32(); |
| TCGv_i32 tcg_op3 = tcg_temp_new_i32(); |
| TCGv_i32 tcg_res = tcg_temp_new_i32(); |
| unsigned vsz, dofs; |
| |
| read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32); |
| read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32); |
| read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32); |
| |
| tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); |
| tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); |
| tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); |
| tcg_gen_rotri_i32(tcg_res, tcg_res, 25); |
| |
| /* Clear the whole register first, then store bits [127:96]. */ |
| vsz = vec_full_reg_size(s); |
| dofs = vec_full_reg_offset(s, a->rd); |
| tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0); |
| write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32); |
| } |
| return true; |
| } |
| |
| static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn) |
| { |
| if (fp_access_check(s)) { |
| gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn); |
| } |
| return true; |
| } |
| TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a) |
| TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b) |
| TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a) |
| TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b) |
| |
| static bool trans_XAR(DisasContext *s, arg_XAR *a) |
| { |
| if (!dc_isar_feature(aa64_sha3, s)) { |
| return false; |
| } |
| if (fp_access_check(s)) { |
| gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd), |
| vec_full_reg_offset(s, a->rn), |
| vec_full_reg_offset(s, a->rm), a->imm, 16, |
| vec_full_reg_size(s)); |
| } |
| return true; |
| } |
| |
| /* |
| * Advanced SIMD copy |
| */ |
| |
| static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx) |
| { |
| unsigned esz = ctz32(imm); |
| if (esz <= MO_64) { |
| *pesz = esz; |
| *pidx = imm >> (esz + 1); |
| return true; |
| } |
| return false; |
| } |
| |
| static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a) |
| { |
| MemOp esz; |
| unsigned idx; |
| |
| if (!decode_esz_idx(a->imm, &esz, &idx)) { |
| return false; |
| } |
| if (fp_access_check(s)) { |
| /* |
| * This instruction just extracts the specified element and |
| * zero-extends it into the bottom of the destination register. |
| */ |
| TCGv_i64 tmp = tcg_temp_new_i64(); |
| read_vec_element(s, tmp, a->rn, idx, esz); |
| write_fp_dreg(s, a->rd, tmp); |
| } |
| return true; |
| } |
| |
| static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a) |
| { |
| MemOp esz; |
| unsigned idx; |
| |
| if (!decode_esz_idx(a->imm, &esz, &idx)) { |
| return false; |
| } |
| if (esz == MO_64 && !a->q) { |
| return false; |
| } |
| if (fp_access_check(s)) { |
| tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd), |
| vec_reg_offset(s, a->rn, idx, esz), |
| a->q ? 16 : 8, vec_full_reg_size(s)); |
| } |
| return true; |
| } |
| |
| static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a) |
| { |
| MemOp esz; |
| unsigned idx; |
| |
| if (!decode_esz_idx(a->imm, &esz, &idx)) { |
| return false; |
| } |
| if (esz == MO_64 && !a->q) { |
| return false; |
| } |
| if (fp_access_check(s)) { |
| tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd), |
| a->q ? 16 : 8, vec_full_reg_size(s), |
| cpu_reg(s, a->rn)); |
| } |
| return true; |
| } |
| |
| static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed) |
| { |
| MemOp esz; |
| unsigned idx; |
| |
| if (!decode_esz_idx(a->imm, &esz, &idx)) { |
| return false; |
| } |
| if (is_signed) { |
| if (esz == MO_64 || (esz == MO_32 && !a->q)) { |
| return false; |
| } |
| } else { |
| if (esz == MO_64 ? !a->q : a->q) { |
| return false; |
| } |
| } |
| if (fp_access_check(s)) { |
| TCGv_i64 tcg_rd = cpu_reg(s, a->rd); |
| read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed); |
| if (is_signed && !a->q) { |
| tcg_gen_ext32u_i64(tcg_rd, tcg_rd); |
| } |
| } |
| return true; |
| } |
| |
| TRANS(SMOV, do_smov_umov, a, MO_SIGN) |
| TRANS(UMOV, do_smov_umov, a, 0) |
| |
| static bool trans_INS_general(DisasContext *s, arg_INS_general *a) |
| { |
| MemOp esz; |
| unsigned idx; |
| |
| if (!decode_esz_idx(a->imm, &esz, &idx)) { |
| return false; |
| } |
| if (fp_access_check(s)) { |
| write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz); |
| clear_vec_high(s, true, a->rd); |
| } |
| return true; |
| } |
| |
| static bool trans_INS_element(DisasContext *s, arg_INS_element *a) |
| { |
| MemOp esz; |
| unsigned didx, sidx; |
| |
| if (!decode_esz_idx(a->di, &esz, &didx)) { |
| return false; |
| } |
| sidx = a->si >> esz; |
| if (fp_access_check(s)) { |
| TCGv_i64 tmp = tcg_temp_new_i64(); |
| |
| read_vec_element(s, tmp, a->rn, sidx, esz); |
| write_vec_element(s, tmp, a->rd, didx, esz); |
| |
| /* INS is considered a 128-bit write for SVE. */ |
| clear_vec_high(s, true, a->rd); |
| } |
| return true; |
| } |
| |
| /* |
| * Advanced SIMD three same |
| */ |
| |
| typedef struct FPScalar { |
| void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); |
| void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); |
| void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr); |
| } FPScalar; |
| |
| static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f) |
| { |
| switch (a->esz) { |
| case MO_64: |
| if (fp_access_check(s)) { |
| TCGv_i64 t0 = read_fp_dreg(s, a->rn); |
| TCGv_i64 t1 = read_fp_dreg(s, a->rm); |
| f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); |
| write_fp_dreg(s, a->rd, t0); |
| } |
| break; |
| case MO_32: |
| if (fp_access_check(s)) { |
| TCGv_i32 t0 = read_fp_sreg(s, a->rn); |
| TCGv_i32 t1 = read_fp_sreg(s, a->rm); |
| f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); |
| write_fp_sreg(s, a->rd, t0); |
| } |
| break; |
| case MO_16: |
| if (!dc_isar_feature(aa64_fp16, s)) { |
| return false; |
| } |
| if (fp_access_check(s)) { |
| TCGv_i32 t0 = read_fp_hreg(s, a->rn); |
| TCGv_i32 t1 = read_fp_hreg(s, a->rm); |
| f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); |
| write_fp_sreg(s, a->rd, t0); |
| } |
| break; |
| default: |
| return false; |
| } |
| return true; |
| } |
| |
| static const FPScalar f_scalar_fadd = { |
| gen_helper_vfp_addh, |
| gen_helper_vfp_adds, |
| gen_helper_vfp_addd, |
| }; |
| TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd) |
| |
| static const FPScalar f_scalar_fsub = { |
| gen_helper_vfp_subh, |
| gen_helper_vfp_subs, |
| gen_helper_vfp_subd, |
| }; |
| TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub) |
| |
| static const FPScalar f_scalar_fdiv = { |
| gen_helper_vfp_divh, |
| gen_helper_vfp_divs, |
| gen_helper_vfp_divd, |
| }; |
| TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv) |
| |
| static const FPScalar f_scalar_fmul = { |
| gen_helper_vfp_mulh, |
| gen_helper_vfp_muls, |
| gen_helper_vfp_muld, |
| }; |
| TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul) |
| |
| static const FPScalar f_scalar_fmax = { |
| gen_helper_advsimd_maxh, |
| gen_helper_vfp_maxs, |
| gen_helper_vfp_maxd, |
| }; |
| TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax) |
| |
| static const FPScalar f_scalar_fmin = { |
| gen_helper_advsimd_minh, |
| gen_helper_vfp_mins, |
| gen_helper_vfp_mind, |
| }; |
| TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin) |
| |
| static const FPScalar f_scalar_fmaxnm = { |
| gen_helper_advsimd_maxnumh, |
| gen_helper_vfp_maxnums, |
| gen_helper_vfp_maxnumd, |
| }; |
| TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm) |
| |
| static const FPScalar f_scalar_fminnm = { |
| gen_helper_advsimd_minnumh, |
| gen_helper_vfp_minnums, |
| gen_helper_vfp_minnumd, |
| }; |
| TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm) |
| |
| static const FPScalar f_scalar_fmulx = { |
| gen_helper_advsimd_mulxh, |
| gen_helper_vfp_mulxs, |
| gen_helper_vfp_mulxd, |
| }; |
| TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx) |
| |
| static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) |
| { |
| gen_helper_vfp_mulh(d, n, m, s); |
| gen_vfp_negh(d, d); |
| } |
| |
| static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) |
| { |
| gen_helper_vfp_muls(d, n, m, s); |
| gen_vfp_negs(d, d); |
| } |
| |
| static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s) |
| { |
| gen_helper_vfp_muld(d, n, m, s); |
| gen_vfp_negd(d, d); |
| } |
| |
| static const FPScalar f_scalar_fnmul = { |
| gen_fnmul_h, |
| gen_fnmul_s, |
| gen_fnmul_d, |
| }; |
| TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul) |
| |
| static const FPScalar f_scalar_fcmeq = { |
| gen_helper_advsimd_ceq_f16, |
| gen_helper_neon_ceq_f32, |
| gen_helper_neon_ceq_f64, |
| }; |
| TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq) |
| |
| static const FPScalar f_scalar_fcmge = { |
| gen_helper_advsimd_cge_f16, |
| gen_helper_neon_cge_f32, |
| gen_helper_neon_cge_f64, |
| }; |
| TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge) |
| |
| static const FPScalar f_scalar_fcmgt = { |
| gen_helper_advsimd_cgt_f16, |
| gen_helper_neon_cgt_f32, |
| gen_helper_neon_cgt_f64, |
| }; |
| TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt) |
| |
| static const FPScalar f_scalar_facge = { |
| gen_helper_advsimd_acge_f16, |
| gen_helper_neon_acge_f32, |
| gen_helper_neon_acge_f64, |
| }; |
| TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge) |
| |
| static const FPScalar f_scalar_facgt = { |
| gen_helper_advsimd_acgt_f16, |
| gen_helper_neon_acgt_f32, |
| gen_helper_neon_acgt_f64, |
| }; |
| TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt) |
| |
| static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) |
| { |
| gen_helper_vfp_subh(d, n, m, s); |
| gen_vfp_absh(d, d); |
| } |
| |
| static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s) |
| { |
| gen_helper_vfp_subs(d, n, m, s); |
| gen_vfp_abss(d, d); |
| } |
| |
| static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s) |
| { |
| gen_helper_vfp_subd(d, n, m, s); |
| gen_vfp_absd(d, d); |
| } |
| |
| static const FPScalar f_scalar_fabd = { |
| gen_fabd_h, |
| gen_fabd_s, |
| gen_fabd_d, |
| }; |
| TRANS(FABD_s, do_fp3_scalar, a, &f_scalar_fabd) |
| |
| static const FPScalar f_scalar_frecps = { |
| gen_helper_recpsf_f16, |
| gen_helper_recpsf_f32, |
| gen_helper_recpsf_f64, |
| }; |
| TRANS(FRECPS_s, do_fp3_scalar, a, &f_scalar_frecps) |
| |
| static const FPScalar f_scalar_frsqrts = { |
| gen_helper_rsqrtsf_f16, |
| gen_helper_rsqrtsf_f32, |
| gen_helper_rsqrtsf_f64, |
| }; |
| TRANS(FRSQRTS_s, do_fp3_scalar, a, &f_scalar_frsqrts) |
| |
| static bool do_satacc_s(DisasContext *s, arg_rrr_e *a, |
| MemOp sgn_n, MemOp sgn_m, |
| void (*gen_bhs)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64, MemOp), |
| void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64)) |
| { |
| TCGv_i64 t0, t1, t2, qc; |
| MemOp esz = a->esz; |
| |
| if (!fp_access_check(s)) { |
| return true; |
| } |
| |
| t0 = tcg_temp_new_i64(); |
| t1 = tcg_temp_new_i64(); |
| t2 = tcg_temp_new_i64(); |
| qc = tcg_temp_new_i64(); |
| read_vec_element(s, t1, a->rn, 0, esz | sgn_n); |
| read_vec_element(s, t2, a->rm, 0, esz | sgn_m); |
| tcg_gen_ld_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc)); |
| |
| if (esz == MO_64) { |
| gen_d(t0, qc, t1, t2); |
| } else { |
| gen_bhs(t0, qc, t1, t2, esz); |
| tcg_gen_ext_i64(t0, t0, esz); |
| } |
| |
| write_fp_dreg(s, a->rd, t0); |
| tcg_gen_st_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc)); |
| return true; |
| } |
| |
| TRANS(SQADD_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqadd_bhs, gen_sqadd_d) |
| TRANS(SQSUB_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqsub_bhs, gen_sqsub_d) |
| TRANS(UQADD_s, do_satacc_s, a, 0, 0, gen_uqadd_bhs, gen_uqadd_d) |
| TRANS(UQSUB_s, do_satacc_s, a, 0, 0, gen_uqsub_bhs, gen_uqsub_d) |
| TRANS(SUQADD_s, do_satacc_s, a, MO_SIGN, 0, gen_suqadd_bhs, gen_suqadd_d) |
| TRANS(USQADD_s, do_satacc_s, a, 0, MO_SIGN, gen_usqadd_bhs, gen_usqadd_d) |
| |
| static bool do_int3_scalar_d(DisasContext *s, arg_rrr_e *a, |
| void (*fn)(TCGv_i64, TCGv_i64, TCGv_i64)) |
| { |
| if (fp_access_check(s)) { |
| TCGv_i64 t0 = tcg_temp_new_i64(); |
| TCGv_i64 t1 = tcg_temp_new_i64(); |
| |
| read_vec_element(s, t0, a->rn, 0, MO_64); |
| read_vec_element(s, t1, a->rm, 0, MO_64); |
| fn(t0, t0, t1); |
| write_fp_dreg(s, a->rd, t0); |
| } |
| return true; |
| } |
| |
| TRANS(SSHL_s, do_int3_scalar_d, a, gen_sshl_i64) |
| TRANS(USHL_s, do_int3_scalar_d, a, gen_ushl_i64) |
| TRANS(SRSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_s64) |
| TRANS(URSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_u64) |
| TRANS(ADD_s, do_int3_scalar_d, a, tcg_gen_add_i64) |
| TRANS(SUB_s, do_int3_scalar_d, a, tcg_gen_sub_i64) |
| |
| typedef struct ENVScalar2 { |
| NeonGenTwoOpEnvFn *gen_bhs[3]; |
| NeonGenTwo64OpEnvFn *gen_d; |
| } ENVScalar2; |
| |
| static bool do_env_scalar2(DisasContext *s, arg_rrr_e *a, const ENVScalar2 *f) |
| { |
| if (!fp_access_check(s)) { |
| return true; |
| } |
| if (a->esz == MO_64) { |
| TCGv_i64 t0 = read_fp_dreg(s, a->rn); |
| TCGv_i64 t1 = read_fp_dreg(s, a->rm); |
| f->gen_d(t0, tcg_env, t0, t1); |
| write_fp_dreg(s, a->rd, t0); |
| } else { |
| TCGv_i32 t0 = tcg_temp_new_i32(); |
| TCGv_i32 t1 = tcg_temp_new_i32(); |
| |
| read_vec_element_i32(s, t0, a->rn, 0, a->esz); |
| read_vec_element_i32(s, t1, a->rm, 0, a->esz); |
| f->gen_bhs[a->esz](t0, tcg_env, t0, t1); |
| write_fp_sreg(s, a->rd, t0); |
| } |
| return true; |
| } |
| |
| static const ENVScalar2 f_scalar_sqshl = { |
| { gen_helper_neon_qshl_s8, |
| gen_helper_neon_qshl_s16, |
| gen_helper_neon_qshl_s32 }, |
| gen_helper_neon_qshl_s64, |
| }; |
| TRANS(SQSHL_s, do_env_scalar2, a, &f_scalar_sqshl) |
| |
| static const ENVScalar2 f_scalar_uqshl = { |
| { gen_helper_neon_qshl_u8, |
| gen_helper_neon_qshl_u16, |
| gen_helper_neon_qshl_u32 }, |
| gen_helper_neon_qshl_u64, |
| }; |
| TRANS(UQSHL_s, do_env_scalar2, a, &f_scalar_uqshl) |
| |
| static const ENVScalar2 f_scalar_sqrshl = { |
| { gen_helper_neon_qrshl_s8, |
| gen_helper_neon_qrshl_s16, |
| gen_helper_neon_qrshl_s32 }, |
| gen_helper_neon_qrshl_s64, |
| }; |
| TRANS(SQRSHL_s, do_env_scalar2, a, &f_scalar_sqrshl) |
| |
| static const ENVScalar2 f_scalar_uqrshl = { |
| { gen_helper_neon_qrshl_u8, |
| gen_helper_neon_qrshl_u16, |
| gen_helper_neon_qrshl_u32 }, |
| gen_helper_neon_qrshl_u64, |
| }; |
| TRANS(UQRSHL_s, do_env_scalar2, a, &f_scalar_uqrshl) |
| |
| static bool do_env_scalar2_hs(DisasContext *s, arg_rrr_e *a, |
| const ENVScalar2 *f) |
| { |
| if (a->esz == MO_16 || a->esz == MO_32) { |
| return do_env_scalar2(s, a, f); |
| } |
| return false; |
| } |
| |
| static const ENVScalar2 f_scalar_sqdmulh = { |
| { NULL, gen_helper_neon_qdmulh_s16, gen_helper_neon_qdmulh_s32 } |
| }; |
| TRANS(SQDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqdmulh) |
| |
| static const ENVScalar2 f_scalar_sqrdmulh = { |
| { NULL, gen_helper_neon_qrdmulh_s16, gen_helper_neon_qrdmulh_s32 } |
| }; |
| TRANS(SQRDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqrdmulh) |
| |
| static bool do_cmop_d(DisasContext *s, arg_rrr_e *a, TCGCond cond) |
| { |
| if (fp_access_check(s)) { |
| TCGv_i64 t0 = read_fp_dreg(s, a->rn); |
| TCGv_i64 t1 = read_fp_dreg(s, a->rm); |
| tcg_gen_negsetcond_i64(cond, t0, t0, t1); |
| write_fp_dreg(s, a->rd, t0); |
| } |
| return true; |
| } |
| |
| TRANS(CMGT_s, do_cmop_d, a, TCG_COND_GT) |
| TRANS(CMHI_s, do_cmop_d, a, TCG_COND_GTU) |
| TRANS(CMGE_s, do_cmop_d, a, TCG_COND_GE) |
| TRANS(CMHS_s, do_cmop_d, a, TCG_COND_GEU) |
| TRANS(CMEQ_s, do_cmop_d, a, TCG_COND_EQ) |
| TRANS(CMTST_s, do_cmop_d, a, TCG_COND_TSTNE) |
| |
| static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a, |
| gen_helper_gvec_3_ptr * const fns[3]) |
| { |
| MemOp esz = a->esz; |
| |
| switch (esz) { |
| case MO_64: |
| if (!a->q) { |
| return false; |
| } |
| break; |
| case MO_32: |
| break; |
| case MO_16: |
| if (!dc_isar_feature(aa64_fp16, s)) { |
| return false; |
| } |
| break; |
| default: |
| return false; |
| } |
| if (fp_access_check(s)) { |
| gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, |
| esz == MO_16, 0, fns[esz - 1]); |
| } |
| return true; |
| } |
| |
| static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = { |
| gen_helper_gvec_fadd_h, |
| gen_helper_gvec_fadd_s, |
| gen_helper_gvec_fadd_d, |
| }; |
| TRANS(FADD_v, do_fp3_vector, a, f_vector_fadd) |
| |
| static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = { |
| gen_helper_gvec_fsub_h, |
| gen_helper_gvec_fsub_s, |
| gen_helper_gvec_fsub_d, |
| }; |
| TRANS(FSUB_v, do_fp3_vector, a, f_vector_fsub) |
| |
| static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = { |
| gen_helper_gvec_fdiv_h, |
| gen_helper_gvec_fdiv_s, |
| gen_helper_gvec_fdiv_d, |
| }; |
| TRANS(FDIV_v, do_fp3_vector, a, f_vector_fdiv) |
| |
| static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = { |
| gen_helper_gvec_fmul_h, |
| gen_helper_gvec_fmul_s, |
| gen_helper_gvec_fmul_d, |
| }; |
| TRANS(FMUL_v, do_fp3_vector, a, f_vector_fmul) |
| |
| static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = { |
| gen_helper_gvec_fmax_h, |
| gen_helper_gvec_fmax_s, |
| gen_helper_gvec_fmax_d, |
| }; |
| TRANS(FMAX_v, do_fp3_vector, a, f_vector_fmax) |
| |
| static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = { |
| gen_helper_gvec_fmin_h, |
| gen_helper_gvec_fmin_s, |
| gen_helper_gvec_fmin_d, |
| }; |
| TRANS(FMIN_v, do_fp3_vector, a, f_vector_fmin) |
| |
| static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = { |
| gen_helper_gvec_fmaxnum_h, |
| gen_helper_gvec_fmaxnum_s, |
| gen_helper_gvec_fmaxnum_d, |
| }; |
| TRANS(FMAXNM_v, do_fp3_vector, a, f_vector_fmaxnm) |
| |
| static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = { |
| gen_helper_gvec_fminnum_h, |
| gen_helper_gvec_fminnum_s, |
| gen_helper_gvec_fminnum_d, |
| }; |
| TRANS(FMINNM_v, do_fp3_vector, a, f_vector_fminnm) |
| |
| static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = { |
| gen_helper_gvec_fmulx_h, |
| gen_helper_gvec_fmulx_s, |
| gen_helper_gvec_fmulx_d, |
| }; |
| TRANS(FMULX_v, do_fp3_vector, a, f_vector_fmulx) |
| |
| static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = { |
| gen_helper_gvec_vfma_h, |
| gen_helper_gvec_vfma_s, |
| gen_helper_gvec_vfma_d, |
| }; |
| TRANS(FMLA_v, do_fp3_vector, a, f_vector_fmla) |
| |
| static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = { |
| gen_helper_gvec_vfms_h, |
| gen_helper_gvec_vfms_s, |
| gen_helper_gvec_vfms_d, |
| }; |
| TRANS(FMLS_v, do_fp3_vector, a, f_vector_fmls) |
| |
| static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = { |
| gen_helper_gvec_fceq_h, |
| gen_helper_gvec_fceq_s, |
| gen_helper_gvec_fceq_d, |
| }; |
| TRANS(FCMEQ_v, do_fp3_vector, a, f_vector_fcmeq) |
| |
| static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = { |
| gen_helper_gvec_fcge_h, |
| gen_helper_gvec_fcge_s, |
| gen_helper_gvec_fcge_d, |
| }; |
| TRANS(FCMGE_v, do_fp3_vector, a, f_vector_fcmge) |
| |
| static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = { |
| gen_helper_gvec_fcgt_h, |
| gen_helper_gvec_fcgt_s, |
| gen_helper_gvec_fcgt_d, |
| }; |
| TRANS(FCMGT_v, do_fp3_vector, a, f_vector_fcmgt) |
| |
| static gen_helper_gvec_3_ptr * const f_vector_facge[3] = { |
| gen_helper_gvec_facge_h, |
| gen_helper_gvec_facge_s, |
| gen_helper_gvec_facge_d, |
| }; |
| TRANS(FACGE_v, do_fp3_vector, a, f_vector_facge) |
| |
| static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = { |
| gen_helper_gvec_facgt_h, |
| gen_helper_gvec_facgt_s, |
| gen_helper_gvec_facgt_d, |
| }; |
| TRANS(FACGT_v, do_fp3_vector, a, f_vector_facgt) |
| |
| static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = { |
| gen_helper_gvec_fabd_h, |
| gen_helper_gvec_fabd_s, |
| gen_helper_gvec_fabd_d, |
| }; |
| TRANS(FABD_v, do_fp3_vector, a, f_vector_fabd) |
| |
| static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = { |
| gen_helper_gvec_recps_h, |
| gen_helper_gvec_recps_s, |
| gen_helper_gvec_recps_d, |
| }; |
| TRANS(FRECPS_v, do_fp3_vector, a, f_vector_frecps) |
| |
| static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = { |
| gen_helper_gvec_rsqrts_h, |
| gen_helper_gvec_rsqrts_s, |
| gen_helper_gvec_rsqrts_d, |
| }; |
| TRANS(FRSQRTS_v, do_fp3_vector, a, f_vector_frsqrts) |
| |
| static gen_helper_gvec_3_ptr * const f_vector_faddp[3] = { |
| gen_helper_gvec_faddp_h, |
| gen_helper_gvec_faddp_s, |
| gen_helper_gvec_faddp_d, |
| }; |
| TRANS(FADDP_v, do_fp3_vector, a, f_vector_faddp) |
| |
| static gen_helper_gvec_3_ptr * const f_vector_fmaxp[3] = { |
| gen_helper_gvec_fmaxp_h, |
| gen_helper_gvec_fmaxp_s, |
| gen_helper_gvec_fmaxp_d, |
| }; |
| TRANS(FMAXP_v, do_fp3_vector, a, f_vector_fmaxp) |
| |
| static gen_helper_gvec_3_ptr * const f_vector_fminp[3] = { |
| gen_helper_gvec_fminp_h, |
| gen_helper_gvec_fminp_s, |
| gen_helper_gvec_fminp_d, |
| }; |
| TRANS(FMINP_v, do_fp3_vector, a, f_vector_fminp) |
| |
| static gen_helper_gvec_3_ptr * const f_vector_fmaxnmp[3] = { |
| gen_helper_gvec_fmaxnump_h, |
| gen_helper_gvec_fmaxnump_s, |
| gen_helper_gvec_fmaxnump_d, |
| }; |
| TRANS(FMAXNMP_v, do_fp3_vector, a, f_vector_fmaxnmp) |
| |
| static gen_helper_gvec_3_ptr * const f_vector_fminnmp[3] = { |
| gen_helper_gvec_fminnump_h, |
| gen_helper_gvec_fminnump_s, |
| gen_helper_gvec_fminnump_d, |
| }; |
| TRANS(FMINNMP_v, do_fp3_vector, a, f_vector_fminnmp) |
| |
| static bool do_fmlal(DisasContext *s, arg_qrrr_e *a, bool is_s, bool is_2) |
| { |
| if (fp_access_check(s)) { |
| int data = (is_2 << 1) | is_s; |
| tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd), |
| vec_full_reg_offset(s, a->rn), |
| vec_full_reg_offset(s, a->rm), tcg_env, |
| a->q ? 16 : 8, vec_full_reg_size(s), |
| data, gen_helper_gvec_fmlal_a64); |
| } |
| return true; |
| } |
| |
| TRANS_FEAT(FMLAL_v, aa64_fhm, do_fmlal, a, false, false) |
| TRANS_FEAT(FMLSL_v, aa64_fhm, do_fmlal, a, true, false) |
| TRANS_FEAT(FMLAL2_v, aa64_fhm, do_fmlal, a, false, true) |
| TRANS_FEAT(FMLSL2_v, aa64_fhm, do_fmlal, a, true, true) |
| |
| TRANS(ADDP_v, do_gvec_fn3, a, gen_gvec_addp) |
| TRANS(SMAXP_v, do_gvec_fn3_no64, a, gen_gvec_smaxp) |
| TRANS(SMINP_v, do_gvec_fn3_no64, a, gen_gvec_sminp) |
| TRANS(UMAXP_v, do_gvec_fn3_no64, a, gen_gvec_umaxp) |
| TRANS(UMINP_v, do_gvec_fn3_no64, a, gen_gvec_uminp) |
| |
| TRANS(AND_v, do_gvec_fn3, a, tcg_gen_gvec_and) |
| TRANS(BIC_v, do_gvec_fn3, a, tcg_gen_gvec_andc) |
| TRANS(ORR_v, do_gvec_fn3, a, tcg_gen_gvec_or) |
| TRANS(ORN_v, do_gvec_fn3, a, tcg_gen_gvec_orc) |
| TRANS(EOR_v, do_gvec_fn3, a, tcg_gen_gvec_xor) |
| |
| static bool do_bitsel(DisasContext *s, bool is_q, int d, int a, int b, int c) |
| { |
| if (fp_access_check(s)) { |
| gen_gvec_fn4(s, is_q, d, a, b, c, tcg_gen_gvec_bitsel, 0); |
| } |
| return true; |
| } |
| |
| TRANS(BSL_v, do_bitsel, a->q, a->rd, a->rd, a->rn, a->rm) |
| TRANS(BIT_v, do_bitsel, a->q, a->rd, a->rm, a->rn, a->rd) |
| TRANS(BIF_v, do_bitsel, a->q, a->rd, a->rm, a->rd, a->rn) |
| |
| TRANS(SQADD_v, do_gvec_fn3, a, gen_gvec_sqadd_qc) |
| TRANS(UQADD_v, do_gvec_fn3, a, gen_gvec_uqadd_qc) |
| TRANS(SQSUB_v, do_gvec_fn3, a, gen_gvec_sqsub_qc) |
| TRANS(UQSUB_v, do_gvec_fn3, a, gen_gvec_uqsub_qc) |
| TRANS(SUQADD_v, do_gvec_fn3, a, gen_gvec_suqadd_qc) |
| TRANS(USQADD_v, do_gvec_fn3, a, gen_gvec_usqadd_qc) |
| |
| TRANS(SSHL_v, do_gvec_fn3, a, gen_gvec_sshl) |
| TRANS(USHL_v, do_gvec_fn3, a, gen_gvec_ushl) |
| TRANS(SRSHL_v, do_gvec_fn3, a, gen_gvec_srshl) |
| TRANS(URSHL_v, do_gvec_fn3, a, gen_gvec_urshl) |
| TRANS(SQSHL_v, do_gvec_fn3, a, gen_neon_sqshl) |
| TRANS(UQSHL_v, do_gvec_fn3, a, gen_neon_uqshl) |
| TRANS(SQRSHL_v, do_gvec_fn3, a, gen_neon_sqrshl) |
| TRANS(UQRSHL_v, do_gvec_fn3, a, gen_neon_uqrshl) |
| |
| TRANS(ADD_v, do_gvec_fn3, a, tcg_gen_gvec_add) |
| TRANS(SUB_v, do_gvec_fn3, a, tcg_gen_gvec_sub) |
| TRANS(SHADD_v, do_gvec_fn3_no64, a, gen_gvec_shadd) |
| TRANS(UHADD_v, do_gvec_fn3_no64, a, gen_gvec_uhadd) |
| TRANS(SHSUB_v, do_gvec_fn3_no64, a, gen_gvec_shsub) |
| TRANS(UHSUB_v, do_gvec_fn3_no64, a, gen_gvec_uhsub) |
| TRANS(SRHADD_v, do_gvec_fn3_no64, a, gen_gvec_srhadd) |
| TRANS(URHADD_v, do_gvec_fn3_no64, a, gen_gvec_urhadd) |
| TRANS(SMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smax) |
| TRANS(UMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umax) |
| TRANS(SMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smin) |
| TRANS(UMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umin) |
| TRANS(SABA_v, do_gvec_fn3_no64, a, gen_gvec_saba) |
| TRANS(UABA_v, do_gvec_fn3_no64, a, gen_gvec_uaba) |
| TRANS(SABD_v, do_gvec_fn3_no64, a, gen_gvec_sabd) |
| TRANS(UABD_v, do_gvec_fn3_no64, a, gen_gvec_uabd) |
| TRANS(MUL_v, do_gvec_fn3_no64, a, tcg_gen_gvec_mul) |
| TRANS(PMUL_v, do_gvec_op3_ool, a, 0, gen_helper_gvec_pmul_b) |
| TRANS(MLA_v, do_gvec_fn3_no64, a, gen_gvec_mla) |
| TRANS(MLS_v, do_gvec_fn3_no64, a, gen_gvec_mls) |
| |
| static bool do_cmop_v(DisasContext *s, arg_qrrr_e *a, TCGCond cond) |
| { |
| if (a->esz == MO_64 && !a->q) { |
| return false; |
| } |
| if (fp_access_check(s)) { |
| tcg_gen_gvec_cmp(cond, a->esz, |
| vec_full_reg_offset(s, a->rd), |
| vec_full_reg_offset(s, a->rn), |
| vec_full_reg_offset(s, a->rm), |
| a->q ? 16 : 8, vec_full_reg_size(s)); |
| } |
| return true; |
| } |
| |
| TRANS(CMGT_v, do_cmop_v, a, TCG_COND_GT) |
| TRANS(CMHI_v, do_cmop_v, a, TCG_COND_GTU) |
| TRANS(CMGE_v, do_cmop_v, a, TCG_COND_GE) |
| TRANS(CMHS_v, do_cmop_v, a, TCG_COND_GEU) |
| TRANS(CMEQ_v, do_cmop_v, a, TCG_COND_EQ) |
| TRANS(CMTST_v, do_gvec_fn3, a, gen_gvec_cmtst) |
| |
| TRANS(SQDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqdmulh_qc) |
| TRANS(SQRDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmulh_qc) |
| |
| /* |
| * Advanced SIMD scalar/vector x indexed element |
| */ |
| |
| static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f) |
| { |
| switch (a->esz) { |
| case MO_64: |
| if (fp_access_check(s)) { |
| TCGv_i64 t0 = read_fp_dreg(s, a->rn); |
| TCGv_i64 t1 = tcg_temp_new_i64(); |
| |
| read_vec_element(s, t1, a->rm, a->idx, MO_64); |
| f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); |
| write_fp_dreg(s, a->rd, t0); |
| } |
| break; |
| case MO_32: |
| if (fp_access_check(s)) { |
| TCGv_i32 t0 = read_fp_sreg(s, a->rn); |
| TCGv_i32 t1 = tcg_temp_new_i32(); |
| |
| read_vec_element_i32(s, t1, a->rm, a->idx, MO_32); |
| f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); |
| write_fp_sreg(s, a->rd, t0); |
| } |
| break; |
| case MO_16: |
| if (!dc_isar_feature(aa64_fp16, s)) { |
| return false; |
| } |
| if (fp_access_check(s)) { |
| TCGv_i32 t0 = read_fp_hreg(s, a->rn); |
| TCGv_i32 t1 = tcg_temp_new_i32(); |
| |
| read_vec_element_i32(s, t1, a->rm, a->idx, MO_16); |
| f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); |
| write_fp_sreg(s, a->rd, t0); |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| return true; |
| } |
| |
| TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul) |
| TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx) |
| |
| static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg) |
| { |
| switch (a->esz) { |
| case MO_64: |
| if (fp_access_check(s)) { |
| TCGv_i64 t0 = read_fp_dreg(s, a->rd); |
| TCGv_i64 t1 = read_fp_dreg(s, a->rn); |
| TCGv_i64 t2 = tcg_temp_new_i64(); |
| |
| read_vec_element(s, t2, a->rm, a->idx, MO_64); |
| if (neg) { |
| gen_vfp_negd(t1, t1); |
| } |
| gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR)); |
| write_fp_dreg(s, a->rd, t0); |
| } |
| break; |
| case MO_32: |
| if (fp_access_check(s)) { |
| TCGv_i32 t0 = read_fp_sreg(s, a->rd); |
| TCGv_i32 t1 = read_fp_sreg(s, a->rn); |
| TCGv_i32 t2 = tcg_temp_new_i32(); |
| |
| read_vec_element_i32(s, t2, a->rm, a->idx, MO_32); |
| if (neg) { |
| gen_vfp_negs(t1, t1); |
| } |
| gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR)); |
| write_fp_sreg(s, a->rd, t0); |
| } |
| break; |
| case MO_16: |
| if (!dc_isar_feature(aa64_fp16, s)) { |
| return false; |
| } |
| if (fp_access_check(s)) { |
| TCGv_i32 t0 = read_fp_hreg(s, a->rd); |
| TCGv_i32 t1 = read_fp_hreg(s, a->rn); |
| TCGv_i32 t2 = tcg_temp_new_i32(); |
| |
| read_vec_element_i32(s, t2, a->rm, a->idx, MO_16); |
| if (neg) { |
| gen_vfp_negh(t1, t1); |
| } |
| gen_helper_advsimd_muladdh(t0, t1, t2, t0, |
| fpstatus_ptr(FPST_FPCR_F16)); |
| write_fp_sreg(s, a->rd, t0); |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| return true; |
