| /* |
| * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator |
| * |
| * Copyright (c) 2004-2007 Fabrice Bellard |
| * Copyright (c) 2007 Jocelyn Mayer |
| * Copyright (c) 2010 David Gibson, IBM Corporation. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| * |
| */ |
| #include "qemu/osdep.h" |
| #include "qapi/error.h" |
| #include "qapi/visitor.h" |
| #include "sysemu/sysemu.h" |
| #include "sysemu/numa.h" |
| #include "hw/hw.h" |
| #include "qemu/log.h" |
| #include "hw/fw-path-provider.h" |
| #include "elf.h" |
| #include "net/net.h" |
| #include "sysemu/device_tree.h" |
| #include "sysemu/cpus.h" |
| #include "sysemu/hw_accel.h" |
| #include "kvm_ppc.h" |
| #include "migration/misc.h" |
| #include "migration/global_state.h" |
| #include "migration/register.h" |
| #include "mmu-hash64.h" |
| #include "mmu-book3s-v3.h" |
| #include "cpu-models.h" |
| #include "qom/cpu.h" |
| |
| #include "hw/boards.h" |
| #include "hw/ppc/ppc.h" |
| #include "hw/loader.h" |
| |
| #include "hw/ppc/fdt.h" |
| #include "hw/ppc/spapr.h" |
| #include "hw/ppc/spapr_vio.h" |
| #include "hw/pci-host/spapr.h" |
| #include "hw/pci/msi.h" |
| |
| #include "hw/pci/pci.h" |
| #include "hw/scsi/scsi.h" |
| #include "hw/virtio/virtio-scsi.h" |
| #include "hw/virtio/vhost-scsi-common.h" |
| |
| #include "exec/address-spaces.h" |
| #include "exec/ram_addr.h" |
| #include "hw/usb.h" |
| #include "qemu/config-file.h" |
| #include "qemu/error-report.h" |
| #include "trace.h" |
| #include "hw/nmi.h" |
| #include "hw/intc/intc.h" |
| |
| #include "qemu/cutils.h" |
| #include "hw/ppc/spapr_cpu_core.h" |
| #include "hw/mem/memory-device.h" |
| |
| #include <libfdt.h> |
| |
| /* SLOF memory layout: |
| * |
| * SLOF raw image loaded at 0, copies its romfs right below the flat |
| * device-tree, then position SLOF itself 31M below that |
| * |
| * So we set FW_OVERHEAD to 40MB which should account for all of that |
| * and more |
| * |
| * We load our kernel at 4M, leaving space for SLOF initial image |
| */ |
| #define FDT_MAX_SIZE 0x100000 |
| #define RTAS_MAX_SIZE 0x10000 |
| #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ |
| #define FW_MAX_SIZE 0x400000 |
| #define FW_FILE_NAME "slof.bin" |
| #define FW_OVERHEAD 0x2800000 |
| #define KERNEL_LOAD_ADDR FW_MAX_SIZE |
| |
| #define MIN_RMA_SLOF 128UL |
| |
| #define PHANDLE_INTC 0x00001111 |
| |
| /* These two functions implement the VCPU id numbering: one to compute them |
| * all and one to identify thread 0 of a VCORE. Any change to the first one |
| * is likely to have an impact on the second one, so let's keep them close. |
| */ |
| static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index) |
| { |
| assert(spapr->vsmt); |
| return |
| (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; |
| } |
| static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr, |
| PowerPCCPU *cpu) |
| { |
| assert(spapr->vsmt); |
| return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; |
| } |
| |
| static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) |
| { |
| /* Dummy entries correspond to unused ICPState objects in older QEMUs, |
| * and newer QEMUs don't even have them. In both cases, we don't want |
| * to send anything on the wire. |
| */ |
| return false; |
| } |
| |
| static const VMStateDescription pre_2_10_vmstate_dummy_icp = { |
| .name = "icp/server", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .needed = pre_2_10_vmstate_dummy_icp_needed, |
| .fields = (VMStateField[]) { |
| VMSTATE_UNUSED(4), /* uint32_t xirr */ |
| VMSTATE_UNUSED(1), /* uint8_t pending_priority */ |
| VMSTATE_UNUSED(1), /* uint8_t mfrr */ |
| VMSTATE_END_OF_LIST() |
| }, |
| }; |
| |
| static void pre_2_10_vmstate_register_dummy_icp(int i) |
| { |
| vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, |
| (void *)(uintptr_t) i); |
| } |
| |
| static void pre_2_10_vmstate_unregister_dummy_icp(int i) |
| { |
| vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, |
| (void *)(uintptr_t) i); |
| } |
| |
| int spapr_max_server_number(sPAPRMachineState *spapr) |
| { |
| assert(spapr->vsmt); |
| return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads); |
| } |
| |
| static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, |
| int smt_threads) |
| { |
| int i, ret = 0; |
| uint32_t servers_prop[smt_threads]; |
| uint32_t gservers_prop[smt_threads * 2]; |
| int index = spapr_get_vcpu_id(cpu); |
| |
| if (cpu->compat_pvr) { |
| ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); |
| if (ret < 0) { |
| return ret; |
| } |
| } |
| |
| /* Build interrupt servers and gservers properties */ |
| for (i = 0; i < smt_threads; i++) { |
| servers_prop[i] = cpu_to_be32(index + i); |
| /* Hack, direct the group queues back to cpu 0 */ |
| gservers_prop[i*2] = cpu_to_be32(index + i); |
| gservers_prop[i*2 + 1] = 0; |
| } |
| ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", |
| servers_prop, sizeof(servers_prop)); |
| if (ret < 0) { |
| return ret; |
| } |
| ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", |
| gservers_prop, sizeof(gservers_prop)); |
| |
| return ret; |
| } |
| |
| static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu) |
| { |
| int index = spapr_get_vcpu_id(cpu); |
| uint32_t associativity[] = {cpu_to_be32(0x5), |
| cpu_to_be32(0x0), |
| cpu_to_be32(0x0), |
| cpu_to_be32(0x0), |
| cpu_to_be32(cpu->node_id), |
| cpu_to_be32(index)}; |
| |
| /* Advertise NUMA via ibm,associativity */ |
| return fdt_setprop(fdt, offset, "ibm,associativity", associativity, |
| sizeof(associativity)); |
| } |
| |
| /* Populate the "ibm,pa-features" property */ |
| static void spapr_populate_pa_features(sPAPRMachineState *spapr, |
| PowerPCCPU *cpu, |
| void *fdt, int offset, |
| bool legacy_guest) |
| { |
| uint8_t pa_features_206[] = { 6, 0, |
| 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; |
| uint8_t pa_features_207[] = { 24, 0, |
| 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, |
| 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, |
| 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; |
| uint8_t pa_features_300[] = { 66, 0, |
| /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ |
| /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ |
| 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ |
| /* 6: DS207 */ |
| 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ |
| /* 16: Vector */ |
| 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ |
| /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ |
| 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ |
| /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ |
| 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ |
| /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ |
| 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ |
| /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ |
| 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ |
| /* 42: PM, 44: PC RA, 46: SC vec'd */ |
| 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ |
| /* 48: SIMD, 50: QP BFP, 52: String */ |
| 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ |
| /* 54: DecFP, 56: DecI, 58: SHA */ |
| 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ |
| /* 60: NM atomic, 62: RNG */ |
| 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ |
| }; |
| uint8_t *pa_features = NULL; |
| size_t pa_size; |
| |
| if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { |
| pa_features = pa_features_206; |
| pa_size = sizeof(pa_features_206); |
| } |
| if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { |
| pa_features = pa_features_207; |
| pa_size = sizeof(pa_features_207); |
| } |
| if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { |
| pa_features = pa_features_300; |
| pa_size = sizeof(pa_features_300); |
| } |
| if (!pa_features) { |
| return; |
| } |
| |
| if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { |
| /* |
| * Note: we keep CI large pages off by default because a 64K capable |
| * guest provisioned with large pages might otherwise try to map a qemu |
| * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages |
| * even if that qemu runs on a 4k host. |
| * We dd this bit back here if we are confident this is not an issue |
| */ |
| pa_features[3] |= 0x20; |
| } |
| if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { |
| pa_features[24] |= 0x80; /* Transactional memory support */ |
| } |
| if (legacy_guest && pa_size > 40) { |
| /* Workaround for broken kernels that attempt (guest) radix |
| * mode when they can't handle it, if they see the radix bit set |
| * in pa-features. So hide it from them. */ |
| pa_features[40 + 2] &= ~0x80; /* Radix MMU */ |
| } |
| |
| _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); |
| } |
| |
| static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr) |
| { |
| int ret = 0, offset, cpus_offset; |
| CPUState *cs; |
| char cpu_model[32]; |
| uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; |
| |
| CPU_FOREACH(cs) { |
| PowerPCCPU *cpu = POWERPC_CPU(cs); |
| DeviceClass *dc = DEVICE_GET_CLASS(cs); |
| int index = spapr_get_vcpu_id(cpu); |
| int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); |
| |
| if (!spapr_is_thread0_in_vcore(spapr, cpu)) { |
| continue; |
| } |
| |
| snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); |
| |
| cpus_offset = fdt_path_offset(fdt, "/cpus"); |
| if (cpus_offset < 0) { |
| cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); |
| if (cpus_offset < 0) { |
| return cpus_offset; |
| } |
| } |
| offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); |
| if (offset < 0) { |
| offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); |
| if (offset < 0) { |
| return offset; |
| } |
| } |
| |
| ret = fdt_setprop(fdt, offset, "ibm,pft-size", |
| pft_size_prop, sizeof(pft_size_prop)); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| if (nb_numa_nodes > 1) { |
| ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu); |
| if (ret < 0) { |
| return ret; |
| } |
| } |
| |
| ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| spapr_populate_pa_features(spapr, cpu, fdt, offset, |
| spapr->cas_legacy_guest_workaround); |
| } |
| return ret; |
| } |
| |
| static hwaddr spapr_node0_size(MachineState *machine) |
| { |
| if (nb_numa_nodes) { |
| int i; |
| for (i = 0; i < nb_numa_nodes; ++i) { |
| if (numa_info[i].node_mem) { |
| return MIN(pow2floor(numa_info[i].node_mem), |
| machine->ram_size); |
| } |
| } |
| } |
| return machine->ram_size; |
| } |
| |
| static void add_str(GString *s, const gchar *s1) |
| { |
| g_string_append_len(s, s1, strlen(s1) + 1); |
| } |
| |
| static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, |
| hwaddr size) |
| { |
| uint32_t associativity[] = { |
| cpu_to_be32(0x4), /* length */ |
| cpu_to_be32(0x0), cpu_to_be32(0x0), |
| cpu_to_be32(0x0), cpu_to_be32(nodeid) |
| }; |
| char mem_name[32]; |
| uint64_t mem_reg_property[2]; |
| int off; |
| |
| mem_reg_property[0] = cpu_to_be64(start); |
| mem_reg_property[1] = cpu_to_be64(size); |
| |
| sprintf(mem_name, "memory@" TARGET_FMT_lx, start); |
| off = fdt_add_subnode(fdt, 0, mem_name); |
| _FDT(off); |
| _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); |
| _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, |
| sizeof(mem_reg_property)))); |
| _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, |
| sizeof(associativity)))); |
| return off; |
| } |
| |
| static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt) |
| { |
| MachineState *machine = MACHINE(spapr); |
| hwaddr mem_start, node_size; |
| int i, nb_nodes = nb_numa_nodes; |
| NodeInfo *nodes = numa_info; |
| NodeInfo ramnode; |
| |
| /* No NUMA nodes, assume there is just one node with whole RAM */ |
| if (!nb_numa_nodes) { |
| nb_nodes = 1; |
| ramnode.node_mem = machine->ram_size; |
| nodes = &ramnode; |
| } |
| |
| for (i = 0, mem_start = 0; i < nb_nodes; ++i) { |
| if (!nodes[i].node_mem) { |
| continue; |
| } |
| if (mem_start >= machine->ram_size) { |
| node_size = 0; |
| } else { |
| node_size = nodes[i].node_mem; |
| if (node_size > machine->ram_size - mem_start) { |
| node_size = machine->ram_size - mem_start; |
| } |
| } |
| if (!mem_start) { |
| /* spapr_machine_init() checks for rma_size <= node0_size |
| * already */ |
| spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); |
| mem_start += spapr->rma_size; |
| node_size -= spapr->rma_size; |
| } |
| for ( ; node_size; ) { |
| hwaddr sizetmp = pow2floor(node_size); |
| |
| /* mem_start != 0 here */ |
| if (ctzl(mem_start) < ctzl(sizetmp)) { |
| sizetmp = 1ULL << ctzl(mem_start); |
| } |
| |
| spapr_populate_memory_node(fdt, i, mem_start, sizetmp); |
| node_size -= sizetmp; |
| mem_start += sizetmp; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, |
| sPAPRMachineState *spapr) |
| { |
| PowerPCCPU *cpu = POWERPC_CPU(cs); |
| CPUPPCState *env = &cpu->env; |
| PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); |
| int index = spapr_get_vcpu_id(cpu); |
| uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), |
| 0xffffffff, 0xffffffff}; |
| uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() |
| : SPAPR_TIMEBASE_FREQ; |
| uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; |
| uint32_t page_sizes_prop[64]; |
| size_t page_sizes_prop_size; |
| uint32_t vcpus_per_socket = smp_threads * smp_cores; |
| uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; |
| int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); |
| sPAPRDRConnector *drc; |
| int drc_index; |
| uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; |
| int i; |
| |
| drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); |
| if (drc) { |
| drc_index = spapr_drc_index(drc); |
| _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); |
| } |
| |
| _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); |
| _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); |
| |
| _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); |
| _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", |
| env->dcache_line_size))); |
| _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", |
| env->dcache_line_size))); |
| _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", |
| env->icache_line_size))); |
| _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", |
| env->icache_line_size))); |
| |
| if (pcc->l1_dcache_size) { |
| _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", |
| pcc->l1_dcache_size))); |
| } else { |
| warn_report("Unknown L1 dcache size for cpu"); |
| } |
| if (pcc->l1_icache_size) { |
| _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", |
| pcc->l1_icache_size))); |
| } else { |
| warn_report("Unknown L1 icache size for cpu"); |
| } |
| |
| _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); |
| _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); |
| _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); |
| _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); |
| _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); |
| _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); |
| |
| if (env->spr_cb[SPR_PURR].oea_read) { |
| _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); |
| } |
| |
| if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { |
| _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", |
| segs, sizeof(segs)))); |
| } |
| |
| /* Advertise VSX (vector extensions) if available |
| * 1 == VMX / Altivec available |
| * 2 == VSX available |
| * |
| * Only CPUs for which we create core types in spapr_cpu_core.c |
