blob: 7a03f840513989eed6a86ff2d0e40ecfa2e12a8a [file] [log] [blame]
/*
* ARM mach-virt emulation
*
* Copyright (c) 2013 Linaro Limited
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*
* Emulate a virtual board which works by passing Linux all the information
* it needs about what devices are present via the device tree.
* There are some restrictions about what we can do here:
* + we can only present devices whose Linux drivers will work based
* purely on the device tree with no platform data at all
* + we want to present a very stripped-down minimalist platform,
* both because this reduces the security attack surface from the guest
* and also because it reduces our exposure to being broken when
* the kernel updates its device tree bindings and requires further
* information in a device binding that we aren't providing.
* This is essentially the same approach kvmtool uses.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "hw/sysbus.h"
#include "hw/arm/arm.h"
#include "hw/arm/primecell.h"
#include "hw/arm/virt.h"
#include "hw/devices.h"
#include "net/net.h"
#include "sysemu/block-backend.h"
#include "sysemu/device_tree.h"
#include "sysemu/numa.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "hw/compat.h"
#include "hw/loader.h"
#include "exec/address-spaces.h"
#include "qemu/bitops.h"
#include "qemu/error-report.h"
#include "hw/pci-host/gpex.h"
#include "hw/arm/sysbus-fdt.h"
#include "hw/platform-bus.h"
#include "hw/arm/fdt.h"
#include "hw/intc/arm_gic.h"
#include "hw/intc/arm_gicv3_common.h"
#include "kvm_arm.h"
#include "hw/smbios/smbios.h"
#include "qapi/visitor.h"
#include "standard-headers/linux/input.h"
#define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
void *data) \
{ \
MachineClass *mc = MACHINE_CLASS(oc); \
virt_machine_##major##_##minor##_options(mc); \
mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
if (latest) { \
mc->alias = "virt"; \
} \
} \
static const TypeInfo machvirt_##major##_##minor##_info = { \
.name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
.parent = TYPE_VIRT_MACHINE, \
.instance_init = virt_##major##_##minor##_instance_init, \
.class_init = virt_##major##_##minor##_class_init, \
}; \
static void machvirt_machine_##major##_##minor##_init(void) \
{ \
type_register_static(&machvirt_##major##_##minor##_info); \
} \
type_init(machvirt_machine_##major##_##minor##_init);
#define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
#define DEFINE_VIRT_MACHINE(major, minor) \
DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
/* Number of external interrupt lines to configure the GIC with */
#define NUM_IRQS 256
#define PLATFORM_BUS_NUM_IRQS 64
static ARMPlatformBusSystemParams platform_bus_params;
/* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
* RAM can go up to the 256GB mark, leaving 256GB of the physical
* address space unallocated and free for future use between 256G and 512G.
* If we need to provide more RAM to VMs in the future then we need to:
* * allocate a second bank of RAM starting at 2TB and working up
* * fix the DT and ACPI table generation code in QEMU to correctly
* report two split lumps of RAM to the guest
* * fix KVM in the host kernel to allow guests with >40 bit address spaces
* (We don't want to fill all the way up to 512GB with RAM because
* we might want it for non-RAM purposes later. Conversely it seems
* reasonable to assume that anybody configuring a VM with a quarter
* of a terabyte of RAM will be doing it on a host with more than a
* terabyte of physical address space.)
*/
#define RAMLIMIT_GB 255
#define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
/* Addresses and sizes of our components.
* 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
* 128MB..256MB is used for miscellaneous device I/O.
* 256MB..1GB is reserved for possible future PCI support (ie where the
* PCI memory window will go if we add a PCI host controller).
* 1GB and up is RAM (which may happily spill over into the
* high memory region beyond 4GB).
* This represents a compromise between how much RAM can be given to
* a 32 bit VM and leaving space for expansion and in particular for PCI.
* Note that devices should generally be placed at multiples of 0x10000,
* to accommodate guests using 64K pages.
*/
static const MemMapEntry a15memmap[] = {
/* Space up to 0x8000000 is reserved for a boot ROM */
[VIRT_FLASH] = { 0, 0x08000000 },
[VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
/* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
[VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
[VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
[VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
/* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
[VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
/* This redistributor space allows up to 2*64kB*123 CPUs */
[VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
[VIRT_UART] = { 0x09000000, 0x00001000 },
[VIRT_RTC] = { 0x09010000, 0x00001000 },
[VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
[VIRT_GPIO] = { 0x09030000, 0x00001000 },
[VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
[VIRT_MMIO] = { 0x0a000000, 0x00000200 },
/* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
[VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
[VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
[VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
[VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
[VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
[VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES },
/* Second PCIe window, 512GB wide at the 512GB boundary */
[VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL },
};
static const int a15irqmap[] = {
[VIRT_UART] = 1,
[VIRT_RTC] = 2,
[VIRT_PCIE] = 3, /* ... to 6 */
[VIRT_GPIO] = 7,
[VIRT_SECURE_UART] = 8,
[VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
[VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
[VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
};
static const char *valid_cpus[] = {
"cortex-a15",
"cortex-a53",
"cortex-a57",
"host",
NULL
};
static bool cpuname_valid(const char *cpu)
{
int i;
for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
if (strcmp(cpu, valid_cpus[i]) == 0) {
return true;
}
}
return false;
}
static void create_fdt(VirtMachineState *vms)
{
void *fdt = create_device_tree(&vms->fdt_size);
if (!fdt) {
error_report("create_device_tree() failed");
exit(1);
}
vms->fdt = fdt;
/* Header */
qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
/*
* /chosen and /memory nodes must exist for load_dtb
* to fill in necessary properties later
*/
qemu_fdt_add_subnode(fdt, "/chosen");
qemu_fdt_add_subnode(fdt, "/memory");
qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
/* Clock node, for the benefit of the UART. The kernel device tree
* binding documentation claims the PL011 node clock properties are
* optional but in practice if you omit them the kernel refuses to
* probe for the device.