| } |
| |
| TRANS(FMLA_si, do_fmla_scalar_idx, a, false) |
| TRANS(FMLS_si, do_fmla_scalar_idx, a, true) |
| |
| static bool do_env_scalar2_idx_hs(DisasContext *s, arg_rrx_e *a, |
| const ENVScalar2 *f) |
| { |
| if (a->esz < MO_16 || a->esz > MO_32) { |
| return false; |
| } |
| if (fp_access_check(s)) { |
| TCGv_i32 t0 = tcg_temp_new_i32(); |
| TCGv_i32 t1 = tcg_temp_new_i32(); |
| |
| read_vec_element_i32(s, t0, a->rn, 0, a->esz); |
| read_vec_element_i32(s, t1, a->rm, a->idx, a->esz); |
| f->gen_bhs[a->esz](t0, tcg_env, t0, t1); |
| write_fp_sreg(s, a->rd, t0); |
| } |
| return true; |
| } |
| |
| TRANS(SQDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqdmulh) |
| TRANS(SQRDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqrdmulh) |
| |
| static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a, |
| gen_helper_gvec_3_ptr * const fns[3]) |
| { |
| MemOp esz = a->esz; |
| |
| switch (esz) { |
| case MO_64: |
| if (!a->q) { |
| return false; |
| } |
| break; |
| case MO_32: |
| break; |
| case MO_16: |
| if (!dc_isar_feature(aa64_fp16, s)) { |
| return false; |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| if (fp_access_check(s)) { |
| gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, |
| esz == MO_16, a->idx, fns[esz - 1]); |
| } |
| return true; |
| } |
| |
| static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = { |
| gen_helper_gvec_fmul_idx_h, |
| gen_helper_gvec_fmul_idx_s, |
| gen_helper_gvec_fmul_idx_d, |
| }; |
| TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul) |
| |
| static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = { |
| gen_helper_gvec_fmulx_idx_h, |
| gen_helper_gvec_fmulx_idx_s, |
| gen_helper_gvec_fmulx_idx_d, |
| }; |
| TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx) |
| |
| static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg) |
| { |
| static gen_helper_gvec_4_ptr * const fns[3] = { |
| gen_helper_gvec_fmla_idx_h, |
| gen_helper_gvec_fmla_idx_s, |
| gen_helper_gvec_fmla_idx_d, |
| }; |
| MemOp esz = a->esz; |
| |
| switch (esz) { |
| case MO_64: |
| if (!a->q) { |
| return false; |
| } |
| break; |
| case MO_32: |
| break; |
| case MO_16: |
| if (!dc_isar_feature(aa64_fp16, s)) { |
| return false; |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| if (fp_access_check(s)) { |
| gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd, |
| esz == MO_16, (a->idx << 1) | neg, |
| fns[esz - 1]); |
| } |
| return true; |
| } |
| |
| TRANS(FMLA_vi, do_fmla_vector_idx, a, false) |
| TRANS(FMLS_vi, do_fmla_vector_idx, a, true) |
| |
| static bool do_fmlal_idx(DisasContext *s, arg_qrrx_e *a, bool is_s, bool is_2) |
| { |
| if (fp_access_check(s)) { |
| int data = (a->idx << 2) | (is_2 << 1) | is_s; |
| tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd), |
| vec_full_reg_offset(s, a->rn), |
| vec_full_reg_offset(s, a->rm), tcg_env, |
| a->q ? 16 : 8, vec_full_reg_size(s), |
| data, gen_helper_gvec_fmlal_idx_a64); |
| } |
| return true; |
| } |
| |
| TRANS_FEAT(FMLAL_vi, aa64_fhm, do_fmlal_idx, a, false, false) |
| TRANS_FEAT(FMLSL_vi, aa64_fhm, do_fmlal_idx, a, true, false) |
| TRANS_FEAT(FMLAL2_vi, aa64_fhm, do_fmlal_idx, a, false, true) |
| TRANS_FEAT(FMLSL2_vi, aa64_fhm, do_fmlal_idx, a, true, true) |
| |
| static bool do_int3_vector_idx(DisasContext *s, arg_qrrx_e *a, |
| gen_helper_gvec_3 * const fns[2]) |
| { |
| assert(a->esz == MO_16 || a->esz == MO_32); |
| if (fp_access_check(s)) { |
| gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, a->idx, fns[a->esz - 1]); |
| } |
| return true; |
| } |
| |
| static gen_helper_gvec_3 * const f_vector_idx_mul[2] = { |
| gen_helper_gvec_mul_idx_h, |
| gen_helper_gvec_mul_idx_s, |
| }; |
| TRANS(MUL_vi, do_int3_vector_idx, a, f_vector_idx_mul) |
| |
| static bool do_mla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool sub) |
| { |
| static gen_helper_gvec_4 * const fns[2][2] = { |
| { gen_helper_gvec_mla_idx_h, gen_helper_gvec_mls_idx_h }, |
| { gen_helper_gvec_mla_idx_s, gen_helper_gvec_mls_idx_s }, |
| }; |
| |
| assert(a->esz == MO_16 || a->esz == MO_32); |
| if (fp_access_check(s)) { |
| gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, |
| a->idx, fns[a->esz - 1][sub]); |
| } |
| return true; |
| } |
| |
| TRANS(MLA_vi, do_mla_vector_idx, a, false) |
| TRANS(MLS_vi, do_mla_vector_idx, a, true) |
| |
| static bool do_int3_qc_vector_idx(DisasContext *s, arg_qrrx_e *a, |
| gen_helper_gvec_4 * const fns[2]) |
| { |
| assert(a->esz == MO_16 || a->esz == MO_32); |
| if (fp_access_check(s)) { |
| tcg_gen_gvec_4_ool(vec_full_reg_offset(s, a->rd), |
| vec_full_reg_offset(s, a->rn), |
| vec_full_reg_offset(s, a->rm), |
| offsetof(CPUARMState, vfp.qc), |
| a->q ? 16 : 8, vec_full_reg_size(s), |
| a->idx, fns[a->esz - 1]); |
| } |
| return true; |
| } |
| |
| static gen_helper_gvec_4 * const f_vector_idx_sqdmulh[2] = { |
| gen_helper_neon_sqdmulh_idx_h, |
| gen_helper_neon_sqdmulh_idx_s, |
| }; |
| TRANS(SQDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqdmulh) |
| |
| static gen_helper_gvec_4 * const f_vector_idx_sqrdmulh[2] = { |
| gen_helper_neon_sqrdmulh_idx_h, |
| gen_helper_neon_sqrdmulh_idx_s, |
| }; |
| TRANS(SQRDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqrdmulh) |
| |
| /* |
| * Advanced SIMD scalar pairwise |
| */ |
| |
| static bool do_fp3_scalar_pair(DisasContext *s, arg_rr_e *a, const FPScalar *f) |
| { |
| switch (a->esz) { |
| case MO_64: |
| if (fp_access_check(s)) { |
| TCGv_i64 t0 = tcg_temp_new_i64(); |
| TCGv_i64 t1 = tcg_temp_new_i64(); |
| |
| read_vec_element(s, t0, a->rn, 0, MO_64); |
| read_vec_element(s, t1, a->rn, 1, MO_64); |
| f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); |
| write_fp_dreg(s, a->rd, t0); |
| } |
| break; |
| case MO_32: |
| if (fp_access_check(s)) { |
| TCGv_i32 t0 = tcg_temp_new_i32(); |
| TCGv_i32 t1 = tcg_temp_new_i32(); |
| |
| read_vec_element_i32(s, t0, a->rn, 0, MO_32); |
| read_vec_element_i32(s, t1, a->rn, 1, MO_32); |
| f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR)); |
| write_fp_sreg(s, a->rd, t0); |
| } |
| break; |
| case MO_16: |
| if (!dc_isar_feature(aa64_fp16, s)) { |
| return false; |
| } |
| if (fp_access_check(s)) { |
| TCGv_i32 t0 = tcg_temp_new_i32(); |
| TCGv_i32 t1 = tcg_temp_new_i32(); |
| |
| read_vec_element_i32(s, t0, a->rn, 0, MO_16); |
| read_vec_element_i32(s, t1, a->rn, 1, MO_16); |
| f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16)); |
| write_fp_sreg(s, a->rd, t0); |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| return true; |
| } |
| |
| TRANS(FADDP_s, do_fp3_scalar_pair, a, &f_scalar_fadd) |
| TRANS(FMAXP_s, do_fp3_scalar_pair, a, &f_scalar_fmax) |
| TRANS(FMINP_s, do_fp3_scalar_pair, a, &f_scalar_fmin) |
| TRANS(FMAXNMP_s, do_fp3_scalar_pair, a, &f_scalar_fmaxnm) |
| TRANS(FMINNMP_s, do_fp3_scalar_pair, a, &f_scalar_fminnm) |
| |
| static bool trans_ADDP_s(DisasContext *s, arg_rr_e *a) |
| { |
| if (fp_access_check(s)) { |
| TCGv_i64 t0 = tcg_temp_new_i64(); |
| TCGv_i64 t1 = tcg_temp_new_i64(); |
| |
| read_vec_element(s, t0, a->rn, 0, MO_64); |
| read_vec_element(s, t1, a->rn, 1, MO_64); |
| tcg_gen_add_i64(t0, t0, t1); |
| write_fp_dreg(s, a->rd, t0); |
| } |
| return true; |
| } |
| |
| /* |
| * Floating-point conditional select |
| */ |
| |
| static bool trans_FCSEL(DisasContext *s, arg_FCSEL *a) |
| { |
| TCGv_i64 t_true, t_false; |
| DisasCompare64 c; |
| |
| switch (a->esz) { |
| case MO_32: |
| case MO_64: |
| break; |
| case MO_16: |
| if (!dc_isar_feature(aa64_fp16, s)) { |
| return false; |
| } |
| break; |
| default: |
| return false; |
| } |
| |
| if (!fp_access_check(s)) { |
| return true; |
| } |
| |
| /* Zero extend sreg & hreg inputs to 64 bits now. */ |
| t_true = tcg_temp_new_i64(); |
| t_false = tcg_temp_new_i64(); |
| read_vec_element(s, t_true, a->rn, 0, a->esz); |
| read_vec_element(s, t_false, a->rm, 0, a->esz); |
| |
| a64_test_cc(&c, a->cond); |
| tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0), |
| t_true, t_false); |
| |
| /* |
| * Note that sregs & hregs write back zeros to the high bits, |
| * and we've already done the zero-extension. |
| */ |
| write_fp_dreg(s, a->rd, t_true); |
| return true; |
| } |
| |
| /* |
| * Floating-point data-processing (3 source) |
| */ |
| |
| static bool do_fmadd(DisasContext *s, arg_rrrr_e *a, bool neg_a, bool neg_n) |
| { |
| TCGv_ptr fpst; |
| |
| /* |
| * These are fused multiply-add. Note that doing the negations here |
| * as separate steps is correct: an input NaN should come out with |
| * its sign bit flipped if it is a negated-input. |
| */ |
| switch (a->esz) { |
| case MO_64: |
| if (fp_access_check(s)) { |
| TCGv_i64 tn = read_fp_dreg(s, a->rn); |
| TCGv_i64 tm = read_fp_dreg(s, a->rm); |
| TCGv_i64 ta = read_fp_dreg(s, a->ra); |
| |
| if (neg_a) { |
| gen_vfp_negd(ta, ta); |
| } |
| if (neg_n) { |
| gen_vfp_negd(tn, tn); |
| } |
| fpst = fpstatus_ptr(FPST_FPCR); |
| gen_helper_vfp_muladdd(ta, tn, tm, ta, fpst); |
| write_fp_dreg(s, a->rd, ta); |
| } |
| break; |
| |
| case MO_32: |
| if (fp_access_check(s)) { |
| TCGv_i32 tn = read_fp_sreg(s, a->rn); |
| TCGv_i32 tm = read_fp_sreg(s, a->rm); |
| TCGv_i32 ta = read_fp_sreg(s, a->ra); |
| |
| if (neg_a) { |
| gen_vfp_negs(ta, ta); |
| } |
| if (neg_n) { |
| gen_vfp_negs(tn, tn); |
| } |
| fpst = fpstatus_ptr(FPST_FPCR); |
| gen_helper_vfp_muladds(ta, tn, tm, ta, fpst); |
| write_fp_sreg(s, a->rd, ta); |
| } |
| break; |
| |
| case MO_16: |
| if (!dc_isar_feature(aa64_fp16, s)) { |
| return false; |
| } |
| if (fp_access_check(s)) { |
| TCGv_i32 tn = read_fp_hreg(s, a->rn); |
| TCGv_i32 tm = read_fp_hreg(s, a->rm); |
| TCGv_i32 ta = read_fp_hreg(s, a->ra); |
| |
| if (neg_a) { |
| gen_vfp_negh(ta, ta); |
| } |
| if (neg_n) { |
| gen_vfp_negh(tn, tn); |
| } |
| fpst = fpstatus_ptr(FPST_FPCR_F16); |
| gen_helper_advsimd_muladdh(ta, tn, tm, ta, fpst); |
| write_fp_sreg(s, a->rd, ta); |
| } |
| break; |
| |
| default: |
| return false; |
| } |
| return true; |
| } |
| |
| TRANS(FMADD, do_fmadd, a, false, false) |
| TRANS(FNMADD, do_fmadd, a, true, true) |
| TRANS(FMSUB, do_fmadd, a, false, true) |
| TRANS(FNMSUB, do_fmadd, a, true, false) |
| |
| /* Shift a TCGv src by TCGv shift_amount, put result in dst. |
| * Note that it is the caller's responsibility to ensure that the |
| * shift amount is in range (ie 0..31 or 0..63) and provide the ARM |
| * mandated semantics for out of range shifts. |
| */ |
| static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, |
| enum a64_shift_type shift_type, TCGv_i64 shift_amount) |
| { |
| switch (shift_type) { |
| case A64_SHIFT_TYPE_LSL: |
| tcg_gen_shl_i64(dst, src, shift_amount); |
| break; |
| case A64_SHIFT_TYPE_LSR: |
| tcg_gen_shr_i64(dst, src, shift_amount); |
| break; |
| case A64_SHIFT_TYPE_ASR: |
| if (!sf) { |
| tcg_gen_ext32s_i64(dst, src); |
| } |
| tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); |
| break; |
| case A64_SHIFT_TYPE_ROR: |
| if (sf) { |
| tcg_gen_rotr_i64(dst, src, shift_amount); |
| } else { |
| TCGv_i32 t0, t1; |
| t0 = tcg_temp_new_i32(); |
| t1 = tcg_temp_new_i32(); |
| tcg_gen_extrl_i64_i32(t0, src); |
| tcg_gen_extrl_i64_i32(t1, shift_amount); |
| tcg_gen_rotr_i32(t0, t0, t1); |
| tcg_gen_extu_i32_i64(dst, t0); |
| } |
| break; |
| default: |
| assert(FALSE); /* all shift types should be handled */ |
| break; |
| } |
| |
| if (!sf) { /* zero extend final result */ |
| tcg_gen_ext32u_i64(dst, dst); |
| } |
| } |
| |
| /* Shift a TCGv src by immediate, put result in dst. |
| * The shift amount must be in range (this should always be true as the |
| * relevant instructions will UNDEF on bad shift immediates). |
| */ |
| static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, |
| enum a64_shift_type shift_type, unsigned int shift_i) |
| { |
| assert(shift_i < (sf ? 64 : 32)); |
| |
| if (shift_i == 0) { |
| tcg_gen_mov_i64(dst, src); |
| } else { |
| shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i)); |
| } |
| } |
| |
| /* Logical (shifted register) |
| * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 |
| * +----+-----+-----------+-------+---+------+--------+------+------+ |
| * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | |
| * +----+-----+-----------+-------+---+------+--------+------+------+ |
| */ |
| static void disas_logic_reg(DisasContext *s, uint32_t insn) |
| { |
| TCGv_i64 tcg_rd, tcg_rn, tcg_rm; |
| unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; |
| |
| sf = extract32(insn, 31, 1); |
| opc = extract32(insn, 29, 2); |
| shift_type = extract32(insn, 22, 2); |
| invert = extract32(insn, 21, 1); |
| rm = extract32(insn, 16, 5); |
| shift_amount = extract32(insn, 10, 6); |
| rn = extract32(insn, 5, 5); |
| rd = extract32(insn, 0, 5); |
| |
| if (!sf && (shift_amount & (1 << 5))) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| tcg_rd = cpu_reg(s, rd); |
| |
| if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { |
| /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for |
| * register-register MOV and MVN, so it is worth special casing. |
| */ |
| tcg_rm = cpu_reg(s, rm); |
| if (invert) { |
| tcg_gen_not_i64(tcg_rd, tcg_rm); |
| if (!sf) { |
| tcg_gen_ext32u_i64(tcg_rd, tcg_rd); |
| } |
| } else { |
| if (sf) { |
| tcg_gen_mov_i64(tcg_rd, tcg_rm); |
| } else { |
| tcg_gen_ext32u_i64(tcg_rd, tcg_rm); |
| } |
| } |
| return; |
| } |
| |
| tcg_rm = read_cpu_reg(s, rm, sf); |
| |
| if (shift_amount) { |
| shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); |
| } |
| |
| tcg_rn = cpu_reg(s, rn); |
| |
| switch (opc | (invert << 2)) { |
| case 0: /* AND */ |
| case 3: /* ANDS */ |
| tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); |
| break; |
| case 1: /* ORR */ |
| tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); |
| break; |
| case 2: /* EOR */ |
| tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); |
| break; |
| case 4: /* BIC */ |
| case 7: /* BICS */ |
| tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); |
| break; |
| case 5: /* ORN */ |
| tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); |
| break; |
| case 6: /* EON */ |
| tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); |
| break; |
| default: |
| assert(FALSE); |
| break; |
| } |
| |
| if (!sf) { |
| tcg_gen_ext32u_i64(tcg_rd, tcg_rd); |
| } |
| |
| if (opc == 3) { |
| gen_logic_CC(sf, tcg_rd); |
| } |
| } |
| |
| /* |
| * Add/subtract (extended register) |
| * |
| * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| |
| * +--+--+--+-----------+-----+--+-------+------+------+----+----+ |
| * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | |
| * +--+--+--+-----------+-----+--+-------+------+------+----+----+ |
| * |
| * sf: 0 -> 32bit, 1 -> 64bit |
| * op: 0 -> add , 1 -> sub |
| * S: 1 -> set flags |
| * opt: 00 |
| * option: extension type (see DecodeRegExtend) |
| * imm3: optional shift to Rm |
| * |
| * Rd = Rn + LSL(extend(Rm), amount) |
| */ |
| static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) |
| { |
| int rd = extract32(insn, 0, 5); |
| int rn = extract32(insn, 5, 5); |
| int imm3 = extract32(insn, 10, 3); |
| int option = extract32(insn, 13, 3); |
| int rm = extract32(insn, 16, 5); |
| int opt = extract32(insn, 22, 2); |
| bool setflags = extract32(insn, 29, 1); |
| bool sub_op = extract32(insn, 30, 1); |
| bool sf = extract32(insn, 31, 1); |
| |
| TCGv_i64 tcg_rm, tcg_rn; /* temps */ |
| TCGv_i64 tcg_rd; |
| TCGv_i64 tcg_result; |
| |
| if (imm3 > 4 || opt != 0) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| /* non-flag setting ops may use SP */ |
| if (!setflags) { |
| tcg_rd = cpu_reg_sp(s, rd); |
| } else { |
| tcg_rd = cpu_reg(s, rd); |
| } |
| tcg_rn = read_cpu_reg_sp(s, rn, sf); |
| |
| tcg_rm = read_cpu_reg(s, rm, sf); |
| ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); |
| |
| tcg_result = tcg_temp_new_i64(); |
| |
| if (!setflags) { |
| if (sub_op) { |
| tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); |
| } else { |
| tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); |
| } |
| } else { |
| if (sub_op) { |
| gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); |
| } else { |
| gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); |
| } |
| } |
| |
| if (sf) { |
| tcg_gen_mov_i64(tcg_rd, tcg_result); |
| } else { |
| tcg_gen_ext32u_i64(tcg_rd, tcg_result); |
| } |
| } |
| |
| /* |
| * Add/subtract (shifted register) |
| * |
| * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 |
| * +--+--+--+-----------+-----+--+-------+---------+------+------+ |
| * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | |
| * +--+--+--+-----------+-----+--+-------+---------+------+------+ |
| * |
| * sf: 0 -> 32bit, 1 -> 64bit |
| * op: 0 -> add , 1 -> sub |
| * S: 1 -> set flags |
| * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED |
| * imm6: Shift amount to apply to Rm before the add/sub |
| */ |
| static void disas_add_sub_reg(DisasContext *s, uint32_t insn) |
| { |
| int rd = extract32(insn, 0, 5); |
| int rn = extract32(insn, 5, 5); |
| int imm6 = extract32(insn, 10, 6); |
| int rm = extract32(insn, 16, 5); |
| int shift_type = extract32(insn, 22, 2); |
| bool setflags = extract32(insn, 29, 1); |
| bool sub_op = extract32(insn, 30, 1); |
| bool sf = extract32(insn, 31, 1); |
| |
| TCGv_i64 tcg_rd = cpu_reg(s, rd); |
| TCGv_i64 tcg_rn, tcg_rm; |
| TCGv_i64 tcg_result; |
| |
| if ((shift_type == 3) || (!sf && (imm6 > 31))) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| tcg_rn = read_cpu_reg(s, rn, sf); |
| tcg_rm = read_cpu_reg(s, rm, sf); |
| |
| shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); |
| |
| tcg_result = tcg_temp_new_i64(); |
| |
| if (!setflags) { |
| if (sub_op) { |
| tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); |
| } else { |
| tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); |
| } |
| } else { |
| if (sub_op) { |
| gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); |
| } else { |
| gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); |
| } |
| } |
| |
| if (sf) { |
| tcg_gen_mov_i64(tcg_rd, tcg_result); |
| } else { |
| tcg_gen_ext32u_i64(tcg_rd, tcg_result); |
| } |
| } |
| |
| /* Data-processing (3 source) |
| * |
| * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 |
| * +--+------+-----------+------+------+----+------+------+------+ |
| * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | |
| * +--+------+-----------+------+------+----+------+------+------+ |
| */ |
| static void disas_data_proc_3src(DisasContext *s, uint32_t insn) |
| { |
| int rd = extract32(insn, 0, 5); |
| int rn = extract32(insn, 5, 5); |
| int ra = extract32(insn, 10, 5); |
| int rm = extract32(insn, 16, 5); |
| int op_id = (extract32(insn, 29, 3) << 4) | |
| (extract32(insn, 21, 3) << 1) | |
| extract32(insn, 15, 1); |
| bool sf = extract32(insn, 31, 1); |
| bool is_sub = extract32(op_id, 0, 1); |
| bool is_high = extract32(op_id, 2, 1); |
| bool is_signed = false; |
| TCGv_i64 tcg_op1; |
| TCGv_i64 tcg_op2; |
| TCGv_i64 tcg_tmp; |
| |
| /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ |
| switch (op_id) { |
| case 0x42: /* SMADDL */ |
| case 0x43: /* SMSUBL */ |
| case 0x44: /* SMULH */ |
| is_signed = true; |
| break; |
| case 0x0: /* MADD (32bit) */ |
| case 0x1: /* MSUB (32bit) */ |
| case 0x40: /* MADD (64bit) */ |
| case 0x41: /* MSUB (64bit) */ |
| case 0x4a: /* UMADDL */ |
| case 0x4b: /* UMSUBL */ |
| case 0x4c: /* UMULH */ |
| break; |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (is_high) { |
| TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ |
| TCGv_i64 tcg_rd = cpu_reg(s, rd); |
| TCGv_i64 tcg_rn = cpu_reg(s, rn); |
| TCGv_i64 tcg_rm = cpu_reg(s, rm); |
| |
| if (is_signed) { |
| tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); |
| } else { |
| tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); |
| } |
| return; |
| } |
| |
| tcg_op1 = tcg_temp_new_i64(); |
| tcg_op2 = tcg_temp_new_i64(); |
| tcg_tmp = tcg_temp_new_i64(); |
| |
| if (op_id < 0x42) { |
| tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); |
| tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); |
| } else { |
| if (is_signed) { |
| tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); |
| tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); |
| } else { |
| tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); |
| tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); |
| } |
| } |
| |
| if (ra == 31 && !is_sub) { |
| /* Special-case MADD with rA == XZR; it is the standard MUL alias */ |
| tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); |
| } else { |
| tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); |
| if (is_sub) { |
| tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); |
| } else { |
| tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); |
| } |
| } |
| |
| if (!sf) { |
| tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); |
| } |
| } |
| |
| /* Add/subtract (with carry) |
| * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 |
| * +--+--+--+------------------------+------+-------------+------+-----+ |
| * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd | |
| * +--+--+--+------------------------+------+-------------+------+-----+ |
| */ |
| |
| static void disas_adc_sbc(DisasContext *s, uint32_t insn) |
| { |
| unsigned int sf, op, setflags, rm, rn, rd; |
| TCGv_i64 tcg_y, tcg_rn, tcg_rd; |
| |
| sf = extract32(insn, 31, 1); |
| op = extract32(insn, 30, 1); |
| setflags = extract32(insn, 29, 1); |
| rm = extract32(insn, 16, 5); |
| rn = extract32(insn, 5, 5); |
| rd = extract32(insn, 0, 5); |
| |
| tcg_rd = cpu_reg(s, rd); |
| tcg_rn = cpu_reg(s, rn); |
| |
| if (op) { |
| tcg_y = tcg_temp_new_i64(); |
| tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); |
| } else { |
| tcg_y = cpu_reg(s, rm); |
| } |
| |
| if (setflags) { |
| gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); |
| } else { |
| gen_adc(sf, tcg_rd, tcg_rn, tcg_y); |
| } |
| } |
| |
| /* |
| * Rotate right into flags |
| * 31 30 29 21 15 10 5 4 0 |
| * +--+--+--+-----------------+--------+-----------+------+--+------+ |
| * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask | |
| * +--+--+--+-----------------+--------+-----------+------+--+------+ |
| */ |
| static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn) |
| { |
| int mask = extract32(insn, 0, 4); |
| int o2 = extract32(insn, 4, 1); |
| int rn = extract32(insn, 5, 5); |
| int imm6 = extract32(insn, 15, 6); |
| int sf_op_s = extract32(insn, 29, 3); |
| TCGv_i64 tcg_rn; |
| TCGv_i32 nzcv; |
| |
| if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| tcg_rn = read_cpu_reg(s, rn, 1); |
| tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6); |
| |
| nzcv = tcg_temp_new_i32(); |
| tcg_gen_extrl_i64_i32(nzcv, tcg_rn); |
| |
| if (mask & 8) { /* N */ |
| tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3); |
| } |
| if (mask & 4) { /* Z */ |
| tcg_gen_not_i32(cpu_ZF, nzcv); |
| tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4); |
| } |
| if (mask & 2) { /* C */ |
| tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1); |
| } |
| if (mask & 1) { /* V */ |
| tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0); |
| } |
| } |
| |
| /* |
| * Evaluate into flags |
| * 31 30 29 21 15 14 10 5 4 0 |
| * +--+--+--+-----------------+---------+----+---------+------+--+------+ |
| * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask | |
| * +--+--+--+-----------------+---------+----+---------+------+--+------+ |
| */ |
| static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn) |
| { |
| int o3_mask = extract32(insn, 0, 5); |
| int rn = extract32(insn, 5, 5); |
| int o2 = extract32(insn, 15, 6); |
| int sz = extract32(insn, 14, 1); |
| int sf_op_s = extract32(insn, 29, 3); |
| TCGv_i32 tmp; |
| int shift; |
| |
| if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd || |
| !dc_isar_feature(aa64_condm_4, s)) { |
| unallocated_encoding(s); |
| return; |
| } |
| shift = sz ? 16 : 24; /* SETF16 or SETF8 */ |
| |
| tmp = tcg_temp_new_i32(); |
| tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn)); |
| tcg_gen_shli_i32(cpu_NF, tmp, shift); |
| tcg_gen_shli_i32(cpu_VF, tmp, shift - 1); |
| tcg_gen_mov_i32(cpu_ZF, cpu_NF); |
| tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF); |
| } |
| |
| /* Conditional compare (immediate / register) |
| * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 |
| * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ |
| * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | |
| * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ |
| * [1] y [0] [0] |
| */ |
| static void disas_cc(DisasContext *s, uint32_t insn) |
| { |
| unsigned int sf, op, y, cond, rn, nzcv, is_imm; |
| TCGv_i32 tcg_t0, tcg_t1, tcg_t2; |
| TCGv_i64 tcg_tmp, tcg_y, tcg_rn; |
| DisasCompare c; |
| |
| if (!extract32(insn, 29, 1)) { |
| unallocated_encoding(s); |
| return; |
| } |
| if (insn & (1 << 10 | 1 << 4)) { |
| unallocated_encoding(s); |
| return; |
| } |
| sf = extract32(insn, 31, 1); |
| op = extract32(insn, 30, 1); |
| is_imm = extract32(insn, 11, 1); |
| y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ |
| cond = extract32(insn, 12, 4); |
| rn = extract32(insn, 5, 5); |
| nzcv = extract32(insn, 0, 4); |
| |
| /* Set T0 = !COND. */ |
| tcg_t0 = tcg_temp_new_i32(); |
| arm_test_cc(&c, cond); |
| tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); |
| |
| /* Load the arguments for the new comparison. */ |
| if (is_imm) { |
| tcg_y = tcg_temp_new_i64(); |
| tcg_gen_movi_i64(tcg_y, y); |
| } else { |
| tcg_y = cpu_reg(s, y); |
| } |
| tcg_rn = cpu_reg(s, rn); |
| |
| /* Set the flags for the new comparison. */ |
| tcg_tmp = tcg_temp_new_i64(); |
| if (op) { |
| gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); |
| } else { |
| gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); |
| } |
| |
| /* If COND was false, force the flags to #nzcv. Compute two masks |
| * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). |
| * For tcg hosts that support ANDC, we can make do with just T1. |
| * In either case, allow the tcg optimizer to delete any unused mask. |
| */ |
| tcg_t1 = tcg_temp_new_i32(); |
| tcg_t2 = tcg_temp_new_i32(); |
| tcg_gen_neg_i32(tcg_t1, tcg_t0); |
| tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); |
| |
| if (nzcv & 8) { /* N */ |
| tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); |
| } else { |
| if (TCG_TARGET_HAS_andc_i32) { |
| tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); |
| } else { |
| tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); |
| } |
| } |
| if (nzcv & 4) { /* Z */ |
| if (TCG_TARGET_HAS_andc_i32) { |
| tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); |
| } else { |
| tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); |
| } |
| } else { |
| tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); |
| } |
| if (nzcv & 2) { /* C */ |
| tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); |
| } else { |
| if (TCG_TARGET_HAS_andc_i32) { |
| tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); |
| } else { |
| tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); |
| } |
| } |
| if (nzcv & 1) { /* V */ |
| tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); |
| } else { |
| if (TCG_TARGET_HAS_andc_i32) { |
| tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); |
| } else { |
| tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); |
| } |
| } |
| } |
| |
| /* Conditional select |
| * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 |
| * +----+----+---+-----------------+------+------+-----+------+------+ |
| * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | |
| * +----+----+---+-----------------+------+------+-----+------+------+ |
| */ |
| static void disas_cond_select(DisasContext *s, uint32_t insn) |
| { |
| unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; |
| TCGv_i64 tcg_rd, zero; |
| DisasCompare64 c; |
| |
| if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { |
| /* S == 1 or op2<1> == 1 */ |
| unallocated_encoding(s); |
| return; |
| } |
| sf = extract32(insn, 31, 1); |
| else_inv = extract32(insn, 30, 1); |
| rm = extract32(insn, 16, 5); |
| cond = extract32(insn, 12, 4); |
| else_inc = extract32(insn, 10, 1); |
| rn = extract32(insn, 5, 5); |
| rd = extract32(insn, 0, 5); |
| |
| tcg_rd = cpu_reg(s, rd); |