| * are possible, and all of those have VMX */ |
| if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { |
| _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); |
| } else { |
| _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); |
| } |
| |
| /* Advertise DFP (Decimal Floating Point) if available |
| * 0 / no property == no DFP |
| * 1 == DFP available */ |
| if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { |
| _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); |
| } |
| |
| page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, |
| sizeof(page_sizes_prop)); |
| if (page_sizes_prop_size) { |
| _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", |
| page_sizes_prop, page_sizes_prop_size))); |
| } |
| |
| spapr_populate_pa_features(spapr, cpu, fdt, offset, false); |
| |
| _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", |
| cs->cpu_index / vcpus_per_socket))); |
| |
| _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", |
| pft_size_prop, sizeof(pft_size_prop)))); |
| |
| if (nb_numa_nodes > 1) { |
| _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu)); |
| } |
| |
| _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); |
| |
| if (pcc->radix_page_info) { |
| for (i = 0; i < pcc->radix_page_info->count; i++) { |
| radix_AP_encodings[i] = |
| cpu_to_be32(pcc->radix_page_info->entries[i]); |
| } |
| _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", |
| radix_AP_encodings, |
| pcc->radix_page_info->count * |
| sizeof(radix_AP_encodings[0])))); |
| } |
| } |
| |
| static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr) |
| { |
| CPUState **rev; |
| CPUState *cs; |
| int n_cpus; |
| int cpus_offset; |
| char *nodename; |
| int i; |
| |
| cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); |
| _FDT(cpus_offset); |
| _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); |
| _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); |
| |
| /* |
| * We walk the CPUs in reverse order to ensure that CPU DT nodes |
| * created by fdt_add_subnode() end up in the right order in FDT |
| * for the guest kernel the enumerate the CPUs correctly. |
| * |
| * The CPU list cannot be traversed in reverse order, so we need |
| * to do extra work. |
| */ |
| n_cpus = 0; |
| rev = NULL; |
| CPU_FOREACH(cs) { |
| rev = g_renew(CPUState *, rev, n_cpus + 1); |
| rev[n_cpus++] = cs; |
| } |
| |
| for (i = n_cpus - 1; i >= 0; i--) { |
| CPUState *cs = rev[i]; |
| PowerPCCPU *cpu = POWERPC_CPU(cs); |
| int index = spapr_get_vcpu_id(cpu); |
| DeviceClass *dc = DEVICE_GET_CLASS(cs); |
| int offset; |
| |
| if (!spapr_is_thread0_in_vcore(spapr, cpu)) { |
| continue; |
| } |
| |
| nodename = g_strdup_printf("%s@%x", dc->fw_name, index); |
| offset = fdt_add_subnode(fdt, cpus_offset, nodename); |
| g_free(nodename); |
| _FDT(offset); |
| spapr_populate_cpu_dt(cs, fdt, offset, spapr); |
| } |
| |
| g_free(rev); |
| } |
| |
| static int spapr_rng_populate_dt(void *fdt) |
| { |
| int node; |
| int ret; |
| |
| node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); |
| if (node <= 0) { |
| return -1; |
| } |
| ret = fdt_setprop_string(fdt, node, "device_type", |
| "ibm,platform-facilities"); |
| ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); |
| ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); |
| |
| node = fdt_add_subnode(fdt, node, "ibm,random-v1"); |
| if (node <= 0) { |
| return -1; |
| } |
| ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); |
| |
| return ret ? -1 : 0; |
| } |
| |
| static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) |
| { |
| MemoryDeviceInfoList *info; |
| |
| for (info = list; info; info = info->next) { |
| MemoryDeviceInfo *value = info->value; |
| |
| if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { |
| PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; |
| |
| if (addr >= pcdimm_info->addr && |
| addr < (pcdimm_info->addr + pcdimm_info->size)) { |
| return pcdimm_info->node; |
| } |
| } |
| } |
| |
| return -1; |
| } |
| |
| struct sPAPRDrconfCellV2 { |
| uint32_t seq_lmbs; |
| uint64_t base_addr; |
| uint32_t drc_index; |
| uint32_t aa_index; |
| uint32_t flags; |
| } QEMU_PACKED; |
| |
| typedef struct DrconfCellQueue { |
| struct sPAPRDrconfCellV2 cell; |
| QSIMPLEQ_ENTRY(DrconfCellQueue) entry; |
| } DrconfCellQueue; |
| |
| static DrconfCellQueue * |
| spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, |
| uint32_t drc_index, uint32_t aa_index, |
| uint32_t flags) |
| { |
| DrconfCellQueue *elem; |
| |
| elem = g_malloc0(sizeof(*elem)); |
| elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); |
| elem->cell.base_addr = cpu_to_be64(base_addr); |
| elem->cell.drc_index = cpu_to_be32(drc_index); |
| elem->cell.aa_index = cpu_to_be32(aa_index); |
| elem->cell.flags = cpu_to_be32(flags); |
| |
| return elem; |
| } |
| |
| /* ibm,dynamic-memory-v2 */ |
| static int spapr_populate_drmem_v2(sPAPRMachineState *spapr, void *fdt, |
| int offset, MemoryDeviceInfoList *dimms) |
| { |
| MachineState *machine = MACHINE(spapr); |
| uint8_t *int_buf, *cur_index; |
| int ret; |
| uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; |
| uint64_t addr, cur_addr, size; |
| uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); |
| uint64_t mem_end = machine->device_memory->base + |
| memory_region_size(&machine->device_memory->mr); |
| uint32_t node, buf_len, nr_entries = 0; |
| sPAPRDRConnector *drc; |
| DrconfCellQueue *elem, *next; |
| MemoryDeviceInfoList *info; |
| QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue |
| = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); |
| |
| /* Entry to cover RAM and the gap area */ |
| elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, |
| SPAPR_LMB_FLAGS_RESERVED | |
| SPAPR_LMB_FLAGS_DRC_INVALID); |
| QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); |
| nr_entries++; |
| |
| cur_addr = machine->device_memory->base; |
| for (info = dimms; info; info = info->next) { |
| PCDIMMDeviceInfo *di = info->value->u.dimm.data; |
| |
| addr = di->addr; |
| size = di->size; |
| node = di->node; |
| |
| /* Entry for hot-pluggable area */ |
| if (cur_addr < addr) { |
| drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); |
| g_assert(drc); |
| elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, |
| cur_addr, spapr_drc_index(drc), -1, 0); |
| QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); |
| nr_entries++; |
| } |
| |
| /* Entry for DIMM */ |
| drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); |
| g_assert(drc); |
| elem = spapr_get_drconf_cell(size / lmb_size, addr, |
| spapr_drc_index(drc), node, |
| SPAPR_LMB_FLAGS_ASSIGNED); |
| QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); |
| nr_entries++; |
| cur_addr = addr + size; |
| } |
| |
| /* Entry for remaining hotpluggable area */ |
| if (cur_addr < mem_end) { |
| drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); |
| g_assert(drc); |
| elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, |
| cur_addr, spapr_drc_index(drc), -1, 0); |
| QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); |
| nr_entries++; |
| } |
| |
| buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); |
| int_buf = cur_index = g_malloc0(buf_len); |
| *(uint32_t *)int_buf = cpu_to_be32(nr_entries); |
| cur_index += sizeof(nr_entries); |
| |
| QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { |
| memcpy(cur_index, &elem->cell, sizeof(elem->cell)); |
| cur_index += sizeof(elem->cell); |
| QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); |
| g_free(elem); |
| } |
| |
| ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); |
| g_free(int_buf); |
| if (ret < 0) { |
| return -1; |
| } |
| return 0; |
| } |
| |
| /* ibm,dynamic-memory */ |
| static int spapr_populate_drmem_v1(sPAPRMachineState *spapr, void *fdt, |
| int offset, MemoryDeviceInfoList *dimms) |
| { |
| MachineState *machine = MACHINE(spapr); |
| int i, ret; |
| uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; |
| uint32_t device_lmb_start = machine->device_memory->base / lmb_size; |
| uint32_t nr_lmbs = (machine->device_memory->base + |
| memory_region_size(&machine->device_memory->mr)) / |
| lmb_size; |
| uint32_t *int_buf, *cur_index, buf_len; |
| |
| /* |
| * Allocate enough buffer size to fit in ibm,dynamic-memory |
| */ |
| buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); |
| cur_index = int_buf = g_malloc0(buf_len); |
| int_buf[0] = cpu_to_be32(nr_lmbs); |
| cur_index++; |
| for (i = 0; i < nr_lmbs; i++) { |
| uint64_t addr = i * lmb_size; |
| uint32_t *dynamic_memory = cur_index; |
| |
| if (i >= device_lmb_start) { |
| sPAPRDRConnector *drc; |
| |
| drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); |
| g_assert(drc); |
| |
| dynamic_memory[0] = cpu_to_be32(addr >> 32); |
| dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); |
| dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); |
| dynamic_memory[3] = cpu_to_be32(0); /* reserved */ |
| dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); |
| if (memory_region_present(get_system_memory(), addr)) { |
| dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); |
| } else { |
| dynamic_memory[5] = cpu_to_be32(0); |
| } |
| } else { |
| /* |
| * LMB information for RMA, boot time RAM and gap b/n RAM and |
| * device memory region -- all these are marked as reserved |
| * and as having no valid DRC. |
| */ |
| dynamic_memory[0] = cpu_to_be32(addr >> 32); |
| dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); |
| dynamic_memory[2] = cpu_to_be32(0); |
| dynamic_memory[3] = cpu_to_be32(0); /* reserved */ |
| dynamic_memory[4] = cpu_to_be32(-1); |
| dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | |
| SPAPR_LMB_FLAGS_DRC_INVALID); |
| } |
| |
| cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; |
| } |
| ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); |
| g_free(int_buf); |
| if (ret < 0) { |
| return -1; |
| } |
| return 0; |
| } |
| |
| /* |
| * Adds ibm,dynamic-reconfiguration-memory node. |
| * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation |
| * of this device tree node. |
| */ |
| static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt) |
| { |
| MachineState *machine = MACHINE(spapr); |
| int ret, i, offset; |
| uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; |
| uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; |
| uint32_t *int_buf, *cur_index, buf_len; |
| int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; |
| MemoryDeviceInfoList *dimms = NULL; |
| |
| /* |
| * Don't create the node if there is no device memory |
| */ |
| if (machine->ram_size == machine->maxram_size) { |
| return 0; |
| } |
| |
| offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); |
| |
| ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, |
| sizeof(prop_lmb_size)); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ |
| dimms = qmp_memory_device_list(); |
| if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { |
| ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms); |
| } else { |
| ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms); |
| } |
| qapi_free_MemoryDeviceInfoList(dimms); |
| |
| if (ret < 0) { |
| return ret; |
| } |
| |
| /* ibm,associativity-lookup-arrays */ |
| buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t); |
| cur_index = int_buf = g_malloc0(buf_len); |
| int_buf[0] = cpu_to_be32(nr_nodes); |
| int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ |
| cur_index += 2; |
| for (i = 0; i < nr_nodes; i++) { |
| uint32_t associativity[] = { |
| cpu_to_be32(0x0), |
| cpu_to_be32(0x0), |
| cpu_to_be32(0x0), |
| cpu_to_be32(i) |
| }; |
| memcpy(cur_index, associativity, sizeof(associativity)); |
| cur_index += 4; |
| } |
| ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, |
| (cur_index - int_buf) * sizeof(uint32_t)); |
| g_free(int_buf); |
| |
| return ret; |
| } |
| |
| static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt, |
| sPAPROptionVector *ov5_updates) |
| { |
| sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); |
| int ret = 0, offset; |
| |
| /* Generate ibm,dynamic-reconfiguration-memory node if required */ |
| if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { |
| g_assert(smc->dr_lmb_enabled); |
| ret = spapr_populate_drconf_memory(spapr, fdt); |
| if (ret) { |
| goto out; |
| } |
| } |
| |
| offset = fdt_path_offset(fdt, "/chosen"); |
| if (offset < 0) { |
| offset = fdt_add_subnode(fdt, 0, "chosen"); |
| if (offset < 0) { |
| return offset; |
| } |
| } |
| ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, |
| "ibm,architecture-vec-5"); |
| |
| out: |
| return ret; |
| } |
| |
| static bool spapr_hotplugged_dev_before_cas(void) |
| { |
| Object *drc_container, *obj; |
| ObjectProperty *prop; |
| ObjectPropertyIterator iter; |
| |
| drc_container = container_get(object_get_root(), "/dr-connector"); |
| object_property_iter_init(&iter, drc_container); |
| while ((prop = object_property_iter_next(&iter))) { |
| if (!strstart(prop->type, "link<", NULL)) { |
| continue; |
| } |
| obj = object_property_get_link(drc_container, prop->name, NULL); |
| if (spapr_drc_needed(obj)) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| int spapr_h_cas_compose_response(sPAPRMachineState *spapr, |
| target_ulong addr, target_ulong size, |
| sPAPROptionVector *ov5_updates) |
| { |
| void *fdt, *fdt_skel; |
| sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 }; |
| |
| if (spapr_hotplugged_dev_before_cas()) { |
| return 1; |
| } |
| |
| if (size < sizeof(hdr) || size > FW_MAX_SIZE) { |
| error_report("SLOF provided an unexpected CAS buffer size " |
| TARGET_FMT_lu " (min: %zu, max: %u)", |
| size, sizeof(hdr), FW_MAX_SIZE); |
| exit(EXIT_FAILURE); |
| } |
| |
| size -= sizeof(hdr); |
| |
| /* Create skeleton */ |
| fdt_skel = g_malloc0(size); |
| _FDT((fdt_create(fdt_skel, size))); |
| _FDT((fdt_finish_reservemap(fdt_skel))); |
| _FDT((fdt_begin_node(fdt_skel, ""))); |
| _FDT((fdt_end_node(fdt_skel))); |
| _FDT((fdt_finish(fdt_skel))); |
| fdt = g_malloc0(size); |
| _FDT((fdt_open_into(fdt_skel, fdt, size))); |
| g_free(fdt_skel); |
| |
| /* Fixup cpu nodes */ |
| _FDT((spapr_fixup_cpu_dt(fdt, spapr))); |
| |
| if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) { |
| return -1; |
| } |
| |
| /* Pack resulting tree */ |
| _FDT((fdt_pack(fdt))); |
| |
| if (fdt_totalsize(fdt) + sizeof(hdr) > size) { |
| trace_spapr_cas_failed(size); |
| return -1; |
| } |
| |
| cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); |
| cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); |
| trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); |
| g_free(fdt); |
| |
| return 0; |
| } |
| |
| static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt) |
| { |
| int rtas; |
| GString *hypertas = g_string_sized_new(256); |
| GString *qemu_hypertas = g_string_sized_new(256); |
| uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; |
| uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + |
| memory_region_size(&MACHINE(spapr)->device_memory->mr); |
| uint32_t lrdr_capacity[] = { |
| cpu_to_be32(max_device_addr >> 32), |
| cpu_to_be32(max_device_addr & 0xffffffff), |
| 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), |
| cpu_to_be32(max_cpus / smp_threads), |
| }; |
| uint32_t maxdomains[] = { |
| cpu_to_be32(4), |
| cpu_to_be32(0), |
| cpu_to_be32(0), |
| cpu_to_be32(0), |
| cpu_to_be32(nb_numa_nodes ? nb_numa_nodes : 1), |
| }; |
| |
| _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); |
| |
| /* hypertas */ |
| add_str(hypertas, "hcall-pft"); |