*/
vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
qemu_fdt_add_subnode(fdt, "/apb-pclk");
qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
"clk24mhz");
qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
}
static void fdt_add_psci_node(const VirtMachineState *vms)
{
uint32_t cpu_suspend_fn;
uint32_t cpu_off_fn;
uint32_t cpu_on_fn;
uint32_t migrate_fn;
void *fdt = vms->fdt;
ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
if (!vms->using_psci) {
return;
}
qemu_fdt_add_subnode(fdt, "/psci");
if (armcpu->psci_version == 2) {
const char comp[] = "arm,psci-0.2\0arm,psci";
qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
} else {
cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
}
} else {
qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
}
/* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
* to the instruction that should be used to invoke PSCI functions.
* However, the device tree binding uses 'method' instead, so that is
* what we should use here.
*/
qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
}
static void fdt_add_timer_nodes(const VirtMachineState *vms)
{
/* On real hardware these interrupts are level-triggered.
* On KVM they were edge-triggered before host kernel version 4.4,
* and level-triggered afterwards.
* On emulated QEMU they are level-triggered.
*
* Getting the DTB info about them wrong is awkward for some
* guest kernels:
* pre-4.8 ignore the DT and leave the interrupt configured
* with whatever the GIC reset value (or the bootloader) left it at
* 4.8 before rc6 honour the incorrect data by programming it back
* into the GIC, causing problems
* 4.8rc6 and later ignore the DT and always write "level triggered"
* into the GIC
*
* For backwards-compatibility, virt-2.8 and earlier will continue
* to say these are edge-triggered, but later machines will report
* the correct information.
*/
ARMCPU *armcpu;
VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
if (vmc->claim_edge_triggered_timers) {
irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
}
if (vms->gic_version == 2) {
irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
GIC_FDT_IRQ_PPI_CPU_WIDTH,
(1 << vms->smp_cpus) - 1);
}
qemu_fdt_add_subnode(vms->fdt, "/timer");
armcpu = ARM_CPU(qemu_get_cpu(0));
if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
compat, sizeof(compat));
} else {
qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
"arm,armv7-timer");
}
qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
}
static void fdt_add_cpu_nodes(const VirtMachineState *vms)
{
int cpu;
int addr_cells = 1;
unsigned int i;
/*
* From Documentation/devicetree/bindings/arm/cpus.txt
* On ARM v8 64-bit systems value should be set to 2,
* that corresponds to the MPIDR_EL1 register size.
* If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
* in the system, #address-cells can be set to 1, since
* MPIDR_EL1[63:32] bits are not used for CPUs
* identification.
*
* Here we actually don't know whether our system is 32- or 64-bit one.
* The simplest way to go is to examine affinity IDs of all our CPUs. If
* at least one of them has Aff3 populated, we set #address-cells to 2.
*/
for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
if (armcpu->mp_affinity & ARM_AFF3_MASK) {
addr_cells = 2;
break;
}
}
qemu_fdt_add_subnode(vms->fdt, "/cpus");
qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
qemu_fdt_add_subnode(vms->fdt, nodename);
qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
armcpu->dtb_compatible);
if (vms->using_psci && vms->smp_cpus > 1) {
qemu_fdt_setprop_string(vms->fdt, nodename,
"enable-method", "psci");
}
if (addr_cells == 2) {
qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
armcpu->mp_affinity);
} else {
qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
armcpu->mp_affinity);
}
i = numa_get_node_for_cpu(cpu);
if (i < nb_numa_nodes) {
qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id", i);
}
g_free(nodename);
}
}
static void fdt_add_its_gic_node(VirtMachineState *vms)
{
vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
qemu_fdt_add_subnode(vms->fdt, "/intc/its");
qemu_fdt_setprop_string(vms->fdt, "/intc/its", "compatible",
"arm,gic-v3-its");
qemu_fdt_setprop(vms->fdt, "/intc/its", "msi-controller", NULL, 0);
qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/its", "reg",
2, vms->memmap[VIRT_GIC_ITS].base,
2, vms->memmap[VIRT_GIC_ITS].size);
qemu_fdt_setprop_cell(vms->fdt, "/intc/its", "phandle", vms->msi_phandle);
}
static void fdt_add_v2m_gic_node(VirtMachineState *vms)
{
vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