| |
| a64_test_cc(&c, cond); |
| zero = tcg_constant_i64(0); |
| |
| if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { |
| /* CSET & CSETM. */ |
| if (else_inv) { |
| tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond), |
| tcg_rd, c.value, zero); |
| } else { |
| tcg_gen_setcond_i64(tcg_invert_cond(c.cond), |
| tcg_rd, c.value, zero); |
| } |
| } else { |
| TCGv_i64 t_true = cpu_reg(s, rn); |
| TCGv_i64 t_false = read_cpu_reg(s, rm, 1); |
| if (else_inv && else_inc) { |
| tcg_gen_neg_i64(t_false, t_false); |
| } else if (else_inv) { |
| tcg_gen_not_i64(t_false, t_false); |
| } else if (else_inc) { |
| tcg_gen_addi_i64(t_false, t_false, 1); |
| } |
| tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); |
| } |
| |
| if (!sf) { |
| tcg_gen_ext32u_i64(tcg_rd, tcg_rd); |
| } |
| } |
| |
| static void handle_clz(DisasContext *s, unsigned int sf, |
| unsigned int rn, unsigned int rd) |
| { |
| TCGv_i64 tcg_rd, tcg_rn; |
| tcg_rd = cpu_reg(s, rd); |
| tcg_rn = cpu_reg(s, rn); |
| |
| if (sf) { |
| tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); |
| } else { |
| TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); |
| tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); |
| tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); |
| tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); |
| } |
| } |
| |
| static void handle_cls(DisasContext *s, unsigned int sf, |
| unsigned int rn, unsigned int rd) |
| { |
| TCGv_i64 tcg_rd, tcg_rn; |
| tcg_rd = cpu_reg(s, rd); |
| tcg_rn = cpu_reg(s, rn); |
| |
| if (sf) { |
| tcg_gen_clrsb_i64(tcg_rd, tcg_rn); |
| } else { |
| TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); |
| tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); |
| tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); |
| tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); |
| } |
| } |
| |
| static void handle_rbit(DisasContext *s, unsigned int sf, |
| unsigned int rn, unsigned int rd) |
| { |
| TCGv_i64 tcg_rd, tcg_rn; |
| tcg_rd = cpu_reg(s, rd); |
| tcg_rn = cpu_reg(s, rn); |
| |
| if (sf) { |
| gen_helper_rbit64(tcg_rd, tcg_rn); |
| } else { |
| TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); |
| tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); |
| gen_helper_rbit(tcg_tmp32, tcg_tmp32); |
| tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); |
| } |
| } |
| |
| /* REV with sf==1, opcode==3 ("REV64") */ |
| static void handle_rev64(DisasContext *s, unsigned int sf, |
| unsigned int rn, unsigned int rd) |
| { |
| if (!sf) { |
| unallocated_encoding(s); |
| return; |
| } |
| tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); |
| } |
| |
| /* REV with sf==0, opcode==2 |
| * REV32 (sf==1, opcode==2) |
| */ |
| static void handle_rev32(DisasContext *s, unsigned int sf, |
| unsigned int rn, unsigned int rd) |
| { |
| TCGv_i64 tcg_rd = cpu_reg(s, rd); |
| TCGv_i64 tcg_rn = cpu_reg(s, rn); |
| |
| if (sf) { |
| tcg_gen_bswap64_i64(tcg_rd, tcg_rn); |
| tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32); |
| } else { |
| tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ); |
| } |
| } |
| |
| /* REV16 (opcode==1) */ |
| static void handle_rev16(DisasContext *s, unsigned int sf, |
| unsigned int rn, unsigned int rd) |
| { |
| TCGv_i64 tcg_rd = cpu_reg(s, rd); |
| TCGv_i64 tcg_tmp = tcg_temp_new_i64(); |
| TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); |
| TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); |
| |
| tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); |
| tcg_gen_and_i64(tcg_rd, tcg_rn, mask); |
| tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); |
| tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); |
| tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); |
| } |
| |
| /* Data-processing (1 source) |
| * 31 30 29 28 21 20 16 15 10 9 5 4 0 |
| * +----+---+---+-----------------+---------+--------+------+------+ |
| * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | |
| * +----+---+---+-----------------+---------+--------+------+------+ |
| */ |
| static void disas_data_proc_1src(DisasContext *s, uint32_t insn) |
| { |
| unsigned int sf, opcode, opcode2, rn, rd; |
| TCGv_i64 tcg_rd; |
| |
| if (extract32(insn, 29, 1)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| sf = extract32(insn, 31, 1); |
| opcode = extract32(insn, 10, 6); |
| opcode2 = extract32(insn, 16, 5); |
| rn = extract32(insn, 5, 5); |
| rd = extract32(insn, 0, 5); |
| |
| #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7)) |
| |
| switch (MAP(sf, opcode2, opcode)) { |
| case MAP(0, 0x00, 0x00): /* RBIT */ |
| case MAP(1, 0x00, 0x00): |
| handle_rbit(s, sf, rn, rd); |
| break; |
| case MAP(0, 0x00, 0x01): /* REV16 */ |
| case MAP(1, 0x00, 0x01): |
| handle_rev16(s, sf, rn, rd); |
| break; |
| case MAP(0, 0x00, 0x02): /* REV/REV32 */ |
| case MAP(1, 0x00, 0x02): |
| handle_rev32(s, sf, rn, rd); |
| break; |
| case MAP(1, 0x00, 0x03): /* REV64 */ |
| handle_rev64(s, sf, rn, rd); |
| break; |
| case MAP(0, 0x00, 0x04): /* CLZ */ |
| case MAP(1, 0x00, 0x04): |
| handle_clz(s, sf, rn, rd); |
| break; |
| case MAP(0, 0x00, 0x05): /* CLS */ |
| case MAP(1, 0x00, 0x05): |
| handle_cls(s, sf, rn, rd); |
| break; |
| case MAP(1, 0x01, 0x00): /* PACIA */ |
| if (s->pauth_active) { |
| tcg_rd = cpu_reg(s, rd); |
| gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); |
| } else if (!dc_isar_feature(aa64_pauth, s)) { |
| goto do_unallocated; |
| } |
| break; |
| case MAP(1, 0x01, 0x01): /* PACIB */ |
| if (s->pauth_active) { |
| tcg_rd = cpu_reg(s, rd); |
| gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); |
| } else if (!dc_isar_feature(aa64_pauth, s)) { |
| goto do_unallocated; |
| } |
| break; |
| case MAP(1, 0x01, 0x02): /* PACDA */ |
| if (s->pauth_active) { |
| tcg_rd = cpu_reg(s, rd); |
| gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); |
| } else if (!dc_isar_feature(aa64_pauth, s)) { |
| goto do_unallocated; |
| } |
| break; |
| case MAP(1, 0x01, 0x03): /* PACDB */ |
| if (s->pauth_active) { |
| tcg_rd = cpu_reg(s, rd); |
| gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); |
| } else if (!dc_isar_feature(aa64_pauth, s)) { |
| goto do_unallocated; |
| } |
| break; |
| case MAP(1, 0x01, 0x04): /* AUTIA */ |
| if (s->pauth_active) { |
| tcg_rd = cpu_reg(s, rd); |
| gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); |
| } else if (!dc_isar_feature(aa64_pauth, s)) { |
| goto do_unallocated; |
| } |
| break; |
| case MAP(1, 0x01, 0x05): /* AUTIB */ |
| if (s->pauth_active) { |
| tcg_rd = cpu_reg(s, rd); |
| gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); |
| } else if (!dc_isar_feature(aa64_pauth, s)) { |
| goto do_unallocated; |
| } |
| break; |
| case MAP(1, 0x01, 0x06): /* AUTDA */ |
| if (s->pauth_active) { |
| tcg_rd = cpu_reg(s, rd); |
| gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); |
| } else if (!dc_isar_feature(aa64_pauth, s)) { |
| goto do_unallocated; |
| } |
| break; |
| case MAP(1, 0x01, 0x07): /* AUTDB */ |
| if (s->pauth_active) { |
| tcg_rd = cpu_reg(s, rd); |
| gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn)); |
| } else if (!dc_isar_feature(aa64_pauth, s)) { |
| goto do_unallocated; |
| } |
| break; |
| case MAP(1, 0x01, 0x08): /* PACIZA */ |
| if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { |
| goto do_unallocated; |
| } else if (s->pauth_active) { |
| tcg_rd = cpu_reg(s, rd); |
| gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); |
| } |
| break; |
| case MAP(1, 0x01, 0x09): /* PACIZB */ |
| if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { |
| goto do_unallocated; |
| } else if (s->pauth_active) { |
| tcg_rd = cpu_reg(s, rd); |
| gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); |
| } |
| break; |
| case MAP(1, 0x01, 0x0a): /* PACDZA */ |
| if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { |
| goto do_unallocated; |
| } else if (s->pauth_active) { |
| tcg_rd = cpu_reg(s, rd); |
| gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); |
| } |
| break; |
| case MAP(1, 0x01, 0x0b): /* PACDZB */ |
| if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { |
| goto do_unallocated; |
| } else if (s->pauth_active) { |
| tcg_rd = cpu_reg(s, rd); |
| gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); |
| } |
| break; |
| case MAP(1, 0x01, 0x0c): /* AUTIZA */ |
| if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { |
| goto do_unallocated; |
| } else if (s->pauth_active) { |
| tcg_rd = cpu_reg(s, rd); |
| gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); |
| } |
| break; |
| case MAP(1, 0x01, 0x0d): /* AUTIZB */ |
| if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { |
| goto do_unallocated; |
| } else if (s->pauth_active) { |
| tcg_rd = cpu_reg(s, rd); |
| gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); |
| } |
| break; |
| case MAP(1, 0x01, 0x0e): /* AUTDZA */ |
| if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { |
| goto do_unallocated; |
| } else if (s->pauth_active) { |
| tcg_rd = cpu_reg(s, rd); |
| gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); |
| } |
| break; |
| case MAP(1, 0x01, 0x0f): /* AUTDZB */ |
| if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { |
| goto do_unallocated; |
| } else if (s->pauth_active) { |
| tcg_rd = cpu_reg(s, rd); |
| gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0)); |
| } |
| break; |
| case MAP(1, 0x01, 0x10): /* XPACI */ |
| if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { |
| goto do_unallocated; |
| } else if (s->pauth_active) { |
| tcg_rd = cpu_reg(s, rd); |
| gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd); |
| } |
| break; |
| case MAP(1, 0x01, 0x11): /* XPACD */ |
| if (!dc_isar_feature(aa64_pauth, s) || rn != 31) { |
| goto do_unallocated; |
| } else if (s->pauth_active) { |
| tcg_rd = cpu_reg(s, rd); |
| gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd); |
| } |
| break; |
| default: |
| do_unallocated: |
| unallocated_encoding(s); |
| break; |
| } |
| |
| #undef MAP |
| } |
| |
| static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, |
| unsigned int rm, unsigned int rn, unsigned int rd) |
| { |
| TCGv_i64 tcg_n, tcg_m, tcg_rd; |
| tcg_rd = cpu_reg(s, rd); |
| |
| if (!sf && is_signed) { |
| tcg_n = tcg_temp_new_i64(); |
| tcg_m = tcg_temp_new_i64(); |
| tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); |
| tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); |
| } else { |
| tcg_n = read_cpu_reg(s, rn, sf); |
| tcg_m = read_cpu_reg(s, rm, sf); |
| } |
| |
| if (is_signed) { |
| gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); |
| } else { |
| gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); |
| } |
| |
| if (!sf) { /* zero extend final result */ |
| tcg_gen_ext32u_i64(tcg_rd, tcg_rd); |
| } |
| } |
| |
| /* LSLV, LSRV, ASRV, RORV */ |
| static void handle_shift_reg(DisasContext *s, |
| enum a64_shift_type shift_type, unsigned int sf, |
| unsigned int rm, unsigned int rn, unsigned int rd) |
| { |
| TCGv_i64 tcg_shift = tcg_temp_new_i64(); |
| TCGv_i64 tcg_rd = cpu_reg(s, rd); |
| TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); |
| |
| tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); |
| shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); |
| } |
| |
| /* CRC32[BHWX], CRC32C[BHWX] */ |
| static void handle_crc32(DisasContext *s, |
| unsigned int sf, unsigned int sz, bool crc32c, |
| unsigned int rm, unsigned int rn, unsigned int rd) |
| { |
| TCGv_i64 tcg_acc, tcg_val; |
| TCGv_i32 tcg_bytes; |
| |
| if (!dc_isar_feature(aa64_crc32, s) |
| || (sf == 1 && sz != 3) |
| || (sf == 0 && sz == 3)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (sz == 3) { |
| tcg_val = cpu_reg(s, rm); |
| } else { |
| uint64_t mask; |
| switch (sz) { |
| case 0: |
| mask = 0xFF; |
| break; |
| case 1: |
| mask = 0xFFFF; |
| break; |
| case 2: |
| mask = 0xFFFFFFFF; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| tcg_val = tcg_temp_new_i64(); |
| tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); |
| } |
| |
| tcg_acc = cpu_reg(s, rn); |
| tcg_bytes = tcg_constant_i32(1 << sz); |
| |
| if (crc32c) { |
| gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); |
| } else { |
| gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); |
| } |
| } |
| |
| /* Data-processing (2 source) |
| * 31 30 29 28 21 20 16 15 10 9 5 4 0 |
| * +----+---+---+-----------------+------+--------+------+------+ |
| * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | |
| * +----+---+---+-----------------+------+--------+------+------+ |
| */ |
| static void disas_data_proc_2src(DisasContext *s, uint32_t insn) |
| { |
| unsigned int sf, rm, opcode, rn, rd, setflag; |
| sf = extract32(insn, 31, 1); |
| setflag = extract32(insn, 29, 1); |
| rm = extract32(insn, 16, 5); |
| opcode = extract32(insn, 10, 6); |
| rn = extract32(insn, 5, 5); |
| rd = extract32(insn, 0, 5); |
| |
| if (setflag && opcode != 0) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| switch (opcode) { |
| case 0: /* SUBP(S) */ |
| if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { |
| goto do_unallocated; |
| } else { |
| TCGv_i64 tcg_n, tcg_m, tcg_d; |
| |
| tcg_n = read_cpu_reg_sp(s, rn, true); |
| tcg_m = read_cpu_reg_sp(s, rm, true); |
| tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56); |
| tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56); |
| tcg_d = cpu_reg(s, rd); |
| |
| if (setflag) { |
| gen_sub_CC(true, tcg_d, tcg_n, tcg_m); |
| } else { |
| tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m); |
| } |
| } |
| break; |
| case 2: /* UDIV */ |
| handle_div(s, false, sf, rm, rn, rd); |
| break; |
| case 3: /* SDIV */ |
| handle_div(s, true, sf, rm, rn, rd); |
| break; |
| case 4: /* IRG */ |
| if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { |
| goto do_unallocated; |
| } |
| if (s->ata[0]) { |
| gen_helper_irg(cpu_reg_sp(s, rd), tcg_env, |
| cpu_reg_sp(s, rn), cpu_reg(s, rm)); |
| } else { |
| gen_address_with_allocation_tag0(cpu_reg_sp(s, rd), |
| cpu_reg_sp(s, rn)); |
| } |
| break; |
| case 5: /* GMI */ |
| if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) { |
| goto do_unallocated; |
| } else { |
| TCGv_i64 t = tcg_temp_new_i64(); |
| |
| tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4); |
| tcg_gen_shl_i64(t, tcg_constant_i64(1), t); |
| tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t); |
| } |
| break; |
| case 8: /* LSLV */ |
| handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); |
| break; |
| case 9: /* LSRV */ |
| handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); |
| break; |
| case 10: /* ASRV */ |
| handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); |
| break; |
| case 11: /* RORV */ |
| handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); |
| break; |
| case 12: /* PACGA */ |
| if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) { |
| goto do_unallocated; |
| } |
| gen_helper_pacga(cpu_reg(s, rd), tcg_env, |
| cpu_reg(s, rn), cpu_reg_sp(s, rm)); |
| break; |
| case 16: |
| case 17: |
| case 18: |
| case 19: |
| case 20: |
| case 21: |
| case 22: |
| case 23: /* CRC32 */ |
| { |
| int sz = extract32(opcode, 0, 2); |
| bool crc32c = extract32(opcode, 2, 1); |
| handle_crc32(s, sf, sz, crc32c, rm, rn, rd); |
| break; |
| } |
| default: |
| do_unallocated: |
| unallocated_encoding(s); |
| break; |
| } |
| } |
| |
| /* |
| * Data processing - register |
| * 31 30 29 28 25 21 20 16 10 0 |
| * +--+---+--+---+-------+-----+-------+-------+---------+ |
| * | |op0| |op1| 1 0 1 | op2 | | op3 | | |
| * +--+---+--+---+-------+-----+-------+-------+---------+ |
| */ |
| static void disas_data_proc_reg(DisasContext *s, uint32_t insn) |
| { |
| int op0 = extract32(insn, 30, 1); |
| int op1 = extract32(insn, 28, 1); |
| int op2 = extract32(insn, 21, 4); |
| int op3 = extract32(insn, 10, 6); |
| |
| if (!op1) { |
| if (op2 & 8) { |
| if (op2 & 1) { |
| /* Add/sub (extended register) */ |
| disas_add_sub_ext_reg(s, insn); |
| } else { |
| /* Add/sub (shifted register) */ |
| disas_add_sub_reg(s, insn); |
| } |
| } else { |
| /* Logical (shifted register) */ |
| disas_logic_reg(s, insn); |
| } |
| return; |
| } |
| |
| switch (op2) { |
| case 0x0: |
| switch (op3) { |
| case 0x00: /* Add/subtract (with carry) */ |
| disas_adc_sbc(s, insn); |
| break; |
| |
| case 0x01: /* Rotate right into flags */ |
| case 0x21: |
| disas_rotate_right_into_flags(s, insn); |
| break; |
| |
| case 0x02: /* Evaluate into flags */ |
| case 0x12: |
| case 0x22: |
| case 0x32: |
| disas_evaluate_into_flags(s, insn); |
| break; |
| |
| default: |
| goto do_unallocated; |
| } |
| break; |
| |
| case 0x2: /* Conditional compare */ |
| disas_cc(s, insn); /* both imm and reg forms */ |
| break; |
| |
| case 0x4: /* Conditional select */ |
| disas_cond_select(s, insn); |
| break; |
| |
| case 0x6: /* Data-processing */ |
| if (op0) { /* (1 source) */ |
| disas_data_proc_1src(s, insn); |
| } else { /* (2 source) */ |
| disas_data_proc_2src(s, insn); |
| } |
| break; |
| case 0x8 ... 0xf: /* (3 source) */ |
| disas_data_proc_3src(s, insn); |
| break; |
| |
| default: |
| do_unallocated: |
| unallocated_encoding(s); |
| break; |
| } |
| } |
| |
| static void handle_fp_compare(DisasContext *s, int size, |
| unsigned int rn, unsigned int rm, |
| bool cmp_with_zero, bool signal_all_nans) |
| { |
| TCGv_i64 tcg_flags = tcg_temp_new_i64(); |
| TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); |
| |
| if (size == MO_64) { |
| TCGv_i64 tcg_vn, tcg_vm; |
| |
| tcg_vn = read_fp_dreg(s, rn); |
| if (cmp_with_zero) { |
| tcg_vm = tcg_constant_i64(0); |
| } else { |
| tcg_vm = read_fp_dreg(s, rm); |
| } |
| if (signal_all_nans) { |
| gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); |
| } else { |
| gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); |
| } |
| } else { |
| TCGv_i32 tcg_vn = tcg_temp_new_i32(); |
| TCGv_i32 tcg_vm = tcg_temp_new_i32(); |
| |
| read_vec_element_i32(s, tcg_vn, rn, 0, size); |
| if (cmp_with_zero) { |
| tcg_gen_movi_i32(tcg_vm, 0); |
| } else { |
| read_vec_element_i32(s, tcg_vm, rm, 0, size); |
| } |
| |
| switch (size) { |
| case MO_32: |
| if (signal_all_nans) { |
| gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); |
| } else { |
| gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); |
| } |
| break; |
| case MO_16: |
| if (signal_all_nans) { |
| gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); |
| } else { |
| gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| gen_set_nzcv(tcg_flags); |
| } |
| |
| /* Floating point compare |
| * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 |
| * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ |
| * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | |
| * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ |
| */ |
| static void disas_fp_compare(DisasContext *s, uint32_t insn) |
| { |
| unsigned int mos, type, rm, op, rn, opc, op2r; |
| int size; |
| |
| mos = extract32(insn, 29, 3); |
| type = extract32(insn, 22, 2); |
| rm = extract32(insn, 16, 5); |
| op = extract32(insn, 14, 2); |
| rn = extract32(insn, 5, 5); |
| opc = extract32(insn, 3, 2); |
| op2r = extract32(insn, 0, 3); |
| |
| if (mos || op || op2r) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| switch (type) { |
| case 0: |
| size = MO_32; |
| break; |
| case 1: |
| size = MO_64; |
| break; |
| case 3: |
| size = MO_16; |
| if (dc_isar_feature(aa64_fp16, s)) { |
| break; |
| } |
| /* fallthru */ |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); |
| } |
| |
| /* Floating point conditional compare |
| * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 |
| * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ |
| * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | |
| * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ |
| */ |
| static void disas_fp_ccomp(DisasContext *s, uint32_t insn) |
| { |
| unsigned int mos, type, rm, cond, rn, op, nzcv; |
| TCGLabel *label_continue = NULL; |
| int size; |
| |
| mos = extract32(insn, 29, 3); |
| type = extract32(insn, 22, 2); |
| rm = extract32(insn, 16, 5); |
| cond = extract32(insn, 12, 4); |
| rn = extract32(insn, 5, 5); |
| op = extract32(insn, 4, 1); |
| nzcv = extract32(insn, 0, 4); |
| |
| if (mos) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| switch (type) { |
| case 0: |
| size = MO_32; |
| break; |
| case 1: |
| size = MO_64; |
| break; |
| case 3: |
| size = MO_16; |
| if (dc_isar_feature(aa64_fp16, s)) { |
| break; |
| } |
| /* fallthru */ |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| if (cond < 0x0e) { /* not always */ |
| TCGLabel *label_match = gen_new_label(); |
| label_continue = gen_new_label(); |
| arm_gen_test_cc(cond, label_match); |
| /* nomatch: */ |
| gen_set_nzcv(tcg_constant_i64(nzcv << 28)); |
| tcg_gen_br(label_continue); |
| gen_set_label(label_match); |
| } |
| |
| handle_fp_compare(s, size, rn, rm, false, op); |
| |
| if (cond < 0x0e) { |
| gen_set_label(label_continue); |
| } |
| } |
| |
| /* Floating-point data-processing (1 source) - half precision */ |
| static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) |
| { |
| TCGv_ptr fpst = NULL; |
| TCGv_i32 tcg_op = read_fp_hreg(s, rn); |
| TCGv_i32 tcg_res = tcg_temp_new_i32(); |
| |
| switch (opcode) { |
| case 0x0: /* FMOV */ |
| tcg_gen_mov_i32(tcg_res, tcg_op); |
| break; |
| case 0x1: /* FABS */ |
| gen_vfp_absh(tcg_res, tcg_op); |
| break; |
| case 0x2: /* FNEG */ |
| gen_vfp_negh(tcg_res, tcg_op); |
| break; |
| case 0x3: /* FSQRT */ |
| fpst = fpstatus_ptr(FPST_FPCR_F16); |
| gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); |
| break; |
| case 0x8: /* FRINTN */ |
| case 0x9: /* FRINTP */ |
| case 0xa: /* FRINTM */ |
| case 0xb: /* FRINTZ */ |
| case 0xc: /* FRINTA */ |
| { |
| TCGv_i32 tcg_rmode; |
| |
| fpst = fpstatus_ptr(FPST_FPCR_F16); |
| tcg_rmode = gen_set_rmode(opcode & 7, fpst); |
| gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); |
| gen_restore_rmode(tcg_rmode, fpst); |
| break; |
| } |
| case 0xe: /* FRINTX */ |
| fpst = fpstatus_ptr(FPST_FPCR_F16); |
| gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); |
| break; |
| case 0xf: /* FRINTI */ |
| fpst = fpstatus_ptr(FPST_FPCR_F16); |
| gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| write_fp_sreg(s, rd, tcg_res); |
| } |
| |
| /* Floating-point data-processing (1 source) - single precision */ |
| static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) |
| { |
| void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr); |
| TCGv_i32 tcg_op, tcg_res; |
| TCGv_ptr fpst; |
| int rmode = -1; |
| |
| tcg_op = read_fp_sreg(s, rn); |
| tcg_res = tcg_temp_new_i32(); |
| |
| switch (opcode) { |
| case 0x0: /* FMOV */ |
| tcg_gen_mov_i32(tcg_res, tcg_op); |
| goto done; |
| case 0x1: /* FABS */ |
| gen_vfp_abss(tcg_res, tcg_op); |
| goto done; |
| case 0x2: /* FNEG */ |
| gen_vfp_negs(tcg_res, tcg_op); |
| goto done; |
| case 0x3: /* FSQRT */ |
| gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); |
| goto done; |
| case 0x6: /* BFCVT */ |
| gen_fpst = gen_helper_bfcvt; |
| break; |
| case 0x8: /* FRINTN */ |
| case 0x9: /* FRINTP */ |
| case 0xa: /* FRINTM */ |
| case 0xb: /* FRINTZ */ |
| case 0xc: /* FRINTA */ |
| rmode = opcode & 7; |
| gen_fpst = gen_helper_rints; |
| break; |
| case 0xe: /* FRINTX */ |
| gen_fpst = gen_helper_rints_exact; |
| break; |
| case 0xf: /* FRINTI */ |
| gen_fpst = gen_helper_rints; |
| break; |
| case 0x10: /* FRINT32Z */ |
| rmode = FPROUNDING_ZERO; |
| gen_fpst = gen_helper_frint32_s; |
| break; |
| case 0x11: /* FRINT32X */ |
| gen_fpst = gen_helper_frint32_s; |
| break; |
| case 0x12: /* FRINT64Z */ |
| rmode = FPROUNDING_ZERO; |
| gen_fpst = gen_helper_frint64_s; |
| break; |
| case 0x13: /* FRINT64X */ |
| gen_fpst = gen_helper_frint64_s; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| fpst = fpstatus_ptr(FPST_FPCR); |
| if (rmode >= 0) { |
| TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); |
| gen_fpst(tcg_res, tcg_op, fpst); |
| gen_restore_rmode(tcg_rmode, fpst); |
| } else { |
| gen_fpst(tcg_res, tcg_op, fpst); |
| } |
| |
| done: |
| write_fp_sreg(s, rd, tcg_res); |
| } |
| |
| /* Floating-point data-processing (1 source) - double precision */ |
| static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) |
| { |
| void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr); |
| TCGv_i64 tcg_op, tcg_res; |
| TCGv_ptr fpst; |
| int rmode = -1; |
| |
| switch (opcode) { |
| case 0x0: /* FMOV */ |
| gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); |
| return; |
| } |
| |
| tcg_op = read_fp_dreg(s, rn); |
| tcg_res = tcg_temp_new_i64(); |
| |
| switch (opcode) { |
| case 0x1: /* FABS */ |
| gen_vfp_absd(tcg_res, tcg_op); |
| goto done; |
| case 0x2: /* FNEG */ |
| gen_vfp_negd(tcg_res, tcg_op); |
| goto done; |
| case 0x3: /* FSQRT */ |
| gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env); |
| goto done; |
| case 0x8: /* FRINTN */ |
| case 0x9: /* FRINTP */ |
| case 0xa: /* FRINTM */ |
| case 0xb: /* FRINTZ */ |
| case 0xc: /* FRINTA */ |
| rmode = opcode & 7; |
| gen_fpst = gen_helper_rintd; |
| break; |
| case 0xe: /* FRINTX */ |
| gen_fpst = gen_helper_rintd_exact; |
| break; |
| case 0xf: /* FRINTI */ |
| gen_fpst = gen_helper_rintd; |
| break; |
| case 0x10: /* FRINT32Z */ |
| rmode = FPROUNDING_ZERO; |
| gen_fpst = gen_helper_frint32_d; |
| break; |
| case 0x11: /* FRINT32X */ |
| gen_fpst = gen_helper_frint32_d; |
| break; |
| case 0x12: /* FRINT64Z */ |
| rmode = FPROUNDING_ZERO; |
| gen_fpst = gen_helper_frint64_d; |
| break; |
| case 0x13: /* FRINT64X */ |
| gen_fpst = gen_helper_frint64_d; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| fpst = fpstatus_ptr(FPST_FPCR); |
| if (rmode >= 0) { |
| TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst); |
| gen_fpst(tcg_res, tcg_op, fpst); |
| gen_restore_rmode(tcg_rmode, fpst); |
| } else { |
| gen_fpst(tcg_res, tcg_op, fpst); |
| } |
| |
| done: |
| write_fp_dreg(s, rd, tcg_res); |
| } |
| |
| static void handle_fp_fcvt(DisasContext *s, int opcode, |
| int rd, int rn, int dtype, int ntype) |
| { |
| switch (ntype) { |
| case 0x0: |
| { |
| TCGv_i32 tcg_rn = read_fp_sreg(s, rn); |
| if (dtype == 1) { |
| /* Single to double */ |
| TCGv_i64 tcg_rd = tcg_temp_new_i64(); |
| gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env); |
| write_fp_dreg(s, rd, tcg_rd); |
| } else { |
| /* Single to half */ |
| TCGv_i32 tcg_rd = tcg_temp_new_i32(); |
| TCGv_i32 ahp = get_ahp_flag(); |
| TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); |
| |
| gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); |
| /* write_fp_sreg is OK here because top half of tcg_rd is zero */ |
| write_fp_sreg(s, rd, tcg_rd); |
| } |
| break; |
| } |
| case 0x1: |
| { |
| TCGv_i64 tcg_rn = read_fp_dreg(s, rn); |
| TCGv_i32 tcg_rd = tcg_temp_new_i32(); |
| if (dtype == 0) { |
| /* Double to single */ |
| gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env); |
| } else { |
| TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); |
| TCGv_i32 ahp = get_ahp_flag(); |
| /* Double to half */ |
| gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); |
| /* write_fp_sreg is OK here because top half of tcg_rd is zero */ |
| } |
| write_fp_sreg(s, rd, tcg_rd); |
| break; |
| } |
| case 0x3: |
| { |
| TCGv_i32 tcg_rn = read_fp_sreg(s, rn); |
| TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR); |
| TCGv_i32 tcg_ahp = get_ahp_flag(); |
| tcg_gen_ext16u_i32(tcg_rn, tcg_rn); |
| if (dtype == 0) { |
| /* Half to single */ |
| TCGv_i32 tcg_rd = tcg_temp_new_i32(); |
| gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); |
| write_fp_sreg(s, rd, tcg_rd); |
| } else { |
| /* Half to double */ |
| TCGv_i64 tcg_rd = tcg_temp_new_i64(); |
| gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); |
| write_fp_dreg(s, rd, tcg_rd); |
| } |
| break; |
| } |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| /* Floating point data-processing (1 source) |
| * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 |
| * +---+---+---+-----------+------+---+--------+-----------+------+------+ |
| * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | |
| * +---+---+---+-----------+------+---+--------+-----------+------+------+ |
| */ |
| static void disas_fp_1src(DisasContext *s, uint32_t insn) |
| { |