| add_str(hypertas, "hcall-term"); |
| add_str(hypertas, "hcall-dabr"); |
| add_str(hypertas, "hcall-interrupt"); |
| add_str(hypertas, "hcall-tce"); |
| add_str(hypertas, "hcall-vio"); |
| add_str(hypertas, "hcall-splpar"); |
| add_str(hypertas, "hcall-bulk"); |
| add_str(hypertas, "hcall-set-mode"); |
| add_str(hypertas, "hcall-sprg0"); |
| add_str(hypertas, "hcall-copy"); |
| add_str(hypertas, "hcall-debug"); |
| add_str(hypertas, "hcall-vphn"); |
| add_str(qemu_hypertas, "hcall-memop1"); |
| |
| if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { |
| add_str(hypertas, "hcall-multi-tce"); |
| } |
| |
| if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { |
| add_str(hypertas, "hcall-hpt-resize"); |
| } |
| |
| _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", |
| hypertas->str, hypertas->len)); |
| g_string_free(hypertas, TRUE); |
| _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", |
| qemu_hypertas->str, qemu_hypertas->len)); |
| g_string_free(qemu_hypertas, TRUE); |
| |
| _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", |
| refpoints, sizeof(refpoints))); |
| |
| _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", |
| maxdomains, sizeof(maxdomains))); |
| |
| _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", |
| RTAS_ERROR_LOG_MAX)); |
| _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", |
| RTAS_EVENT_SCAN_RATE)); |
| |
| g_assert(msi_nonbroken); |
| _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); |
| |
| /* |
| * According to PAPR, rtas ibm,os-term does not guarantee a return |
| * back to the guest cpu. |
| * |
| * While an additional ibm,extended-os-term property indicates |
| * that rtas call return will always occur. Set this property. |
| */ |
| _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); |
| |
| _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", |
| lrdr_capacity, sizeof(lrdr_capacity))); |
| |
| spapr_dt_rtas_tokens(fdt, rtas); |
| } |
| |
| /* |
| * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU |
| * and the XIVE features that the guest may request and thus the valid |
| * values for bytes 23..26 of option vector 5: |
| */ |
| static void spapr_dt_ov5_platform_support(sPAPRMachineState *spapr, void *fdt, |
| int chosen) |
| { |
| PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); |
| |
| char val[2 * 4] = { |
| 23, spapr->irq->ov5, /* Xive mode. */ |
| 24, 0x00, /* Hash/Radix, filled in below. */ |
| 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ |
| 26, 0x40, /* Radix options: GTSE == yes. */ |
| }; |
| |
| if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, |
| first_ppc_cpu->compat_pvr)) { |
| /* |
| * If we're in a pre POWER9 compat mode then the guest should |
| * do hash and use the legacy interrupt mode |
| */ |
| val[1] = 0x00; /* XICS */ |
| val[3] = 0x00; /* Hash */ |
| } else if (kvm_enabled()) { |
| if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { |
| val[3] = 0x80; /* OV5_MMU_BOTH */ |
| } else if (kvmppc_has_cap_mmu_radix()) { |
| val[3] = 0x40; /* OV5_MMU_RADIX_300 */ |
| } else { |
| val[3] = 0x00; /* Hash */ |
| } |
| } else { |
| /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ |
| val[3] = 0xC0; |
| } |
| _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", |
| val, sizeof(val))); |
| } |
| |
| static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt) |
| { |
| MachineState *machine = MACHINE(spapr); |
| int chosen; |
| const char *boot_device = machine->boot_order; |
| char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); |
| size_t cb = 0; |
| char *bootlist = get_boot_devices_list(&cb); |
| |
| _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); |
| |
| _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline)); |
| _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", |
| spapr->initrd_base)); |
| _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", |
| spapr->initrd_base + spapr->initrd_size)); |
| |
| if (spapr->kernel_size) { |
| uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), |
| cpu_to_be64(spapr->kernel_size) }; |
| |
| _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", |
| &kprop, sizeof(kprop))); |
| if (spapr->kernel_le) { |
| _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); |
| } |
| } |
| if (boot_menu) { |
| _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); |
| } |
| _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); |
| _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); |
| _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); |
| |
| if (cb && bootlist) { |
| int i; |
| |
| for (i = 0; i < cb; i++) { |
| if (bootlist[i] == '\n') { |
| bootlist[i] = ' '; |
| } |
| } |
| _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); |
| } |
| |
| if (boot_device && strlen(boot_device)) { |
| _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); |
| } |
| |
| if (!spapr->has_graphics && stdout_path) { |
| /* |
| * "linux,stdout-path" and "stdout" properties are deprecated by linux |
| * kernel. New platforms should only use the "stdout-path" property. Set |
| * the new property and continue using older property to remain |
| * compatible with the existing firmware. |
| */ |
| _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); |
| _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); |
| } |
| |
| spapr_dt_ov5_platform_support(spapr, fdt, chosen); |
| |
| g_free(stdout_path); |
| g_free(bootlist); |
| } |
| |
| static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt) |
| { |
| /* The /hypervisor node isn't in PAPR - this is a hack to allow PR |
| * KVM to work under pHyp with some guest co-operation */ |
| int hypervisor; |
| uint8_t hypercall[16]; |
| |
| _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); |
| /* indicate KVM hypercall interface */ |
| _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); |
| if (kvmppc_has_cap_fixup_hcalls()) { |
| /* |
| * Older KVM versions with older guest kernels were broken |
| * with the magic page, don't allow the guest to map it. |
| */ |
| if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, |
| sizeof(hypercall))) { |
| _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", |
| hypercall, sizeof(hypercall))); |
| } |
| } |
| } |
| |
| static void *spapr_build_fdt(sPAPRMachineState *spapr) |
| { |
| MachineState *machine = MACHINE(spapr); |
| MachineClass *mc = MACHINE_GET_CLASS(machine); |
| sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); |
| int ret; |
| void *fdt; |
| sPAPRPHBState *phb; |
| char *buf; |
| |
| fdt = g_malloc0(FDT_MAX_SIZE); |
| _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); |
| |
| /* Root node */ |
| _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); |
| _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); |
| _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); |
| |
| /* |
| * Add info to guest to indentify which host is it being run on |
| * and what is the uuid of the guest |
| */ |
| if (kvmppc_get_host_model(&buf)) { |
| _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); |
| g_free(buf); |
| } |
| if (kvmppc_get_host_serial(&buf)) { |
| _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); |
| g_free(buf); |
| } |
| |
| buf = qemu_uuid_unparse_strdup(&qemu_uuid); |
| |
| _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); |
| if (qemu_uuid_set) { |
| _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); |
| } |
| g_free(buf); |
| |
| if (qemu_get_vm_name()) { |
| _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", |
| qemu_get_vm_name())); |
| } |
| |
| _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); |
| _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); |
| |
| /* /interrupt controller */ |
| spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt, |
| PHANDLE_INTC); |
| |
| ret = spapr_populate_memory(spapr, fdt); |
| if (ret < 0) { |
| error_report("couldn't setup memory nodes in fdt"); |
| exit(1); |
| } |
| |
| /* /vdevice */ |
| spapr_dt_vdevice(spapr->vio_bus, fdt); |
| |
| if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { |
| ret = spapr_rng_populate_dt(fdt); |
| if (ret < 0) { |
| error_report("could not set up rng device in the fdt"); |
| exit(1); |
| } |
| } |
| |
| QLIST_FOREACH(phb, &spapr->phbs, list) { |
| ret = spapr_populate_pci_dt(phb, PHANDLE_INTC, fdt, |
| spapr->irq->nr_msis); |
| if (ret < 0) { |
| error_report("couldn't setup PCI devices in fdt"); |
| exit(1); |
| } |
| } |
| |
| /* cpus */ |
| spapr_populate_cpus_dt_node(fdt, spapr); |
| |
| if (smc->dr_lmb_enabled) { |
| _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); |
| } |
| |
| if (mc->has_hotpluggable_cpus) { |
| int offset = fdt_path_offset(fdt, "/cpus"); |
| ret = spapr_drc_populate_dt(fdt, offset, NULL, |
| SPAPR_DR_CONNECTOR_TYPE_CPU); |
| if (ret < 0) { |
| error_report("Couldn't set up CPU DR device tree properties"); |
| exit(1); |
| } |
| } |
| |
| /* /event-sources */ |
| spapr_dt_events(spapr, fdt); |
| |
| /* /rtas */ |
| spapr_dt_rtas(spapr, fdt); |
| |
| /* /chosen */ |
| spapr_dt_chosen(spapr, fdt); |
| |
| /* /hypervisor */ |
| if (kvm_enabled()) { |
| spapr_dt_hypervisor(spapr, fdt); |
| } |
| |
| /* Build memory reserve map */ |
| if (spapr->kernel_size) { |
| _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); |
| } |
| if (spapr->initrd_size) { |
| _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size))); |
| } |
| |
| /* ibm,client-architecture-support updates */ |
| ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); |
| if (ret < 0) { |
| error_report("couldn't setup CAS properties fdt"); |
| exit(1); |
| } |
| |
| return fdt; |
| } |
| |
| static uint64_t translate_kernel_address(void *opaque, uint64_t addr) |
| { |
| return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; |
| } |
| |
| static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, |
| PowerPCCPU *cpu) |
| { |
| CPUPPCState *env = &cpu->env; |
| |
| /* The TCG path should also be holding the BQL at this point */ |
| g_assert(qemu_mutex_iothread_locked()); |
| |
| if (msr_pr) { |
| hcall_dprintf("Hypercall made with MSR[PR]=1\n"); |
| env->gpr[3] = H_PRIVILEGE; |
| } else { |
| env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); |
| } |
| } |
| |
| static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp) |
| { |
| sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); |
| |
| return spapr->patb_entry; |
| } |
| |
| #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) |
| #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) |
| #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) |
| #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) |
| #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) |
| |
| /* |
| * Get the fd to access the kernel htab, re-opening it if necessary |
| */ |
| static int get_htab_fd(sPAPRMachineState *spapr) |
| { |
| Error *local_err = NULL; |
| |
| if (spapr->htab_fd >= 0) { |
| return spapr->htab_fd; |
| } |
| |
| spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); |
| if (spapr->htab_fd < 0) { |
| error_report_err(local_err); |
| } |
| |
| return spapr->htab_fd; |
| } |
| |
| void close_htab_fd(sPAPRMachineState *spapr) |
| { |
| if (spapr->htab_fd >= 0) { |
| close(spapr->htab_fd); |
| } |
| spapr->htab_fd = -1; |
| } |
| |
| static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) |
| { |
| sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); |
| |
| return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; |
| } |
| |
| static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) |
| { |
| sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); |
| |
| assert(kvm_enabled()); |
| |
| if (!spapr->htab) { |
| return 0; |
| } |
| |
| return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); |
| } |
| |
| static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, |
| hwaddr ptex, int n) |
| { |
| sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); |
| hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; |
| |
| if (!spapr->htab) { |
| /* |
| * HTAB is controlled by KVM. Fetch into temporary buffer |
| */ |
| ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); |
| kvmppc_read_hptes(hptes, ptex, n); |
| return hptes; |
| } |
| |
| /* |
| * HTAB is controlled by QEMU. Just point to the internally |
| * accessible PTEG. |
| */ |
| return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); |
| } |
| |
| static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, |
| const ppc_hash_pte64_t *hptes, |
| hwaddr ptex, int n) |
| { |
| sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); |
| |
| if (!spapr->htab) { |
| g_free((void *)hptes); |
| } |
| |
| /* Nothing to do for qemu managed HPT */ |
| } |
| |
| static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex, |
| uint64_t pte0, uint64_t pte1) |
| { |
| sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); |
| hwaddr offset = ptex * HASH_PTE_SIZE_64; |
| |
| if (!spapr->htab) { |
| kvmppc_write_hpte(ptex, pte0, pte1); |
| } else { |
| stq_p(spapr->htab + offset, pte0); |
| stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); |
| } |
| } |
| |
| int spapr_hpt_shift_for_ramsize(uint64_t ramsize) |
| { |
| int shift; |
| |
| /* We aim for a hash table of size 1/128 the size of RAM (rounded |
| * up). The PAPR recommendation is actually 1/64 of RAM size, but |
| * that's much more than is needed for Linux guests */ |
| shift = ctz64(pow2ceil(ramsize)) - 7; |
| shift = MAX(shift, 18); /* Minimum architected size */ |
| shift = MIN(shift, 46); /* Maximum architected size */ |
| return shift; |
| } |
| |
| void spapr_free_hpt(sPAPRMachineState *spapr) |
| { |
| g_free(spapr->htab); |
| spapr->htab = NULL; |
| spapr->htab_shift = 0; |
| close_htab_fd(spapr); |
| } |
| |
| void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift, |
| Error **errp) |
| { |
| long rc; |
| |
| /* Clean up any HPT info from a previous boot */ |
| spapr_free_hpt(spapr); |
| |
| rc = kvmppc_reset_htab(shift); |
| if (rc < 0) { |
| /* kernel-side HPT needed, but couldn't allocate one */ |
| error_setg_errno(errp, errno, |
| "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", |
| shift); |
| /* This is almost certainly fatal, but if the caller really |
| * wants to carry on with shift == 0, it's welcome to try */ |
| } else if (rc > 0) { |
| /* kernel-side HPT allocated */ |
| if (rc != shift) { |
| error_setg(errp, |
| "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", |
| shift, rc); |
| } |
| |
| spapr->htab_shift = shift; |
| spapr->htab = NULL; |
| } else { |
| /* kernel-side HPT not needed, allocate in userspace instead */ |
| size_t size = 1ULL << shift; |
| int i; |
| |
| spapr->htab = qemu_memalign(size, size); |
| if (!spapr->htab) { |
| error_setg_errno(errp, errno, |
| "Could not allocate HPT of order %d", shift); |
| return; |
| } |
| |
| memset(spapr->htab, 0, size); |
| spapr->htab_shift = shift; |
| |
| for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { |
| DIRTY_HPTE(HPTE(spapr->htab, i)); |
| } |
| } |
| /* We're setting up a hash table, so that means we're not radix */ |
| spapr->patb_entry = 0; |
| } |
| |
| void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr) |
| { |
| int hpt_shift; |
| |
| if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) |
| || (spapr->cas_reboot |
| && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) { |
| hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); |
| } else { |
| uint64_t current_ram_size; |
| |
| current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); |
| hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); |
| } |
| spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); |
| |
| if (spapr->vrma_adjust) { |
| spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)), |
| spapr->htab_shift); |
| } |
| } |
| |
| static int spapr_reset_drcs(Object *child, void *opaque) |
| { |
| sPAPRDRConnector *drc = |
| (sPAPRDRConnector *) object_dynamic_cast(child, |
| TYPE_SPAPR_DR_CONNECTOR); |
| |
| if (drc) { |
| spapr_drc_reset(drc); |
| } |
| |
| return 0; |
| } |
| |
| static void spapr_machine_reset(void) |
| { |
| MachineState *machine = MACHINE(qdev_get_machine()); |
| sPAPRMachineState *spapr = SPAPR_MACHINE(machine); |
| PowerPCCPU *first_ppc_cpu; |
| uint32_t rtas_limit; |
| hwaddr rtas_addr, fdt_addr; |
| void *fdt; |
| int rc; |
| |
| spapr_caps_apply(spapr); |
| |
| first_ppc_cpu = POWERPC_CPU(first_cpu); |
| if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && |
| ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, |
| spapr->max_compat_pvr)) { |
| /* If using KVM with radix mode available, VCPUs can be started |
| * without a HPT because KVM will start them in radix mode. |
| * Set the GR bit in PATB so that we know there is no HPT. */ |
| spapr->patb_entry = PATBE1_GR; |
| } else { |
| spapr_setup_hpt_and_vrma(spapr); |
| } |
| |
| /* if this reset wasn't generated by CAS, we should reset our |
| * negotiated options and start from scratch */ |
| if (!spapr->cas_reboot) { |
| spapr_ovec_cleanup(spapr->ov5_cas); |
| spapr->ov5_cas = spapr_ovec_new(); |
| |
| ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal); |
| } |
| |
| if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { |
| spapr_irq_msi_reset(spapr); |
| } |
| |
| qemu_devices_reset(); |
| |
| /* |
| * This is fixing some of the default configuration of the XIVE |
| * devices. To be called after the reset of the machine devices. |
| */ |
| spapr_irq_reset(spapr, &error_fatal); |
| |
| /* DRC reset may cause a device to be unplugged. This will cause troubles |
| * if this device is used by another device (eg, a running vhost backend |
| * will crash QEMU if the DIMM holding the vring goes away). To avoid such |
| * situations, we reset DRCs after all devices have been reset. |
| */ |
| object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL); |
| |
| spapr_clear_pending_events(spapr); |
| |
| /* |
| * We place the device tree and RTAS just below either the top of the RMA, |
| * or just below 2GB, whichever is lower, so that it can be |
| * processed with 32-bit real mode code if necessary |
| */ |
| rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); |
| rtas_addr = rtas_limit - RTAS_MAX_SIZE; |
| fdt_addr = rtas_addr - FDT_MAX_SIZE; |
| |
| fdt = spapr_build_fdt(spapr); |
| |
| spapr_load_rtas(spapr, fdt, rtas_addr); |
| |
| rc = fdt_pack(fdt); |
| |
| /* Should only fail if we've built a corrupted tree */ |
| assert(rc == 0); |
| |
| if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { |
| error_report("FDT too big ! 0x%x bytes (max is 0x%x)", |
| fdt_totalsize(fdt), FDT_MAX_SIZE); |
| exit(1); |
| } |
| |
| /* Load the fdt */ |
| qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); |
| cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); |
| g_free(spapr->fdt_blob); |
| spapr->fdt_size = fdt_totalsize(fdt); |
| spapr->fdt_initial_size = spapr->fdt_size; |
| spapr->fdt_blob = fdt; |
| |
| /* Set up the entry state */ |
| spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr); |
| first_ppc_cpu->env.gpr[5] = 0; |
| |
| spapr->cas_reboot = false; |
| } |
| |
| static void spapr_create_nvram(sPAPRMachineState *spapr) |
| { |
| DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); |
| DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); |
| |
| if (dinfo) { |
| qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), |
| &error_fatal); |
| } |
| |
| qdev_init_nofail(dev); |
| |
| spapr->nvram = (struct sPAPRNVRAM *)dev; |
| } |
| |
| static void spapr_rtc_create(sPAPRMachineState *spapr) |
| { |
| object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC); |
| object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc), |
| &error_fatal); |
| object_property_set_bool(OBJECT(&spapr->rtc), true, "realized", |
| &error_fatal); |
| object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), |
| "date", &error_fatal); |
| } |
| |
| /* Returns whether we want to use VGA or not */ |
| static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) |
| { |
| switch (vga_interface_type) { |
| case VGA_NONE: |
| return false; |
| case VGA_DEVICE: |
| return true; |
| case VGA_STD: |
| case VGA_VIRTIO: |
| case VGA_CIRRUS: |
| return pci_vga_init(pci_bus) != NULL; |
| default: |
| error_setg(errp, |
| "Unsupported VGA mode, only -vga std or -vga virtio is supported"); |
| return false; |
| } |
| } |
| |
| static int spapr_pre_load(void *opaque) |
| { |
| int rc; |
| |
| rc = spapr_caps_pre_load(opaque); |
| if (rc) { |
| return rc; |
| } |
| |
| return 0; |
| } |
| |
| static int spapr_post_load(void *opaque, int version_id) |
| { |
| sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; |
| int err = 0; |
| |
| err = spapr_caps_post_migration(spapr); |
| if (err) { |
| return err; |
| } |
| |
| /* |
| * In earlier versions, there was no separate qdev for the PAPR |
| * RTC, so the RTC offset was stored directly in sPAPREnvironment. |
| * So when migrating from those versions, poke the incoming offset |
| * value into the RTC device |
| */ |
| if (version_id < 3) { |
| err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); |
| if (err) { |
| return err; |
| } |
| } |
| |
| if (kvm_enabled() && spapr->patb_entry) { |
| PowerPCCPU *cpu = POWERPC_CPU(first_cpu); |
| bool radix = !!(spapr->patb_entry & PATBE1_GR); |
| bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); |
| |
| err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); |
| if (err) { |
| error_report("Process table config unsupported by the host"); |
| return -EINVAL; |
| } |
| } |
| |
| err = spapr_irq_post_load(spapr, version_id); |
| if (err) { |
| return err; |
| } |
| |
| return err; |
| } |
| |
| static int spapr_pre_save(void *opaque) |
| { |
| int rc; |
| |
| rc = spapr_caps_pre_save(opaque); |
| if (rc) { |
| return rc; |
| } |
| |
| return 0; |
| } |
| |
| static bool version_before_3(void *opaque, int version_id) |
| { |
| return version_id < 3; |
| } |
| |
| static bool spapr_pending_events_needed(void *opaque) |
| { |
| sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; |
| return !QTAILQ_EMPTY(&spapr->pending_events); |
| } |
| |
| static const VMStateDescription vmstate_spapr_event_entry = { |
| .name = "spapr_event_log_entry", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT32(summary, sPAPREventLogEntry), |
| VMSTATE_UINT32(extended_length, sPAPREventLogEntry), |
| VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0, |
| NULL, extended_length), |
| VMSTATE_END_OF_LIST() |
| }, |
| }; |
| |
| static const VMStateDescription vmstate_spapr_pending_events = { |
| .name = "spapr_pending_events", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .needed = spapr_pending_events_needed, |
| .fields = (VMStateField[]) { |
| VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1, |
| vmstate_spapr_event_entry, sPAPREventLogEntry, next), |
| VMSTATE_END_OF_LIST() |
| }, |
| }; |
| |
| static bool spapr_ov5_cas_needed(void *opaque) |
| { |
| sPAPRMachineState *spapr = opaque; |
| sPAPROptionVector *ov5_mask = spapr_ovec_new(); |
| sPAPROptionVector *ov5_legacy = spapr_ovec_new(); |
| sPAPROptionVector *ov5_removed = spapr_ovec_new(); |
| bool cas_needed; |
| |
| /* Prior to the introduction of sPAPROptionVector, we had two option |
| * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. |
| * Both of these options encode machine topology into the device-tree |
| * in such a way that the now-booted OS should still be able to interact |
| * appropriately with QEMU regardless of what options were actually |
| * negotiatied on the source side. |
| * |
| * As such, we can avoid migrating the CAS-negotiated options if these |
| * are the only options available on the current machine/platform. |
| * Since these are the only options available for pseries-2.7 and |
| * earlier, this allows us to maintain old->new/new->old migration |
| * compatibility. |
| * |
| * For QEMU 2.8+, there are additional CAS-negotiatable options available |
| * via default pseries-2.8 machines and explicit command-line parameters. |
| * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware |
| * of the actual CAS-negotiated values to continue working properly. For |
| * example, availability of memory unplug depends on knowing whether |
| * OV5_HP_EVT was negotiated via CAS. |
| * |
| * Thus, for any cases where the set of available CAS-negotiatable |
| * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we |
| * include the CAS-negotiated options in the migration stream, unless |
| * if they affect boot time behaviour only. |
| */ |
| spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); |
| spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); |
| spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); |
| |
| /* spapr_ovec_diff returns true if bits were removed. we avoid using |
| * the mask itself since in the future it's possible "legacy" bits may be |
| * removed via machine options, which could generate a false positive |
| * that breaks migration. |
| */ |
| spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); |
| cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); |
| |
| spapr_ovec_cleanup(ov5_mask); |
| spapr_ovec_cleanup(ov5_legacy); |
| spapr_ovec_cleanup(ov5_removed); |
| |
| return cas_needed; |
| } |
| |
| static const VMStateDescription vmstate_spapr_ov5_cas = { |
| .name = "spapr_option_vector_ov5_cas", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .needed = spapr_ov5_cas_needed, |
| .fields = (VMStateField[]) { |
| VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1, |
| vmstate_spapr_ovec, sPAPROptionVector), |
| VMSTATE_END_OF_LIST() |
| }, |
| }; |
| |
| static bool spapr_patb_entry_needed(void *opaque) |
| { |
| sPAPRMachineState *spapr = opaque; |
| |
| return !!spapr->patb_entry; |
| } |
| |
| static const VMStateDescription vmstate_spapr_patb_entry = { |
| .name = "spapr_patb_entry", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .needed = spapr_patb_entry_needed, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT64(patb_entry, sPAPRMachineState), |
| VMSTATE_END_OF_LIST() |
| }, |
| }; |
| |
| static bool spapr_irq_map_needed(void *opaque) |
| { |
| sPAPRMachineState *spapr = opaque; |
| |
| return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); |
| } |
| |
| static const VMStateDescription vmstate_spapr_irq_map = { |
| .name = "spapr_irq_map", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .needed = spapr_irq_map_needed, |
| .fields = (VMStateField[]) { |
| VMSTATE_BITMAP(irq_map, sPAPRMachineState, 0, irq_map_nr), |
| VMSTATE_END_OF_LIST() |
| }, |
| }; |
| |
| static bool spapr_dtb_needed(void *opaque) |
| { |
| sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); |
| |
| return smc->update_dt_enabled; |
| } |
| |
| static int spapr_dtb_pre_load(void *opaque) |
| { |
| sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; |
| |
| g_free(spapr->fdt_blob); |
| spapr->fdt_blob = NULL; |
| spapr->fdt_size = 0; |
| |
| return 0; |
| } |
| |
| static const VMStateDescription vmstate_spapr_dtb = { |
| .name = "spapr_dtb", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .needed = spapr_dtb_needed, |
| .pre_load = spapr_dtb_pre_load, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT32(fdt_initial_size, sPAPRMachineState), |
| VMSTATE_UINT32(fdt_size, sPAPRMachineState), |
| VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, sPAPRMachineState, 0, NULL, |
| fdt_size), |
| VMSTATE_END_OF_LIST() |
| }, |
| }; |
| |
| static const VMStateDescription vmstate_spapr = { |
| .name = "spapr", |
| .version_id = 3, |
| .minimum_version_id = 1, |
| .pre_load = spapr_pre_load, |
| .post_load = spapr_post_load, |
| .pre_save = spapr_pre_save, |
| .fields = (VMStateField[]) { |
| /* used to be @next_irq */ |
| VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), |
| |
| /* RTC offset */ |
| VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3), |
| |
| VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2), |
| VMSTATE_END_OF_LIST() |
| }, |
| .subsections = (const VMStateDescription*[]) { |
| &vmstate_spapr_ov5_cas, |
| &vmstate_spapr_patb_entry, |
| &vmstate_spapr_pending_events, |
| &vmstate_spapr_cap_htm, |
| &vmstate_spapr_cap_vsx, |
| &vmstate_spapr_cap_dfp, |
| &vmstate_spapr_cap_cfpc, |
| &vmstate_spapr_cap_sbbc, |
| &vmstate_spapr_cap_ibs, |
| &vmstate_spapr_irq_map, |
| &vmstate_spapr_cap_nested_kvm_hv, |
| &vmstate_spapr_dtb, |
| NULL |
| } |
| }; |
| |
| static int htab_save_setup(QEMUFile *f, void *opaque) |
| { |
| sPAPRMachineState *spapr = opaque; |
| |
| /* "Iteration" header */ |
| if (!spapr->htab_shift) { |
| qemu_put_be32(f, -1); |
| } else { |
| qemu_put_be32(f, spapr->htab_shift); |
| } |
| |
| if (spapr->htab) { |
| spapr->htab_save_index = 0; |
| spapr->htab_first_pass = true; |
| } else { |
| if (spapr->htab_shift) { |
| assert(kvm_enabled()); |
| } |
| } |
| |
| |
| return 0; |
| } |
| |
| static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr, |
| int chunkstart, int n_valid, int n_invalid) |
| { |
| qemu_put_be32(f, chunkstart); |
| qemu_put_be16(f, n_valid); |
| qemu_put_be16(f, n_invalid); |
| qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), |
| HASH_PTE_SIZE_64 * n_valid); |
| } |
| |
| static void htab_save_end_marker(QEMUFile *f) |
| { |
| qemu_put_be32(f, 0); |
| qemu_put_be16(f, 0); |
| qemu_put_be16(f, 0); |
| } |
| |
| static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr, |
| int64_t max_ns) |
| { |
| bool has_timeout = max_ns != -1; |
| int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; |
| int index = spapr->htab_save_index; |
| int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); |
| |
| assert(spapr->htab_first_pass); |
| |
| do { |
| int chunkstart; |
| |
| /* Consume invalid HPTEs */ |
| while ((index < htabslots) |
| && !HPTE_VALID(HPTE(spapr->htab, index))) { |
| CLEAN_HPTE(HPTE(spapr->htab, index)); |
| index++; |
| } |
| |
| /* Consume valid HPTEs */ |
| chunkstart = index; |
| while ((index < htabslots) && (index - chunkstart < USHRT_MAX) |
| && HPTE_VALID(HPTE(spapr->htab, index))) { |
| CLEAN_HPTE(HPTE(spapr->htab, index)); |
| index++; |
| } |
| |
| if (index > chunkstart) { |
| int n_valid = index - chunkstart; |
| |
| htab_save_chunk(f, spapr, chunkstart, n_valid, 0); |
| |
| if (has_timeout && |
| (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { |
| break; |
| } |
| } |
| } while ((index < htabslots) && !qemu_file_rate_limit(f)); |
| |
| if (index >= htabslots) { |
| assert(index == htabslots); |
| index = 0; |
| spapr->htab_first_pass = false; |
| } |
| spapr->htab_save_index = index; |
| } |
| |
| static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr, |
| int64_t max_ns) |
| { |
| bool final = max_ns < 0; |
| int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; |
| int examined = 0, sent = 0; |
| int index = spapr->htab_save_index; |
| int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); |
| |
| assert(!spapr->htab_first_pass); |
| |
| do { |
| int chunkstart, invalidstart; |
| |
| /* Consume non-dirty HPTEs */ |