qemu_fdt_add_subnode(vms->fdt, "/intc/v2m");
qemu_fdt_setprop_string(vms->fdt, "/intc/v2m", "compatible",
"arm,gic-v2m-frame");
qemu_fdt_setprop(vms->fdt, "/intc/v2m", "msi-controller", NULL, 0);
qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/v2m", "reg",
2, vms->memmap[VIRT_GIC_V2M].base,
2, vms->memmap[VIRT_GIC_V2M].size);
qemu_fdt_setprop_cell(vms->fdt, "/intc/v2m", "phandle", vms->msi_phandle);
}
static void fdt_add_gic_node(VirtMachineState *vms)
{
vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
qemu_fdt_add_subnode(vms->fdt, "/intc");
qemu_fdt_setprop_cell(vms->fdt, "/intc", "#interrupt-cells", 3);
qemu_fdt_setprop(vms->fdt, "/intc", "interrupt-controller", NULL, 0);
qemu_fdt_setprop_cell(vms->fdt, "/intc", "#address-cells", 0x2);
qemu_fdt_setprop_cell(vms->fdt, "/intc", "#size-cells", 0x2);
qemu_fdt_setprop(vms->fdt, "/intc", "ranges", NULL, 0);
if (vms->gic_version == 3) {
qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
"arm,gic-v3");
qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
2, vms->memmap[VIRT_GIC_DIST].base,
2, vms->memmap[VIRT_GIC_DIST].size,
2, vms->memmap[VIRT_GIC_REDIST].base,
2, vms->memmap[VIRT_GIC_REDIST].size);
} else {
/* 'cortex-a15-gic' means 'GIC v2' */
qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
"arm,cortex-a15-gic");
qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
2, vms->memmap[VIRT_GIC_DIST].base,
2, vms->memmap[VIRT_GIC_DIST].size,
2, vms->memmap[VIRT_GIC_CPU].base,
2, vms->memmap[VIRT_GIC_CPU].size);
}
qemu_fdt_setprop_cell(vms->fdt, "/intc", "phandle", vms->gic_phandle);
}
static void fdt_add_pmu_nodes(const VirtMachineState *vms)
{
CPUState *cpu;
ARMCPU *armcpu;
uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
CPU_FOREACH(cpu) {
armcpu = ARM_CPU(cpu);
if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU) ||
!kvm_arm_pmu_create(cpu, PPI(VIRTUAL_PMU_IRQ))) {
return;
}
}
if (vms->gic_version == 2) {
irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
GIC_FDT_IRQ_PPI_CPU_WIDTH,
(1 << vms->smp_cpus) - 1);
}
armcpu = ARM_CPU(qemu_get_cpu(0));
qemu_fdt_add_subnode(vms->fdt, "/pmu");
if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
const char compat[] = "arm,armv8-pmuv3";
qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
compat, sizeof(compat));
qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
}
}
static void create_its(VirtMachineState *vms, DeviceState *gicdev)
{
const char *itsclass = its_class_name();
DeviceState *dev;
if (!itsclass) {
/* Do nothing if not supported */
return;
}
dev = qdev_create(NULL, itsclass);
object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
&error_abort);
qdev_init_nofail(dev);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
fdt_add_its_gic_node(vms);
}
static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
{
int i;
int irq = vms->irqmap[VIRT_GIC_V2M];
DeviceState *dev;
dev = qdev_create(NULL, "arm-gicv2m");
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
qdev_prop_set_uint32(dev, "base-spi", irq);
qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
qdev_init_nofail(dev);
for (i = 0; i < NUM_GICV2M_SPIS; i++) {
sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
}
fdt_add_v2m_gic_node(vms);
}
static void create_gic(VirtMachineState *vms, qemu_irq *pic)
{
/* We create a standalone GIC */
VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
DeviceState *gicdev;
SysBusDevice *gicbusdev;
const char *gictype;
int type = vms->gic_version, i;
gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
gicdev = qdev_create(NULL, gictype);
qdev_prop_set_uint32(gicdev, "revision", type);
qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
/* Note that the num-irq property counts both internal and external
* interrupts; there are always 32 of the former (mandated by GIC spec).
*/
qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
if (!kvm_irqchip_in_kernel()) {
qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
}
qdev_init_nofail(gicdev);
gicbusdev = SYS_BUS_DEVICE(gicdev);
sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
if (type == 3) {
sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
} else {
sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
}
/* Wire the outputs from each CPU's generic timer to the
* appropriate GIC PPI inputs, and the GIC's IRQ output to
* the CPU's IRQ input.
*/
for (i = 0; i < smp_cpus; i++) {
DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
int irq;
/* Mapping from the output timer irq lines from the CPU to the
* GIC PPI inputs we use for the virt board.