| int mos = extract32(insn, 29, 3); |
| int type = extract32(insn, 22, 2); |
| int opcode = extract32(insn, 15, 6); |
| int rn = extract32(insn, 5, 5); |
| int rd = extract32(insn, 0, 5); |
| |
| if (mos) { |
| goto do_unallocated; |
| } |
| |
| switch (opcode) { |
| case 0x4: case 0x5: case 0x7: |
| { |
| /* FCVT between half, single and double precision */ |
| int dtype = extract32(opcode, 0, 2); |
| if (type == 2 || dtype == type) { |
| goto do_unallocated; |
| } |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| handle_fp_fcvt(s, opcode, rd, rn, dtype, type); |
| break; |
| } |
| |
| case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */ |
| if (type > 1 || !dc_isar_feature(aa64_frint, s)) { |
| goto do_unallocated; |
| } |
| /* fall through */ |
| case 0x0 ... 0x3: |
| case 0x8 ... 0xc: |
| case 0xe ... 0xf: |
| /* 32-to-32 and 64-to-64 ops */ |
| switch (type) { |
| case 0: |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_fp_1src_single(s, opcode, rd, rn); |
| break; |
| case 1: |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_fp_1src_double(s, opcode, rd, rn); |
| break; |
| case 3: |
| if (!dc_isar_feature(aa64_fp16, s)) { |
| goto do_unallocated; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_fp_1src_half(s, opcode, rd, rn); |
| break; |
| default: |
| goto do_unallocated; |
| } |
| break; |
| |
| case 0x6: |
| switch (type) { |
| case 1: /* BFCVT */ |
| if (!dc_isar_feature(aa64_bf16, s)) { |
| goto do_unallocated; |
| } |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_fp_1src_single(s, opcode, rd, rn); |
| break; |
| default: |
| goto do_unallocated; |
| } |
| break; |
| |
| default: |
| do_unallocated: |
| unallocated_encoding(s); |
| break; |
| } |
| } |
| |
| /* Floating point immediate |
| * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 |
| * +---+---+---+-----------+------+---+------------+-------+------+------+ |
| * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | |
| * +---+---+---+-----------+------+---+------------+-------+------+------+ |
| */ |
| static void disas_fp_imm(DisasContext *s, uint32_t insn) |
| { |
| int rd = extract32(insn, 0, 5); |
| int imm5 = extract32(insn, 5, 5); |
| int imm8 = extract32(insn, 13, 8); |
| int type = extract32(insn, 22, 2); |
| int mos = extract32(insn, 29, 3); |
| uint64_t imm; |
| MemOp sz; |
| |
| if (mos || imm5) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| switch (type) { |
| case 0: |
| sz = MO_32; |
| break; |
| case 1: |
| sz = MO_64; |
| break; |
| case 3: |
| sz = MO_16; |
| if (dc_isar_feature(aa64_fp16, s)) { |
| break; |
| } |
| /* fallthru */ |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| imm = vfp_expand_imm(sz, imm8); |
| write_fp_dreg(s, rd, tcg_constant_i64(imm)); |
| } |
| |
| /* Handle floating point <=> fixed point conversions. Note that we can |
| * also deal with fp <=> integer conversions as a special case (scale == 64) |
| * OPTME: consider handling that special case specially or at least skipping |
| * the call to scalbn in the helpers for zero shifts. |
| */ |
| static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, |
| bool itof, int rmode, int scale, int sf, int type) |
| { |
| bool is_signed = !(opcode & 1); |
| TCGv_ptr tcg_fpstatus; |
| TCGv_i32 tcg_shift, tcg_single; |
| TCGv_i64 tcg_double; |
| |
| tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR); |
| |
| tcg_shift = tcg_constant_i32(64 - scale); |
| |
| if (itof) { |
| TCGv_i64 tcg_int = cpu_reg(s, rn); |
| if (!sf) { |
| TCGv_i64 tcg_extend = tcg_temp_new_i64(); |
| |
| if (is_signed) { |
| tcg_gen_ext32s_i64(tcg_extend, tcg_int); |
| } else { |
| tcg_gen_ext32u_i64(tcg_extend, tcg_int); |
| } |
| |
| tcg_int = tcg_extend; |
| } |
| |
| switch (type) { |
| case 1: /* float64 */ |
| tcg_double = tcg_temp_new_i64(); |
| if (is_signed) { |
| gen_helper_vfp_sqtod(tcg_double, tcg_int, |
| tcg_shift, tcg_fpstatus); |
| } else { |
| gen_helper_vfp_uqtod(tcg_double, tcg_int, |
| tcg_shift, tcg_fpstatus); |
| } |
| write_fp_dreg(s, rd, tcg_double); |
| break; |
| |
| case 0: /* float32 */ |
| tcg_single = tcg_temp_new_i32(); |
| if (is_signed) { |
| gen_helper_vfp_sqtos(tcg_single, tcg_int, |
| tcg_shift, tcg_fpstatus); |
| } else { |
| gen_helper_vfp_uqtos(tcg_single, tcg_int, |
| tcg_shift, tcg_fpstatus); |
| } |
| write_fp_sreg(s, rd, tcg_single); |
| break; |
| |
| case 3: /* float16 */ |
| tcg_single = tcg_temp_new_i32(); |
| if (is_signed) { |
| gen_helper_vfp_sqtoh(tcg_single, tcg_int, |
| tcg_shift, tcg_fpstatus); |
| } else { |
| gen_helper_vfp_uqtoh(tcg_single, tcg_int, |
| tcg_shift, tcg_fpstatus); |
| } |
| write_fp_sreg(s, rd, tcg_single); |
| break; |
| |
| default: |
| g_assert_not_reached(); |
| } |
| } else { |
| TCGv_i64 tcg_int = cpu_reg(s, rd); |
| TCGv_i32 tcg_rmode; |
| |
| if (extract32(opcode, 2, 1)) { |
| /* There are too many rounding modes to all fit into rmode, |
| * so FCVTA[US] is a special case. |
| */ |
| rmode = FPROUNDING_TIEAWAY; |
| } |
| |
| tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); |
| |
| switch (type) { |
| case 1: /* float64 */ |
| tcg_double = read_fp_dreg(s, rn); |
| if (is_signed) { |
| if (!sf) { |
| gen_helper_vfp_tosld(tcg_int, tcg_double, |
| tcg_shift, tcg_fpstatus); |
| } else { |
| gen_helper_vfp_tosqd(tcg_int, tcg_double, |
| tcg_shift, tcg_fpstatus); |
| } |
| } else { |
| if (!sf) { |
| gen_helper_vfp_tould(tcg_int, tcg_double, |
| tcg_shift, tcg_fpstatus); |
| } else { |
| gen_helper_vfp_touqd(tcg_int, tcg_double, |
| tcg_shift, tcg_fpstatus); |
| } |
| } |
| if (!sf) { |
| tcg_gen_ext32u_i64(tcg_int, tcg_int); |
| } |
| break; |
| |
| case 0: /* float32 */ |
| tcg_single = read_fp_sreg(s, rn); |
| if (sf) { |
| if (is_signed) { |
| gen_helper_vfp_tosqs(tcg_int, tcg_single, |
| tcg_shift, tcg_fpstatus); |
| } else { |
| gen_helper_vfp_touqs(tcg_int, tcg_single, |
| tcg_shift, tcg_fpstatus); |
| } |
| } else { |
| TCGv_i32 tcg_dest = tcg_temp_new_i32(); |
| if (is_signed) { |
| gen_helper_vfp_tosls(tcg_dest, tcg_single, |
| tcg_shift, tcg_fpstatus); |
| } else { |
| gen_helper_vfp_touls(tcg_dest, tcg_single, |
| tcg_shift, tcg_fpstatus); |
| } |
| tcg_gen_extu_i32_i64(tcg_int, tcg_dest); |
| } |
| break; |
| |
| case 3: /* float16 */ |
| tcg_single = read_fp_sreg(s, rn); |
| if (sf) { |
| if (is_signed) { |
| gen_helper_vfp_tosqh(tcg_int, tcg_single, |
| tcg_shift, tcg_fpstatus); |
| } else { |
| gen_helper_vfp_touqh(tcg_int, tcg_single, |
| tcg_shift, tcg_fpstatus); |
| } |
| } else { |
| TCGv_i32 tcg_dest = tcg_temp_new_i32(); |
| if (is_signed) { |
| gen_helper_vfp_toslh(tcg_dest, tcg_single, |
| tcg_shift, tcg_fpstatus); |
| } else { |
| gen_helper_vfp_toulh(tcg_dest, tcg_single, |
| tcg_shift, tcg_fpstatus); |
| } |
| tcg_gen_extu_i32_i64(tcg_int, tcg_dest); |
| } |
| break; |
| |
| default: |
| g_assert_not_reached(); |
| } |
| |
| gen_restore_rmode(tcg_rmode, tcg_fpstatus); |
| } |
| } |
| |
| /* Floating point <-> fixed point conversions |
| * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 |
| * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ |
| * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | |
| * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ |
| */ |
| static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) |
| { |
| int rd = extract32(insn, 0, 5); |
| int rn = extract32(insn, 5, 5); |
| int scale = extract32(insn, 10, 6); |
| int opcode = extract32(insn, 16, 3); |
| int rmode = extract32(insn, 19, 2); |
| int type = extract32(insn, 22, 2); |
| bool sbit = extract32(insn, 29, 1); |
| bool sf = extract32(insn, 31, 1); |
| bool itof; |
| |
| if (sbit || (!sf && scale < 32)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| switch (type) { |
| case 0: /* float32 */ |
| case 1: /* float64 */ |
| break; |
| case 3: /* float16 */ |
| if (dc_isar_feature(aa64_fp16, s)) { |
| break; |
| } |
| /* fallthru */ |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| |
| switch ((rmode << 3) | opcode) { |
| case 0x2: /* SCVTF */ |
| case 0x3: /* UCVTF */ |
| itof = true; |
| break; |
| case 0x18: /* FCVTZS */ |
| case 0x19: /* FCVTZU */ |
| itof = false; |
| break; |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); |
| } |
| |
| static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) |
| { |
| /* FMOV: gpr to or from float, double, or top half of quad fp reg, |
| * without conversion. |
| */ |
| |
| if (itof) { |
| TCGv_i64 tcg_rn = cpu_reg(s, rn); |
| TCGv_i64 tmp; |
| |
| switch (type) { |
| case 0: |
| /* 32 bit */ |
| tmp = tcg_temp_new_i64(); |
| tcg_gen_ext32u_i64(tmp, tcg_rn); |
| write_fp_dreg(s, rd, tmp); |
| break; |
| case 1: |
| /* 64 bit */ |
| write_fp_dreg(s, rd, tcg_rn); |
| break; |
| case 2: |
| /* 64 bit to top half. */ |
| tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd)); |
| clear_vec_high(s, true, rd); |
| break; |
| case 3: |
| /* 16 bit */ |
| tmp = tcg_temp_new_i64(); |
| tcg_gen_ext16u_i64(tmp, tcg_rn); |
| write_fp_dreg(s, rd, tmp); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } else { |
| TCGv_i64 tcg_rd = cpu_reg(s, rd); |
| |
| switch (type) { |
| case 0: |
| /* 32 bit */ |
| tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32)); |
| break; |
| case 1: |
| /* 64 bit */ |
| tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64)); |
| break; |
| case 2: |
| /* 64 bits from top half */ |
| tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn)); |
| break; |
| case 3: |
| /* 16 bit */ |
| tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16)); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| } |
| |
| static void handle_fjcvtzs(DisasContext *s, int rd, int rn) |
| { |
| TCGv_i64 t = read_fp_dreg(s, rn); |
| TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR); |
| |
| gen_helper_fjcvtzs(t, t, fpstatus); |
| |
| tcg_gen_ext32u_i64(cpu_reg(s, rd), t); |
| tcg_gen_extrh_i64_i32(cpu_ZF, t); |
| tcg_gen_movi_i32(cpu_CF, 0); |
| tcg_gen_movi_i32(cpu_NF, 0); |
| tcg_gen_movi_i32(cpu_VF, 0); |
| } |
| |
| /* Floating point <-> integer conversions |
| * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 |
| * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ |
| * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | |
| * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ |
| */ |
| static void disas_fp_int_conv(DisasContext *s, uint32_t insn) |
| { |
| int rd = extract32(insn, 0, 5); |
| int rn = extract32(insn, 5, 5); |
| int opcode = extract32(insn, 16, 3); |
| int rmode = extract32(insn, 19, 2); |
| int type = extract32(insn, 22, 2); |
| bool sbit = extract32(insn, 29, 1); |
| bool sf = extract32(insn, 31, 1); |
| bool itof = false; |
| |
| if (sbit) { |
| goto do_unallocated; |
| } |
| |
| switch (opcode) { |
| case 2: /* SCVTF */ |
| case 3: /* UCVTF */ |
| itof = true; |
| /* fallthru */ |
| case 4: /* FCVTAS */ |
| case 5: /* FCVTAU */ |
| if (rmode != 0) { |
| goto do_unallocated; |
| } |
| /* fallthru */ |
| case 0: /* FCVT[NPMZ]S */ |
| case 1: /* FCVT[NPMZ]U */ |
| switch (type) { |
| case 0: /* float32 */ |
| case 1: /* float64 */ |
| break; |
| case 3: /* float16 */ |
| if (!dc_isar_feature(aa64_fp16, s)) { |
| goto do_unallocated; |
| } |
| break; |
| default: |
| goto do_unallocated; |
| } |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); |
| break; |
| |
| default: |
| switch (sf << 7 | type << 5 | rmode << 3 | opcode) { |
| case 0b01100110: /* FMOV half <-> 32-bit int */ |
| case 0b01100111: |
| case 0b11100110: /* FMOV half <-> 64-bit int */ |
| case 0b11100111: |
| if (!dc_isar_feature(aa64_fp16, s)) { |
| goto do_unallocated; |
| } |
| /* fallthru */ |
| case 0b00000110: /* FMOV 32-bit */ |
| case 0b00000111: |
| case 0b10100110: /* FMOV 64-bit */ |
| case 0b10100111: |
| case 0b11001110: /* FMOV top half of 128-bit */ |
| case 0b11001111: |
| if (!fp_access_check(s)) { |
| return; |
| } |
| itof = opcode & 1; |
| handle_fmov(s, rd, rn, type, itof); |
| break; |
| |
| case 0b00111110: /* FJCVTZS */ |
| if (!dc_isar_feature(aa64_jscvt, s)) { |
| goto do_unallocated; |
| } else if (fp_access_check(s)) { |
| handle_fjcvtzs(s, rd, rn); |
| } |
| break; |
| |
| default: |
| do_unallocated: |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| } |
| } |
| |
| /* FP-specific subcases of table C3-6 (SIMD and FP data processing) |
| * 31 30 29 28 25 24 0 |
| * +---+---+---+---------+-----------------------------+ |
| * | | 0 | | 1 1 1 1 | | |
| * +---+---+---+---------+-----------------------------+ |
| */ |
| static void disas_data_proc_fp(DisasContext *s, uint32_t insn) |
| { |
| if (extract32(insn, 24, 1)) { |
| unallocated_encoding(s); /* in decodetree */ |
| } else if (extract32(insn, 21, 1) == 0) { |
| /* Floating point to fixed point conversions */ |
| disas_fp_fixed_conv(s, insn); |
| } else { |
| switch (extract32(insn, 10, 2)) { |
| case 1: |
| /* Floating point conditional compare */ |
| disas_fp_ccomp(s, insn); |
| break; |
| case 2: |
| /* Floating point data-processing (2 source) */ |
| unallocated_encoding(s); /* in decodetree */ |
| break; |
| case 3: |
| /* Floating point conditional select */ |
| unallocated_encoding(s); /* in decodetree */ |
| break; |
| case 0: |
| switch (ctz32(extract32(insn, 12, 4))) { |
| case 0: /* [15:12] == xxx1 */ |
| /* Floating point immediate */ |
| disas_fp_imm(s, insn); |
| break; |
| case 1: /* [15:12] == xx10 */ |
| /* Floating point compare */ |
| disas_fp_compare(s, insn); |
| break; |
| case 2: /* [15:12] == x100 */ |
| /* Floating point data-processing (1 source) */ |
| disas_fp_1src(s, insn); |
| break; |
| case 3: /* [15:12] == 1000 */ |
| unallocated_encoding(s); |
| break; |
| default: /* [15:12] == 0000 */ |
| /* Floating point <-> integer conversions */ |
| disas_fp_int_conv(s, insn); |
| break; |
| } |
| break; |
| } |
| } |
| } |
| |
| static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, |
| int pos) |
| { |
| /* Extract 64 bits from the middle of two concatenated 64 bit |
| * vector register slices left:right. The extracted bits start |
| * at 'pos' bits into the right (least significant) side. |
| * We return the result in tcg_right, and guarantee not to |
| * trash tcg_left. |
| */ |
| TCGv_i64 tcg_tmp = tcg_temp_new_i64(); |
| assert(pos > 0 && pos < 64); |
| |
| tcg_gen_shri_i64(tcg_right, tcg_right, pos); |
| tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); |
| tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); |
| } |
| |
| /* EXT |
| * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 |
| * +---+---+-------------+-----+---+------+---+------+---+------+------+ |
| * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | |
| * +---+---+-------------+-----+---+------+---+------+---+------+------+ |
| */ |
| static void disas_simd_ext(DisasContext *s, uint32_t insn) |
| { |
| int is_q = extract32(insn, 30, 1); |
| int op2 = extract32(insn, 22, 2); |
| int imm4 = extract32(insn, 11, 4); |
| int rm = extract32(insn, 16, 5); |
| int rn = extract32(insn, 5, 5); |
| int rd = extract32(insn, 0, 5); |
| int pos = imm4 << 3; |
| TCGv_i64 tcg_resl, tcg_resh; |
| |
| if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| tcg_resh = tcg_temp_new_i64(); |
| tcg_resl = tcg_temp_new_i64(); |
| |
| /* Vd gets bits starting at pos bits into Vm:Vn. This is |
| * either extracting 128 bits from a 128:128 concatenation, or |
| * extracting 64 bits from a 64:64 concatenation. |
| */ |
| if (!is_q) { |
| read_vec_element(s, tcg_resl, rn, 0, MO_64); |
| if (pos != 0) { |
| read_vec_element(s, tcg_resh, rm, 0, MO_64); |
| do_ext64(s, tcg_resh, tcg_resl, pos); |
| } |
| } else { |
| TCGv_i64 tcg_hh; |
| typedef struct { |
| int reg; |
| int elt; |
| } EltPosns; |
| EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; |
| EltPosns *elt = eltposns; |
| |
| if (pos >= 64) { |
| elt++; |
| pos -= 64; |
| } |
| |
| read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); |
| elt++; |
| read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); |
| elt++; |
| if (pos != 0) { |
| do_ext64(s, tcg_resh, tcg_resl, pos); |
| tcg_hh = tcg_temp_new_i64(); |
| read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); |
| do_ext64(s, tcg_hh, tcg_resh, pos); |
| } |
| } |
| |
| write_vec_element(s, tcg_resl, rd, 0, MO_64); |
| if (is_q) { |
| write_vec_element(s, tcg_resh, rd, 1, MO_64); |
| } |
| clear_vec_high(s, is_q, rd); |
| } |
| |
| /* TBL/TBX |
| * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 |
| * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ |
| * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | |
| * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ |
| */ |
| static void disas_simd_tb(DisasContext *s, uint32_t insn) |
| { |
| int op2 = extract32(insn, 22, 2); |
| int is_q = extract32(insn, 30, 1); |
| int rm = extract32(insn, 16, 5); |
| int rn = extract32(insn, 5, 5); |
| int rd = extract32(insn, 0, 5); |
| int is_tbx = extract32(insn, 12, 1); |
| int len = (extract32(insn, 13, 2) + 1) * 16; |
| |
| if (op2 != 0) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd), |
| vec_full_reg_offset(s, rm), tcg_env, |
| is_q ? 16 : 8, vec_full_reg_size(s), |
| (len << 6) | (is_tbx << 5) | rn, |
| gen_helper_simd_tblx); |
| } |
| |
| /* ZIP/UZP/TRN |
| * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 |
| * +---+---+-------------+------+---+------+---+------------------+------+ |
| * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | |
| * +---+---+-------------+------+---+------+---+------------------+------+ |
| */ |
| static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) |
| { |
| int rd = extract32(insn, 0, 5); |
| int rn = extract32(insn, 5, 5); |
| int rm = extract32(insn, 16, 5); |
| int size = extract32(insn, 22, 2); |
| /* opc field bits [1:0] indicate ZIP/UZP/TRN; |
| * bit 2 indicates 1 vs 2 variant of the insn. |
| */ |
| int opcode = extract32(insn, 12, 2); |
| bool part = extract32(insn, 14, 1); |
| bool is_q = extract32(insn, 30, 1); |
| int esize = 8 << size; |
| int i; |
| int datasize = is_q ? 128 : 64; |
| int elements = datasize / esize; |
| TCGv_i64 tcg_res[2], tcg_ele; |
| |
| if (opcode == 0 || (size == 3 && !is_q)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| tcg_res[0] = tcg_temp_new_i64(); |
| tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL; |
| tcg_ele = tcg_temp_new_i64(); |
| |
| for (i = 0; i < elements; i++) { |
| int o, w; |
| |
| switch (opcode) { |
| case 1: /* UZP1/2 */ |
| { |
| int midpoint = elements / 2; |
| if (i < midpoint) { |
| read_vec_element(s, tcg_ele, rn, 2 * i + part, size); |
| } else { |
| read_vec_element(s, tcg_ele, rm, |
| 2 * (i - midpoint) + part, size); |
| } |
| break; |
| } |
| case 2: /* TRN1/2 */ |
| if (i & 1) { |
| read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size); |
| } else { |
| read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size); |
| } |
| break; |
| case 3: /* ZIP1/2 */ |
| { |
| int base = part * elements / 2; |
| if (i & 1) { |
| read_vec_element(s, tcg_ele, rm, base + (i >> 1), size); |
| } else { |
| read_vec_element(s, tcg_ele, rn, base + (i >> 1), size); |
| } |
| break; |
| } |
| default: |
| g_assert_not_reached(); |
| } |
| |
| w = (i * esize) / 64; |
| o = (i * esize) % 64; |
| if (o == 0) { |
| tcg_gen_mov_i64(tcg_res[w], tcg_ele); |
| } else { |
| tcg_gen_shli_i64(tcg_ele, tcg_ele, o); |
| tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele); |
| } |
| } |
| |
| for (i = 0; i <= is_q; ++i) { |
| write_vec_element(s, tcg_res[i], rd, i, MO_64); |
| } |
| clear_vec_high(s, is_q, rd); |
| } |
| |
| /* |
| * do_reduction_op helper |
| * |
| * This mirrors the Reduce() pseudocode in the ARM ARM. It is |
| * important for correct NaN propagation that we do these |
| * operations in exactly the order specified by the pseudocode. |
| * |
| * This is a recursive function, TCG temps should be freed by the |
| * calling function once it is done with the values. |
| */ |
| static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, |
| int esize, int size, int vmap, TCGv_ptr fpst) |
| { |
| if (esize == size) { |
| int element; |
| MemOp msize = esize == 16 ? MO_16 : MO_32; |
| TCGv_i32 tcg_elem; |
| |
| /* We should have one register left here */ |
| assert(ctpop8(vmap) == 1); |
| element = ctz32(vmap); |
| assert(element < 8); |
| |
| tcg_elem = tcg_temp_new_i32(); |
| read_vec_element_i32(s, tcg_elem, rn, element, msize); |
| return tcg_elem; |
| } else { |
| int bits = size / 2; |
| int shift = ctpop8(vmap) / 2; |
| int vmap_lo = (vmap >> shift) & vmap; |
| int vmap_hi = (vmap & ~vmap_lo); |
| TCGv_i32 tcg_hi, tcg_lo, tcg_res; |
| |
| tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); |
| tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); |
| tcg_res = tcg_temp_new_i32(); |
| |
| switch (fpopcode) { |
| case 0x0c: /* fmaxnmv half-precision */ |
| gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); |
| break; |
| case 0x0f: /* fmaxv half-precision */ |
| gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); |
| break; |
| case 0x1c: /* fminnmv half-precision */ |
| gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); |
| break; |
| case 0x1f: /* fminv half-precision */ |
| gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); |
| break; |
| case 0x2c: /* fmaxnmv */ |
| gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); |
| break; |
| case 0x2f: /* fmaxv */ |
| gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); |
| break; |
| case 0x3c: /* fminnmv */ |
| gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); |
| break; |
| case 0x3f: /* fminv */ |
| gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| return tcg_res; |
| } |
| } |
| |
| /* AdvSIMD across lanes |
| * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 |
| * +---+---+---+-----------+------+-----------+--------+-----+------+------+ |
| * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | |
| * +---+---+---+-----------+------+-----------+--------+-----+------+------+ |
| */ |
| static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) |
| { |
| int rd = extract32(insn, 0, 5); |
| int rn = extract32(insn, 5, 5); |
| int size = extract32(insn, 22, 2); |
| int opcode = extract32(insn, 12, 5); |
| bool is_q = extract32(insn, 30, 1); |
| bool is_u = extract32(insn, 29, 1); |
| bool is_fp = false; |
| bool is_min = false; |
| int esize; |
| int elements; |
| int i; |
| TCGv_i64 tcg_res, tcg_elt; |
| |
| switch (opcode) { |
| case 0x1b: /* ADDV */ |
| if (is_u) { |
| unallocated_encoding(s); |
| return; |
| } |
| /* fall through */ |
| case 0x3: /* SADDLV, UADDLV */ |
| case 0xa: /* SMAXV, UMAXV */ |
| case 0x1a: /* SMINV, UMINV */ |
| if (size == 3 || (size == 2 && !is_q)) { |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| case 0xc: /* FMAXNMV, FMINNMV */ |
| case 0xf: /* FMAXV, FMINV */ |
| /* Bit 1 of size field encodes min vs max and the actual size |
| * depends on the encoding of the U bit. If not set (and FP16 |
| * enabled) then we do half-precision float instead of single |
| * precision. |
| */ |
| is_min = extract32(size, 1, 1); |
| is_fp = true; |
| if (!is_u && dc_isar_feature(aa64_fp16, s)) { |
| size = 1; |
| } else if (!is_u || !is_q || extract32(size, 0, 1)) { |
| unallocated_encoding(s); |
| return; |
| } else { |
| size = 2; |
| } |
| break; |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| esize = 8 << size; |
| elements = (is_q ? 128 : 64) / esize; |
| |
| tcg_res = tcg_temp_new_i64(); |
| tcg_elt = tcg_temp_new_i64(); |
| |
| /* These instructions operate across all lanes of a vector |
| * to produce a single result. We can guarantee that a 64 |
| * bit intermediate is sufficient: |
| * + for [US]ADDLV the maximum element size is 32 bits, and |
| * the result type is 64 bits |
| * + for FMAX*V, FMIN*V, ADDV the intermediate type is the |
| * same as the element size, which is 32 bits at most |
| * For the integer operations we can choose to work at 64 |
| * or 32 bits and truncate at the end; for simplicity |
| * we use 64 bits always. The floating point |
| * ops do require 32 bit intermediates, though. |
| */ |
| if (!is_fp) { |
| read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); |
| |
| for (i = 1; i < elements; i++) { |
| read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); |
| |
| switch (opcode) { |
| case 0x03: /* SADDLV / UADDLV */ |
| case 0x1b: /* ADDV */ |
| tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); |
| break; |
| case 0x0a: /* SMAXV / UMAXV */ |
| if (is_u) { |
| tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); |
| } else { |
| tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); |
| } |
| break; |
| case 0x1a: /* SMINV / UMINV */ |
| if (is_u) { |
| tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); |
| } else { |
| tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| } |
| } else { |
| /* Floating point vector reduction ops which work across 32 |
| * bit (single) or 16 bit (half-precision) intermediates. |
| * Note that correct NaN propagation requires that we do these |
| * operations in exactly the order specified by the pseudocode. |
| */ |
| TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); |
| int fpopcode = opcode | is_min << 4 | is_u << 5; |
| int vmap = (1 << elements) - 1; |
| TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, |
| (is_q ? 128 : 64), vmap, fpst); |
| tcg_gen_extu_i32_i64(tcg_res, tcg_res32); |
| } |
| |
| /* Now truncate the result to the width required for the final output */ |
| if (opcode == 0x03) { |
| /* SADDLV, UADDLV: result is 2*esize */ |
| size++; |
| } |
| |
| switch (size) { |
| case 0: |
| tcg_gen_ext8u_i64(tcg_res, tcg_res); |
| break; |
| case 1: |
| tcg_gen_ext16u_i64(tcg_res, tcg_res); |
| break; |
| case 2: |
| tcg_gen_ext32u_i64(tcg_res, tcg_res); |
| break; |
| case 3: |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| write_fp_dreg(s, rd, tcg_res); |
| } |
| |
| /* AdvSIMD modified immediate |
| * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 |
| * +---+---+----+---------------------+-----+-------+----+---+-------+------+ |
| * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | |
| * +---+---+----+---------------------+-----+-------+----+---+-------+------+ |
| * |
| * There are a number of operations that can be carried out here: |
| * MOVI - move (shifted) imm into register |
| * MVNI - move inverted (shifted) imm into register |
| * ORR - bitwise OR of (shifted) imm with register |
| * BIC - bitwise clear of (shifted) imm with register |
| * With ARMv8.2 we also have: |
| * FMOV half-precision |
| */ |
| static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) |
| { |
| int rd = extract32(insn, 0, 5); |
| int cmode = extract32(insn, 12, 4); |
| int o2 = extract32(insn, 11, 1); |
| uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); |
| bool is_neg = extract32(insn, 29, 1); |
| bool is_q = extract32(insn, 30, 1); |
| uint64_t imm = 0; |
| |
| if (o2) { |
| if (cmode != 0xf || is_neg) { |
| unallocated_encoding(s); |
| return; |
| } |
| /* FMOV (vector, immediate) - half-precision */ |
| if (!dc_isar_feature(aa64_fp16, s)) { |
| unallocated_encoding(s); |
| return; |
| } |
| imm = vfp_expand_imm(MO_16, abcdefgh); |
| /* now duplicate across the lanes */ |
| imm = dup_const(MO_16, imm); |
| } else { |
| if (cmode == 0xf && is_neg && !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| imm = asimd_imm_const(abcdefgh, cmode, is_neg); |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { |
| /* MOVI or MVNI, with MVNI negation handled above. */ |
| tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8, |
| vec_full_reg_size(s), imm); |
| } else { |
| /* ORR or BIC, with BIC negation to AND handled above. */ |
| if (is_neg) { |
| gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); |
| } else { |
| gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); |
| } |
| } |
| } |
| |
| /* |
| * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) |
| * |
| * This code is handles the common shifting code and is used by both |
| * the vector and scalar code. |
| */ |
| static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, |
| TCGv_i64 tcg_rnd, bool accumulate, |
| bool is_u, int size, int shift) |
| { |
| bool extended_result = false; |
| bool round = tcg_rnd != NULL; |
| int ext_lshift = 0; |
| TCGv_i64 tcg_src_hi; |
| |
| if (round && size == 3) { |
| extended_result = true; |