| while ((index < htabslots) |
| && !HPTE_DIRTY(HPTE(spapr->htab, index))) { |
| index++; |
| examined++; |
| } |
| |
| chunkstart = index; |
| /* Consume valid dirty HPTEs */ |
| while ((index < htabslots) && (index - chunkstart < USHRT_MAX) |
| && HPTE_DIRTY(HPTE(spapr->htab, index)) |
| && HPTE_VALID(HPTE(spapr->htab, index))) { |
| CLEAN_HPTE(HPTE(spapr->htab, index)); |
| index++; |
| examined++; |
| } |
| |
| invalidstart = index; |
| /* Consume invalid dirty HPTEs */ |
| while ((index < htabslots) && (index - invalidstart < USHRT_MAX) |
| && HPTE_DIRTY(HPTE(spapr->htab, index)) |
| && !HPTE_VALID(HPTE(spapr->htab, index))) { |
| CLEAN_HPTE(HPTE(spapr->htab, index)); |
| index++; |
| examined++; |
| } |
| |
| if (index > chunkstart) { |
| int n_valid = invalidstart - chunkstart; |
| int n_invalid = index - invalidstart; |
| |
| htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); |
| sent += index - chunkstart; |
| |
| if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { |
| break; |
| } |
| } |
| |
| if (examined >= htabslots) { |
| break; |
| } |
| |
| if (index >= htabslots) { |
| assert(index == htabslots); |
| index = 0; |
| } |
| } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); |
| |
| if (index >= htabslots) { |
| assert(index == htabslots); |
| index = 0; |
| } |
| |
| spapr->htab_save_index = index; |
| |
| return (examined >= htabslots) && (sent == 0) ? 1 : 0; |
| } |
| |
| #define MAX_ITERATION_NS 5000000 /* 5 ms */ |
| #define MAX_KVM_BUF_SIZE 2048 |
| |
| static int htab_save_iterate(QEMUFile *f, void *opaque) |
| { |
| sPAPRMachineState *spapr = opaque; |
| int fd; |
| int rc = 0; |
| |
| /* Iteration header */ |
| if (!spapr->htab_shift) { |
| qemu_put_be32(f, -1); |
| return 1; |
| } else { |
| qemu_put_be32(f, 0); |
| } |
| |
| if (!spapr->htab) { |
| assert(kvm_enabled()); |
| |
| fd = get_htab_fd(spapr); |
| if (fd < 0) { |
| return fd; |
| } |
| |
| rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); |
| if (rc < 0) { |
| return rc; |
| } |
| } else if (spapr->htab_first_pass) { |
| htab_save_first_pass(f, spapr, MAX_ITERATION_NS); |
| } else { |
| rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); |
| } |
| |
| htab_save_end_marker(f); |
| |
| return rc; |
| } |
| |
| static int htab_save_complete(QEMUFile *f, void *opaque) |
| { |
| sPAPRMachineState *spapr = opaque; |
| int fd; |
| |
| /* Iteration header */ |
| if (!spapr->htab_shift) { |
| qemu_put_be32(f, -1); |
| return 0; |
| } else { |
| qemu_put_be32(f, 0); |
| } |
| |
| if (!spapr->htab) { |
| int rc; |
| |
| assert(kvm_enabled()); |
| |
| fd = get_htab_fd(spapr); |
| if (fd < 0) { |
| return fd; |
| } |
| |
| rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); |
| if (rc < 0) { |
| return rc; |
| } |
| } else { |
| if (spapr->htab_first_pass) { |
| htab_save_first_pass(f, spapr, -1); |
| } |
| htab_save_later_pass(f, spapr, -1); |
| } |
| |
| /* End marker */ |
| htab_save_end_marker(f); |
| |
| return 0; |
| } |
| |
| static int htab_load(QEMUFile *f, void *opaque, int version_id) |
| { |
| sPAPRMachineState *spapr = opaque; |
| uint32_t section_hdr; |
| int fd = -1; |
| Error *local_err = NULL; |
| |
| if (version_id < 1 || version_id > 1) { |
| error_report("htab_load() bad version"); |
| return -EINVAL; |
| } |
| |
| section_hdr = qemu_get_be32(f); |
| |
| if (section_hdr == -1) { |
| spapr_free_hpt(spapr); |
| return 0; |
| } |
| |
| if (section_hdr) { |
| /* First section gives the htab size */ |
| spapr_reallocate_hpt(spapr, section_hdr, &local_err); |
| if (local_err) { |
| error_report_err(local_err); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| if (!spapr->htab) { |
| assert(kvm_enabled()); |
| |
| fd = kvmppc_get_htab_fd(true, 0, &local_err); |
| if (fd < 0) { |
| error_report_err(local_err); |
| return fd; |
| } |
| } |
| |
| while (true) { |
| uint32_t index; |
| uint16_t n_valid, n_invalid; |
| |
| index = qemu_get_be32(f); |
| n_valid = qemu_get_be16(f); |
| n_invalid = qemu_get_be16(f); |
| |
| if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { |
| /* End of Stream */ |
| break; |
| } |
| |
| if ((index + n_valid + n_invalid) > |
| (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { |
| /* Bad index in stream */ |
| error_report( |
| "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", |
| index, n_valid, n_invalid, spapr->htab_shift); |
| return -EINVAL; |
| } |
| |
| if (spapr->htab) { |
| if (n_valid) { |
| qemu_get_buffer(f, HPTE(spapr->htab, index), |
| HASH_PTE_SIZE_64 * n_valid); |
| } |
| if (n_invalid) { |
| memset(HPTE(spapr->htab, index + n_valid), 0, |
| HASH_PTE_SIZE_64 * n_invalid); |
| } |
| } else { |
| int rc; |
| |
| assert(fd >= 0); |
| |
| rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); |
| if (rc < 0) { |
| return rc; |
| } |
| } |
| } |
| |
| if (!spapr->htab) { |
| assert(fd >= 0); |
| close(fd); |
| } |
| |
| return 0; |
| } |
| |
| static void htab_save_cleanup(void *opaque) |
| { |
| sPAPRMachineState *spapr = opaque; |
| |
| close_htab_fd(spapr); |
| } |
| |
| static SaveVMHandlers savevm_htab_handlers = { |
| .save_setup = htab_save_setup, |
| .save_live_iterate = htab_save_iterate, |
| .save_live_complete_precopy = htab_save_complete, |
| .save_cleanup = htab_save_cleanup, |
| .load_state = htab_load, |
| }; |
| |
| static void spapr_boot_set(void *opaque, const char *boot_device, |
| Error **errp) |
| { |
| MachineState *machine = MACHINE(opaque); |
| machine->boot_order = g_strdup(boot_device); |
| } |
| |
| static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr) |
| { |
| MachineState *machine = MACHINE(spapr); |
| uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; |
| uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; |
| int i; |
| |
| for (i = 0; i < nr_lmbs; i++) { |
| uint64_t addr; |
| |
| addr = i * lmb_size + machine->device_memory->base; |
| spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, |
| addr / lmb_size); |
| } |
| } |
| |
| /* |
| * If RAM size, maxmem size and individual node mem sizes aren't aligned |
| * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest |
| * since we can't support such unaligned sizes with DRCONF_MEMORY. |
| */ |
| static void spapr_validate_node_memory(MachineState *machine, Error **errp) |
| { |
| int i; |
| |
| if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { |
| error_setg(errp, "Memory size 0x" RAM_ADDR_FMT |
| " is not aligned to %" PRIu64 " MiB", |
| machine->ram_size, |
| SPAPR_MEMORY_BLOCK_SIZE / MiB); |
| return; |
| } |
| |
| if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { |
| error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT |
| " is not aligned to %" PRIu64 " MiB", |
| machine->ram_size, |
| SPAPR_MEMORY_BLOCK_SIZE / MiB); |
| return; |
| } |
| |
| for (i = 0; i < nb_numa_nodes; i++) { |
| if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { |
| error_setg(errp, |
| "Node %d memory size 0x%" PRIx64 |
| " is not aligned to %" PRIu64 " MiB", |
| i, numa_info[i].node_mem, |
| SPAPR_MEMORY_BLOCK_SIZE / MiB); |
| return; |
| } |
| } |
| } |
| |
| /* find cpu slot in machine->possible_cpus by core_id */ |
| static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) |
| { |
| int index = id / smp_threads; |
| |
| if (index >= ms->possible_cpus->len) { |
| return NULL; |
| } |
| if (idx) { |
| *idx = index; |
| } |
| return &ms->possible_cpus->cpus[index]; |
| } |
| |
| static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp) |
| { |
| Error *local_err = NULL; |
| bool vsmt_user = !!spapr->vsmt; |
| int kvm_smt = kvmppc_smt_threads(); |
| int ret; |
| |
| if (!kvm_enabled() && (smp_threads > 1)) { |
| error_setg(&local_err, "TCG cannot support more than 1 thread/core " |
| "on a pseries machine"); |
| goto out; |
| } |
| if (!is_power_of_2(smp_threads)) { |
| error_setg(&local_err, "Cannot support %d threads/core on a pseries " |
| "machine because it must be a power of 2", smp_threads); |
| goto out; |
| } |
| |
| /* Detemine the VSMT mode to use: */ |
| if (vsmt_user) { |
| if (spapr->vsmt < smp_threads) { |
| error_setg(&local_err, "Cannot support VSMT mode %d" |
| " because it must be >= threads/core (%d)", |
| spapr->vsmt, smp_threads); |
| goto out; |
| } |
| /* In this case, spapr->vsmt has been set by the command line */ |
| } else { |
| /* |
| * Default VSMT value is tricky, because we need it to be as |
| * consistent as possible (for migration), but this requires |
| * changing it for at least some existing cases. We pick 8 as |
| * the value that we'd get with KVM on POWER8, the |
| * overwhelmingly common case in production systems. |
| */ |
| spapr->vsmt = MAX(8, smp_threads); |
| } |
| |
| /* KVM: If necessary, set the SMT mode: */ |
| if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { |
| ret = kvmppc_set_smt_threads(spapr->vsmt); |
| if (ret) { |
| /* Looks like KVM isn't able to change VSMT mode */ |
| error_setg(&local_err, |
| "Failed to set KVM's VSMT mode to %d (errno %d)", |
| spapr->vsmt, ret); |
| /* We can live with that if the default one is big enough |
| * for the number of threads, and a submultiple of the one |
| * we want. In this case we'll waste some vcpu ids, but |
| * behaviour will be correct */ |
| if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { |
| warn_report_err(local_err); |
| local_err = NULL; |
| goto out; |
| } else { |
| if (!vsmt_user) { |
| error_append_hint(&local_err, |
| "On PPC, a VM with %d threads/core" |
| " on a host with %d threads/core" |
| " requires the use of VSMT mode %d.\n", |
| smp_threads, kvm_smt, spapr->vsmt); |
| } |
| kvmppc_hint_smt_possible(&local_err); |
| goto out; |
| } |
| } |
| } |
| /* else TCG: nothing to do currently */ |
| out: |
| error_propagate(errp, local_err); |
| } |
| |
| static void spapr_init_cpus(sPAPRMachineState *spapr) |
| { |
| MachineState *machine = MACHINE(spapr); |
| MachineClass *mc = MACHINE_GET_CLASS(machine); |
| sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); |
| const char *type = spapr_get_cpu_core_type(machine->cpu_type); |
| const CPUArchIdList *possible_cpus; |
| int boot_cores_nr = smp_cpus / smp_threads; |
| int i; |
| |
| possible_cpus = mc->possible_cpu_arch_ids(machine); |
| if (mc->has_hotpluggable_cpus) { |
| if (smp_cpus % smp_threads) { |
| error_report("smp_cpus (%u) must be multiple of threads (%u)", |
| smp_cpus, smp_threads); |
| exit(1); |
| } |
| if (max_cpus % smp_threads) { |
| error_report("max_cpus (%u) must be multiple of threads (%u)", |
| max_cpus, smp_threads); |
| exit(1); |
| } |
| } else { |
| if (max_cpus != smp_cpus) { |
| error_report("This machine version does not support CPU hotplug"); |
| exit(1); |
| } |
| boot_cores_nr = possible_cpus->len; |
| } |
| |
| if (smc->pre_2_10_has_unused_icps) { |
| int i; |
| |
| for (i = 0; i < spapr_max_server_number(spapr); i++) { |
| /* Dummy entries get deregistered when real ICPState objects |
| * are registered during CPU core hotplug. |
| */ |
| pre_2_10_vmstate_register_dummy_icp(i); |
| } |
| } |
| |
| for (i = 0; i < possible_cpus->len; i++) { |
| int core_id = i * smp_threads; |
| |
| if (mc->has_hotpluggable_cpus) { |
| spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, |
| spapr_vcpu_id(spapr, core_id)); |
| } |
| |
| if (i < boot_cores_nr) { |
| Object *core = object_new(type); |
| int nr_threads = smp_threads; |
| |
| /* Handle the partially filled core for older machine types */ |
| if ((i + 1) * smp_threads >= smp_cpus) { |
| nr_threads = smp_cpus - i * smp_threads; |
| } |
| |
| object_property_set_int(core, nr_threads, "nr-threads", |
| &error_fatal); |
| object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, |
| &error_fatal); |
| object_property_set_bool(core, true, "realized", &error_fatal); |
| |
| object_unref(core); |
| } |
| } |
| } |
| |
| static PCIHostState *spapr_create_default_phb(void) |
| { |
| DeviceState *dev; |
| |
| dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE); |
| qdev_prop_set_uint32(dev, "index", 0); |
| qdev_init_nofail(dev); |
| |
| return PCI_HOST_BRIDGE(dev); |
| } |
| |
| /* pSeries LPAR / sPAPR hardware init */ |
| static void spapr_machine_init(MachineState *machine) |
| { |
| sPAPRMachineState *spapr = SPAPR_MACHINE(machine); |
| sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); |
| const char *kernel_filename = machine->kernel_filename; |
| const char *initrd_filename = machine->initrd_filename; |
| PCIHostState *phb; |
| int i; |
| MemoryRegion *sysmem = get_system_memory(); |
| MemoryRegion *ram = g_new(MemoryRegion, 1); |
| hwaddr node0_size = spapr_node0_size(machine); |
| long load_limit, fw_size; |
| char *filename; |
| Error *resize_hpt_err = NULL; |
| |
| msi_nonbroken = true; |
| |
| QLIST_INIT(&spapr->phbs); |
| QTAILQ_INIT(&spapr->pending_dimm_unplugs); |
| |
| /* Determine capabilities to run with */ |
| spapr_caps_init(spapr); |
| |
| kvmppc_check_papr_resize_hpt(&resize_hpt_err); |
| if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { |
| /* |
| * If the user explicitly requested a mode we should either |
| * supply it, or fail completely (which we do below). But if |
| * it's not set explicitly, we reset our mode to something |
| * that works |
| */ |
| if (resize_hpt_err) { |
| spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; |
| error_free(resize_hpt_err); |
| resize_hpt_err = NULL; |
| } else { |
| spapr->resize_hpt = smc->resize_hpt_default; |
| } |
| } |
| |
| assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); |
| |
| if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { |
| /* |
| * User requested HPT resize, but this host can't supply it. Bail out |
| */ |
| error_report_err(resize_hpt_err); |
| exit(1); |
| } |
| |
| spapr->rma_size = node0_size; |
| |
| /* With KVM, we don't actually know whether KVM supports an |
| * unbounded RMA (PR KVM) or is limited by the hash table size |
| * (HV KVM using VRMA), so we always assume the latter |
| * |
| * In that case, we also limit the initial allocations for RTAS |
| * etc... to 256M since we have no way to know what the VRMA size |
| * is going to be as it depends on the size of the hash table |
| * which isn't determined yet. |
| */ |
| if (kvm_enabled()) { |
| spapr->vrma_adjust = 1; |
| spapr->rma_size = MIN(spapr->rma_size, 0x10000000); |
| } |
| |
| /* Actually we don't support unbounded RMA anymore since we added |
| * proper emulation of HV mode. The max we can get is 16G which |
| * also happens to be what we configure for PAPR mode so make sure |
| * we don't do anything bigger than that |
| */ |
| spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); |
| |
| if (spapr->rma_size > node0_size) { |
| error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", |
| spapr->rma_size); |
| exit(1); |
| } |
| |
| /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ |
| load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; |
| |
| /* |
| * VSMT must be set in order to be able to compute VCPU ids, ie to |
| * call spapr_max_server_number() or spapr_vcpu_id(). |
| */ |
| spapr_set_vsmt_mode(spapr, &error_fatal); |
| |
| /* Set up Interrupt Controller before we create the VCPUs */ |
| spapr_irq_init(spapr, &error_fatal); |
| |
| /* Set up containers for ibm,client-architecture-support negotiated options |
| */ |
| spapr->ov5 = spapr_ovec_new(); |
| spapr->ov5_cas = spapr_ovec_new(); |
| |
| if (smc->dr_lmb_enabled) { |
| spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); |
| spapr_validate_node_memory(machine, &error_fatal); |
| } |
| |
| spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); |
| |
| /* advertise support for dedicated HP event source to guests */ |
| if (spapr->use_hotplug_event_source) { |
| spapr_ovec_set(spapr->ov5, OV5_HP_EVT); |
| } |
| |
| /* advertise support for HPT resizing */ |
| if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { |
| spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); |
| } |
| |
| /* advertise support for ibm,dyamic-memory-v2 */ |
| spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); |
| |
| /* advertise XIVE on POWER9 machines */ |
| if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) { |
| if (ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, |
| 0, spapr->max_compat_pvr)) { |
| spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); |
| } else if (spapr->irq->ov5 & SPAPR_OV5_XIVE_EXPLOIT) { |
| error_report("XIVE-only machines require a POWER9 CPU"); |
| exit(1); |
| } |
| } |
| |
| /* init CPUs */ |
| spapr_init_cpus(spapr); |
| |
| if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && |
| ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, |
| spapr->max_compat_pvr)) { |
| /* KVM and TCG always allow GTSE with radix... */ |
| spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); |
| } |
| /* ... but not with hash (currently). */ |
| |
| if (kvm_enabled()) { |
| /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ |
| kvmppc_enable_logical_ci_hcalls(); |
| kvmppc_enable_set_mode_hcall(); |
| |
| /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ |
| kvmppc_enable_clear_ref_mod_hcalls(); |
| } |
| |
| /* allocate RAM */ |
| memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", |
| machine->ram_size); |
| memory_region_add_subregion(sysmem, 0, ram); |
| |
| /* always allocate the device memory information */ |
| machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); |
| |
| /* initialize hotplug memory address space */ |
| if (machine->ram_size < machine->maxram_size) { |
| ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; |
| /* |
| * Limit the number of hotpluggable memory slots to half the number |
| * slots that KVM supports, leaving the other half for PCI and other |
| * devices. However ensure that number of slots doesn't drop below 32. |
| */ |
| int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : |
| SPAPR_MAX_RAM_SLOTS; |
| |
| if (max_memslots < SPAPR_MAX_RAM_SLOTS) { |
| max_memslots = SPAPR_MAX_RAM_SLOTS; |
| } |
| if (machine->ram_slots > max_memslots) { |
| error_report("Specified number of memory slots %" |
| PRIu64" exceeds max supported %d", |
| machine->ram_slots, max_memslots); |
| exit(1); |
| } |
| |
| machine->device_memory->base = ROUND_UP(machine->ram_size, |
| SPAPR_DEVICE_MEM_ALIGN); |
| memory_region_init(&machine->device_memory->mr, OBJECT(spapr), |
| "device-memory", device_mem_size); |
| memory_region_add_subregion(sysmem, machine->device_memory->base, |
| &machine->device_memory->mr); |
| } |
| |
| if (smc->dr_lmb_enabled) { |
| spapr_create_lmb_dr_connectors(spapr); |
| } |
| |
| filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); |
| if (!filename) { |
| error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); |
| exit(1); |
| } |
| spapr->rtas_size = get_image_size(filename); |
| if (spapr->rtas_size < 0) { |
| error_report("Could not get size of LPAR rtas '%s'", filename); |
| exit(1); |
| } |
| spapr->rtas_blob = g_malloc(spapr->rtas_size); |
| if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { |
| error_report("Could not load LPAR rtas '%s'", filename); |
| exit(1); |
| } |
| if (spapr->rtas_size > RTAS_MAX_SIZE) { |
| error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", |
| (size_t)spapr->rtas_size, RTAS_MAX_SIZE); |
| exit(1); |
| } |
| g_free(filename); |
| |
| /* Set up RTAS event infrastructure */ |
| spapr_events_init(spapr); |
| |
| /* Set up the RTC RTAS interfaces */ |
| spapr_rtc_create(spapr); |
| |
| /* Set up VIO bus */ |
| spapr->vio_bus = spapr_vio_bus_init(); |
| |
| for (i = 0; i < serial_max_hds(); i++) { |
| if (serial_hd(i)) { |
| spapr_vty_create(spapr->vio_bus, serial_hd(i)); |
| } |
| } |
| |
| /* We always have at least the nvram device on VIO */ |
| spapr_create_nvram(spapr); |
| |
| /* Set up PCI */ |
| spapr_pci_rtas_init(); |
| |
| phb = spapr_create_default_phb(); |
| |
| for (i = 0; i < nb_nics; i++) { |
| NICInfo *nd = &nd_table[i]; |
| |
| if (!nd->model) { |
| nd->model = g_strdup("spapr-vlan"); |
| } |
| |
| if (g_str_equal(nd->model, "spapr-vlan") || |
| g_str_equal(nd->model, "ibmveth")) { |
| spapr_vlan_create(spapr->vio_bus, nd); |
| } else { |
| pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); |
| } |
| } |
| |
| for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { |
| spapr_vscsi_create(spapr->vio_bus); |
| } |
| |
| /* Graphics */ |
| if (spapr_vga_init(phb->bus, &error_fatal)) { |
| spapr->has_graphics = true; |
| machine->usb |= defaults_enabled() && !machine->usb_disabled; |
| } |
| |
| if (machine->usb) { |
| if (smc->use_ohci_by_default) { |
| pci_create_simple(phb->bus, -1, "pci-ohci"); |
| } else { |
| pci_create_simple(phb->bus, -1, "nec-usb-xhci"); |
| } |
| |
| if (spapr->has_graphics) { |
| USBBus *usb_bus = usb_bus_find(-1); |
| |
| usb_create_simple(usb_bus, "usb-kbd"); |
| usb_create_simple(usb_bus, "usb-mouse"); |
| } |
| } |
| |
| if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) { |
| error_report( |
| "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", |
| MIN_RMA_SLOF); |
| exit(1); |
| } |
| |
| if (kernel_filename) { |
| uint64_t lowaddr = 0; |
| |
| spapr->kernel_size = load_elf(kernel_filename, NULL, |
| translate_kernel_address, NULL, |
| NULL, &lowaddr, NULL, 1, |
| PPC_ELF_MACHINE, 0, 0); |
| if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { |
| spapr->kernel_size = load_elf(kernel_filename, NULL, |
| translate_kernel_address, NULL, NULL, |
| &lowaddr, NULL, 0, PPC_ELF_MACHINE, |
| 0, 0); |
| spapr->kernel_le = spapr->kernel_size > 0; |
| } |
| if (spapr->kernel_size < 0) { |
| error_report("error loading %s: %s", kernel_filename, |
| load_elf_strerror(spapr->kernel_size)); |
| exit(1); |
| } |
| |
| /* load initrd */ |
| if (initrd_filename) { |
| /* Try to locate the initrd in the gap between the kernel |
| * and the firmware. Add a bit of space just in case |
| */ |
| spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size |
| + 0x1ffff) & ~0xffff; |
| spapr->initrd_size = load_image_targphys(initrd_filename, |
| spapr->initrd_base, |
| load_limit |
| - spapr->initrd_base); |
| if (spapr->initrd_size < 0) { |
| error_report("could not load initial ram disk '%s'", |
| initrd_filename); |
| exit(1); |
| } |
| } |
| } |
| |
| if (bios_name == NULL) { |
| bios_name = FW_FILE_NAME; |
| } |
| filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); |
| if (!filename) { |
| error_report("Could not find LPAR firmware '%s'", bios_name); |
| exit(1); |
| } |
| fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); |
| if (fw_size <= 0) { |
| error_report("Could not load LPAR firmware '%s'", filename); |
| exit(1); |
| } |
| g_free(filename); |
| |
| /* FIXME: Should register things through the MachineState's qdev |
| * interface, this is a legacy from the sPAPREnvironment structure |
| * which predated MachineState but had a similar function */ |
| vmstate_register(NULL, 0, &vmstate_spapr, spapr); |
| register_savevm_live(NULL, "spapr/htab", -1, 1, |
| &savevm_htab_handlers, spapr); |
| |
| qemu_register_boot_set(spapr_boot_set, spapr); |
| |
| if (kvm_enabled()) { |
| /* to stop and start vmclock */ |
| qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, |
| &spapr->tb); |
| |
| kvmppc_spapr_enable_inkernel_multitce(); |
| } |
| } |
| |
| static int spapr_kvm_type(const char *vm_type) |
| { |
| if (!vm_type) { |
| return 0; |
| } |
| |
| if (!strcmp(vm_type, "HV")) { |
| return 1; |
| } |
| |
| if (!strcmp(vm_type, "PR")) { |
| return 2; |
| } |
| |
| error_report("Unknown kvm-type specified '%s'", vm_type); |
| exit(1); |
| } |
| |
| /* |
| * Implementation of an interface to adjust firmware path |
| * for the bootindex property handling. |
| */ |
| static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, |
| DeviceState *dev) |
| { |
| #define CAST(type, obj, name) \ |
| ((type *)object_dynamic_cast(OBJECT(obj), (name))) |
| SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); |
| sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); |
| VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); |
| |
| if (d) { |
| void *spapr = CAST(void, bus->parent, "spapr-vscsi"); |
| VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); |
| USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); |
| |
| if (spapr) { |
| /* |
| * Replace "channel@0/disk@0,0" with "disk@8000000000000000": |
| * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form |
| * 0x8000 | (target << 8) | (bus << 5) | lun |
| * (see the "Logical unit addressing format" table in SAM5) |
| */ |
| unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; |
| return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), |
| (uint64_t)id << 48); |
| } else if (virtio) { |
| /* |
| * We use SRP luns of the form 01000000 | (target << 8) | lun |
| * in the top 32 bits of the 64-bit LUN |
| * Note: the quote above is from SLOF and it is wrong, |
| * the actual binding is: |
| * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) |
| */ |
| unsigned id = 0x1000000 | (d->id << 16) | d->lun; |
| if (d->lun >= 256) { |
| /* Use the LUN "flat space addressing method" */ |
| id |= 0x4000; |
| } |
| return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), |
| (uint64_t)id << 32); |
| } else if (usb) { |
| /* |
| * We use SRP luns of the form 01000000 | (usb-port << 16) | lun |
| * in the top 32 bits of the 64-bit LUN |
| */ |
| unsigned usb_port = atoi(usb->port->path); |
| unsigned id = 0x1000000 | (usb_port << 16) | d->lun; |
| return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), |
| (uint64_t)id << 32); |
| } |
| } |
| |
| /* |
| * SLOF probes the USB devices, and if it recognizes that the device is a |
| * storage device, it changes its name to "storage" instead of "usb-host", |
| * and additionally adds a child node for the SCSI LUN, so the correct |
| * boot path in SLOF is something like .../storage@1/disk@xxx" instead. |
| */ |
| if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { |
| USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); |
| if (usb_host_dev_is_scsi_storage(usbdev)) { |
| return g_strdup_printf("storage@%s/disk", usbdev->port->path); |
| } |
| } |
| |
| if (phb) { |
| /* Replace "pci" with "pci@800000020000000" */ |
| return g_strdup_printf("pci@%"PRIX64, phb->buid); |
| } |
| |
| if (vsc) { |
| /* Same logic as virtio above */ |
| unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; |
| return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); |
| } |
| |
| if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { |
| /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ |
| PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); |
| return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); |
| } |
| |
| return NULL; |
| } |
| |
| static char *spapr_get_kvm_type(Object *obj, Error **errp) |
| { |
| sPAPRMachineState *spapr = SPAPR_MACHINE(obj); |
| |
| return g_strdup(spapr->kvm_type); |
| } |
| |
| static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) |
| { |
| sPAPRMachineState *spapr = SPAPR_MACHINE(obj); |
| |
| g_free(spapr->kvm_type); |
| spapr->kvm_type = g_strdup(value); |
| } |
| |
| static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) |
| { |
| sPAPRMachineState *spapr = SPAPR_MACHINE(obj); |
| |
| return spapr->use_hotplug_event_source; |
| } |
| |
| static void spapr_set_modern_hotplug_events(Object *obj, bool value, |
| Error **errp) |
| { |
| sPAPRMachineState *spapr = SPAPR_MACHINE(obj); |
| |
| spapr->use_hotplug_event_source = value; |
| } |
| |
| static bool spapr_get_msix_emulation(Object *obj, Error **errp) |
| { |
| return true; |
| } |
| |
| static char *spapr_get_resize_hpt(Object *obj, Error **errp) |
| { |
| sPAPRMachineState *spapr = SPAPR_MACHINE(obj); |
| |
| switch (spapr->resize_hpt) { |
| case SPAPR_RESIZE_HPT_DEFAULT: |
| return g_strdup("default"); |
| case SPAPR_RESIZE_HPT_DISABLED: |
| return g_strdup("disabled"); |
| case SPAPR_RESIZE_HPT_ENABLED: |
| return g_strdup("enabled"); |
| case SPAPR_RESIZE_HPT_REQUIRED: |
| return g_strdup("required"); |
| } |
| g_assert_not_reached(); |
| } |
| |
| static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) |
| { |
| sPAPRMachineState *spapr = SPAPR_MACHINE(obj); |
| |
| if (strcmp(value, "default") == 0) { |
| spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; |
| } else if (strcmp(value, "disabled") == 0) { |
| spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; |
| } else if (strcmp(value, "enabled") == 0) { |
| spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; |
| } else if (strcmp(value, "required") == 0) { |
| spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; |
| } else { |
| error_setg(errp, "Bad value for \"resize-hpt\" property"); |
| } |
| } |
| |
| static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name, |
| void *opaque, Error **errp) |
| { |
| visit_type_uint32(v, name, (uint32_t *)opaque, errp); |
| } |
| |
| static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name, |
| void *opaque, Error **errp) |
| { |
| visit_type_uint32(v, name, (uint32_t *)opaque, errp); |
| } |
| |
| static char *spapr_get_ic_mode(Object *obj, Error **errp) |
| { |
| sPAPRMachineState *spapr = SPAPR_MACHINE(obj); |
| |
| if (spapr->irq == &spapr_irq_xics_legacy) { |
| return g_strdup("legacy"); |
| } else if (spapr->irq == &spapr_irq_xics) { |
| return g_strdup("xics"); |
| } else if (spapr->irq == &spapr_irq_xive) { |
| return g_strdup("xive"); |
| } else if (spapr->irq == &spapr_irq_dual) { |
| return g_strdup("dual"); |
| } |
| g_assert_not_reached(); |
| } |
| |
| static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) |
| { |
| sPAPRMachineState *spapr = SPAPR_MACHINE(obj); |
| |
| if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { |
| error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); |
| return; |
| } |
| |
| /* The legacy IRQ backend can not be set */ |
| if (strcmp(value, "xics") == 0) { |
| spapr->irq = &spapr_irq_xics; |
| } else if (strcmp(value, "xive") == 0) { |
| spapr->irq = &spapr_irq_xive; |
| } else if (strcmp(value, "dual") == 0) { |
| spapr->irq = &spapr_irq_dual; |
| } else { |
| error_setg(errp, "Bad value for \"ic-mode\" property"); |
| } |
| } |
| |
| static void spapr_instance_init(Object *obj) |
| { |
| sPAPRMachineState *spapr = SPAPR_MACHINE(obj); |
| sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); |
| |
| spapr->htab_fd = -1; |
| spapr->use_hotplug_event_source = true; |
| object_property_add_str(obj, "kvm-type", |
| spapr_get_kvm_type, spapr_set_kvm_type, NULL); |
| object_property_set_description(obj, "kvm-type", |
| "Specifies the KVM virtualization mode (HV, PR)", |
| NULL); |
| object_property_add_bool(obj, "modern-hotplug-events", |
| spapr_get_modern_hotplug_events, |
| spapr_set_modern_hotplug_events, |
| NULL); |
| object_property_set_description(obj, "modern-hotplug-events", |
| "Use dedicated hotplug event mechanism in" |
| " place of standard EPOW events when possible" |
| " (required for memory hot-unplug support)", |
| NULL); |
| ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, |