*/
const int timer_irq[] = {
[GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
[GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
[GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
[GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
};
for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
qdev_connect_gpio_out(cpudev, irq,
qdev_get_gpio_in(gicdev,
ppibase + timer_irq[irq]));
}
sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
sysbus_connect_irq(gicbusdev, i + smp_cpus,
qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
}
for (i = 0; i < NUM_IRQS; i++) {
pic[i] = qdev_get_gpio_in(gicdev, i);
}
fdt_add_gic_node(vms);
if (type == 3 && !vmc->no_its) {
create_its(vms, gicdev);
} else if (type == 2) {
create_v2m(vms, pic);
}
}
static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
MemoryRegion *mem, CharDriverState *chr)
{
char *nodename;
hwaddr base = vms->memmap[uart].base;
hwaddr size = vms->memmap[uart].size;
int irq = vms->irqmap[uart];
const char compat[] = "arm,pl011\0arm,primecell";
const char clocknames[] = "uartclk\0apb_pclk";
DeviceState *dev = qdev_create(NULL, "pl011");
SysBusDevice *s = SYS_BUS_DEVICE(dev);
qdev_prop_set_chr(dev, "chardev", chr);
qdev_init_nofail(dev);
memory_region_add_subregion(mem, base,
sysbus_mmio_get_region(s, 0));
sysbus_connect_irq(s, 0, pic[irq]);
nodename = g_strdup_printf("/pl011@%" PRIx64, base);
qemu_fdt_add_subnode(vms->fdt, nodename);
/* Note that we can't use setprop_string because of the embedded NUL */
qemu_fdt_setprop(vms->fdt, nodename, "compatible",
compat, sizeof(compat));
qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
2, base, 2, size);
qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
GIC_FDT_IRQ_TYPE_SPI, irq,
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
vms->clock_phandle, vms->clock_phandle);
qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
clocknames, sizeof(clocknames));
if (uart == VIRT_UART) {
qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
} else {
/* Mark as not usable by the normal world */
qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
}
g_free(nodename);
}
static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
{
char *nodename;
hwaddr base = vms->memmap[VIRT_RTC].base;
hwaddr size = vms->memmap[VIRT_RTC].size;
int irq = vms->irqmap[VIRT_RTC];
const char compat[] = "arm,pl031\0arm,primecell";
sysbus_create_simple("pl031", base, pic[irq]);
nodename = g_strdup_printf("/pl031@%" PRIx64, base);
qemu_fdt_add_subnode(vms->fdt, nodename);
qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
2, base, 2, size);
qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
GIC_FDT_IRQ_TYPE_SPI, irq,
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
g_free(nodename);
}
static DeviceState *gpio_key_dev;
static void virt_powerdown_req(Notifier *n, void *opaque)
{
/* use gpio Pin 3 for power button event */
qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
}
static Notifier virt_system_powerdown_notifier = {
.notify = virt_powerdown_req
};
static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
{
char *nodename;
DeviceState *pl061_dev;
hwaddr base = vms->memmap[VIRT_GPIO].base;
hwaddr size = vms->memmap[VIRT_GPIO].size;
int irq = vms->irqmap[VIRT_GPIO];
const char compat[] = "arm,pl061\0arm,primecell";
pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
nodename = g_strdup_printf("/pl061@%" PRIx64, base);
qemu_fdt_add_subnode(vms->fdt, nodename);
qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
2, base, 2, size);
qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
GIC_FDT_IRQ_TYPE_SPI, irq,
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
gpio_key_dev = sysbus_create_simple("gpio-key", -1,
qdev_get_gpio_in(pl061_dev, 3));
qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
"label", "GPIO Key Poweroff");
qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
KEY_POWER);
qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
"gpios", phandle, 3, 0);
/* connect powerdown request */
qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
g_free(nodename);
}
static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
{
int i;
hwaddr size = vms->memmap[VIRT_MMIO].size;
/* We create the transports in forwards order. Since qbus_realize()
* prepends (not appends) new child buses, the incrementing loop below will
* create a list of virtio-mmio buses with decreasing base addresses.
*
* When a -device option is processed from the command line,
* qbus_find_recursive() picks the next free virtio-mmio bus in forwards
* order. The upshot is that -device options in increasing command line
* order are mapped to virtio-mmio buses with decreasing base addresses.
*
* When this code was originally written, that arrangement ensured that the
* guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
* the first -device on the command line. (The end-to-end order is a
* function of this loop, qbus_realize(), qbus_find_recursive(), and the
* guest kernel's name-to-address assignment strategy.)
*
* Meanwhile, the kernel's traversal seems to have been reversed; see eg.
* the message, if not necessarily the code, of commit 70161ff336.
* Therefore the loop now establishes the inverse of the original intent.
*
* Unfortunately, we can't counteract the kernel change by reversing the
* loop; it would break existing command lines.
*
* In any case, the kernel makes no guarantee about the stability of
* enumeration order of virtio devices (as demonstrated by it changing
* between kernel versions). For reliable and stable identification
* of disks users must use UUIDs or similar mechanisms.
*/
for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
int irq = vms->irqmap[VIRT_MMIO] + i;
hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
sysbus_create_simple("virtio-mmio", base, pic[irq]);
}
/* We add dtb nodes in reverse order so that they appear in the finished
* device tree lowest address first.
*
* Note that this mapping is independent of the loop above. The previous
* loop influences virtio device to virtio transport assignment, whereas
* this loop controls how virtio transports are laid out in the dtb.
*/
for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
char *nodename;
int irq = vms->irqmap[VIRT_MMIO] + i;
hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
qemu_fdt_add_subnode(vms->fdt, nodename);
qemu_fdt_setprop_string(vms->fdt, nodename,
"compatible", "virtio,mmio");
qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
2, base, 2, size);
qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
GIC_FDT_IRQ_TYPE_SPI, irq,
GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
g_free(nodename);
}
}
static void create_one_flash(const char *name, hwaddr flashbase,
hwaddr flashsize, const char *file,
MemoryRegion *sysmem)
{
/* Create and map a single flash device. We use the same
* parameters as the flash devices on the Versatile Express board.