| ext_lshift = 64 - shift; |
| tcg_src_hi = tcg_temp_new_i64(); |
| } else if (shift == 64) { |
| if (!accumulate && is_u) { |
| /* result is zero */ |
| tcg_gen_movi_i64(tcg_res, 0); |
| return; |
| } |
| } |
| |
| /* Deal with the rounding step */ |
| if (round) { |
| if (extended_result) { |
| TCGv_i64 tcg_zero = tcg_constant_i64(0); |
| if (!is_u) { |
| /* take care of sign extending tcg_res */ |
| tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); |
| tcg_gen_add2_i64(tcg_src, tcg_src_hi, |
| tcg_src, tcg_src_hi, |
| tcg_rnd, tcg_zero); |
| } else { |
| tcg_gen_add2_i64(tcg_src, tcg_src_hi, |
| tcg_src, tcg_zero, |
| tcg_rnd, tcg_zero); |
| } |
| } else { |
| tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); |
| } |
| } |
| |
| /* Now do the shift right */ |
| if (round && extended_result) { |
| /* extended case, >64 bit precision required */ |
| if (ext_lshift == 0) { |
| /* special case, only high bits matter */ |
| tcg_gen_mov_i64(tcg_src, tcg_src_hi); |
| } else { |
| tcg_gen_shri_i64(tcg_src, tcg_src, shift); |
| tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); |
| tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); |
| } |
| } else { |
| if (is_u) { |
| if (shift == 64) { |
| /* essentially shifting in 64 zeros */ |
| tcg_gen_movi_i64(tcg_src, 0); |
| } else { |
| tcg_gen_shri_i64(tcg_src, tcg_src, shift); |
| } |
| } else { |
| if (shift == 64) { |
| /* effectively extending the sign-bit */ |
| tcg_gen_sari_i64(tcg_src, tcg_src, 63); |
| } else { |
| tcg_gen_sari_i64(tcg_src, tcg_src, shift); |
| } |
| } |
| } |
| |
| if (accumulate) { |
| tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); |
| } else { |
| tcg_gen_mov_i64(tcg_res, tcg_src); |
| } |
| } |
| |
| /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ |
| static void handle_scalar_simd_shri(DisasContext *s, |
| bool is_u, int immh, int immb, |
| int opcode, int rn, int rd) |
| { |
| const int size = 3; |
| int immhb = immh << 3 | immb; |
| int shift = 2 * (8 << size) - immhb; |
| bool accumulate = false; |
| bool round = false; |
| bool insert = false; |
| TCGv_i64 tcg_rn; |
| TCGv_i64 tcg_rd; |
| TCGv_i64 tcg_round; |
| |
| if (!extract32(immh, 3, 1)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| switch (opcode) { |
| case 0x02: /* SSRA / USRA (accumulate) */ |
| accumulate = true; |
| break; |
| case 0x04: /* SRSHR / URSHR (rounding) */ |
| round = true; |
| break; |
| case 0x06: /* SRSRA / URSRA (accum + rounding) */ |
| accumulate = round = true; |
| break; |
| case 0x08: /* SRI */ |
| insert = true; |
| break; |
| } |
| |
| if (round) { |
| tcg_round = tcg_constant_i64(1ULL << (shift - 1)); |
| } else { |
| tcg_round = NULL; |
| } |
| |
| tcg_rn = read_fp_dreg(s, rn); |
| tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); |
| |
| if (insert) { |
| /* shift count same as element size is valid but does nothing; |
| * special case to avoid potential shift by 64. |
| */ |
| int esize = 8 << size; |
| if (shift != esize) { |
| tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); |
| tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); |
| } |
| } else { |
| handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, |
| accumulate, is_u, size, shift); |
| } |
| |
| write_fp_dreg(s, rd, tcg_rd); |
| } |
| |
| /* SHL/SLI - Scalar shift left */ |
| static void handle_scalar_simd_shli(DisasContext *s, bool insert, |
| int immh, int immb, int opcode, |
| int rn, int rd) |
| { |
| int size = 32 - clz32(immh) - 1; |
| int immhb = immh << 3 | immb; |
| int shift = immhb - (8 << size); |
| TCGv_i64 tcg_rn; |
| TCGv_i64 tcg_rd; |
| |
| if (!extract32(immh, 3, 1)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| tcg_rn = read_fp_dreg(s, rn); |
| tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); |
| |
| if (insert) { |
| tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); |
| } else { |
| tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); |
| } |
| |
| write_fp_dreg(s, rd, tcg_rd); |
| } |
| |
| /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with |
| * (signed/unsigned) narrowing */ |
| static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, |
| bool is_u_shift, bool is_u_narrow, |
| int immh, int immb, int opcode, |
| int rn, int rd) |
| { |
| int immhb = immh << 3 | immb; |
| int size = 32 - clz32(immh) - 1; |
| int esize = 8 << size; |
| int shift = (2 * esize) - immhb; |
| int elements = is_scalar ? 1 : (64 / esize); |
| bool round = extract32(opcode, 0, 1); |
| MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); |
| TCGv_i64 tcg_rn, tcg_rd, tcg_round; |
| TCGv_i32 tcg_rd_narrowed; |
| TCGv_i64 tcg_final; |
| |
| static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { |
| { gen_helper_neon_narrow_sat_s8, |
| gen_helper_neon_unarrow_sat8 }, |
| { gen_helper_neon_narrow_sat_s16, |
| gen_helper_neon_unarrow_sat16 }, |
| { gen_helper_neon_narrow_sat_s32, |
| gen_helper_neon_unarrow_sat32 }, |
| { NULL, NULL }, |
| }; |
| static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { |
| gen_helper_neon_narrow_sat_u8, |
| gen_helper_neon_narrow_sat_u16, |
| gen_helper_neon_narrow_sat_u32, |
| NULL |
| }; |
| NeonGenNarrowEnvFn *narrowfn; |
| |
| int i; |
| |
| assert(size < 4); |
| |
| if (extract32(immh, 3, 1)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| if (is_u_shift) { |
| narrowfn = unsigned_narrow_fns[size]; |
| } else { |
| narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; |
| } |
| |
| tcg_rn = tcg_temp_new_i64(); |
| tcg_rd = tcg_temp_new_i64(); |
| tcg_rd_narrowed = tcg_temp_new_i32(); |
| tcg_final = tcg_temp_new_i64(); |
| |
| if (round) { |
| tcg_round = tcg_constant_i64(1ULL << (shift - 1)); |
| } else { |
| tcg_round = NULL; |
| } |
| |
| for (i = 0; i < elements; i++) { |
| read_vec_element(s, tcg_rn, rn, i, ldop); |
| handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, |
| false, is_u_shift, size+1, shift); |
| narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd); |
| tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); |
| if (i == 0) { |
| tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize); |
| } else { |
| tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); |
| } |
| } |
| |
| if (!is_q) { |
| write_vec_element(s, tcg_final, rd, 0, MO_64); |
| } else { |
| write_vec_element(s, tcg_final, rd, 1, MO_64); |
| } |
| clear_vec_high(s, is_q, rd); |
| } |
| |
| /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ |
| static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, |
| bool src_unsigned, bool dst_unsigned, |
| int immh, int immb, int rn, int rd) |
| { |
| int immhb = immh << 3 | immb; |
| int size = 32 - clz32(immh) - 1; |
| int shift = immhb - (8 << size); |
| int pass; |
| |
| assert(immh != 0); |
| assert(!(scalar && is_q)); |
| |
| if (!scalar) { |
| if (!is_q && extract32(immh, 3, 1)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| /* Since we use the variable-shift helpers we must |
| * replicate the shift count into each element of |
| * the tcg_shift value. |
| */ |
| switch (size) { |
| case 0: |
| shift |= shift << 8; |
| /* fall through */ |
| case 1: |
| shift |= shift << 16; |
| break; |
| case 2: |
| case 3: |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| if (size == 3) { |
| TCGv_i64 tcg_shift = tcg_constant_i64(shift); |
| static NeonGenTwo64OpEnvFn * const fns[2][2] = { |
| { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, |
| { NULL, gen_helper_neon_qshl_u64 }, |
| }; |
| NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; |
| int maxpass = is_q ? 2 : 1; |
| |
| for (pass = 0; pass < maxpass; pass++) { |
| TCGv_i64 tcg_op = tcg_temp_new_i64(); |
| |
| read_vec_element(s, tcg_op, rn, pass, MO_64); |
| genfn(tcg_op, tcg_env, tcg_op, tcg_shift); |
| write_vec_element(s, tcg_op, rd, pass, MO_64); |
| } |
| clear_vec_high(s, is_q, rd); |
| } else { |
| TCGv_i32 tcg_shift = tcg_constant_i32(shift); |
| static NeonGenTwoOpEnvFn * const fns[2][2][3] = { |
| { |
| { gen_helper_neon_qshl_s8, |
| gen_helper_neon_qshl_s16, |
| gen_helper_neon_qshl_s32 }, |
| { gen_helper_neon_qshlu_s8, |
| gen_helper_neon_qshlu_s16, |
| gen_helper_neon_qshlu_s32 } |
| }, { |
| { NULL, NULL, NULL }, |
| { gen_helper_neon_qshl_u8, |
| gen_helper_neon_qshl_u16, |
| gen_helper_neon_qshl_u32 } |
| } |
| }; |
| NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; |
| MemOp memop = scalar ? size : MO_32; |
| int maxpass = scalar ? 1 : is_q ? 4 : 2; |
| |
| for (pass = 0; pass < maxpass; pass++) { |
| TCGv_i32 tcg_op = tcg_temp_new_i32(); |
| |
| read_vec_element_i32(s, tcg_op, rn, pass, memop); |
| genfn(tcg_op, tcg_env, tcg_op, tcg_shift); |
| if (scalar) { |
| switch (size) { |
| case 0: |
| tcg_gen_ext8u_i32(tcg_op, tcg_op); |
| break; |
| case 1: |
| tcg_gen_ext16u_i32(tcg_op, tcg_op); |
| break; |
| case 2: |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| write_fp_sreg(s, rd, tcg_op); |
| } else { |
| write_vec_element_i32(s, tcg_op, rd, pass, MO_32); |
| } |
| } |
| |
| if (!scalar) { |
| clear_vec_high(s, is_q, rd); |
| } |
| } |
| } |
| |
| /* Common vector code for handling integer to FP conversion */ |
| static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, |
| int elements, int is_signed, |
| int fracbits, int size) |
| { |
| TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); |
| TCGv_i32 tcg_shift = NULL; |
| |
| MemOp mop = size | (is_signed ? MO_SIGN : 0); |
| int pass; |
| |
| if (fracbits || size == MO_64) { |
| tcg_shift = tcg_constant_i32(fracbits); |
| } |
| |
| if (size == MO_64) { |
| TCGv_i64 tcg_int64 = tcg_temp_new_i64(); |
| TCGv_i64 tcg_double = tcg_temp_new_i64(); |
| |
| for (pass = 0; pass < elements; pass++) { |
| read_vec_element(s, tcg_int64, rn, pass, mop); |
| |
| if (is_signed) { |
| gen_helper_vfp_sqtod(tcg_double, tcg_int64, |
| tcg_shift, tcg_fpst); |
| } else { |
| gen_helper_vfp_uqtod(tcg_double, tcg_int64, |
| tcg_shift, tcg_fpst); |
| } |
| if (elements == 1) { |
| write_fp_dreg(s, rd, tcg_double); |
| } else { |
| write_vec_element(s, tcg_double, rd, pass, MO_64); |
| } |
| } |
| } else { |
| TCGv_i32 tcg_int32 = tcg_temp_new_i32(); |
| TCGv_i32 tcg_float = tcg_temp_new_i32(); |
| |
| for (pass = 0; pass < elements; pass++) { |
| read_vec_element_i32(s, tcg_int32, rn, pass, mop); |
| |
| switch (size) { |
| case MO_32: |
| if (fracbits) { |
| if (is_signed) { |
| gen_helper_vfp_sltos(tcg_float, tcg_int32, |
| tcg_shift, tcg_fpst); |
| } else { |
| gen_helper_vfp_ultos(tcg_float, tcg_int32, |
| tcg_shift, tcg_fpst); |
| } |
| } else { |
| if (is_signed) { |
| gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); |
| } else { |
| gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); |
| } |
| } |
| break; |
| case MO_16: |
| if (fracbits) { |
| if (is_signed) { |
| gen_helper_vfp_sltoh(tcg_float, tcg_int32, |
| tcg_shift, tcg_fpst); |
| } else { |
| gen_helper_vfp_ultoh(tcg_float, tcg_int32, |
| tcg_shift, tcg_fpst); |
| } |
| } else { |
| if (is_signed) { |
| gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); |
| } else { |
| gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); |
| } |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if (elements == 1) { |
| write_fp_sreg(s, rd, tcg_float); |
| } else { |
| write_vec_element_i32(s, tcg_float, rd, pass, size); |
| } |
| } |
| } |
| |
| clear_vec_high(s, elements << size == 16, rd); |
| } |
| |
| /* UCVTF/SCVTF - Integer to FP conversion */ |
| static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, |
| bool is_q, bool is_u, |
| int immh, int immb, int opcode, |
| int rn, int rd) |
| { |
| int size, elements, fracbits; |
| int immhb = immh << 3 | immb; |
| |
| if (immh & 8) { |
| size = MO_64; |
| if (!is_scalar && !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| } else if (immh & 4) { |
| size = MO_32; |
| } else if (immh & 2) { |
| size = MO_16; |
| if (!dc_isar_feature(aa64_fp16, s)) { |
| unallocated_encoding(s); |
| return; |
| } |
| } else { |
| /* immh == 0 would be a failure of the decode logic */ |
| g_assert(immh == 1); |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (is_scalar) { |
| elements = 1; |
| } else { |
| elements = (8 << is_q) >> size; |
| } |
| fracbits = (16 << size) - immhb; |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); |
| } |
| |
| /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ |
| static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, |
| bool is_q, bool is_u, |
| int immh, int immb, int rn, int rd) |
| { |
| int immhb = immh << 3 | immb; |
| int pass, size, fracbits; |
| TCGv_ptr tcg_fpstatus; |
| TCGv_i32 tcg_rmode, tcg_shift; |
| |
| if (immh & 0x8) { |
| size = MO_64; |
| if (!is_scalar && !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| } else if (immh & 0x4) { |
| size = MO_32; |
| } else if (immh & 0x2) { |
| size = MO_16; |
| if (!dc_isar_feature(aa64_fp16, s)) { |
| unallocated_encoding(s); |
| return; |
| } |
| } else { |
| /* Should have split out AdvSIMD modified immediate earlier. */ |
| assert(immh == 1); |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| assert(!(is_scalar && is_q)); |
| |
| tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); |
| tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus); |
| fracbits = (16 << size) - immhb; |
| tcg_shift = tcg_constant_i32(fracbits); |
| |
| if (size == MO_64) { |
| int maxpass = is_scalar ? 1 : 2; |
| |
| for (pass = 0; pass < maxpass; pass++) { |
| TCGv_i64 tcg_op = tcg_temp_new_i64(); |
| |
| read_vec_element(s, tcg_op, rn, pass, MO_64); |
| if (is_u) { |
| gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); |
| } else { |
| gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); |
| } |
| write_vec_element(s, tcg_op, rd, pass, MO_64); |
| } |
| clear_vec_high(s, is_q, rd); |
| } else { |
| void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); |
| int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); |
| |
| switch (size) { |
| case MO_16: |
| if (is_u) { |
| fn = gen_helper_vfp_touhh; |
| } else { |
| fn = gen_helper_vfp_toshh; |
| } |
| break; |
| case MO_32: |
| if (is_u) { |
| fn = gen_helper_vfp_touls; |
| } else { |
| fn = gen_helper_vfp_tosls; |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| for (pass = 0; pass < maxpass; pass++) { |
| TCGv_i32 tcg_op = tcg_temp_new_i32(); |
| |
| read_vec_element_i32(s, tcg_op, rn, pass, size); |
| fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); |
| if (is_scalar) { |
| if (size == MO_16 && !is_u) { |
| tcg_gen_ext16u_i32(tcg_op, tcg_op); |
| } |
| write_fp_sreg(s, rd, tcg_op); |
| } else { |
| write_vec_element_i32(s, tcg_op, rd, pass, size); |
| } |
| } |
| if (!is_scalar) { |
| clear_vec_high(s, is_q, rd); |
| } |
| } |
| |
| gen_restore_rmode(tcg_rmode, tcg_fpstatus); |
| } |
| |
| /* AdvSIMD scalar shift by immediate |
| * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 |
| * +-----+---+-------------+------+------+--------+---+------+------+ |
| * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | |
| * +-----+---+-------------+------+------+--------+---+------+------+ |
| * |
| * This is the scalar version so it works on a fixed sized registers |
| */ |
| static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) |
| { |
| int rd = extract32(insn, 0, 5); |
| int rn = extract32(insn, 5, 5); |
| int opcode = extract32(insn, 11, 5); |
| int immb = extract32(insn, 16, 3); |
| int immh = extract32(insn, 19, 4); |
| bool is_u = extract32(insn, 29, 1); |
| |
| if (immh == 0) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| switch (opcode) { |
| case 0x08: /* SRI */ |
| if (!is_u) { |
| unallocated_encoding(s); |
| return; |
| } |
| /* fall through */ |
| case 0x00: /* SSHR / USHR */ |
| case 0x02: /* SSRA / USRA */ |
| case 0x04: /* SRSHR / URSHR */ |
| case 0x06: /* SRSRA / URSRA */ |
| handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); |
| break; |
| case 0x0a: /* SHL / SLI */ |
| handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); |
| break; |
| case 0x1c: /* SCVTF, UCVTF */ |
| handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, |
| opcode, rn, rd); |
| break; |
| case 0x10: /* SQSHRUN, SQSHRUN2 */ |
| case 0x11: /* SQRSHRUN, SQRSHRUN2 */ |
| if (!is_u) { |
| unallocated_encoding(s); |
| return; |
| } |
| handle_vec_simd_sqshrn(s, true, false, false, true, |
| immh, immb, opcode, rn, rd); |
| break; |
| case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ |
| case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ |
| handle_vec_simd_sqshrn(s, true, false, is_u, is_u, |
| immh, immb, opcode, rn, rd); |
| break; |
| case 0xc: /* SQSHLU */ |
| if (!is_u) { |
| unallocated_encoding(s); |
| return; |
| } |
| handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); |
| break; |
| case 0xe: /* SQSHL, UQSHL */ |
| handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); |
| break; |
| case 0x1f: /* FCVTZS, FCVTZU */ |
| handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); |
| break; |
| default: |
| unallocated_encoding(s); |
| break; |
| } |
| } |
| |
| /* AdvSIMD scalar three different |
| * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 |
| * +-----+---+-----------+------+---+------+--------+-----+------+------+ |
| * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | |
| * +-----+---+-----------+------+---+------+--------+-----+------+------+ |
| */ |
| static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) |
| { |
| bool is_u = extract32(insn, 29, 1); |
| int size = extract32(insn, 22, 2); |
| int opcode = extract32(insn, 12, 4); |
| int rm = extract32(insn, 16, 5); |
| int rn = extract32(insn, 5, 5); |
| int rd = extract32(insn, 0, 5); |
| |
| if (is_u) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| switch (opcode) { |
| case 0x9: /* SQDMLAL, SQDMLAL2 */ |
| case 0xb: /* SQDMLSL, SQDMLSL2 */ |
| case 0xd: /* SQDMULL, SQDMULL2 */ |
| if (size == 0 || size == 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| if (size == 2) { |
| TCGv_i64 tcg_op1 = tcg_temp_new_i64(); |
| TCGv_i64 tcg_op2 = tcg_temp_new_i64(); |
| TCGv_i64 tcg_res = tcg_temp_new_i64(); |
| |
| read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); |
| read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); |
| |
| tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); |
| gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res); |
| |
| switch (opcode) { |
| case 0xd: /* SQDMULL, SQDMULL2 */ |
| break; |
| case 0xb: /* SQDMLSL, SQDMLSL2 */ |
| tcg_gen_neg_i64(tcg_res, tcg_res); |
| /* fall through */ |
| case 0x9: /* SQDMLAL, SQDMLAL2 */ |
| read_vec_element(s, tcg_op1, rd, 0, MO_64); |
| gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, |
| tcg_res, tcg_op1); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| write_fp_dreg(s, rd, tcg_res); |
| } else { |
| TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); |
| TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); |
| TCGv_i64 tcg_res = tcg_temp_new_i64(); |
| |
| gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); |
| gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res); |
| |
| switch (opcode) { |
| case 0xd: /* SQDMULL, SQDMULL2 */ |
| break; |
| case 0xb: /* SQDMLSL, SQDMLSL2 */ |
| gen_helper_neon_negl_u32(tcg_res, tcg_res); |
| /* fall through */ |
| case 0x9: /* SQDMLAL, SQDMLAL2 */ |
| { |
| TCGv_i64 tcg_op3 = tcg_temp_new_i64(); |
| read_vec_element(s, tcg_op3, rd, 0, MO_32); |
| gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, |
| tcg_res, tcg_op3); |
| break; |
| } |
| default: |
| g_assert_not_reached(); |
| } |
| |
| tcg_gen_ext32u_i64(tcg_res, tcg_res); |
| write_fp_dreg(s, rd, tcg_res); |
| } |
| } |
| |
| /* AdvSIMD scalar three same extra |
| * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 |
| * +-----+---+-----------+------+---+------+---+--------+---+----+----+ |
| * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | |
| * +-----+---+-----------+------+---+------+---+--------+---+----+----+ |
| */ |
| static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, |
| uint32_t insn) |
| { |
| int rd = extract32(insn, 0, 5); |
| int rn = extract32(insn, 5, 5); |
| int opcode = extract32(insn, 11, 4); |
| int rm = extract32(insn, 16, 5); |
| int size = extract32(insn, 22, 2); |
| bool u = extract32(insn, 29, 1); |
| TCGv_i32 ele1, ele2, ele3; |
| TCGv_i64 res; |
| bool feature; |
| |
| switch (u * 16 + opcode) { |
| case 0x10: /* SQRDMLAH (vector) */ |
| case 0x11: /* SQRDMLSH (vector) */ |
| if (size != 1 && size != 2) { |
| unallocated_encoding(s); |
| return; |
| } |
| feature = dc_isar_feature(aa64_rdm, s); |
| break; |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| if (!feature) { |
| unallocated_encoding(s); |
| return; |
| } |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| /* Do a single operation on the lowest element in the vector. |
| * We use the standard Neon helpers and rely on 0 OP 0 == 0 |
| * with no side effects for all these operations. |
| * OPTME: special-purpose helpers would avoid doing some |
| * unnecessary work in the helper for the 16 bit cases. |
| */ |
| ele1 = tcg_temp_new_i32(); |
| ele2 = tcg_temp_new_i32(); |
| ele3 = tcg_temp_new_i32(); |
| |
| read_vec_element_i32(s, ele1, rn, 0, size); |
| read_vec_element_i32(s, ele2, rm, 0, size); |
| read_vec_element_i32(s, ele3, rd, 0, size); |
| |
| switch (opcode) { |
| case 0x0: /* SQRDMLAH */ |
| if (size == 1) { |
| gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3); |
| } else { |
| gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3); |
| } |
| break; |
| case 0x1: /* SQRDMLSH */ |
| if (size == 1) { |
| gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3); |
| } else { |
| gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3); |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| res = tcg_temp_new_i64(); |
| tcg_gen_extu_i32_i64(res, ele3); |
| write_fp_dreg(s, rd, res); |
| } |
| |
| static void handle_2misc_64(DisasContext *s, int opcode, bool u, |
| TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, |
| TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) |
| { |
| /* Handle 64->64 opcodes which are shared between the scalar and |
| * vector 2-reg-misc groups. We cover every integer opcode where size == 3 |
| * is valid in either group and also the double-precision fp ops. |
| * The caller only need provide tcg_rmode and tcg_fpstatus if the op |
| * requires them. |
| */ |
| TCGCond cond; |
| |
| switch (opcode) { |
| case 0x4: /* CLS, CLZ */ |
| if (u) { |
| tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); |
| } else { |
| tcg_gen_clrsb_i64(tcg_rd, tcg_rn); |
| } |
| break; |
| case 0x5: /* NOT */ |
| /* This opcode is shared with CNT and RBIT but we have earlier |
| * enforced that size == 3 if and only if this is the NOT insn. |
| */ |
| tcg_gen_not_i64(tcg_rd, tcg_rn); |
| break; |
| case 0x7: /* SQABS, SQNEG */ |
| if (u) { |
| gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn); |
| } else { |
| gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn); |
| } |
| break; |
| case 0xa: /* CMLT */ |
| cond = TCG_COND_LT; |
| do_cmop: |
| /* 64 bit integer comparison against zero, result is test ? -1 : 0. */ |
| tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0)); |
| break; |
| case 0x8: /* CMGT, CMGE */ |
| cond = u ? TCG_COND_GE : TCG_COND_GT; |
| goto do_cmop; |
| case 0x9: /* CMEQ, CMLE */ |
| cond = u ? TCG_COND_LE : TCG_COND_EQ; |
| goto do_cmop; |
| case 0xb: /* ABS, NEG */ |
| if (u) { |
| tcg_gen_neg_i64(tcg_rd, tcg_rn); |
| } else { |
| tcg_gen_abs_i64(tcg_rd, tcg_rn); |
| } |
| break; |
| case 0x2f: /* FABS */ |
| gen_vfp_absd(tcg_rd, tcg_rn); |
| break; |
| case 0x6f: /* FNEG */ |
| gen_vfp_negd(tcg_rd, tcg_rn); |
| break; |
| case 0x7f: /* FSQRT */ |
| gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env); |
| break; |
| case 0x1a: /* FCVTNS */ |
| case 0x1b: /* FCVTMS */ |
| case 0x1c: /* FCVTAS */ |
| case 0x3a: /* FCVTPS */ |
| case 0x3b: /* FCVTZS */ |
| gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); |
| break; |
| case 0x5a: /* FCVTNU */ |
| case 0x5b: /* FCVTMU */ |
| case 0x5c: /* FCVTAU */ |
| case 0x7a: /* FCVTPU */ |
| case 0x7b: /* FCVTZU */ |
| gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus); |
| break; |
| case 0x18: /* FRINTN */ |
| case 0x19: /* FRINTM */ |
| case 0x38: /* FRINTP */ |
| case 0x39: /* FRINTZ */ |
| case 0x58: /* FRINTA */ |
| case 0x79: /* FRINTI */ |
| gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); |
| break; |
| case 0x59: /* FRINTX */ |
| gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); |
| break; |
| case 0x1e: /* FRINT32Z */ |
| case 0x5e: /* FRINT32X */ |
| gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus); |
| break; |
| case 0x1f: /* FRINT64Z */ |
| case 0x5f: /* FRINT64X */ |
| gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, |
| bool is_scalar, bool is_u, bool is_q, |
| int size, int rn, int rd) |
| { |
| bool is_double = (size == MO_64); |
| TCGv_ptr fpst; |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR); |
| |
| if (is_double) { |
| TCGv_i64 tcg_op = tcg_temp_new_i64(); |
| TCGv_i64 tcg_zero = tcg_constant_i64(0); |
| TCGv_i64 tcg_res = tcg_temp_new_i64(); |
| NeonGenTwoDoubleOpFn *genfn; |
| bool swap = false; |
| int pass; |
| |
| switch (opcode) { |
| case 0x2e: /* FCMLT (zero) */ |
| swap = true; |
| /* fallthrough */ |
| case 0x2c: /* FCMGT (zero) */ |
| genfn = gen_helper_neon_cgt_f64; |
| break; |
| case 0x2d: /* FCMEQ (zero) */ |
| genfn = gen_helper_neon_ceq_f64; |
| break; |
| case 0x6d: /* FCMLE (zero) */ |
| swap = true; |
| /* fall through */ |
| case 0x6c: /* FCMGE (zero) */ |
| genfn = gen_helper_neon_cge_f64; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { |
| read_vec_element(s, tcg_op, rn, pass, MO_64); |
| if (swap) { |
| genfn(tcg_res, tcg_zero, tcg_op, fpst); |
| } else { |
| genfn(tcg_res, tcg_op, tcg_zero, fpst); |
| } |
| write_vec_element(s, tcg_res, rd, pass, MO_64); |
| } |
| |
| clear_vec_high(s, !is_scalar, rd); |
| } else { |
| TCGv_i32 tcg_op = tcg_temp_new_i32(); |
| TCGv_i32 tcg_zero = tcg_constant_i32(0); |
| TCGv_i32 tcg_res = tcg_temp_new_i32(); |
| NeonGenTwoSingleOpFn *genfn; |
| bool swap = false; |
| int pass, maxpasses; |
| |
| if (size == MO_16) { |
| switch (opcode) { |
| case 0x2e: /* FCMLT (zero) */ |
| swap = true; |
| /* fall through */ |
| case 0x2c: /* FCMGT (zero) */ |
| genfn = gen_helper_advsimd_cgt_f16; |
| break; |
| case 0x2d: /* FCMEQ (zero) */ |
| genfn = gen_helper_advsimd_ceq_f16; |
| break; |
| case 0x6d: /* FCMLE (zero) */ |
| swap = true; |
| /* fall through */ |
| case 0x6c: /* FCMGE (zero) */ |
| genfn = gen_helper_advsimd_cge_f16; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } else { |
| switch (opcode) { |
| case 0x2e: /* FCMLT (zero) */ |
| swap = true; |
| /* fall through */ |
| case 0x2c: /* FCMGT (zero) */ |
| genfn = gen_helper_neon_cgt_f32; |
| break; |
| case 0x2d: /* FCMEQ (zero) */ |
| genfn = gen_helper_neon_ceq_f32; |
| break; |
| case 0x6d: /* FCMLE (zero) */ |
| swap = true; |
| /* fall through */ |
| case 0x6c: /* FCMGE (zero) */ |
| genfn = gen_helper_neon_cge_f32; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| if (is_scalar) { |
| maxpasses = 1; |
| } else { |
| int vector_size = 8 << is_q; |
| maxpasses = vector_size >> size; |
| } |
| |
| for (pass = 0; pass < maxpasses; pass++) { |
| read_vec_element_i32(s, tcg_op, rn, pass, size); |
| if (swap) { |
| genfn(tcg_res, tcg_zero, tcg_op, fpst); |
| } else { |
| genfn(tcg_res, tcg_op, tcg_zero, fpst); |
| } |
| if (is_scalar) { |
| write_fp_sreg(s, rd, tcg_res); |
| } else { |
| write_vec_element_i32(s, tcg_res, rd, pass, size); |
| } |
| } |
| |
| if (!is_scalar) { |
| clear_vec_high(s, is_q, rd); |
| } |
| } |
| } |
| |
| static void handle_2misc_reciprocal(DisasContext *s, int opcode, |
| bool is_scalar, bool is_u, bool is_q, |
| int size, int rn, int rd) |
| { |
| bool is_double = (size == 3); |
| TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); |
| |
| if (is_double) { |
| TCGv_i64 tcg_op = tcg_temp_new_i64(); |
| TCGv_i64 tcg_res = tcg_temp_new_i64(); |
| int pass; |
| |
| for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { |
| read_vec_element(s, tcg_op, rn, pass, MO_64); |
| switch (opcode) { |
| case 0x3d: /* FRECPE */ |
| gen_helper_recpe_f64(tcg_res, tcg_op, fpst); |
| break; |