| "Maximum permitted CPU compatibility mode", |
| &error_fatal); |
| |
| object_property_add_str(obj, "resize-hpt", |
| spapr_get_resize_hpt, spapr_set_resize_hpt, NULL); |
| object_property_set_description(obj, "resize-hpt", |
| "Resizing of the Hash Page Table (enabled, disabled, required)", |
| NULL); |
| object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt, |
| spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort); |
| object_property_set_description(obj, "vsmt", |
| "Virtual SMT: KVM behaves as if this were" |
| " the host's SMT mode", &error_abort); |
| object_property_add_bool(obj, "vfio-no-msix-emulation", |
| spapr_get_msix_emulation, NULL, NULL); |
| |
| /* The machine class defines the default interrupt controller mode */ |
| spapr->irq = smc->irq; |
| object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, |
| spapr_set_ic_mode, NULL); |
| object_property_set_description(obj, "ic-mode", |
| "Specifies the interrupt controller mode (xics, xive, dual)", |
| NULL); |
| } |
| |
| static void spapr_machine_finalizefn(Object *obj) |
| { |
| sPAPRMachineState *spapr = SPAPR_MACHINE(obj); |
| |
| g_free(spapr->kvm_type); |
| } |
| |
| void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) |
| { |
| cpu_synchronize_state(cs); |
| ppc_cpu_do_system_reset(cs); |
| } |
| |
| static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) |
| { |
| CPUState *cs; |
| |
| CPU_FOREACH(cs) { |
| async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); |
| } |
| } |
| |
| static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, |
| uint32_t node, bool dedicated_hp_event_source, |
| Error **errp) |
| { |
| sPAPRDRConnector *drc; |
| uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; |
| int i, fdt_offset, fdt_size; |
| void *fdt; |
| uint64_t addr = addr_start; |
| bool hotplugged = spapr_drc_hotplugged(dev); |
| Error *local_err = NULL; |
| |
| for (i = 0; i < nr_lmbs; i++) { |
| drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, |
| addr / SPAPR_MEMORY_BLOCK_SIZE); |
| g_assert(drc); |
| |
| fdt = create_device_tree(&fdt_size); |
| fdt_offset = spapr_populate_memory_node(fdt, node, addr, |
| SPAPR_MEMORY_BLOCK_SIZE); |
| |
| spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err); |
| if (local_err) { |
| while (addr > addr_start) { |
| addr -= SPAPR_MEMORY_BLOCK_SIZE; |
| drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, |
| addr / SPAPR_MEMORY_BLOCK_SIZE); |
| spapr_drc_detach(drc); |
| } |
| g_free(fdt); |
| error_propagate(errp, local_err); |
| return; |
| } |
| if (!hotplugged) { |
| spapr_drc_reset(drc); |
| } |
| addr += SPAPR_MEMORY_BLOCK_SIZE; |
| } |
| /* send hotplug notification to the |
| * guest only in case of hotplugged memory |
| */ |
| if (hotplugged) { |
| if (dedicated_hp_event_source) { |
| drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, |
| addr_start / SPAPR_MEMORY_BLOCK_SIZE); |
| spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, |
| nr_lmbs, |
| spapr_drc_index(drc)); |
| } else { |
| spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, |
| nr_lmbs); |
| } |
| } |
| } |
| |
| static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, |
| Error **errp) |
| { |
| Error *local_err = NULL; |
| sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev); |
| PCDIMMDevice *dimm = PC_DIMM(dev); |
| uint64_t size, addr; |
| uint32_t node; |
| |
| size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); |
| |
| pc_dimm_plug(dimm, MACHINE(ms), &local_err); |
| if (local_err) { |
| goto out; |
| } |
| |
| addr = object_property_get_uint(OBJECT(dimm), |
| PC_DIMM_ADDR_PROP, &local_err); |
| if (local_err) { |
| goto out_unplug; |
| } |
| |
| node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, |
| &error_abort); |
| spapr_add_lmbs(dev, addr, size, node, |
| spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), |
| &local_err); |
| if (local_err) { |
| goto out_unplug; |
| } |
| |
| return; |
| |
| out_unplug: |
| pc_dimm_unplug(dimm, MACHINE(ms)); |
| out: |
| error_propagate(errp, local_err); |
| } |
| |
| static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, |
| Error **errp) |
| { |
| const sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); |
| sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev); |
| PCDIMMDevice *dimm = PC_DIMM(dev); |
| Error *local_err = NULL; |
| uint64_t size; |
| Object *memdev; |
| hwaddr pagesize; |
| |
| if (!smc->dr_lmb_enabled) { |
| error_setg(errp, "Memory hotplug not supported for this machine"); |
| return; |
| } |
| |
| size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); |
| if (local_err) { |
| error_propagate(errp, local_err); |
| return; |
| } |
| |
| if (size % SPAPR_MEMORY_BLOCK_SIZE) { |
| error_setg(errp, "Hotplugged memory size must be a multiple of " |
| "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); |
| return; |
| } |
| |
| memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, |
| &error_abort); |
| pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); |
| spapr_check_pagesize(spapr, pagesize, &local_err); |
| if (local_err) { |
| error_propagate(errp, local_err); |
| return; |
| } |
| |
| pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); |
| } |
| |
| struct sPAPRDIMMState { |
| PCDIMMDevice *dimm; |
| uint32_t nr_lmbs; |
| QTAILQ_ENTRY(sPAPRDIMMState) next; |
| }; |
| |
| static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s, |
| PCDIMMDevice *dimm) |
| { |
| sPAPRDIMMState *dimm_state = NULL; |
| |
| QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { |
| if (dimm_state->dimm == dimm) { |
| break; |
| } |
| } |
| return dimm_state; |
| } |
| |
| static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr, |
| uint32_t nr_lmbs, |
| PCDIMMDevice *dimm) |
| { |
| sPAPRDIMMState *ds = NULL; |
| |
| /* |
| * If this request is for a DIMM whose removal had failed earlier |
| * (due to guest's refusal to remove the LMBs), we would have this |
| * dimm already in the pending_dimm_unplugs list. In that |
| * case don't add again. |
| */ |
| ds = spapr_pending_dimm_unplugs_find(spapr, dimm); |
| if (!ds) { |
| ds = g_malloc0(sizeof(sPAPRDIMMState)); |
| ds->nr_lmbs = nr_lmbs; |
| ds->dimm = dimm; |
| QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); |
| } |
| return ds; |
| } |
| |
| static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr, |
| sPAPRDIMMState *dimm_state) |
| { |
| QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); |
| g_free(dimm_state); |
| } |
| |
| static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms, |
| PCDIMMDevice *dimm) |
| { |
| sPAPRDRConnector *drc; |
| uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), |
| &error_abort); |
| uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; |
| uint32_t avail_lmbs = 0; |
| uint64_t addr_start, addr; |
| int i; |
| |
| addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, |
| &error_abort); |
| |
| addr = addr_start; |
| for (i = 0; i < nr_lmbs; i++) { |
| drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, |
| addr / SPAPR_MEMORY_BLOCK_SIZE); |
| g_assert(drc); |
| if (drc->dev) { |
| avail_lmbs++; |
| } |
| addr += SPAPR_MEMORY_BLOCK_SIZE; |
| } |
| |
| return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); |
| } |
| |
| /* Callback to be called during DRC release. */ |
| void spapr_lmb_release(DeviceState *dev) |
| { |
| HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); |
| sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); |
| sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); |
| |
| /* This information will get lost if a migration occurs |
| * during the unplug process. In this case recover it. */ |
| if (ds == NULL) { |
| ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); |
| g_assert(ds); |
| /* The DRC being examined by the caller at least must be counted */ |
| g_assert(ds->nr_lmbs); |
| } |
| |
| if (--ds->nr_lmbs) { |
| return; |
| } |
| |
| /* |
| * Now that all the LMBs have been removed by the guest, call the |
| * unplug handler chain. This can never fail. |
| */ |
| hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); |
| } |
| |
| static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) |
| { |
| sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev); |
| sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); |
| |
| pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); |
| object_unparent(OBJECT(dev)); |
| spapr_pending_dimm_unplugs_remove(spapr, ds); |
| } |
| |
| static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, |
| DeviceState *dev, Error **errp) |
| { |
| sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev); |
| Error *local_err = NULL; |
| PCDIMMDevice *dimm = PC_DIMM(dev); |
| uint32_t nr_lmbs; |
| uint64_t size, addr_start, addr; |
| int i; |
| sPAPRDRConnector *drc; |
| |
| size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); |
| nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; |
| |
| addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, |
| &local_err); |
| if (local_err) { |
| goto out; |
| } |
| |
| /* |
| * An existing pending dimm state for this DIMM means that there is an |
| * unplug operation in progress, waiting for the spapr_lmb_release |
| * callback to complete the job (BQL can't cover that far). In this case, |
| * bail out to avoid detaching DRCs that were already released. |
| */ |
| if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { |
| error_setg(&local_err, |
| "Memory unplug already in progress for device %s", |
| dev->id); |
| goto out; |
| } |
| |
| spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); |
| |
| addr = addr_start; |
| for (i = 0; i < nr_lmbs; i++) { |
| drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, |
| addr / SPAPR_MEMORY_BLOCK_SIZE); |
| g_assert(drc); |
| |
| spapr_drc_detach(drc); |
| addr += SPAPR_MEMORY_BLOCK_SIZE; |
| } |
| |
| drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, |
| addr_start / SPAPR_MEMORY_BLOCK_SIZE); |
| spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, |
| nr_lmbs, spapr_drc_index(drc)); |
| out: |
| error_propagate(errp, local_err); |
| } |
| |
| static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset, |
| sPAPRMachineState *spapr) |
| { |
| PowerPCCPU *cpu = POWERPC_CPU(cs); |
| DeviceClass *dc = DEVICE_GET_CLASS(cs); |
| int id = spapr_get_vcpu_id(cpu); |
| void *fdt; |
| int offset, fdt_size; |
| char *nodename; |
| |
| fdt = create_device_tree(&fdt_size); |
| nodename = g_strdup_printf("%s@%x", dc->fw_name, id); |
| offset = fdt_add_subnode(fdt, 0, nodename); |
| |
| spapr_populate_cpu_dt(cs, fdt, offset, spapr); |
| g_free(nodename); |
| |
| *fdt_offset = offset; |
| return fdt; |
| } |
| |
| /* Callback to be called during DRC release. */ |
| void spapr_core_release(DeviceState *dev) |
| { |
| HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); |
| |
| /* Call the unplug handler chain. This can never fail. */ |
| hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); |
| } |
| |
| static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) |
| { |
| MachineState *ms = MACHINE(hotplug_dev); |
| sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); |
| CPUCore *cc = CPU_CORE(dev); |
| CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); |
| |
| if (smc->pre_2_10_has_unused_icps) { |
| sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); |
| int i; |
| |
| for (i = 0; i < cc->nr_threads; i++) { |
| CPUState *cs = CPU(sc->threads[i]); |
| |
| pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); |
| } |
| } |
| |
| assert(core_slot); |
| core_slot->cpu = NULL; |
| object_unparent(OBJECT(dev)); |
| } |
| |
| static |
| void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, |
| Error **errp) |
| { |
| sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); |
| int index; |
| sPAPRDRConnector *drc; |
| CPUCore *cc = CPU_CORE(dev); |
| |
| if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { |
| error_setg(errp, "Unable to find CPU core with core-id: %d", |
| cc->core_id); |
| return; |
| } |
| if (index == 0) { |
| error_setg(errp, "Boot CPU core may not be unplugged"); |
| return; |
| } |
| |
| drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, |
| spapr_vcpu_id(spapr, cc->core_id)); |
| g_assert(drc); |
| |
| spapr_drc_detach(drc); |
| |
| spapr_hotplug_req_remove_by_index(drc); |
| } |
| |
| static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, |
| Error **errp) |
| { |
| sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); |
| MachineClass *mc = MACHINE_GET_CLASS(spapr); |
| sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); |
| sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev)); |
| CPUCore *cc = CPU_CORE(dev); |
| CPUState *cs = CPU(core->threads[0]); |
| sPAPRDRConnector *drc; |
| Error *local_err = NULL; |
| CPUArchId *core_slot; |
| int index; |
| bool hotplugged = spapr_drc_hotplugged(dev); |
| |
| core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); |
| if (!core_slot) { |
| error_setg(errp, "Unable to find CPU core with core-id: %d", |
| cc->core_id); |
| return; |
| } |
| drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, |
| spapr_vcpu_id(spapr, cc->core_id)); |
| |
| g_assert(drc || !mc->has_hotpluggable_cpus); |
| |
| if (drc) { |
| void *fdt; |
| int fdt_offset; |
| |
| fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr); |
| |
| spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err); |
| if (local_err) { |
| g_free(fdt); |
| error_propagate(errp, local_err); |
| return; |
| } |
| |
| if (hotplugged) { |
| /* |
| * Send hotplug notification interrupt to the guest only |
| * in case of hotplugged CPUs. |
| */ |
| spapr_hotplug_req_add_by_index(drc); |
| } else { |
| spapr_drc_reset(drc); |
| } |
| } |
| |
| core_slot->cpu = OBJECT(dev); |
| |
| if (smc->pre_2_10_has_unused_icps) { |
| int i; |
| |
| for (i = 0; i < cc->nr_threads; i++) { |
| cs = CPU(core->threads[i]); |
| pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); |
| } |
| } |
| } |
| |
| static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, |
| Error **errp) |
| { |
| MachineState *machine = MACHINE(OBJECT(hotplug_dev)); |
| MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); |
| Error *local_err = NULL; |
| CPUCore *cc = CPU_CORE(dev); |
| const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); |
| const char *type = object_get_typename(OBJECT(dev)); |
| CPUArchId *core_slot; |
| int index; |
| |
| if (dev->hotplugged && !mc->has_hotpluggable_cpus) { |
| error_setg(&local_err, "CPU hotplug not supported for this machine"); |
| goto out; |
| } |
| |
| if (strcmp(base_core_type, type)) { |
| error_setg(&local_err, "CPU core type should be %s", base_core_type); |
| goto out; |
| } |
| |
| if (cc->core_id % smp_threads) { |
| error_setg(&local_err, "invalid core id %d", cc->core_id); |
| goto out; |
| } |
| |
| /* |
| * In general we should have homogeneous threads-per-core, but old |
| * (pre hotplug support) machine types allow the last core to have |
| * reduced threads as a compatibility hack for when we allowed |
| * total vcpus not a multiple of threads-per-core. |
| */ |
| if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { |
| error_setg(&local_err, "invalid nr-threads %d, must be %d", |
| cc->nr_threads, smp_threads); |
| goto out; |
| } |
| |
| core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); |
| if (!core_slot) { |
| error_setg(&local_err, "core id %d out of range", cc->core_id); |
| goto out; |
| } |
| |
| if (core_slot->cpu) { |