*/
DriveInfo *dinfo = drive_get_next(IF_PFLASH);
DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
const uint64_t sectorlength = 256 * 1024;
if (dinfo) {
qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
&error_abort);
}
qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
qdev_prop_set_uint64(dev, "sector-length", sectorlength);
qdev_prop_set_uint8(dev, "width", 4);
qdev_prop_set_uint8(dev, "device-width", 2);
qdev_prop_set_bit(dev, "big-endian", false);
qdev_prop_set_uint16(dev, "id0", 0x89);
qdev_prop_set_uint16(dev, "id1", 0x18);
qdev_prop_set_uint16(dev, "id2", 0x00);
qdev_prop_set_uint16(dev, "id3", 0x00);
qdev_prop_set_string(dev, "name", name);
qdev_init_nofail(dev);
memory_region_add_subregion(sysmem, flashbase,
sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
if (file) {
char *fn;
int image_size;
if (drive_get(IF_PFLASH, 0, 0)) {
error_report("The contents of the first flash device may be "
"specified with -bios or with -drive if=pflash... "
"but you cannot use both options at once");
exit(1);
}
fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
if (!fn) {
error_report("Could not find ROM image '%s'", file);
exit(1);
}
image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
g_free(fn);
if (image_size < 0) {
error_report("Could not load ROM image '%s'", file);
exit(1);
}
}
}
static void create_flash(const VirtMachineState *vms,
MemoryRegion *sysmem,
MemoryRegion *secure_sysmem)
{
/* Create two flash devices to fill the VIRT_FLASH space in the memmap.
* Any file passed via -bios goes in the first of these.
* sysmem is the system memory space. secure_sysmem is the secure view
* of the system, and the first flash device should be made visible only
* there. The second flash device is visible to both secure and nonsecure.
* If sysmem == secure_sysmem this means there is no separate Secure
* address space and both flash devices are generally visible.
*/
hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
char *nodename;
create_one_flash("virt.flash0", flashbase, flashsize,
bios_name, secure_sysmem);
create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
NULL, sysmem);
if (sysmem == secure_sysmem) {
/* Report both flash devices as a single node in the DT */
nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
qemu_fdt_add_subnode(vms->fdt, nodename);
qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
2, flashbase, 2, flashsize,
2, flashbase + flashsize, 2, flashsize);
qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
g_free(nodename);
} else {
/* Report the devices as separate nodes so we can mark one as
* only visible to the secure world.
*/
nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
qemu_fdt_add_subnode(vms->fdt, nodename);
qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
2, flashbase, 2, flashsize);
qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
g_free(nodename);
nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
qemu_fdt_add_subnode(vms->fdt, nodename);
qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
2, flashbase + flashsize, 2, flashsize);
qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
g_free(nodename);
}
}
static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
{
hwaddr base = vms->memmap[VIRT_FW_CFG].base;
hwaddr size = vms->memmap[VIRT_FW_CFG].size;
FWCfgState *fw_cfg;
char *nodename;
fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
qemu_fdt_add_subnode(vms->fdt, nodename);
qemu_fdt_setprop_string(vms->fdt, nodename,
"compatible", "qemu,fw-cfg-mmio");
qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
2, base, 2, size);
g_free(nodename);
return fw_cfg;
}
static void create_pcie_irq_map(const VirtMachineState *vms,
uint32_t gic_phandle,
int first_irq, const char *nodename)
{
int devfn, pin;
uint32_t full_irq_map[4 * 4 * 10] = { 0 };
uint32_t *irq_map = full_irq_map;
for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
for (pin = 0; pin < 4; pin++) {
int irq_type = GIC_FDT_IRQ_TYPE_SPI;
int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
int i;
uint32_t map[] = {
devfn << 8, 0, 0, /* devfn */
pin + 1, /* PCI pin */
gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
/* Convert map to big endian */
for (i = 0; i < 10; i++) {
irq_map[i] = cpu_to_be32(map[i]);
}
irq_map += 10;
}
}
qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
full_irq_map, sizeof(full_irq_map));
qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
0x7 /* PCI irq */);
}
static void create_pcie(const VirtMachineState *vms, qemu_irq *pic)
{
hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
hwaddr base_ecam = vms->memmap[VIRT_PCIE_ECAM].base;
hwaddr size_ecam = vms->memmap[VIRT_PCIE_ECAM].size;
hwaddr base = base_mmio;
int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
int irq = vms->irqmap[VIRT_PCIE];
MemoryRegion *mmio_alias;
MemoryRegion *mmio_reg;
MemoryRegion *ecam_alias;
MemoryRegion *ecam_reg;
DeviceState *dev;
char *nodename;
int i;
PCIHostState *pci;
dev = qdev_create(NULL, TYPE_GPEX_HOST);
qdev_init_nofail(dev);
/* Map only the first size_ecam bytes of ECAM space */
ecam_alias = g_new0(MemoryRegion, 1);
ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
ecam_reg, 0, size_ecam);
memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
/* Map the MMIO window into system address space so as to expose
* the section of PCI MMIO space which starts at the same base address
* (ie 1:1 mapping for that part of PCI MMIO space visible through
* the window).