| case 0x3f: /* FRECPX */ |
| gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); |
| break; |
| case 0x7d: /* FRSQRTE */ |
| gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| write_vec_element(s, tcg_res, rd, pass, MO_64); |
| } |
| clear_vec_high(s, !is_scalar, rd); |
| } else { |
| TCGv_i32 tcg_op = tcg_temp_new_i32(); |
| TCGv_i32 tcg_res = tcg_temp_new_i32(); |
| int pass, maxpasses; |
| |
| if (is_scalar) { |
| maxpasses = 1; |
| } else { |
| maxpasses = is_q ? 4 : 2; |
| } |
| |
| for (pass = 0; pass < maxpasses; pass++) { |
| read_vec_element_i32(s, tcg_op, rn, pass, MO_32); |
| |
| switch (opcode) { |
| case 0x3c: /* URECPE */ |
| gen_helper_recpe_u32(tcg_res, tcg_op); |
| break; |
| case 0x3d: /* FRECPE */ |
| gen_helper_recpe_f32(tcg_res, tcg_op, fpst); |
| break; |
| case 0x3f: /* FRECPX */ |
| gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); |
| break; |
| case 0x7d: /* FRSQRTE */ |
| gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if (is_scalar) { |
| write_fp_sreg(s, rd, tcg_res); |
| } else { |
| write_vec_element_i32(s, tcg_res, rd, pass, MO_32); |
| } |
| } |
| if (!is_scalar) { |
| clear_vec_high(s, is_q, rd); |
| } |
| } |
| } |
| |
| static void handle_2misc_narrow(DisasContext *s, bool scalar, |
| int opcode, bool u, bool is_q, |
| int size, int rn, int rd) |
| { |
| /* Handle 2-reg-misc ops which are narrowing (so each 2*size element |
| * in the source becomes a size element in the destination). |
| */ |
| int pass; |
| TCGv_i32 tcg_res[2]; |
| int destelt = is_q ? 2 : 0; |
| int passes = scalar ? 1 : 2; |
| |
| if (scalar) { |
| tcg_res[1] = tcg_constant_i32(0); |
| } |
| |
| for (pass = 0; pass < passes; pass++) { |
| TCGv_i64 tcg_op = tcg_temp_new_i64(); |
| NeonGenNarrowFn *genfn = NULL; |
| NeonGenNarrowEnvFn *genenvfn = NULL; |
| |
| if (scalar) { |
| read_vec_element(s, tcg_op, rn, pass, size + 1); |
| } else { |
| read_vec_element(s, tcg_op, rn, pass, MO_64); |
| } |
| tcg_res[pass] = tcg_temp_new_i32(); |
| |
| switch (opcode) { |
| case 0x12: /* XTN, SQXTUN */ |
| { |
| static NeonGenNarrowFn * const xtnfns[3] = { |
| gen_helper_neon_narrow_u8, |
| gen_helper_neon_narrow_u16, |
| tcg_gen_extrl_i64_i32, |
| }; |
| static NeonGenNarrowEnvFn * const sqxtunfns[3] = { |
| gen_helper_neon_unarrow_sat8, |
| gen_helper_neon_unarrow_sat16, |
| gen_helper_neon_unarrow_sat32, |
| }; |
| if (u) { |
| genenvfn = sqxtunfns[size]; |
| } else { |
| genfn = xtnfns[size]; |
| } |
| break; |
| } |
| case 0x14: /* SQXTN, UQXTN */ |
| { |
| static NeonGenNarrowEnvFn * const fns[3][2] = { |
| { gen_helper_neon_narrow_sat_s8, |
| gen_helper_neon_narrow_sat_u8 }, |
| { gen_helper_neon_narrow_sat_s16, |
| gen_helper_neon_narrow_sat_u16 }, |
| { gen_helper_neon_narrow_sat_s32, |
| gen_helper_neon_narrow_sat_u32 }, |
| }; |
| genenvfn = fns[size][u]; |
| break; |
| } |
| case 0x16: /* FCVTN, FCVTN2 */ |
| /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ |
| if (size == 2) { |
| gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env); |
| } else { |
| TCGv_i32 tcg_lo = tcg_temp_new_i32(); |
| TCGv_i32 tcg_hi = tcg_temp_new_i32(); |
| TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); |
| TCGv_i32 ahp = get_ahp_flag(); |
| |
| tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); |
| gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); |
| gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); |
| tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); |
| } |
| break; |
| case 0x36: /* BFCVTN, BFCVTN2 */ |
| { |
| TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); |
| gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst); |
| } |
| break; |
| case 0x56: /* FCVTXN, FCVTXN2 */ |
| /* 64 bit to 32 bit float conversion |
| * with von Neumann rounding (round to odd) |
| */ |
| assert(size == 2); |
| gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if (genfn) { |
| genfn(tcg_res[pass], tcg_op); |
| } else if (genenvfn) { |
| genenvfn(tcg_res[pass], tcg_env, tcg_op); |
| } |
| } |
| |
| for (pass = 0; pass < 2; pass++) { |
| write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); |
| } |
| clear_vec_high(s, is_q, rd); |
| } |
| |
| /* AdvSIMD scalar two reg misc |
| * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 |
| * +-----+---+-----------+------+-----------+--------+-----+------+------+ |
| * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | |
| * +-----+---+-----------+------+-----------+--------+-----+------+------+ |
| */ |
| static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) |
| { |
| int rd = extract32(insn, 0, 5); |
| int rn = extract32(insn, 5, 5); |
| int opcode = extract32(insn, 12, 5); |
| int size = extract32(insn, 22, 2); |
| bool u = extract32(insn, 29, 1); |
| bool is_fcvt = false; |
| int rmode; |
| TCGv_i32 tcg_rmode; |
| TCGv_ptr tcg_fpstatus; |
| |
| switch (opcode) { |
| case 0x7: /* SQABS / SQNEG */ |
| break; |
| case 0xa: /* CMLT */ |
| if (u) { |
| unallocated_encoding(s); |
| return; |
| } |
| /* fall through */ |
| case 0x8: /* CMGT, CMGE */ |
| case 0x9: /* CMEQ, CMLE */ |
| case 0xb: /* ABS, NEG */ |
| if (size != 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| case 0x12: /* SQXTUN */ |
| if (!u) { |
| unallocated_encoding(s); |
| return; |
| } |
| /* fall through */ |
| case 0x14: /* SQXTN, UQXTN */ |
| if (size == 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); |
| return; |
| case 0xc ... 0xf: |
| case 0x16 ... 0x1d: |
| case 0x1f: |
| /* Floating point: U, size[1] and opcode indicate operation; |
| * size[0] indicates single or double precision. |
| */ |
| opcode |= (extract32(size, 1, 1) << 5) | (u << 6); |
| size = extract32(size, 0, 1) ? 3 : 2; |
| switch (opcode) { |
| case 0x2c: /* FCMGT (zero) */ |
| case 0x2d: /* FCMEQ (zero) */ |
| case 0x2e: /* FCMLT (zero) */ |
| case 0x6c: /* FCMGE (zero) */ |
| case 0x6d: /* FCMLE (zero) */ |
| handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); |
| return; |
| case 0x1d: /* SCVTF */ |
| case 0x5d: /* UCVTF */ |
| { |
| bool is_signed = (opcode == 0x1d); |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); |
| return; |
| } |
| case 0x3d: /* FRECPE */ |
| case 0x3f: /* FRECPX */ |
| case 0x7d: /* FRSQRTE */ |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); |
| return; |
| case 0x1a: /* FCVTNS */ |
| case 0x1b: /* FCVTMS */ |
| case 0x3a: /* FCVTPS */ |
| case 0x3b: /* FCVTZS */ |
| case 0x5a: /* FCVTNU */ |
| case 0x5b: /* FCVTMU */ |
| case 0x7a: /* FCVTPU */ |
| case 0x7b: /* FCVTZU */ |
| is_fcvt = true; |
| rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); |
| break; |
| case 0x1c: /* FCVTAS */ |
| case 0x5c: /* FCVTAU */ |
| /* TIEAWAY doesn't fit in the usual rounding mode encoding */ |
| is_fcvt = true; |
| rmode = FPROUNDING_TIEAWAY; |
| break; |
| case 0x56: /* FCVTXN, FCVTXN2 */ |
| if (size == 2) { |
| unallocated_encoding(s); |
| return; |
| } |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); |
| return; |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| default: |
| case 0x3: /* USQADD / SUQADD */ |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| if (is_fcvt) { |
| tcg_fpstatus = fpstatus_ptr(FPST_FPCR); |
| tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); |
| } else { |
| tcg_fpstatus = NULL; |
| tcg_rmode = NULL; |
| } |
| |
| if (size == 3) { |
| TCGv_i64 tcg_rn = read_fp_dreg(s, rn); |
| TCGv_i64 tcg_rd = tcg_temp_new_i64(); |
| |
| handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); |
| write_fp_dreg(s, rd, tcg_rd); |
| } else { |
| TCGv_i32 tcg_rn = tcg_temp_new_i32(); |
| TCGv_i32 tcg_rd = tcg_temp_new_i32(); |
| |
| read_vec_element_i32(s, tcg_rn, rn, 0, size); |
| |
| switch (opcode) { |
| case 0x7: /* SQABS, SQNEG */ |
| { |
| NeonGenOneOpEnvFn *genfn; |
| static NeonGenOneOpEnvFn * const fns[3][2] = { |
| { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, |
| { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, |
| { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, |
| }; |
| genfn = fns[size][u]; |
| genfn(tcg_rd, tcg_env, tcg_rn); |
| break; |
| } |
| case 0x1a: /* FCVTNS */ |
| case 0x1b: /* FCVTMS */ |
| case 0x1c: /* FCVTAS */ |
| case 0x3a: /* FCVTPS */ |
| case 0x3b: /* FCVTZS */ |
| gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0), |
| tcg_fpstatus); |
| break; |
| case 0x5a: /* FCVTNU */ |
| case 0x5b: /* FCVTMU */ |
| case 0x5c: /* FCVTAU */ |
| case 0x7a: /* FCVTPU */ |
| case 0x7b: /* FCVTZU */ |
| gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0), |
| tcg_fpstatus); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| write_fp_sreg(s, rd, tcg_rd); |
| } |
| |
| if (is_fcvt) { |
| gen_restore_rmode(tcg_rmode, tcg_fpstatus); |
| } |
| } |
| |
| /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ |
| static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, |
| int immh, int immb, int opcode, int rn, int rd) |
| { |
| int size = 32 - clz32(immh) - 1; |
| int immhb = immh << 3 | immb; |
| int shift = 2 * (8 << size) - immhb; |
| GVecGen2iFn *gvec_fn; |
| |
| if (extract32(immh, 3, 1) && !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| tcg_debug_assert(size <= 3); |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| switch (opcode) { |
| case 0x02: /* SSRA / USRA (accumulate) */ |
| gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra; |
| break; |
| |
| case 0x08: /* SRI */ |
| gvec_fn = gen_gvec_sri; |
| break; |
| |
| case 0x00: /* SSHR / USHR */ |
| if (is_u) { |
| if (shift == 8 << size) { |
| /* Shift count the same size as element size produces zero. */ |
| tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd), |
| is_q ? 16 : 8, vec_full_reg_size(s), 0); |
| return; |
| } |
| gvec_fn = tcg_gen_gvec_shri; |
| } else { |
| /* Shift count the same size as element size produces all sign. */ |
| if (shift == 8 << size) { |
| shift -= 1; |
| } |
| gvec_fn = tcg_gen_gvec_sari; |
| } |
| break; |
| |
| case 0x04: /* SRSHR / URSHR (rounding) */ |
| gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr; |
| break; |
| |
| case 0x06: /* SRSRA / URSRA (accum + rounding) */ |
| gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra; |
| break; |
| |
| default: |
| g_assert_not_reached(); |
| } |
| |
| gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size); |
| } |
| |
| /* SHL/SLI - Vector shift left */ |
| static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, |
| int immh, int immb, int opcode, int rn, int rd) |
| { |
| int size = 32 - clz32(immh) - 1; |
| int immhb = immh << 3 | immb; |
| int shift = immhb - (8 << size); |
| |
| /* Range of size is limited by decode: immh is a non-zero 4 bit field */ |
| assert(size >= 0 && size <= 3); |
| |
| if (extract32(immh, 3, 1) && !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| if (insert) { |
| gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size); |
| } else { |
| gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); |
| } |
| } |
| |
| /* USHLL/SHLL - Vector shift left with widening */ |
| static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, |
| int immh, int immb, int opcode, int rn, int rd) |
| { |
| int size = 32 - clz32(immh) - 1; |
| int immhb = immh << 3 | immb; |
| int shift = immhb - (8 << size); |
| int dsize = 64; |
| int esize = 8 << size; |
| int elements = dsize/esize; |
| TCGv_i64 tcg_rn = tcg_temp_new_i64(); |
| TCGv_i64 tcg_rd = tcg_temp_new_i64(); |
| int i; |
| |
| if (size >= 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| /* For the LL variants the store is larger than the load, |
| * so if rd == rn we would overwrite parts of our input. |
| * So load everything right now and use shifts in the main loop. |
| */ |
| read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); |
| |
| for (i = 0; i < elements; i++) { |
| tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); |
| ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); |
| tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); |
| write_vec_element(s, tcg_rd, rd, i, size + 1); |
| } |
| } |
| |
| /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ |
| static void handle_vec_simd_shrn(DisasContext *s, bool is_q, |
| int immh, int immb, int opcode, int rn, int rd) |
| { |
| int immhb = immh << 3 | immb; |
| int size = 32 - clz32(immh) - 1; |
| int dsize = 64; |
| int esize = 8 << size; |
| int elements = dsize/esize; |
| int shift = (2 * esize) - immhb; |
| bool round = extract32(opcode, 0, 1); |
| TCGv_i64 tcg_rn, tcg_rd, tcg_final; |
| TCGv_i64 tcg_round; |
| int i; |
| |
| if (extract32(immh, 3, 1)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| tcg_rn = tcg_temp_new_i64(); |
| tcg_rd = tcg_temp_new_i64(); |
| tcg_final = tcg_temp_new_i64(); |
| read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); |
| |
| if (round) { |
| tcg_round = tcg_constant_i64(1ULL << (shift - 1)); |
| } else { |
| tcg_round = NULL; |
| } |
| |
| for (i = 0; i < elements; i++) { |
| read_vec_element(s, tcg_rn, rn, i, size+1); |
| handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, |
| false, true, size+1, shift); |
| |
| tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); |
| } |
| |
| if (!is_q) { |
| write_vec_element(s, tcg_final, rd, 0, MO_64); |
| } else { |
| write_vec_element(s, tcg_final, rd, 1, MO_64); |
| } |
| |
| clear_vec_high(s, is_q, rd); |
| } |
| |
| |
| /* AdvSIMD shift by immediate |
| * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 |
| * +---+---+---+-------------+------+------+--------+---+------+------+ |
| * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | |
| * +---+---+---+-------------+------+------+--------+---+------+------+ |
| */ |
| static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) |
| { |
| int rd = extract32(insn, 0, 5); |
| int rn = extract32(insn, 5, 5); |
| int opcode = extract32(insn, 11, 5); |
| int immb = extract32(insn, 16, 3); |
| int immh = extract32(insn, 19, 4); |
| bool is_u = extract32(insn, 29, 1); |
| bool is_q = extract32(insn, 30, 1); |
| |
| /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */ |
| assert(immh != 0); |
| |
| switch (opcode) { |
| case 0x08: /* SRI */ |
| if (!is_u) { |
| unallocated_encoding(s); |
| return; |
| } |
| /* fall through */ |
| case 0x00: /* SSHR / USHR */ |
| case 0x02: /* SSRA / USRA (accumulate) */ |
| case 0x04: /* SRSHR / URSHR (rounding) */ |
| case 0x06: /* SRSRA / URSRA (accum + rounding) */ |
| handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); |
| break; |
| case 0x0a: /* SHL / SLI */ |
| handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); |
| break; |
| case 0x10: /* SHRN */ |
| case 0x11: /* RSHRN / SQRSHRUN */ |
| if (is_u) { |
| handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, |
| opcode, rn, rd); |
| } else { |
| handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); |
| } |
| break; |
| case 0x12: /* SQSHRN / UQSHRN */ |
| case 0x13: /* SQRSHRN / UQRSHRN */ |
| handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, |
| opcode, rn, rd); |
| break; |
| case 0x14: /* SSHLL / USHLL */ |
| handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); |
| break; |
| case 0x1c: /* SCVTF / UCVTF */ |
| handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, |
| opcode, rn, rd); |
| break; |
| case 0xc: /* SQSHLU */ |
| if (!is_u) { |
| unallocated_encoding(s); |
| return; |
| } |
| handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); |
| break; |
| case 0xe: /* SQSHL, UQSHL */ |
| handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); |
| break; |
| case 0x1f: /* FCVTZS/ FCVTZU */ |
| handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); |
| return; |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| } |
| |
| /* Generate code to do a "long" addition or subtraction, ie one done in |
| * TCGv_i64 on vector lanes twice the width specified by size. |
| */ |
| static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, |
| TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) |
| { |
| static NeonGenTwo64OpFn * const fns[3][2] = { |
| { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, |
| { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, |
| { tcg_gen_add_i64, tcg_gen_sub_i64 }, |
| }; |
| NeonGenTwo64OpFn *genfn; |
| assert(size < 3); |
| |
| genfn = fns[size][is_sub]; |
| genfn(tcg_res, tcg_op1, tcg_op2); |
| } |
| |
| static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, |
| int opcode, int rd, int rn, int rm) |
| { |
| /* 3-reg-different widening insns: 64 x 64 -> 128 */ |
| TCGv_i64 tcg_res[2]; |
| int pass, accop; |
| |
| tcg_res[0] = tcg_temp_new_i64(); |
| tcg_res[1] = tcg_temp_new_i64(); |
| |
| /* Does this op do an adding accumulate, a subtracting accumulate, |
| * or no accumulate at all? |
| */ |
| switch (opcode) { |
| case 5: |
| case 8: |
| case 9: |
| accop = 1; |
| break; |
| case 10: |
| case 11: |
| accop = -1; |
| break; |
| default: |
| accop = 0; |
| break; |
| } |
| |
| if (accop != 0) { |
| read_vec_element(s, tcg_res[0], rd, 0, MO_64); |
| read_vec_element(s, tcg_res[1], rd, 1, MO_64); |
| } |
| |
| /* size == 2 means two 32x32->64 operations; this is worth special |
| * casing because we can generally handle it inline. |
| */ |
| if (size == 2) { |
| for (pass = 0; pass < 2; pass++) { |
| TCGv_i64 tcg_op1 = tcg_temp_new_i64(); |
| TCGv_i64 tcg_op2 = tcg_temp_new_i64(); |
| TCGv_i64 tcg_passres; |
| MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); |
| |
| int elt = pass + is_q * 2; |
| |
| read_vec_element(s, tcg_op1, rn, elt, memop); |
| read_vec_element(s, tcg_op2, rm, elt, memop); |
| |
| if (accop == 0) { |
| tcg_passres = tcg_res[pass]; |
| } else { |
| tcg_passres = tcg_temp_new_i64(); |
| } |
| |
| switch (opcode) { |
| case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ |
| tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); |
| break; |
| case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ |
| tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); |
| break; |
| case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ |
| case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ |
| { |
| TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); |
| TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); |
| |
| tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); |
| tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); |
| tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, |
| tcg_passres, |
| tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); |
| break; |
| } |
| case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ |
| case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ |
| case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ |
| tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); |
| break; |
| case 9: /* SQDMLAL, SQDMLAL2 */ |
| case 11: /* SQDMLSL, SQDMLSL2 */ |
| case 13: /* SQDMULL, SQDMULL2 */ |
| tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); |
| gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, |
| tcg_passres, tcg_passres); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if (opcode == 9 || opcode == 11) { |
| /* saturating accumulate ops */ |
| if (accop < 0) { |
| tcg_gen_neg_i64(tcg_passres, tcg_passres); |
| } |
| gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, |
| tcg_res[pass], tcg_passres); |
| } else if (accop > 0) { |
| tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); |
| } else if (accop < 0) { |
| tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); |
| } |
| } |
| } else { |
| /* size 0 or 1, generally helper functions */ |
| for (pass = 0; pass < 2; pass++) { |
| TCGv_i32 tcg_op1 = tcg_temp_new_i32(); |
| TCGv_i32 tcg_op2 = tcg_temp_new_i32(); |
| TCGv_i64 tcg_passres; |
| int elt = pass + is_q * 2; |
| |
| read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); |
| read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); |
| |
| if (accop == 0) { |
| tcg_passres = tcg_res[pass]; |
| } else { |
| tcg_passres = tcg_temp_new_i64(); |
| } |
| |
| switch (opcode) { |
| case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ |
| case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ |
| { |
| TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); |
| static NeonGenWidenFn * const widenfns[2][2] = { |
| { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, |
| { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, |
| }; |
| NeonGenWidenFn *widenfn = widenfns[size][is_u]; |
| |
| widenfn(tcg_op2_64, tcg_op2); |
| widenfn(tcg_passres, tcg_op1); |
| gen_neon_addl(size, (opcode == 2), tcg_passres, |
| tcg_passres, tcg_op2_64); |
| break; |
| } |
| case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ |
| case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ |
| if (size == 0) { |
| if (is_u) { |
| gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); |
| } else { |
| gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); |
| } |
| } else { |
| if (is_u) { |
| gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); |
| } else { |
| gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); |
| } |
| } |
| break; |
| case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ |
| case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ |
| case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ |
| if (size == 0) { |
| if (is_u) { |
| gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); |
| } else { |
| gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); |
| } |
| } else { |
| if (is_u) { |
| gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); |
| } else { |
| gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); |
| } |
| } |
| break; |
| case 9: /* SQDMLAL, SQDMLAL2 */ |
| case 11: /* SQDMLSL, SQDMLSL2 */ |
| case 13: /* SQDMULL, SQDMULL2 */ |
| assert(size == 1); |
| gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); |
| gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, |
| tcg_passres, tcg_passres); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if (accop != 0) { |
| if (opcode == 9 || opcode == 11) { |
| /* saturating accumulate ops */ |
| if (accop < 0) { |
| gen_helper_neon_negl_u32(tcg_passres, tcg_passres); |
| } |
| gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, |
| tcg_res[pass], |
| tcg_passres); |
| } else { |
| gen_neon_addl(size, (accop < 0), tcg_res[pass], |
| tcg_res[pass], tcg_passres); |
| } |
| } |
| } |
| } |
| |
| write_vec_element(s, tcg_res[0], rd, 0, MO_64); |
| write_vec_element(s, tcg_res[1], rd, 1, MO_64); |
| } |
| |
| static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, |
| int opcode, int rd, int rn, int rm) |
| { |
| TCGv_i64 tcg_res[2]; |
| int part = is_q ? 2 : 0; |
| int pass; |
| |
| for (pass = 0; pass < 2; pass++) { |
| TCGv_i64 tcg_op1 = tcg_temp_new_i64(); |
| TCGv_i32 tcg_op2 = tcg_temp_new_i32(); |
| TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); |
| static NeonGenWidenFn * const widenfns[3][2] = { |
| { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, |
| { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, |
| { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, |
| }; |
| NeonGenWidenFn *widenfn = widenfns[size][is_u]; |
| |
| read_vec_element(s, tcg_op1, rn, pass, MO_64); |
| read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); |
| widenfn(tcg_op2_wide, tcg_op2); |
| tcg_res[pass] = tcg_temp_new_i64(); |
| gen_neon_addl(size, (opcode == 3), |
| tcg_res[pass], tcg_op1, tcg_op2_wide); |
| } |
| |
| for (pass = 0; pass < 2; pass++) { |
| write_vec_element(s, tcg_res[pass], rd, pass, MO_64); |
| } |
| } |
| |
| static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) |
| { |
| tcg_gen_addi_i64(in, in, 1U << 31); |
| tcg_gen_extrh_i64_i32(res, in); |
| } |
| |
| static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, |
| int opcode, int rd, int rn, int rm) |
| { |
| TCGv_i32 tcg_res[2]; |
| int part = is_q ? 2 : 0; |
| int pass; |
| |
| for (pass = 0; pass < 2; pass++) { |
| TCGv_i64 tcg_op1 = tcg_temp_new_i64(); |
| TCGv_i64 tcg_op2 = tcg_temp_new_i64(); |
| TCGv_i64 tcg_wideres = tcg_temp_new_i64(); |
| static NeonGenNarrowFn * const narrowfns[3][2] = { |
| { gen_helper_neon_narrow_high_u8, |
| gen_helper_neon_narrow_round_high_u8 }, |
| { gen_helper_neon_narrow_high_u16, |
| gen_helper_neon_narrow_round_high_u16 }, |
| { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, |
| }; |
| NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; |
| |
| read_vec_element(s, tcg_op1, rn, pass, MO_64); |
| read_vec_element(s, tcg_op2, rm, pass, MO_64); |
| |
| gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); |
| |
| tcg_res[pass] = tcg_temp_new_i32(); |
| gennarrow(tcg_res[pass], tcg_wideres); |
| } |
| |
| for (pass = 0; pass < 2; pass++) { |
| write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); |
| } |
| clear_vec_high(s, is_q, rd); |
| } |
| |
| /* AdvSIMD three different |
| * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 |
| * +---+---+---+-----------+------+---+------+--------+-----+------+------+ |
| * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | |
| * +---+---+---+-----------+------+---+------+--------+-----+------+------+ |
| */ |
| static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) |
| { |
| /* Instructions in this group fall into three basic classes |
| * (in each case with the operation working on each element in |
| * the input vectors): |
| * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra |
| * 128 bit input) |
| * (2) wide 64 x 128 -> 128 |
| * (3) narrowing 128 x 128 -> 64 |
| * Here we do initial decode, catch unallocated cases and |
| * dispatch to separate functions for each class. |
| */ |
| int is_q = extract32(insn, 30, 1); |
| int is_u = extract32(insn, 29, 1); |
| int size = extract32(insn, 22, 2); |
| int opcode = extract32(insn, 12, 4); |
| int rm = extract32(insn, 16, 5); |
| int rn = extract32(insn, 5, 5); |
| int rd = extract32(insn, 0, 5); |
| |
| switch (opcode) { |
| case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ |
| case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ |
| /* 64 x 128 -> 128 */ |
| if (size == 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); |
| break; |
| case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ |
| case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ |
| /* 128 x 128 -> 64 */ |
| if (size == 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); |
| break; |
| case 14: /* PMULL, PMULL2 */ |
| if (is_u) { |
| unallocated_encoding(s); |
| return; |
| } |
| switch (size) { |
| case 0: /* PMULL.P8 */ |
| if (!fp_access_check(s)) { |
| return; |
| } |
| /* The Q field specifies lo/hi half input for this insn. */ |
| gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, |
| gen_helper_neon_pmull_h); |
| break; |
| |
| case 3: /* PMULL.P64 */ |
| if (!dc_isar_feature(aa64_pmull, s)) { |
| unallocated_encoding(s); |
| return; |
| } |
| if (!fp_access_check(s)) { |
| return; |
| } |
| /* The Q field specifies lo/hi half input for this insn. */ |
| gen_gvec_op3_ool(s, true, rd, rn, rm, is_q, |
| gen_helper_gvec_pmull_q); |
| break; |
| |
| default: |
| unallocated_encoding(s); |
| break; |
| } |
| return; |
| case 9: /* SQDMLAL, SQDMLAL2 */ |
| case 11: /* SQDMLSL, SQDMLSL2 */ |
| case 13: /* SQDMULL, SQDMULL2 */ |
| if (is_u || size == 0) { |
| unallocated_encoding(s); |
| return; |
| } |
| /* fall through */ |
| case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ |
| case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ |
| case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ |
| case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ |
| case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ |
| case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ |
| case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ |
| /* 64 x 64 -> 128 */ |
| if (size == 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); |
| break; |
| default: |
| /* opcode 15 not allocated */ |
| unallocated_encoding(s); |
| break; |
| } |
| } |
| |
| /* AdvSIMD three same extra |
| * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 |
| * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ |
| * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | |
| * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ |
| */ |
| static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) |