*/
mmio_alias = g_new0(MemoryRegion, 1);
mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
mmio_reg, base_mmio, size_mmio);
memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
if (vms->highmem) {
/* Map high MMIO space */
MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
mmio_reg, base_mmio_high, size_mmio_high);
memory_region_add_subregion(get_system_memory(), base_mmio_high,
high_mmio_alias);
}
/* Map IO port space */
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
for (i = 0; i < GPEX_NUM_IRQS; i++) {
sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
}
pci = PCI_HOST_BRIDGE(dev);
if (pci->bus) {
for (i = 0; i < nb_nics; i++) {
NICInfo *nd = &nd_table[i];
if (!nd->model) {
nd->model = g_strdup("virtio");
}
pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
}
}
nodename = g_strdup_printf("/pcie@%" PRIx64, base);
qemu_fdt_add_subnode(vms->fdt, nodename);
qemu_fdt_setprop_string(vms->fdt, nodename,
"compatible", "pci-host-ecam-generic");
qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
nr_pcie_buses - 1);
qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
if (vms->msi_phandle) {
qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
vms->msi_phandle);
}
qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
2, base_ecam, 2, size_ecam);
if (vms->highmem) {
qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1, FDT_PCI_RANGE_IOPORT, 2, 0,
2, base_pio, 2, size_pio,
1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
2, base_mmio, 2, size_mmio,
1, FDT_PCI_RANGE_MMIO_64BIT,
2, base_mmio_high,
2, base_mmio_high, 2, size_mmio_high);
} else {
qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1, FDT_PCI_RANGE_IOPORT, 2, 0,
2, base_pio, 2, size_pio,
1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
2, base_mmio, 2, size_mmio);
}
qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
g_free(nodename);
}
static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
{
DeviceState *dev;
SysBusDevice *s;
int i;
ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
MemoryRegion *sysmem = get_system_memory();
platform_bus_params.platform_bus_base = vms->memmap[VIRT_PLATFORM_BUS].base;
platform_bus_params.platform_bus_size = vms->memmap[VIRT_PLATFORM_BUS].size;
platform_bus_params.platform_bus_first_irq = vms->irqmap[VIRT_PLATFORM_BUS];
platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
fdt_params->system_params = &platform_bus_params;
fdt_params->binfo = &vms->bootinfo;
fdt_params->intc = "/intc";
/*
* register a machine init done notifier that creates the device tree
* nodes of the platform bus and its children dynamic sysbus devices
*/
arm_register_platform_bus_fdt_creator(fdt_params);
dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
dev->id = TYPE_PLATFORM_BUS_DEVICE;
qdev_prop_set_uint32(dev, "num_irqs",
platform_bus_params.platform_bus_num_irqs);
qdev_prop_set_uint32(dev, "mmio_size",
platform_bus_params.platform_bus_size);
qdev_init_nofail(dev);
s = SYS_BUS_DEVICE(dev);
for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
int irqn = platform_bus_params.platform_bus_first_irq + i;
sysbus_connect_irq(s, i, pic[irqn]);
}
memory_region_add_subregion(sysmem,
platform_bus_params.platform_bus_base,
sysbus_mmio_get_region(s, 0));
}
static void create_secure_ram(VirtMachineState *vms,
MemoryRegion *secure_sysmem)
{
MemoryRegion *secram = g_new(MemoryRegion, 1);
char *nodename;
hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal);
vmstate_register_ram_global(secram);
memory_region_add_subregion(secure_sysmem, base, secram);
nodename = g_strdup_printf("/secram@%" PRIx64, base);
qemu_fdt_add_subnode(vms->fdt, nodename);
qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
g_free(nodename);
}
static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
{
const VirtMachineState *board = container_of(binfo, VirtMachineState,
bootinfo);
*fdt_size = board->fdt_size;
return board->fdt;
}
static void virt_build_smbios(VirtMachineState *vms)
{
uint8_t *smbios_tables, *smbios_anchor;
size_t smbios_tables_len, smbios_anchor_len;
const char *product = "QEMU Virtual Machine";
if (!vms->fw_cfg) {
return;
}
if (kvm_enabled()) {
product = "KVM Virtual Machine";
}
smbios_set_defaults("QEMU", product,
"1.0", false, true, SMBIOS_ENTRY_POINT_30);
smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
&smbios_anchor, &smbios_anchor_len);
if (smbios_anchor) {
fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
smbios_tables, smbios_tables_len);
fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
smbios_anchor, smbios_anchor_len);
}
}
static
void virt_machine_done(Notifier *notifier, void *data)
{
VirtMachineState *vms = container_of(notifier, VirtMachineState,
machine_done);
virt_acpi_setup(vms);
virt_build_smbios(vms);
}
static void machvirt_init(MachineState *machine)
{
VirtMachineState *vms = VIRT_MACHINE(machine);
VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
qemu_irq pic[NUM_IRQS];
MemoryRegion *sysmem = get_system_memory();
MemoryRegion *secure_sysmem = NULL;
int n, virt_max_cpus;
MemoryRegion *ram = g_new(MemoryRegion, 1);
const char *cpu_model = machine->cpu_model;
char **cpustr;
ObjectClass *oc;
const char *typename;
CPUClass *cc;
Error *err = NULL;
bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
uint8_t clustersz;
if (!cpu_model) {
cpu_model = "cortex-a15";
}
/* We can probe only here because during property set
* KVM is not available yet
*/
if (!vms->gic_version) {
if (!kvm_enabled()) {
error_report("gic-version=host requires KVM");
exit(1);
}
vms->gic_version = kvm_arm_vgic_probe();
if (!vms->gic_version) {
error_report("Unable to determine GIC version supported by host");
exit(1);
}
}
/* Separate the actual CPU model name from any appended features */
cpustr = g_strsplit(cpu_model, ",", 2);
if (!cpuname_valid(cpustr[0])) {
error_report("mach-virt: CPU %s not supported", cpustr[0]);
exit(1);
}
/* If we have an EL3 boot ROM then the assumption is that it will
* implement PSCI itself, so disable QEMU's internal implementation
* so it doesn't get in the way. Instead of starting secondary
* CPUs in PSCI powerdown state we will start them all running and
* let the boot ROM sort them out.