| { |
| int rd = extract32(insn, 0, 5); |
| int rn = extract32(insn, 5, 5); |
| int opcode = extract32(insn, 11, 4); |
| int rm = extract32(insn, 16, 5); |
| int size = extract32(insn, 22, 2); |
| bool u = extract32(insn, 29, 1); |
| bool is_q = extract32(insn, 30, 1); |
| bool feature; |
| int rot; |
| |
| switch (u * 16 + opcode) { |
| case 0x10: /* SQRDMLAH (vector) */ |
| case 0x11: /* SQRDMLSH (vector) */ |
| if (size != 1 && size != 2) { |
| unallocated_encoding(s); |
| return; |
| } |
| feature = dc_isar_feature(aa64_rdm, s); |
| break; |
| case 0x02: /* SDOT (vector) */ |
| case 0x12: /* UDOT (vector) */ |
| if (size != MO_32) { |
| unallocated_encoding(s); |
| return; |
| } |
| feature = dc_isar_feature(aa64_dp, s); |
| break; |
| case 0x03: /* USDOT */ |
| if (size != MO_32) { |
| unallocated_encoding(s); |
| return; |
| } |
| feature = dc_isar_feature(aa64_i8mm, s); |
| break; |
| case 0x04: /* SMMLA */ |
| case 0x14: /* UMMLA */ |
| case 0x05: /* USMMLA */ |
| if (!is_q || size != MO_32) { |
| unallocated_encoding(s); |
| return; |
| } |
| feature = dc_isar_feature(aa64_i8mm, s); |
| break; |
| case 0x18: /* FCMLA, #0 */ |
| case 0x19: /* FCMLA, #90 */ |
| case 0x1a: /* FCMLA, #180 */ |
| case 0x1b: /* FCMLA, #270 */ |
| case 0x1c: /* FCADD, #90 */ |
| case 0x1e: /* FCADD, #270 */ |
| if (size == 0 |
| || (size == 1 && !dc_isar_feature(aa64_fp16, s)) |
| || (size == 3 && !is_q)) { |
| unallocated_encoding(s); |
| return; |
| } |
| feature = dc_isar_feature(aa64_fcma, s); |
| break; |
| case 0x1d: /* BFMMLA */ |
| if (size != MO_16 || !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| feature = dc_isar_feature(aa64_bf16, s); |
| break; |
| case 0x1f: |
| switch (size) { |
| case 1: /* BFDOT */ |
| case 3: /* BFMLAL{B,T} */ |
| feature = dc_isar_feature(aa64_bf16, s); |
| break; |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| if (!feature) { |
| unallocated_encoding(s); |
| return; |
| } |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| switch (opcode) { |
| case 0x0: /* SQRDMLAH (vector) */ |
| gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size); |
| return; |
| |
| case 0x1: /* SQRDMLSH (vector) */ |
| gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size); |
| return; |
| |
| case 0x2: /* SDOT / UDOT */ |
| gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, |
| u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); |
| return; |
| |
| case 0x3: /* USDOT */ |
| gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b); |
| return; |
| |
| case 0x04: /* SMMLA, UMMLA */ |
| gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, |
| u ? gen_helper_gvec_ummla_b |
| : gen_helper_gvec_smmla_b); |
| return; |
| case 0x05: /* USMMLA */ |
| gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b); |
| return; |
| |
| case 0x8: /* FCMLA, #0 */ |
| case 0x9: /* FCMLA, #90 */ |
| case 0xa: /* FCMLA, #180 */ |
| case 0xb: /* FCMLA, #270 */ |
| rot = extract32(opcode, 0, 2); |
| switch (size) { |
| case 1: |
| gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot, |
| gen_helper_gvec_fcmlah); |
| break; |
| case 2: |
| gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, |
| gen_helper_gvec_fcmlas); |
| break; |
| case 3: |
| gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot, |
| gen_helper_gvec_fcmlad); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| return; |
| |
| case 0xc: /* FCADD, #90 */ |
| case 0xe: /* FCADD, #270 */ |
| rot = extract32(opcode, 1, 1); |
| switch (size) { |
| case 1: |
| gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, |
| gen_helper_gvec_fcaddh); |
| break; |
| case 2: |
| gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, |
| gen_helper_gvec_fcadds); |
| break; |
| case 3: |
| gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, |
| gen_helper_gvec_fcaddd); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| return; |
| |
| case 0xd: /* BFMMLA */ |
| gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla); |
| return; |
| case 0xf: |
| switch (size) { |
| case 1: /* BFDOT */ |
| gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot); |
| break; |
| case 3: /* BFMLAL{B,T} */ |
| gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q, |
| gen_helper_gvec_bfmlal); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| return; |
| |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, |
| int size, int rn, int rd) |
| { |
| /* Handle 2-reg-misc ops which are widening (so each size element |
| * in the source becomes a 2*size element in the destination. |
| * The only instruction like this is FCVTL. |
| */ |
| int pass; |
| |
| if (size == 3) { |
| /* 32 -> 64 bit fp conversion */ |
| TCGv_i64 tcg_res[2]; |
| int srcelt = is_q ? 2 : 0; |
| |
| for (pass = 0; pass < 2; pass++) { |
| TCGv_i32 tcg_op = tcg_temp_new_i32(); |
| tcg_res[pass] = tcg_temp_new_i64(); |
| |
| read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); |
| gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env); |
| } |
| for (pass = 0; pass < 2; pass++) { |
| write_vec_element(s, tcg_res[pass], rd, pass, MO_64); |
| } |
| } else { |
| /* 16 -> 32 bit fp conversion */ |
| int srcelt = is_q ? 4 : 0; |
| TCGv_i32 tcg_res[4]; |
| TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR); |
| TCGv_i32 ahp = get_ahp_flag(); |
| |
| for (pass = 0; pass < 4; pass++) { |
| tcg_res[pass] = tcg_temp_new_i32(); |
| |
| read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); |
| gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], |
| fpst, ahp); |
| } |
| for (pass = 0; pass < 4; pass++) { |
| write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); |
| } |
| } |
| } |
| |
| static void handle_rev(DisasContext *s, int opcode, bool u, |
| bool is_q, int size, int rn, int rd) |
| { |
| int op = (opcode << 1) | u; |
| int opsz = op + size; |
| int grp_size = 3 - opsz; |
| int dsize = is_q ? 128 : 64; |
| int i; |
| |
| if (opsz >= 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| if (size == 0) { |
| /* Special case bytes, use bswap op on each group of elements */ |
| int groups = dsize / (8 << grp_size); |
| |
| for (i = 0; i < groups; i++) { |
| TCGv_i64 tcg_tmp = tcg_temp_new_i64(); |
| |
| read_vec_element(s, tcg_tmp, rn, i, grp_size); |
| switch (grp_size) { |
| case MO_16: |
| tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); |
| break; |
| case MO_32: |
| tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ); |
| break; |
| case MO_64: |
| tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| write_vec_element(s, tcg_tmp, rd, i, grp_size); |
| } |
| clear_vec_high(s, is_q, rd); |
| } else { |
| int revmask = (1 << grp_size) - 1; |
| int esize = 8 << size; |
| int elements = dsize / esize; |
| TCGv_i64 tcg_rn = tcg_temp_new_i64(); |
| TCGv_i64 tcg_rd[2]; |
| |
| for (i = 0; i < 2; i++) { |
| tcg_rd[i] = tcg_temp_new_i64(); |
| tcg_gen_movi_i64(tcg_rd[i], 0); |
| } |
| |
| for (i = 0; i < elements; i++) { |
| int e_rev = (i & 0xf) ^ revmask; |
| int w = (e_rev * esize) / 64; |
| int o = (e_rev * esize) % 64; |
| |
| read_vec_element(s, tcg_rn, rn, i, size); |
| tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize); |
| } |
| |
| for (i = 0; i < 2; i++) { |
| write_vec_element(s, tcg_rd[i], rd, i, MO_64); |
| } |
| clear_vec_high(s, true, rd); |
| } |
| } |
| |
| static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, |
| bool is_q, int size, int rn, int rd) |
| { |
| /* Implement the pairwise operations from 2-misc: |
| * SADDLP, UADDLP, SADALP, UADALP. |
| * These all add pairs of elements in the input to produce a |
| * double-width result element in the output (possibly accumulating). |
| */ |
| bool accum = (opcode == 0x6); |
| int maxpass = is_q ? 2 : 1; |
| int pass; |
| TCGv_i64 tcg_res[2]; |
| |
| if (size == 2) { |
| /* 32 + 32 -> 64 op */ |
| MemOp memop = size + (u ? 0 : MO_SIGN); |
| |
| for (pass = 0; pass < maxpass; pass++) { |
| TCGv_i64 tcg_op1 = tcg_temp_new_i64(); |
| TCGv_i64 tcg_op2 = tcg_temp_new_i64(); |
| |
| tcg_res[pass] = tcg_temp_new_i64(); |
| |
| read_vec_element(s, tcg_op1, rn, pass * 2, memop); |
| read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); |
| tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); |
| if (accum) { |
| read_vec_element(s, tcg_op1, rd, pass, MO_64); |
| tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); |
| } |
| } |
| } else { |
| for (pass = 0; pass < maxpass; pass++) { |
| TCGv_i64 tcg_op = tcg_temp_new_i64(); |
| NeonGenOne64OpFn *genfn; |
| static NeonGenOne64OpFn * const fns[2][2] = { |
| { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, |
| { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, |
| }; |
| |
| genfn = fns[size][u]; |
| |
| tcg_res[pass] = tcg_temp_new_i64(); |
| |
| read_vec_element(s, tcg_op, rn, pass, MO_64); |
| genfn(tcg_res[pass], tcg_op); |
| |
| if (accum) { |
| read_vec_element(s, tcg_op, rd, pass, MO_64); |
| if (size == 0) { |
| gen_helper_neon_addl_u16(tcg_res[pass], |
| tcg_res[pass], tcg_op); |
| } else { |
| gen_helper_neon_addl_u32(tcg_res[pass], |
| tcg_res[pass], tcg_op); |
| } |
| } |
| } |
| } |
| if (!is_q) { |
| tcg_res[1] = tcg_constant_i64(0); |
| } |
| for (pass = 0; pass < 2; pass++) { |
| write_vec_element(s, tcg_res[pass], rd, pass, MO_64); |
| } |
| } |
| |
| static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) |
| { |
| /* Implement SHLL and SHLL2 */ |
| int pass; |
| int part = is_q ? 2 : 0; |
| TCGv_i64 tcg_res[2]; |
| |
| for (pass = 0; pass < 2; pass++) { |
| static NeonGenWidenFn * const widenfns[3] = { |
| gen_helper_neon_widen_u8, |
| gen_helper_neon_widen_u16, |
| tcg_gen_extu_i32_i64, |
| }; |
| NeonGenWidenFn *widenfn = widenfns[size]; |
| TCGv_i32 tcg_op = tcg_temp_new_i32(); |
| |
| read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); |
| tcg_res[pass] = tcg_temp_new_i64(); |
| widenfn(tcg_res[pass], tcg_op); |
| tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); |
| } |
| |
| for (pass = 0; pass < 2; pass++) { |
| write_vec_element(s, tcg_res[pass], rd, pass, MO_64); |
| } |
| } |
| |
| /* AdvSIMD two reg misc |
| * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 |
| * +---+---+---+-----------+------+-----------+--------+-----+------+------+ |
| * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | |
| * +---+---+---+-----------+------+-----------+--------+-----+------+------+ |
| */ |
| static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) |
| { |
| int size = extract32(insn, 22, 2); |
| int opcode = extract32(insn, 12, 5); |
| bool u = extract32(insn, 29, 1); |
| bool is_q = extract32(insn, 30, 1); |
| int rn = extract32(insn, 5, 5); |
| int rd = extract32(insn, 0, 5); |
| bool need_fpstatus = false; |
| int rmode = -1; |
| TCGv_i32 tcg_rmode; |
| TCGv_ptr tcg_fpstatus; |
| |
| switch (opcode) { |
| case 0x0: /* REV64, REV32 */ |
| case 0x1: /* REV16 */ |
| handle_rev(s, opcode, u, is_q, size, rn, rd); |
| return; |
| case 0x5: /* CNT, NOT, RBIT */ |
| if (u && size == 0) { |
| /* NOT */ |
| break; |
| } else if (u && size == 1) { |
| /* RBIT */ |
| break; |
| } else if (!u && size == 0) { |
| /* CNT */ |
| break; |
| } |
| unallocated_encoding(s); |
| return; |
| case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ |
| case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ |
| if (size == 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); |
| return; |
| case 0x4: /* CLS, CLZ */ |
| if (size == 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| case 0x2: /* SADDLP, UADDLP */ |
| case 0x6: /* SADALP, UADALP */ |
| if (size == 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); |
| return; |
| case 0x13: /* SHLL, SHLL2 */ |
| if (u == 0 || size == 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_shll(s, is_q, size, rn, rd); |
| return; |
| case 0xa: /* CMLT */ |
| if (u == 1) { |
| unallocated_encoding(s); |
| return; |
| } |
| /* fall through */ |
| case 0x8: /* CMGT, CMGE */ |
| case 0x9: /* CMEQ, CMLE */ |
| case 0xb: /* ABS, NEG */ |
| if (size == 3 && !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| case 0x7: /* SQABS, SQNEG */ |
| if (size == 3 && !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| case 0xc ... 0xf: |
| case 0x16 ... 0x1f: |
| { |
| /* Floating point: U, size[1] and opcode indicate operation; |
| * size[0] indicates single or double precision. |
| */ |
| int is_double = extract32(size, 0, 1); |
| opcode |= (extract32(size, 1, 1) << 5) | (u << 6); |
| size = is_double ? 3 : 2; |
| switch (opcode) { |
| case 0x2f: /* FABS */ |
| case 0x6f: /* FNEG */ |
| if (size == 3 && !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| case 0x1d: /* SCVTF */ |
| case 0x5d: /* UCVTF */ |
| { |
| bool is_signed = (opcode == 0x1d) ? true : false; |
| int elements = is_double ? 2 : is_q ? 4 : 2; |
| if (is_double && !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); |
| return; |
| } |
| case 0x2c: /* FCMGT (zero) */ |
| case 0x2d: /* FCMEQ (zero) */ |
| case 0x2e: /* FCMLT (zero) */ |
| case 0x6c: /* FCMGE (zero) */ |
| case 0x6d: /* FCMLE (zero) */ |
| if (size == 3 && !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); |
| return; |
| case 0x7f: /* FSQRT */ |
| if (size == 3 && !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| case 0x1a: /* FCVTNS */ |
| case 0x1b: /* FCVTMS */ |
| case 0x3a: /* FCVTPS */ |
| case 0x3b: /* FCVTZS */ |
| case 0x5a: /* FCVTNU */ |
| case 0x5b: /* FCVTMU */ |
| case 0x7a: /* FCVTPU */ |
| case 0x7b: /* FCVTZU */ |
| need_fpstatus = true; |
| rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); |
| if (size == 3 && !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| case 0x5c: /* FCVTAU */ |
| case 0x1c: /* FCVTAS */ |
| need_fpstatus = true; |
| rmode = FPROUNDING_TIEAWAY; |
| if (size == 3 && !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| case 0x3c: /* URECPE */ |
| if (size == 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| /* fall through */ |
| case 0x3d: /* FRECPE */ |
| case 0x7d: /* FRSQRTE */ |
| if (size == 3 && !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); |
| return; |
| case 0x56: /* FCVTXN, FCVTXN2 */ |
| if (size == 2) { |
| unallocated_encoding(s); |
| return; |
| } |
| /* fall through */ |
| case 0x16: /* FCVTN, FCVTN2 */ |
| /* handle_2misc_narrow does a 2*size -> size operation, but these |
| * instructions encode the source size rather than dest size. |
| */ |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); |
| return; |
| case 0x36: /* BFCVTN, BFCVTN2 */ |
| if (!dc_isar_feature(aa64_bf16, s) || size != 2) { |
| unallocated_encoding(s); |
| return; |
| } |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); |
| return; |
| case 0x17: /* FCVTL, FCVTL2 */ |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_2misc_widening(s, opcode, is_q, size, rn, rd); |
| return; |
| case 0x18: /* FRINTN */ |
| case 0x19: /* FRINTM */ |
| case 0x38: /* FRINTP */ |
| case 0x39: /* FRINTZ */ |
| rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); |
| /* fall through */ |
| case 0x59: /* FRINTX */ |
| case 0x79: /* FRINTI */ |
| need_fpstatus = true; |
| if (size == 3 && !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| case 0x58: /* FRINTA */ |
| rmode = FPROUNDING_TIEAWAY; |
| need_fpstatus = true; |
| if (size == 3 && !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| case 0x7c: /* URSQRTE */ |
| if (size == 3) { |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| case 0x1e: /* FRINT32Z */ |
| case 0x1f: /* FRINT64Z */ |
| rmode = FPROUNDING_ZERO; |
| /* fall through */ |
| case 0x5e: /* FRINT32X */ |
| case 0x5f: /* FRINT64X */ |
| need_fpstatus = true; |
| if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) { |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| } |
| default: |
| case 0x3: /* SUQADD, USQADD */ |
| unallocated_encoding(s); |
| return; |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| if (need_fpstatus || rmode >= 0) { |
| tcg_fpstatus = fpstatus_ptr(FPST_FPCR); |
| } else { |
| tcg_fpstatus = NULL; |
| } |
| if (rmode >= 0) { |
| tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); |
| } else { |
| tcg_rmode = NULL; |
| } |
| |
| switch (opcode) { |
| case 0x5: |
| if (u && size == 0) { /* NOT */ |
| gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); |
| return; |
| } |
| break; |
| case 0x8: /* CMGT, CMGE */ |
| if (u) { |
| gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size); |
| } else { |
| gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size); |
| } |
| return; |
| case 0x9: /* CMEQ, CMLE */ |
| if (u) { |
| gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size); |
| } else { |
| gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size); |
| } |
| return; |
| case 0xa: /* CMLT */ |
| gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size); |
| return; |
| case 0xb: |
| if (u) { /* ABS, NEG */ |
| gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); |
| } else { |
| gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size); |
| } |
| return; |
| } |
| |
| if (size == 3) { |
| /* All 64-bit element operations can be shared with scalar 2misc */ |
| int pass; |
| |
| /* Coverity claims (size == 3 && !is_q) has been eliminated |
| * from all paths leading to here. |
| */ |
| tcg_debug_assert(is_q); |
| for (pass = 0; pass < 2; pass++) { |
| TCGv_i64 tcg_op = tcg_temp_new_i64(); |
| TCGv_i64 tcg_res = tcg_temp_new_i64(); |
| |
| read_vec_element(s, tcg_op, rn, pass, MO_64); |
| |
| handle_2misc_64(s, opcode, u, tcg_res, tcg_op, |
| tcg_rmode, tcg_fpstatus); |
| |
| write_vec_element(s, tcg_res, rd, pass, MO_64); |
| } |
| } else { |
| int pass; |
| |
| for (pass = 0; pass < (is_q ? 4 : 2); pass++) { |
| TCGv_i32 tcg_op = tcg_temp_new_i32(); |
| TCGv_i32 tcg_res = tcg_temp_new_i32(); |
| |
| read_vec_element_i32(s, tcg_op, rn, pass, MO_32); |
| |
| if (size == 2) { |
| /* Special cases for 32 bit elements */ |
| switch (opcode) { |
| case 0x4: /* CLS */ |
| if (u) { |
| tcg_gen_clzi_i32(tcg_res, tcg_op, 32); |
| } else { |
| tcg_gen_clrsb_i32(tcg_res, tcg_op); |
| } |
| break; |
| case 0x7: /* SQABS, SQNEG */ |
| if (u) { |
| gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op); |
| } else { |
| gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op); |
| } |
| break; |
| case 0x2f: /* FABS */ |
| gen_vfp_abss(tcg_res, tcg_op); |
| break; |
| case 0x6f: /* FNEG */ |
| gen_vfp_negs(tcg_res, tcg_op); |
| break; |
| case 0x7f: /* FSQRT */ |
| gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env); |
| break; |
| case 0x1a: /* FCVTNS */ |
| case 0x1b: /* FCVTMS */ |
| case 0x1c: /* FCVTAS */ |
| case 0x3a: /* FCVTPS */ |
| case 0x3b: /* FCVTZS */ |
| gen_helper_vfp_tosls(tcg_res, tcg_op, |
| tcg_constant_i32(0), tcg_fpstatus); |
| break; |
| case 0x5a: /* FCVTNU */ |
| case 0x5b: /* FCVTMU */ |
| case 0x5c: /* FCVTAU */ |
| case 0x7a: /* FCVTPU */ |
| case 0x7b: /* FCVTZU */ |
| gen_helper_vfp_touls(tcg_res, tcg_op, |
| tcg_constant_i32(0), tcg_fpstatus); |
| break; |
| case 0x18: /* FRINTN */ |
| case 0x19: /* FRINTM */ |
| case 0x38: /* FRINTP */ |
| case 0x39: /* FRINTZ */ |
| case 0x58: /* FRINTA */ |
| case 0x79: /* FRINTI */ |
| gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); |
| break; |
| case 0x59: /* FRINTX */ |
| gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); |
| break; |
| case 0x7c: /* URSQRTE */ |
| gen_helper_rsqrte_u32(tcg_res, tcg_op); |
| break; |
| case 0x1e: /* FRINT32Z */ |
| case 0x5e: /* FRINT32X */ |
| gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus); |
| break; |
| case 0x1f: /* FRINT64Z */ |
| case 0x5f: /* FRINT64X */ |
| gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } else { |
| /* Use helpers for 8 and 16 bit elements */ |
| switch (opcode) { |
| case 0x5: /* CNT, RBIT */ |
| /* For these two insns size is part of the opcode specifier |
| * (handled earlier); they always operate on byte elements. |
| */ |
| if (u) { |
| gen_helper_neon_rbit_u8(tcg_res, tcg_op); |
| } else { |
| gen_helper_neon_cnt_u8(tcg_res, tcg_op); |
| } |
| break; |
| case 0x7: /* SQABS, SQNEG */ |
| { |
| NeonGenOneOpEnvFn *genfn; |
| static NeonGenOneOpEnvFn * const fns[2][2] = { |
| { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, |
| { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, |
| }; |
| genfn = fns[size][u]; |
| genfn(tcg_res, tcg_env, tcg_op); |
| break; |
| } |
| case 0x4: /* CLS, CLZ */ |
| if (u) { |
| if (size == 0) { |
| gen_helper_neon_clz_u8(tcg_res, tcg_op); |
| } else { |
| gen_helper_neon_clz_u16(tcg_res, tcg_op); |
| } |
| } else { |
| if (size == 0) { |
| gen_helper_neon_cls_s8(tcg_res, tcg_op); |
| } else { |
| gen_helper_neon_cls_s16(tcg_res, tcg_op); |
| } |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| write_vec_element_i32(s, tcg_res, rd, pass, MO_32); |
| } |
| } |
| clear_vec_high(s, is_q, rd); |
| |
| if (tcg_rmode) { |
| gen_restore_rmode(tcg_rmode, tcg_fpstatus); |
| } |
| } |
| |
| /* AdvSIMD [scalar] two register miscellaneous (FP16) |
| * |
| * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 |
| * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ |
| * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | |
| * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ |
| * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 |
| * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 |
| * |
| * This actually covers two groups where scalar access is governed by |
| * bit 28. A bunch of the instructions (float to integral) only exist |
| * in the vector form and are un-allocated for the scalar decode. Also |
| * in the scalar decode Q is always 1. |
| */ |
| static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) |
| { |
| int fpop, opcode, a, u; |
| int rn, rd; |
| bool is_q; |
| bool is_scalar; |
| bool only_in_vector = false; |
| |
| int pass; |
| TCGv_i32 tcg_rmode = NULL; |
| TCGv_ptr tcg_fpstatus = NULL; |
| bool need_fpst = true; |
| int rmode = -1; |
| |
| if (!dc_isar_feature(aa64_fp16, s)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| rd = extract32(insn, 0, 5); |
| rn = extract32(insn, 5, 5); |
| |
| a = extract32(insn, 23, 1); |
| u = extract32(insn, 29, 1); |
| is_scalar = extract32(insn, 28, 1); |
| is_q = extract32(insn, 30, 1); |
| |
| opcode = extract32(insn, 12, 5); |
| fpop = deposit32(opcode, 5, 1, a); |
| fpop = deposit32(fpop, 6, 1, u); |
| |
| switch (fpop) { |
| case 0x1d: /* SCVTF */ |
| case 0x5d: /* UCVTF */ |
| { |
| int elements; |
| |
| if (is_scalar) { |
| elements = 1; |
| } else { |
| elements = (is_q ? 8 : 4); |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); |
| return; |
| } |
| break; |
| case 0x2c: /* FCMGT (zero) */ |
| case 0x2d: /* FCMEQ (zero) */ |
| case 0x2e: /* FCMLT (zero) */ |
| case 0x6c: /* FCMGE (zero) */ |
| case 0x6d: /* FCMLE (zero) */ |
| handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); |
| return; |
| case 0x3d: /* FRECPE */ |
| case 0x3f: /* FRECPX */ |
| break; |
| case 0x18: /* FRINTN */ |
| only_in_vector = true; |
| rmode = FPROUNDING_TIEEVEN; |
| break; |
| case 0x19: /* FRINTM */ |
| only_in_vector = true; |
| rmode = FPROUNDING_NEGINF; |
| break; |
| case 0x38: /* FRINTP */ |
| only_in_vector = true; |
| rmode = FPROUNDING_POSINF; |
| break; |
| case 0x39: /* FRINTZ */ |
| only_in_vector = true; |
| rmode = FPROUNDING_ZERO; |
| break; |
| case 0x58: /* FRINTA */ |
| only_in_vector = true; |
| rmode = FPROUNDING_TIEAWAY; |
| break; |
| case 0x59: /* FRINTX */ |
| case 0x79: /* FRINTI */ |
| only_in_vector = true; |
| /* current rounding mode */ |
| break; |
| case 0x1a: /* FCVTNS */ |
| rmode = FPROUNDING_TIEEVEN; |
| break; |
| case 0x1b: /* FCVTMS */ |
| rmode = FPROUNDING_NEGINF; |
| break; |
| case 0x1c: /* FCVTAS */ |
| rmode = FPROUNDING_TIEAWAY; |
| break; |
| case 0x3a: /* FCVTPS */ |
| rmode = FPROUNDING_POSINF; |
| break; |
| case 0x3b: /* FCVTZS */ |
| rmode = FPROUNDING_ZERO; |
| break; |
| case 0x5a: /* FCVTNU */ |
| rmode = FPROUNDING_TIEEVEN; |
| break; |
| case 0x5b: /* FCVTMU */ |
| rmode = FPROUNDING_NEGINF; |
| break; |
| case 0x5c: /* FCVTAU */ |
| rmode = FPROUNDING_TIEAWAY; |
| break; |
| case 0x7a: /* FCVTPU */ |
| rmode = FPROUNDING_POSINF; |
| break; |
| case 0x7b: /* FCVTZU */ |
| rmode = FPROUNDING_ZERO; |
| break; |
| case 0x2f: /* FABS */ |
| case 0x6f: /* FNEG */ |
| need_fpst = false; |
| break; |
| case 0x7d: /* FRSQRTE */ |
| case 0x7f: /* FSQRT (vector) */ |
| break; |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| |
| |
| /* Check additional constraints for the scalar encoding */ |
| if (is_scalar) { |
| if (!is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| /* FRINTxx is only in the vector form */ |
| if (only_in_vector) { |
| unallocated_encoding(s); |
| return; |
| } |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| if (rmode >= 0 || need_fpst) { |
| tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16); |
| } |
| |
| if (rmode >= 0) { |
| tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus); |
| } |
| |
| if (is_scalar) { |
| TCGv_i32 tcg_op = read_fp_hreg(s, rn); |
| TCGv_i32 tcg_res = tcg_temp_new_i32(); |
| |
| switch (fpop) { |
| case 0x1a: /* FCVTNS */ |
| case 0x1b: /* FCVTMS */ |
| case 0x1c: /* FCVTAS */ |
| case 0x3a: /* FCVTPS */ |
| case 0x3b: /* FCVTZS */ |
| gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); |
| break; |
| case 0x3d: /* FRECPE */ |
| gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); |
| break; |
| case 0x3f: /* FRECPX */ |
| gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); |
| break; |
| case 0x5a: /* FCVTNU */ |
| case 0x5b: /* FCVTMU */ |
| case 0x5c: /* FCVTAU */ |
| case 0x7a: /* FCVTPU */ |
| case 0x7b: /* FCVTZU */ |
| gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); |
| break; |
| case 0x6f: /* FNEG */ |
| tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); |
| break; |
| case 0x7d: /* FRSQRTE */ |
| gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| /* limit any sign extension going on */ |
| tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); |
| write_fp_sreg(s, rd, tcg_res); |
| } else { |
| for (pass = 0; pass < (is_q ? 8 : 4); pass++) { |
| TCGv_i32 tcg_op = tcg_temp_new_i32(); |
| TCGv_i32 tcg_res = tcg_temp_new_i32(); |
| |
| read_vec_element_i32(s, tcg_op, rn, pass, MO_16); |
| |
| switch (fpop) { |
| case 0x1a: /* FCVTNS */ |
| case 0x1b: /* FCVTMS */ |
| case 0x1c: /* FCVTAS */ |
| case 0x3a: /* FCVTPS */ |
| case 0x3b: /* FCVTZS */ |
| gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); |
| break; |
| case 0x3d: /* FRECPE */ |
| gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); |
| break; |
| case 0x5a: /* FCVTNU */ |
| case 0x5b: /* FCVTMU */ |
| case 0x5c: /* FCVTAU */ |
| case 0x7a: /* FCVTPU */ |
| case 0x7b: /* FCVTZU */ |
| gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); |
| break; |
| case 0x18: /* FRINTN */ |
| case 0x19: /* FRINTM */ |
| case 0x38: /* FRINTP */ |
| case 0x39: /* FRINTZ */ |
| case 0x58: /* FRINTA */ |
| case 0x79: /* FRINTI */ |
| gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); |
| break; |
| case 0x59: /* FRINTX */ |
| gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); |
| break; |
| case 0x2f: /* FABS */ |
| tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); |
| break; |
| case 0x6f: /* FNEG */ |
| tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); |
| break; |
| case 0x7d: /* FRSQRTE */ |
| gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); |
| break; |
| case 0x7f: /* FSQRT */ |
| gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| write_vec_element_i32(s, tcg_res, rd, pass, MO_16); |
| } |
| |
| clear_vec_high(s, is_q, rd); |
| } |
| |
| if (tcg_rmode) { |
| gen_restore_rmode(tcg_rmode, tcg_fpstatus); |
| } |
| } |
| |
| /* AdvSIMD scalar x indexed element |
| * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 |
| * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ |
| * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | |
| * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ |
| * AdvSIMD vector x indexed element |
| * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 |
| * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ |
| * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | |
| * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ |
| */ |
| static void disas_simd_indexed(DisasContext *s, uint32_t insn) |
| { |
| /* This encoding has two kinds of instruction: |
| * normal, where we perform elt x idxelt => elt for each |
| * element in the vector |
| * long, where we perform elt x idxelt and generate a result of |
| * double the width of the input element |
| * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). |
| */ |
| bool is_scalar = extract32(insn, 28, 1); |
| bool is_q = extract32(insn, 30, 1); |
| bool u = extract32(insn, 29, 1); |
| int size = extract32(insn, 22, 2); |
| int l = extract32(insn, 21, 1); |
| int m = extract32(insn, 20, 1); |
| /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ |
| int rm = extract32(insn, 16, 4); |
| int opcode = extract32(insn, 12, 4); |
| int h = extract32(insn, 11, 1); |
| int rn = extract32(insn, 5, 5); |
| int rd = extract32(insn, 0, 5); |
| bool is_long = false; |
| int is_fp = 0; |
| bool is_fp16 = false; |
| int index; |
| TCGv_ptr fpst; |
| |
| switch (16 * u + opcode) { |
| case 0x02: /* SMLAL, SMLAL2 */ |
| case 0x12: /* UMLAL, UMLAL2 */ |
| case 0x06: /* SMLSL, SMLSL2 */ |
| case 0x16: /* UMLSL, UMLSL2 */ |
| case 0x0a: /* SMULL, SMULL2 */ |
| case 0x1a: /* UMULL, UMULL2 */ |
| if (is_scalar) { |
| unallocated_encoding(s); |
| return; |
| } |
| is_long = true; |
| break; |
| case 0x03: /* SQDMLAL, SQDMLAL2 */ |
| case 0x07: /* SQDMLSL, SQDMLSL2 */ |
| case 0x0b: /* SQDMULL, SQDMULL2 */ |
| is_long = true; |
| break; |
| case 0x1d: /* SQRDMLAH */ |
| case 0x1f: /* SQRDMLSH */ |
| if (!dc_isar_feature(aa64_rdm, s)) { |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| case 0x0e: /* SDOT */ |
| case 0x1e: /* UDOT */ |
| if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) { |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| case 0x0f: |
| switch (size) { |
| case 0: /* SUDOT */ |
| case 2: /* USDOT */ |
| if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) { |
| unallocated_encoding(s); |
| return; |
| } |
| size = MO_32; |
| break; |
| case 1: /* BFDOT */ |
| if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { |
| unallocated_encoding(s); |
| return; |
| } |
| size = MO_32; |
| break; |
| case 3: /* BFMLAL{B,T} */ |
| if (is_scalar || !dc_isar_feature(aa64_bf16, s)) { |
| unallocated_encoding(s); |
| return; |
| } |
| /* can't set is_fp without other incorrect size checks */ |
| size = MO_16; |
| break; |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| case 0x11: /* FCMLA #0 */ |
| case 0x13: /* FCMLA #90 */ |
| case 0x15: /* FCMLA #180 */ |
| case 0x17: /* FCMLA #270 */ |
| if (is_scalar || !dc_isar_feature(aa64_fcma, s)) { |
| unallocated_encoding(s); |
| return; |
| } |
| is_fp = 2; |
| break; |
| default: |
| case 0x00: /* FMLAL */ |
| case 0x01: /* FMLA */ |
| case 0x04: /* FMLSL */ |
| case 0x05: /* FMLS */ |
| case 0x08: /* MUL */ |
| case 0x09: /* FMUL */ |
| case 0x0c: /* SQDMULH */ |
| case 0x0d: /* SQRDMULH */ |
| case 0x10: /* MLA */ |
| case 0x14: /* MLS */ |
| case 0x18: /* FMLAL2 */ |
| case 0x19: /* FMULX */ |
| case 0x1c: /* FMLSL2 */ |
| unallocated_encoding(s); |
| return; |
| } |
| |
| switch (is_fp) { |
| case 1: /* normal fp */ |
| unallocated_encoding(s); /* in decodetree */ |
| return; |
| |
| case 2: /* complex fp */ |
| /* Each indexable element is a complex pair. */ |
| size += 1; |
| switch (size) { |
| case MO_32: |
| if (h && !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| is_fp16 = true; |
| break; |
| case MO_64: |
| break; |
| default: |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| |
| default: /* integer */ |
| switch (size) { |
| case MO_8: |
| case MO_64: |
| unallocated_encoding(s); |
| return; |
| } |
| break; |
| } |
| if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) { |
| unallocated_encoding(s); |
| return; |
| } |
| |
| /* Given MemOp size, adjust register and indexing. */ |
| switch (size) { |
| case MO_16: |
| index = h << 2 | l << 1 | m; |
| break; |
| case MO_32: |
| index = h << 1 | l; |
| rm |= m << 4; |
| break; |
| case MO_64: |
| if (l || !is_q) { |
| unallocated_encoding(s); |
| return; |
| } |
| index = h; |
| rm |= m << 4; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if (!fp_access_check(s)) { |
| return; |
| } |
| |
| if (is_fp) { |
| fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR); |
| } else { |
| fpst = NULL; |
| } |
| |
| switch (16 * u + opcode) { |
| case 0x0e: /* SDOT */ |
| case 0x1e: /* UDOT */ |
| gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, |
| u ? gen_helper_gvec_udot_idx_b |
| : gen_helper_gvec_sdot_idx_b); |
| return; |
| case 0x0f: |
| switch (extract32(insn, 22, 2)) { |
| case 0: /* SUDOT */ |
| gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, |
| gen_helper_gvec_sudot_idx_b); |
| return; |
| case 1: /* BFDOT */ |
| gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, |
| gen_helper_gvec_bfdot_idx); |
| return; |
| case 2: /* USDOT */ |
| gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index, |
| gen_helper_gvec_usdot_idx_b); |
| return; |
| case 3: /* BFMLAL{B,T} */ |
| gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q, |
| gen_helper_gvec_bfmlal_idx); |
| return; |
| } |
| g_assert_not_reached(); |
| case 0x11: /* FCMLA #0 */ |
| case 0x13: /* FCMLA #90 */ |
| case 0x15: /* FCMLA #180 */ |
| case 0x17: /* FCMLA #270 */ |
| { |
| int rot = extract32(insn, 13, 2); |
| int data = (index << 2) | rot; |
| tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd), |
| vec_full_reg_offset(s, rn), |
| vec_full_reg_offset(s, rm), |
| vec_full_reg_offset(s, rd), fpst, |
| is_q ? 16 : 8, vec_full_reg_size(s), data, |
| size == MO_64 |
| ? gen_helper_gvec_fcmlas_idx |
| : gen_helper_gvec_fcmlah_idx); |
| } |
| return; |
| } |
| |
| if (size == 3) { |
| g_assert_not_reached(); |
| } else if (!is_long) { |
| /* 32 bit floating point, or 16 or 32 bit integer. |
| * For the 16 bit scalar case we use the usual Neon helpers and |
| * rely on the fact that 0 op 0 == 0 with no side effects. |
| */ |
| TCGv_i32 tcg_idx = tcg_temp_new_i32(); |
| int pass, maxpasses; |
| |
| if (is_scalar) { |
| maxpasses = 1; |
| } else { |
| maxpasses = is_q ? 4 : 2; |
| } |
| |
| read_vec_element_i32(s, tcg_idx, rm, index, size); |
| |
| if (size == 1 && !is_scalar) { |
| /* The simplest way to handle the 16x16 indexed ops is to duplicate |
| * the index into both halves of the 32 bit tcg_idx and then use |
| * the usual Neon helpers. |
| */ |
| tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); |
| } |
| |
| for (pass = 0; pass < maxpasses; pass++) { |
| TCGv_i32 tcg_op = tcg_temp_new_i32(); |
| TCGv_i32 tcg_res = tcg_temp_new_i32(); |
| |
| read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); |
| |
| switch (16 * u + opcode) { |
| case 0x10: /* MLA */ |
| case 0x14: /* MLS */ |
| { |
| static NeonGenTwoOpFn * const fns[2][2] = { |
| { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, |
| { tcg_gen_add_i32, tcg_gen_sub_i32 }, |
| }; |
| NeonGenTwoOpFn *genfn; |
| bool is_sub = opcode == 0x4; |
| |
| if (size == 1) { |
| gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); |
| } else { |
| tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); |
| } |
| if (opcode == 0x8) { |
| break; |
| } |
| read_vec_element_i32(s, tcg_op, rd, pass, MO_32); |
| genfn = fns[size - 1][is_sub]; |
| genfn(tcg_res, tcg_op, tcg_res); |
| break; |
| } |
| case 0x0c: /* SQDMULH */ |
| if (size == 1) { |
| gen_helper_neon_qdmulh_s16(tcg_res, tcg_env, |
| tcg_op, tcg_idx); |
| } else { |
| gen_helper_neon_qdmulh_s32(tcg_res, tcg_env, |
| tcg_op, tcg_idx); |
| } |
| break; |
| case 0x0d: /* SQRDMULH */ |
| if (size == 1) { |
| gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env, |
| tcg_op, tcg_idx); |
| } else { |
| gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env, |
| tcg_op, tcg_idx); |
| } |
| break; |
| case 0x1d: /* SQRDMLAH */ |
| read_vec_element_i32(s, tcg_res, rd, pass, |
| is_scalar ? size : MO_32); |
| if (size == 1) { |
| gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env, |
| tcg_op, tcg_idx, tcg_res); |
| } else { |
| gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env, |
| tcg_op, tcg_idx, tcg_res); |
| } |
| break; |
| case 0x1f: /* SQRDMLSH */ |
| read_vec_element_i32(s, tcg_res, rd, pass, |
| is_scalar ? size : MO_32); |
| if (size == 1) { |
| gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env, |
| tcg_op, tcg_idx, tcg_res); |
| } else { |
| gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env, |
| tcg_op, tcg_idx, tcg_res); |
| } |
| break; |
| default: |
| case 0x01: /* FMLA */ |
| case 0x05: /* FMLS */ |
| case 0x09: /* FMUL */ |
| case 0x19: /* FMULX */ |
| g_assert_not_reached(); |
| } |
| |
| if (is_scalar) { |
| write_fp_sreg(s, rd, tcg_res); |
| } else { |
| write_vec_element_i32(s, tcg_res, rd, pass, MO_32); |
| } |
| } |
| |
| clear_vec_high(s, is_q, rd); |
| } else { |
| /* long ops: 16x16->32 or 32x32->64 */ |
| TCGv_i64 tcg_res[2]; |
| int pass; |
| bool satop = extract32(opcode, 0, 1); |
| MemOp memop = MO_32; |
| |
| if (satop || !u) { |
| memop |= MO_SIGN; |
| } |
| |
| if (size == 2) { |
| TCGv_i64 tcg_idx = tcg_temp_new_i64(); |
| |
| read_vec_element(s, tcg_idx, rm, index, memop); |
| |
| for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { |
| TCGv_i64 tcg_op = tcg_temp_new_i64(); |
| TCGv_i64 tcg_passres; |
| int passelt; |
| |
| if (is_scalar) { |
| passelt = 0; |
| } else { |
| passelt = pass + (is_q * 2); |
| } |
| |
| read_vec_element(s, tcg_op, rn, passelt, memop); |
| |
| tcg_res[pass] = tcg_temp_new_i64(); |
| |
| if (opcode == 0xa || opcode == 0xb) { |
| /* Non-accumulating ops */ |
| tcg_passres = tcg_res[pass]; |
| } else { |
| tcg_passres = tcg_temp_new_i64(); |
| } |
| |
| tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); |
| |
| if (satop) { |
| /* saturating, doubling */ |
| gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env, |
| tcg_passres, tcg_passres); |
| } |
| |
| if (opcode == 0xa || opcode == 0xb) { |
| continue; |
| } |
| |
| /* Accumulating op: handle accumulate step */ |
| read_vec_element(s, tcg_res[pass], rd, pass, MO_64); |
| |
| switch (opcode) { |
| case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ |
| tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); |
| break; |
| case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ |
| tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); |
| break; |
| case 0x7: /* SQDMLSL, SQDMLSL2 */ |
| tcg_gen_neg_i64(tcg_passres, tcg_passres); |
| /* fall through */ |
| case 0x3: /* SQDMLAL, SQDMLAL2 */ |
| gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env, |
| tcg_res[pass], |
| tcg_passres); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| clear_vec_high(s, !is_scalar, rd); |
| } else { |
| TCGv_i32 tcg_idx = tcg_temp_new_i32(); |
| |
| assert(size == 1); |
| read_vec_element_i32(s, tcg_idx, rm, index, size); |
| |
| if (!is_scalar) { |
| /* The simplest way to handle the 16x16 indexed ops is to |
| * duplicate the index into both halves of the 32 bit tcg_idx |
| * and then use the usual Neon helpers. |
| */ |
| tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); |
| } |
| |
| for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { |
| TCGv_i32 tcg_op = tcg_temp_new_i32(); |
| TCGv_i64 tcg_passres; |
| |
| if (is_scalar) { |
| read_vec_element_i32(s, tcg_op, rn, pass, size); |
| } else { |
| read_vec_element_i32(s, tcg_op, rn, |
| pass + (is_q * 2), MO_32); |
| } |
| |
| tcg_res[pass] = tcg_temp_new_i64(); |
| |
| if (opcode == 0xa || opcode == 0xb) { |
| /* Non-accumulating ops */ |
| tcg_passres = tcg_res[pass]; |
| } else { |
| tcg_passres = tcg_temp_new_i64(); |
| } |
| |
| if (memop & MO_SIGN) { |
| gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); |
| } else { |
| gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); |
| } |
| if (satop) { |
| gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env, |
| tcg_passres, tcg_passres); |
| } |
| |
| if (opcode == 0xa || opcode == 0xb) { |
| continue; |
| } |
| |
| /* Accumulating op: handle accumulate step */ |
| read_vec_element(s, tcg_res[pass], rd, pass, MO_64); |
| |
| switch (opcode) { |
| case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ |
| gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], |
| tcg_passres); |
| break; |
| case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ |
| gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], |
| tcg_passres); |
| break; |
| case 0x7: /* SQDMLSL, SQDMLSL2 */ |
| gen_helper_neon_negl_u32(tcg_passres, tcg_passres); |
| /* fall through */ |
| case 0x3: /* SQDMLAL, SQDMLAL2 */ |
| gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env, |
| tcg_res[pass], |
| tcg_passres); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| if (is_scalar) { |
| tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); |
| } |
| } |
| |
| if (is_scalar) { |
| tcg_res[1] = tcg_constant_i64(0); |
| } |
| |
| for (pass = 0; pass < 2; pass++) { |
| write_vec_element(s, tcg_res[pass], rd, pass, MO_64); |
| } |
| } |
| } |
| |
| /* C3.6 Data processing - SIMD, inc Crypto |
| * |
| * As the decode gets a little complex we are using a table based |
| * approach for this part of the decode. |
| */ |
| static const AArch64DecodeTable data_proc_simd[] = { |
| /* pattern , mask , fn */ |
| { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, |
| { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, |
| { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, |
| { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, |
| { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ |
| /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ |
| { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, |
| { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, |
| { 0x0e000000, 0xbf208c00, disas_simd_tb }, |
| { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, |
| { 0x2e000000, 0xbf208400, disas_simd_ext }, |
| { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, |
| { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, |
| { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, |
| { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ |
| { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, |
| { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, |
| { 0x00000000, 0x00000000, NULL } |
| }; |
| |
| static void disas_data_proc_simd(DisasContext *s, uint32_t insn) |
| { |
| /* Note that this is called with all non-FP cases from |
| * table C3-6 so it must UNDEF for entries not specifically |
| * allocated to instructions in that table. |
| */ |
| AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); |
| if (fn) { |
| fn(s, insn); |
| } else { |
| unallocated_encoding(s); |
| } |
| } |
| |
| /* C3.6 Data processing - SIMD and floating point */ |
| static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) |
| { |
| if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { |
| disas_data_proc_fp(s, insn); |
| } else { |
| /* SIMD, including crypto */ |
| disas_data_proc_simd(s, insn); |
| } |
| } |
| |
| static bool trans_OK(DisasContext *s, arg_OK *a) |
| { |
| return true; |
| } |
| |
| static bool trans_FAIL(DisasContext *s, arg_OK *a) |
| { |
| s->is_nonstreaming = true; |
| return true; |
| } |
| |
| /** |
| * is_guarded_page: |
| * @env: The cpu environment |
| * @s: The DisasContext |
| * |
| * Return true if the page is guarded. |
| */ |
| static bool is_guarded_page(CPUARMState *env, DisasContext *s) |
| { |
| uint64_t addr = s->base.pc_first; |
| #ifdef CONFIG_USER_ONLY |
| return page_get_flags(addr) & PAGE_BTI; |
| #else |
| CPUTLBEntryFull *full; |
| void *host; |
| int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx); |
| int flags; |
| |
| /* |
| * We test this immediately after reading an insn, which means |
| * that the TLB entry must be present and valid, and thus this |
| * access will never raise an exception. |
| */ |
| flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx, |
| false, &host, &full, 0); |
| assert(!(flags & TLB_INVALID_MASK)); |
| |
| return full->extra.arm.guarded; |
| #endif |
| } |
| |
| /** |
| * btype_destination_ok: |
| * @insn: The instruction at the branch destination |
| * @bt: SCTLR_ELx.BT |
| * @btype: PSTATE.BTYPE, and is non-zero |
| * |
| * On a guarded page, there are a limited number of insns |
| * that may be present at the branch target: |
| * - branch target identifiers, |
| * - paciasp, pacibsp, |
| * - BRK insn |
| * - HLT insn |
| * Anything else causes a Branch Target Exception. |
| * |
| * Return true if the branch is compatible, false to raise BTITRAP. |
| */ |
| static bool btype_destination_ok(uint32_t insn, bool bt, int btype) |
| { |
| if ((insn & 0xfffff01fu) == 0xd503201fu) { |
| /* HINT space */ |
| switch (extract32(insn, 5, 7)) { |
| case 0b011001: /* PACIASP */ |
| case 0b011011: /* PACIBSP */ |
| /* |
| * If SCTLR_ELx.BT, then PACI*SP are not compatible |
| * with btype == 3. Otherwise all btype are ok. |
| */ |
| return !bt || btype != 3; |
| case 0b100000: /* BTI */ |
| /* Not compatible with any btype. */ |
| return false; |
| case 0b100010: /* BTI c */ |
| /* Not compatible with btype == 3 */ |
| return btype != 3; |
| case 0b100100: /* BTI j */ |
| /* Not compatible with btype == 2 */ |
| return btype != 2; |
| case 0b100110: /* BTI jc */ |
| /* Compatible with any btype. */ |
| return true; |
| } |
| } else { |
| switch (insn & 0xffe0001fu) { |
| case 0xd4200000u: /* BRK */ |
| case 0xd4400000u: /* HLT */ |
| /* Give priority to the breakpoint exception. */ |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /* C3.1 A64 instruction index by encoding */ |
| static void disas_a64_legacy(DisasContext *s, uint32_t insn) |
| { |
| switch (extract32(insn, 25, 4)) { |
| case 0x5: |
| case 0xd: /* Data processing - register */ |
| disas_data_proc_reg(s, insn); |
| break; |
| case 0x7: |
| case 0xf: /* Data processing - SIMD and floating point */ |
| disas_data_proc_simd_fp(s, insn); |
| break; |
| default: |
| unallocated_encoding(s); |
| break; |
| } |
| } |
| |
| static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, |
| CPUState *cpu) |
| { |
| DisasContext *dc = container_of(dcbase, DisasContext, base); |
| CPUARMState *env = cpu_env(cpu); |
| ARMCPU *arm_cpu = env_archcpu(env); |
| CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); |
| int bound, core_mmu_idx; |
| |
| dc->isar = &arm_cpu->isar; |
| dc->condjmp = 0; |
| dc->pc_save = dc->base.pc_first; |
| dc->aarch64 = true; |
| dc->thumb = false; |
| dc->sctlr_b = 0; |
| dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; |
| dc->condexec_mask = 0; |
| dc->condexec_cond = 0; |
| core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); |
| dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx); |
| dc->tbii = EX_TBFLAG_A64(tb_flags, TBII); |
| dc->tbid = EX_TBFLAG_A64(tb_flags, TBID); |
| dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA); |
| dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); |
| #if !defined(CONFIG_USER_ONLY) |
| dc->user = (dc->current_el == 0); |
| #endif |
| dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); |
| dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); |
| dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); |
| dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); |
| dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); |
| dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET); |
| dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL); |
| dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL); |
| dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16; |
| dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16; |
| dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE); |
| dc->bt = EX_TBFLAG_A64(tb_flags, BT); |
| dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE); |
| dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV); |
| dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA); |
| dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0); |
| dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE); |
| dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE); |
| dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM); |
| dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA); |
| dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING); |
| dc->naa = EX_TBFLAG_A64(tb_flags, NAA); |
| dc->nv = EX_TBFLAG_A64(tb_flags, NV); |
| dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1); |
| dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2); |
| dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20); |
| dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE); |
| dc->vec_len = 0; |
| dc->vec_stride = 0; |
| dc->cp_regs = arm_cpu->cp_regs; |
| dc->features = env->features; |
| dc->dcz_blocksize = arm_cpu->dcz_blocksize; |
| dc->gm_blocksize = arm_cpu->gm_blocksize; |
| |
| #ifdef CONFIG_USER_ONLY |
| /* In sve_probe_page, we assume TBI is enabled. */ |
| tcg_debug_assert(dc->tbid & 1); |
| #endif |
| |
| dc->lse2 = dc_isar_feature(aa64_lse2, dc); |
| |
| /* Single step state. The code-generation logic here is: |
| * SS_ACTIVE == 0: |
| * generate code with no special handling for single-stepping (except |
| * that anything that can make us go to SS_ACTIVE == 1 must end the TB; |
| * this happens anyway because those changes are all system register or |
| * PSTATE writes). |
| * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) |
| * emit code for one insn |
| * emit code to clear PSTATE.SS |
| * emit code to generate software step exception for completed step |
| * end TB (as usual for having generated an exception) |
| * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) |
| * emit code to generate a software step exception |
| * end the TB |
| */ |
| dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); |
| dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); |
| dc->is_ldex = false; |
| |
| /* Bound the number of insns to execute to those left on the page. */ |
| bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; |
| |
| /* If architectural single step active, limit to 1. */ |
| if (dc->ss_active) { |
| bound = 1; |
| } |
| dc->base.max_insns = MIN(dc->base.max_insns, bound); |
| } |
| |
| static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) |
| { |
| } |
| |
| static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) |
| { |
| DisasContext *dc = container_of(dcbase, DisasContext, base); |
| target_ulong pc_arg = dc->base.pc_next; |
| |
| if (tb_cflags(dcbase->tb) & CF_PCREL) { |
| pc_arg &= ~TARGET_PAGE_MASK; |
| } |
| tcg_gen_insn_start(pc_arg, 0, 0); |
| dc->insn_start_updated = false; |
| } |
| |
| static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) |
| { |
| DisasContext *s = container_of(dcbase, DisasContext, base); |
| CPUARMState *env = cpu_env(cpu); |
| uint64_t pc = s->base.pc_next; |
| uint32_t insn; |
| |
| /* Singlestep exceptions have the highest priority. */ |
| if (s->ss_active && !s->pstate_ss) { |
| /* Singlestep state is Active-pending. |
| * If we're in this state at the start of a TB then either |
| * a) we just took an exception to an EL which is being debugged |
| * and this is the first insn in the exception handler |
| * b) debug exceptions were masked and we just unmasked them |
| * without changing EL (eg by clearing PSTATE.D) |
| * In either case we're going to take a swstep exception in the |
| * "did not step an insn" case, and so the syndrome ISV and EX |
| * bits should be zero. |
| */ |
| assert(s->base.num_insns == 1); |
| gen_swstep_exception(s, 0, 0); |
| s->base.is_jmp = DISAS_NORETURN; |
| s->base.pc_next = pc + 4; |
| return; |
| } |
| |
| if (pc & 3) { |
| /* |
| * PC alignment fault. This has priority over the instruction abort |
| * that we would receive from a translation fault via arm_ldl_code. |
| * This should only be possible after an indirect branch, at the |
| * start of the TB. |
| */ |
| assert(s->base.num_insns == 1); |
| gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc)); |
| s->base.is_jmp = DISAS_NORETURN; |
| s->base.pc_next = QEMU_ALIGN_UP(pc, 4); |
| return; |
| } |
| |
| s->pc_curr = pc; |
| insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b); |
| s->insn = insn; |
| s->base.pc_next = pc + 4; |
| |
| s->fp_access_checked = false; |
| s->sve_access_checked = false; |
| |
| if (s->pstate_il) { |
| /* |
| * Illegal execution state. This has priority over BTI |
| * exceptions, but comes after instruction abort exceptions. |
| */ |
| gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); |
| return; |
| } |
| |
| if (dc_isar_feature(aa64_bti, s)) { |
| if (s->base.num_insns == 1) { |
| /* |
| * At the first insn of the TB, compute s->guarded_page. |
| * We delayed computing this until successfully reading |
| * the first insn of the TB, above. This (mostly) ensures |
| * that the softmmu tlb entry has been populated, and the |
| * page table GP bit is available. |
| * |
| * Note that we need to compute this even if btype == 0, |
| * because this value is used for BR instructions later |
| * where ENV is not available. |
| */ |
| s->guarded_page = is_guarded_page(env, s); |
| |
| /* First insn can have btype set to non-zero. */ |
| tcg_debug_assert(s->btype >= 0); |
| |
| /* |
| * Note that the Branch Target Exception has fairly high |
| * priority -- below debugging exceptions but above most |
| * everything else. This allows us to handle this now |
| * instead of waiting until the insn is otherwise decoded. |
| */ |
| if (s->btype != 0 |
| && s->guarded_page |
| && !btype_destination_ok(insn, s->bt, s->btype)) { |
| gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype)); |
| return; |
| } |
| } else { |
| /* Not the first insn: btype must be 0. */ |
| tcg_debug_assert(s->btype == 0); |
| } |
| } |
| |
| s->is_nonstreaming = false; |
| if (s->sme_trap_nonstreaming) { |
| disas_sme_fa64(s, insn); |
| } |
| |
| if (!disas_a64(s, insn) && |
| !disas_sme(s, insn) && |
| !disas_sve(s, insn)) { |
| disas_a64_legacy(s, insn); |
| } |
| |
| /* |
| * After execution of most insns, btype is reset to 0. |
| * Note that we set btype == -1 when the insn sets btype. |
| */ |
| if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) { |
| reset_btype(s); |
| } |
| } |
| |
| static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) |
| { |
| DisasContext *dc = container_of(dcbase, DisasContext, base); |
| |
| if (unlikely(dc->ss_active)) { |
| /* Note that this means single stepping WFI doesn't halt the CPU. |
| * For conditional branch insns this is harmless unreachable code as |
| * gen_goto_tb() has already handled emitting the debug exception |
| * (and thus a tb-jump is not possible when singlestepping). |
| */ |
| switch (dc->base.is_jmp) { |
| default: |
| gen_a64_update_pc(dc, 4); |
| /* fall through */ |
| case DISAS_EXIT: |
| case DISAS_JUMP: |
| gen_step_complete_exception(dc); |
| break; |
| case DISAS_NORETURN: |
| break; |
| } |
| } else { |
| switch (dc->base.is_jmp) { |
| case DISAS_NEXT: |
| case DISAS_TOO_MANY: |
| gen_goto_tb(dc, 1, 4); |
| break; |
| default: |
| case DISAS_UPDATE_EXIT: |
| gen_a64_update_pc(dc, 4); |
| /* fall through */ |
| case DISAS_EXIT: |
| tcg_gen_exit_tb(NULL, 0); |
| break; |
| case DISAS_UPDATE_NOCHAIN: |
| gen_a64_update_pc(dc, 4); |
| /* fall through */ |
| case DISAS_JUMP: |
| tcg_gen_lookup_and_goto_ptr(); |
| break; |
| case DISAS_NORETURN: |
| case DISAS_SWI: |
| break; |
| case DISAS_WFE: |
| gen_a64_update_pc(dc, 4); |
| gen_helper_wfe(tcg_env); |
| break; |
| case DISAS_YIELD: |
| gen_a64_update_pc(dc, 4); |
| gen_helper_yield(tcg_env); |
| break; |
| case DISAS_WFI: |
| /* |
| * This is a special case because we don't want to just halt |
| * the CPU if trying to debug across a WFI. |
| */ |
| gen_a64_update_pc(dc, 4); |
| gen_helper_wfi(tcg_env, tcg_constant_i32(4)); |
| /* |
| * The helper doesn't necessarily throw an exception, but we |
| * must go back to the main loop to check for interrupts anyway. |
| */ |
| tcg_gen_exit_tb(NULL, 0); |
| break; |
| } |
| } |
| } |
| |
| const TranslatorOps aarch64_translator_ops = { |
| .init_disas_context = aarch64_tr_init_disas_context, |
| .tb_start = aarch64_tr_tb_start, |
| .insn_start = aarch64_tr_insn_start, |
| .translate_insn = aarch64_tr_translate_insn, |
| .tb_stop = aarch64_tr_tb_stop, |
| }; |