* The usual case is that we do use QEMU's PSCI implementation.
*/
vms->using_psci = !(vms->secure && firmware_loaded);
/* The maximum number of CPUs depends on the GIC version, or on how
* many redistributors we can fit into the memory map.
*/
if (vms->gic_version == 3) {
virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / 0x20000;
clustersz = GICV3_TARGETLIST_BITS;
} else {
virt_max_cpus = GIC_NCPU;
clustersz = GIC_TARGETLIST_BITS;
}
if (max_cpus > virt_max_cpus) {
error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
"supported by machine 'mach-virt' (%d)",
max_cpus, virt_max_cpus);
exit(1);
}
vms->smp_cpus = smp_cpus;
if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
exit(1);
}
if (vms->secure) {
if (kvm_enabled()) {
error_report("mach-virt: KVM does not support Security extensions");
exit(1);
}
/* The Secure view of the world is the same as the NonSecure,
* but with a few extra devices. Create it as a container region
* containing the system memory at low priority; any secure-only
* devices go in at higher priority and take precedence.
*/
secure_sysmem = g_new(MemoryRegion, 1);
memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
UINT64_MAX);
memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
}
create_fdt(vms);
oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
if (!oc) {
error_report("Unable to find CPU definition");
exit(1);
}
typename = object_class_get_name(oc);
/* convert -smp CPU options specified by the user into global props */
cc = CPU_CLASS(oc);
cc->parse_features(typename, cpustr[1], &err);
g_strfreev(cpustr);
if (err) {
error_report_err(err);
exit(1);
}
for (n = 0; n < smp_cpus; n++) {
Object *cpuobj = object_new(typename);
if (!vmc->disallow_affinity_adjustment) {
/* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
* GIC's target-list limitations. 32-bit KVM hosts currently
* always create clusters of 4 CPUs, but that is expected to
* change when they gain support for gicv3. When KVM is enabled
* it will override the changes we make here, therefore our
* purposes are to make TCG consistent (with 64-bit KVM hosts)
* and to improve SGI efficiency.
*/
uint8_t aff1 = n / clustersz;
uint8_t aff0 = n % clustersz;
object_property_set_int(cpuobj, (aff1 << ARM_AFF1_SHIFT) | aff0,
"mp-affinity", NULL);
}
if (!vms->secure) {
object_property_set_bool(cpuobj, false, "has_el3", NULL);
}
if (vms->using_psci) {
object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC,
"psci-conduit", NULL);
/* Secondary CPUs start in PSCI powered-down state */
if (n > 0) {
object_property_set_bool(cpuobj, true,
"start-powered-off", NULL);
}
}
if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
object_property_set_bool(cpuobj, false, "pmu", NULL);
}
if (object_property_find(cpuobj, "reset-cbar", NULL)) {
object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
"reset-cbar", &error_abort);
}
object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
&error_abort);
if (vms->secure) {
object_property_set_link(cpuobj, OBJECT(secure_sysmem),
"secure-memory", &error_abort);
}
object_property_set_bool(cpuobj, true, "realized", NULL);
}
fdt_add_timer_nodes(vms);
fdt_add_cpu_nodes(vms);
fdt_add_psci_node(vms);
memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
machine->ram_size);
memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
create_gic(vms, pic);
fdt_add_pmu_nodes(vms);
create_uart(vms, pic, VIRT_UART, sysmem, serial_hds[0]);
if (vms->secure) {
create_secure_ram(vms, secure_sysmem);
create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]);
}
create_rtc(vms, pic);
create_pcie(vms, pic);
create_gpio(vms, pic);
/* Create mmio transports, so the user can create virtio backends
* (which will be automatically plugged in to the transports). If
* no backend is created the transport will just sit harmlessly idle.
*/
create_virtio_devices(vms, pic);
vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
rom_set_fw(vms->fw_cfg);
vms->machine_done.notify = virt_machine_done;
qemu_add_machine_init_done_notifier(&vms->machine_done);
vms->bootinfo.ram_size = machine->ram_size;
vms->bootinfo.kernel_filename = machine->kernel_filename;
vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
vms->bootinfo.initrd_filename = machine->initrd_filename;
vms->bootinfo.nb_cpus = smp_cpus;
vms->bootinfo.board_id = -1;
vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
vms->bootinfo.get_dtb = machvirt_dtb;
vms->bootinfo.firmware_loaded = firmware_loaded;
arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
/*
* arm_load_kernel machine init done notifier registration must
* happen before the platform_bus_create call. In this latter,
* another notifier is registered which adds platform bus nodes.
* Notifiers are executed in registration reverse order.
*/
create_platform_bus(vms, pic);
}
static bool virt_get_secure(Object *obj, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
return vms->secure;
}
static void virt_set_secure(Object *obj, bool value, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
vms->secure = value;
}
static bool virt_get_highmem(Object *obj, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
return vms->highmem;
}
static void virt_set_highmem(Object *obj, bool value, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
vms->highmem = value;
}
static char *virt_get_gic_version(Object *obj, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
const char *val = vms->gic_version == 3 ? "3" : "2";
return g_strdup(val);
}
static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
if (!strcmp(value, "3")) {
vms->gic_version = 3;
} else if (!strcmp(value, "2")) {
vms->gic_version = 2;
} else if (!strcmp(value, "host")) {
vms->gic_version = 0; /* Will probe later */
} else {
error_setg(errp, "Invalid gic-version value");
error_append_hint(errp, "Valid values are 3, 2, host.\n");
}
}
static void virt_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->init = machvirt_init;
/* Start max_cpus at the maximum QEMU supports. We'll further restrict
* it later in machvirt_init, where we have more information about the
* configuration of the particular instance.
*/
mc->max_cpus = 255;
mc->has_dynamic_sysbus = true;
mc->block_default_type = IF_VIRTIO;
mc->no_cdrom = 1;
mc->pci_allow_0_address = true;
/* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
mc->minimum_page_bits = 12;
}
static const TypeInfo virt_machine_info = {
.name = TYPE_VIRT_MACHINE,
.parent = TYPE_MACHINE,
.abstract = true,
.instance_size = sizeof(VirtMachineState),
.class_size = sizeof(VirtMachineClass),
.class_init = virt_machine_class_init,
};
static void machvirt_machine_init(void)
{
type_register_static(&virt_machine_info);
}
type_init(machvirt_machine_init);
static void virt_2_9_instance_init(Object *obj)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
/* EL3 is disabled by default on virt: this makes us consistent
* between KVM and TCG for this board, and it also allows us to
* boot UEFI blobs which assume no TrustZone support.
*/
vms->secure = false;
object_property_add_bool(obj, "secure", virt_get_secure,
virt_set_secure, NULL);
object_property_set_description(obj, "secure",
"Set on/off to enable/disable the ARM "
"Security Extensions (TrustZone)",
NULL);
/* High memory is enabled by default */
vms->highmem = true;
object_property_add_bool(obj, "highmem", virt_get_highmem,
virt_set_highmem, NULL);
object_property_set_description(obj, "highmem",
"Set on/off to enable/disable using "
"physical address space above 32 bits",
NULL);
/* Default GIC type is v2 */
vms->gic_version = 2;
object_property_add_str(obj, "gic-version", virt_get_gic_version,
virt_set_gic_version, NULL);
object_property_set_description(obj, "gic-version",
"Set GIC version. "
"Valid values are 2, 3 and host", NULL);
vms->memmap = a15memmap;
vms->irqmap = a15irqmap;
}
static void virt_machine_2_9_options(MachineClass *mc)
{
}
DEFINE_VIRT_MACHINE_AS_LATEST(2, 9)
#define VIRT_COMPAT_2_8 \
HW_COMPAT_2_8
static void virt_2_8_instance_init(Object *obj)
{
virt_2_9_instance_init(obj);
}
static void virt_machine_2_8_options(MachineClass *mc)
{
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
virt_machine_2_9_options(mc);
SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8);
/* For 2.8 and earlier we falsely claimed in the DT that
* our timers were edge-triggered, not level-triggered.
*/
vmc->claim_edge_triggered_timers = true;
}
DEFINE_VIRT_MACHINE(2, 8)
#define VIRT_COMPAT_2_7 \
HW_COMPAT_2_7
static void virt_2_7_instance_init(Object *obj)
{
virt_2_8_instance_init(obj);
}
static void virt_machine_2_7_options(MachineClass *mc)
{
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
virt_machine_2_8_options(mc);
SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
/* ITS was introduced with 2.8 */
vmc->no_its = true;
/* Stick with 1K pages for migration compatibility */
mc->minimum_page_bits = 0;
}
DEFINE_VIRT_MACHINE(2, 7)
#define VIRT_COMPAT_2_6 \
HW_COMPAT_2_6
static void virt_2_6_instance_init(Object *obj)
{
virt_2_7_instance_init(obj);
}
static void virt_machine_2_6_options(MachineClass *mc)
{
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
virt_machine_2_7_options(mc);
SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
vmc->disallow_affinity_adjustment = true;
/* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
vmc->no_pmu = true;
}
DEFINE_VIRT_MACHINE(2, 6)