| error_setg(&local_err, "core %d already populated", cc->core_id); |
| goto out; |
| } |
| |
| numa_cpu_pre_plug(core_slot, dev, &local_err); |
| |
| out: |
| error_propagate(errp, local_err); |
| } |
| |
| static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, |
| DeviceState *dev, Error **errp) |
| { |
| if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { |
| spapr_memory_plug(hotplug_dev, dev, errp); |
| } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { |
| spapr_core_plug(hotplug_dev, dev, errp); |
| } |
| } |
| |
| static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, |
| DeviceState *dev, Error **errp) |
| { |
| if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { |
| spapr_memory_unplug(hotplug_dev, dev); |
| } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { |
| spapr_core_unplug(hotplug_dev, dev); |
| } |
| } |
| |
| static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, |
| DeviceState *dev, Error **errp) |
| { |
| sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); |
| MachineClass *mc = MACHINE_GET_CLASS(sms); |
| |
| if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { |
| if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { |
| spapr_memory_unplug_request(hotplug_dev, dev, errp); |
| } else { |
| /* NOTE: this means there is a window after guest reset, prior to |
| * CAS negotiation, where unplug requests will fail due to the |
| * capability not being detected yet. This is a bit different than |
| * the case with PCI unplug, where the events will be queued and |
| * eventually handled by the guest after boot |
| */ |
| error_setg(errp, "Memory hot unplug not supported for this guest"); |
| } |
| } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { |
| if (!mc->has_hotpluggable_cpus) { |
| error_setg(errp, "CPU hot unplug not supported on this machine"); |
| return; |
| } |
| spapr_core_unplug_request(hotplug_dev, dev, errp); |
| } |
| } |
| |
| static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, |
| DeviceState *dev, Error **errp) |
| { |
| if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { |
| spapr_memory_pre_plug(hotplug_dev, dev, errp); |
| } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { |
| spapr_core_pre_plug(hotplug_dev, dev, errp); |
| } |
| } |
| |
| static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, |
| DeviceState *dev) |
| { |
| if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || |
| object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { |
| return HOTPLUG_HANDLER(machine); |
| } |
| return NULL; |
| } |
| |
| static CpuInstanceProperties |
| spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) |
| { |
| CPUArchId *core_slot; |
| MachineClass *mc = MACHINE_GET_CLASS(machine); |
| |
| /* make sure possible_cpu are intialized */ |
| mc->possible_cpu_arch_ids(machine); |
| /* get CPU core slot containing thread that matches cpu_index */ |
| core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); |
| assert(core_slot); |
| return core_slot->props; |
| } |
| |
| static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) |
| { |
| return idx / smp_cores % nb_numa_nodes; |
| } |
| |
| static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) |
| { |
| int i; |
| const char *core_type; |
| int spapr_max_cores = max_cpus / smp_threads; |
| MachineClass *mc = MACHINE_GET_CLASS(machine); |
| |
| if (!mc->has_hotpluggable_cpus) { |
| spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; |
| } |
| if (machine->possible_cpus) { |
| assert(machine->possible_cpus->len == spapr_max_cores); |
| return machine->possible_cpus; |
| } |
| |
| core_type = spapr_get_cpu_core_type(machine->cpu_type); |
| if (!core_type) { |
| error_report("Unable to find sPAPR CPU Core definition"); |
| exit(1); |
| } |
| |
| machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + |
| sizeof(CPUArchId) * spapr_max_cores); |
| machine->possible_cpus->len = spapr_max_cores; |
| for (i = 0; i < machine->possible_cpus->len; i++) { |
| int core_id = i * smp_threads; |
| |
| machine->possible_cpus->cpus[i].type = core_type; |
| machine->possible_cpus->cpus[i].vcpus_count = smp_threads; |
| machine->possible_cpus->cpus[i].arch_id = core_id; |
| machine->possible_cpus->cpus[i].props.has_core_id = true; |
| machine->possible_cpus->cpus[i].props.core_id = core_id; |
| } |
| return machine->possible_cpus; |
| } |
| |
| static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index, |
| uint64_t *buid, hwaddr *pio, |
| hwaddr *mmio32, hwaddr *mmio64, |
| unsigned n_dma, uint32_t *liobns, Error **errp) |
| { |
| /* |
| * New-style PHB window placement. |
| * |
| * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window |
| * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO |
| * windows. |
| * |
| * Some guest kernels can't work with MMIO windows above 1<<46 |
| * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB |
| * |
| * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each |
| * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the |
| * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the |
| * 1TiB 64-bit MMIO windows for each PHB. |
| */ |
| const uint64_t base_buid = 0x800000020000000ULL; |
| int i; |
| |
| /* Sanity check natural alignments */ |
| QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); |
| QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); |
| QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); |
| QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); |
| /* Sanity check bounds */ |
| QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > |
| SPAPR_PCI_MEM32_WIN_SIZE); |
| QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > |
| SPAPR_PCI_MEM64_WIN_SIZE); |
| |
| if (index >= SPAPR_MAX_PHBS) { |
| error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", |
| SPAPR_MAX_PHBS - 1); |
| return; |
| } |
| |
| *buid = base_buid + index; |
| for (i = 0; i < n_dma; ++i) { |
| liobns[i] = SPAPR_PCI_LIOBN(index, i); |
| } |
| |
| *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; |
| *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; |
| *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; |
| } |
| |
| static ICSState *spapr_ics_get(XICSFabric *dev, int irq) |
| { |
| sPAPRMachineState *spapr = SPAPR_MACHINE(dev); |
| |
| return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; |
| } |
| |
| static void spapr_ics_resend(XICSFabric *dev) |
| { |
| sPAPRMachineState *spapr = SPAPR_MACHINE(dev); |
| |
| ics_resend(spapr->ics); |
| } |
| |
| static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) |
| { |
| PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); |
| |
| return cpu ? spapr_cpu_state(cpu)->icp : NULL; |
| } |
| |
| static void spapr_pic_print_info(InterruptStatsProvider *obj, |
| Monitor *mon) |
| { |
| sPAPRMachineState *spapr = SPAPR_MACHINE(obj); |
| |
| spapr->irq->print_info(spapr, mon); |
| } |
| |
| int spapr_get_vcpu_id(PowerPCCPU *cpu) |
| { |
| return cpu->vcpu_id; |
| } |
| |
| void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) |
| { |
| sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); |
| int vcpu_id; |
| |
| vcpu_id = spapr_vcpu_id(spapr, cpu_index); |
| |
| if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { |
| error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); |
| error_append_hint(errp, "Adjust the number of cpus to %d " |
| "or try to raise the number of threads per core\n", |
| vcpu_id * smp_threads / spapr->vsmt); |
| return; |
| } |
| |
| cpu->vcpu_id = vcpu_id; |
| } |
| |
| PowerPCCPU *spapr_find_cpu(int vcpu_id) |
| { |
| CPUState *cs; |
| |
| CPU_FOREACH(cs) { |
| PowerPCCPU *cpu = POWERPC_CPU(cs); |
| |
| if (spapr_get_vcpu_id(cpu) == vcpu_id) { |
| return cpu; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| static void spapr_machine_class_init(ObjectClass *oc, void *data) |
| { |
| MachineClass *mc = MACHINE_CLASS(oc); |
| sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc); |
| FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); |
| NMIClass *nc = NMI_CLASS(oc); |
| HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); |
| PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); |
| XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); |
| InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); |
| |
| mc->desc = "pSeries Logical Partition (PAPR compliant)"; |
| mc->ignore_boot_device_suffixes = true; |
| |
| /* |
| * We set up the default / latest behaviour here. The class_init |
| * functions for the specific versioned machine types can override |
| * these details for backwards compatibility |
| */ |
| mc->init = spapr_machine_init; |
| mc->reset = spapr_machine_reset; |
| mc->block_default_type = IF_SCSI; |
| mc->max_cpus = 1024; |
| mc->no_parallel = 1; |
| mc->default_boot_order = ""; |
| mc->default_ram_size = 512 * MiB; |
| mc->default_display = "std"; |
| mc->kvm_type = spapr_kvm_type; |
| machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); |
| mc->pci_allow_0_address = true; |
| assert(!mc->get_hotplug_handler); |
| mc->get_hotplug_handler = spapr_get_hotplug_handler; |
| hc->pre_plug = spapr_machine_device_pre_plug; |
| hc->plug = spapr_machine_device_plug; |
| mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; |
| mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; |
| mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; |
| hc->unplug_request = spapr_machine_device_unplug_request; |
| hc->unplug = spapr_machine_device_unplug; |
| |
| smc->dr_lmb_enabled = true; |
| smc->update_dt_enabled = true; |
| mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0"); |
| mc->has_hotpluggable_cpus = true; |
| smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; |
| fwc->get_dev_path = spapr_get_fw_dev_path; |
| nc->nmi_monitor_handler = spapr_nmi; |
| smc->phb_placement = spapr_phb_placement; |
| vhc->hypercall = emulate_spapr_hypercall; |
| vhc->hpt_mask = spapr_hpt_mask; |
| vhc->map_hptes = spapr_map_hptes; |
| vhc->unmap_hptes = spapr_unmap_hptes; |
| vhc->store_hpte = spapr_store_hpte; |
| vhc->get_patbe = spapr_get_patbe; |
| vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; |
| xic->ics_get = spapr_ics_get; |
| xic->ics_resend = spapr_ics_resend; |
| xic->icp_get = spapr_icp_get; |
| ispc->print_info = spapr_pic_print_info; |
| /* Force NUMA node memory size to be a multiple of |
| * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity |
| * in which LMBs are represented and hot-added |
| */ |
| mc->numa_mem_align_shift = 28; |
| |
| smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; |
| smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; |
| smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; |
| smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; |
| smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; |
| smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; |
| smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ |
| smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; |
| spapr_caps_add_properties(smc, &error_abort); |
| smc->irq = &spapr_irq_xics; |
| } |
| |
| static const TypeInfo spapr_machine_info = { |
| .name = TYPE_SPAPR_MACHINE, |
| .parent = TYPE_MACHINE, |
| .abstract = true, |
| .instance_size = sizeof(sPAPRMachineState), |
| .instance_init = spapr_instance_init, |
| .instance_finalize = spapr_machine_finalizefn, |
| .class_size = sizeof(sPAPRMachineClass), |
| .class_init = spapr_machine_class_init, |
| .interfaces = (InterfaceInfo[]) { |
| { TYPE_FW_PATH_PROVIDER }, |
| { TYPE_NMI }, |
| { TYPE_HOTPLUG_HANDLER }, |
| { TYPE_PPC_VIRTUAL_HYPERVISOR }, |
| { TYPE_XICS_FABRIC }, |
| { TYPE_INTERRUPT_STATS_PROVIDER }, |
| { } |
| }, |
| }; |
| |
| #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ |
| static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ |
| void *data) \ |
| { \ |
| MachineClass *mc = MACHINE_CLASS(oc); \ |
| spapr_machine_##suffix##_class_options(mc); \ |
| if (latest) { \ |
| mc->alias = "pseries"; \ |
| mc->is_default = 1; \ |
| } \ |
| } \ |
| static const TypeInfo spapr_machine_##suffix##_info = { \ |
| .name = MACHINE_TYPE_NAME("pseries-" verstr), \ |
| .parent = TYPE_SPAPR_MACHINE, \ |
| .class_init = spapr_machine_##suffix##_class_init, \ |
| }; \ |
| static void spapr_machine_register_##suffix(void) \ |
| { \ |
| type_register(&spapr_machine_##suffix##_info); \ |
| } \ |
| type_init(spapr_machine_register_##suffix) |
| |
| /* |
| * pseries-4.0 |
| */ |
| static void spapr_machine_4_0_class_options(MachineClass *mc) |
| { |
| /* Defaults for the latest behaviour inherited from the base class */ |
| } |
| |
| DEFINE_SPAPR_MACHINE(4_0, "4.0", true); |
| |
| /* |
| * pseries-3.1 |
| */ |
| static void spapr_machine_3_1_class_options(MachineClass *mc) |
| { |
| sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); |
| |
| spapr_machine_4_0_class_options(mc); |
| compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); |
| mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); |
| smc->update_dt_enabled = false; |
| } |
| |
| DEFINE_SPAPR_MACHINE(3_1, "3.1", false); |
| |
| /* |
| * pseries-3.0 |
| */ |
| |
| static void spapr_machine_3_0_class_options(MachineClass *mc) |
| { |
| sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); |
| |
| spapr_machine_3_1_class_options(mc); |
| compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); |
| |
| smc->legacy_irq_allocation = true; |
| smc->irq = &spapr_irq_xics_legacy; |
| } |
| |
| DEFINE_SPAPR_MACHINE(3_0, "3.0", false); |
| |
| /* |
| * pseries-2.12 |
| */ |
| static void spapr_machine_2_12_class_options(MachineClass *mc) |
| { |
| sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); |
| static GlobalProperty compat[] = { |
| { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, |
| { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, |
| }; |
| |
| spapr_machine_3_0_class_options(mc); |
| compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); |
| compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); |
| |
| /* We depend on kvm_enabled() to choose a default value for the |
| * hpt-max-page-size capability. Of course we can't do it here |
| * because this is too early and the HW accelerator isn't initialzed |
| * yet. Postpone this to machine init (see default_caps_with_cpu()). |
| */ |
| smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; |
| } |
| |
| DEFINE_SPAPR_MACHINE(2_12, "2.12", false); |
| |
| static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) |
| { |
| sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); |
| |
| spapr_machine_2_12_class_options(mc); |
| smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; |
| smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; |
| smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; |
| } |
| |
| DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); |
| |
| /* |
| * pseries-2.11 |
| */ |
| |
| static void spapr_machine_2_11_class_options(MachineClass *mc) |
| { |
| sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); |
| |
| spapr_machine_2_12_class_options(mc); |
| smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; |
| compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); |
| } |
| |
| DEFINE_SPAPR_MACHINE(2_11, "2.11", false); |
| |
| /* |
| * pseries-2.10 |
| */ |
| |
| static void spapr_machine_2_10_class_options(MachineClass *mc) |
| { |
| spapr_machine_2_11_class_options(mc); |
| compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); |
| } |
| |
| DEFINE_SPAPR_MACHINE(2_10, "2.10", false); |
| |
| /* |
| * pseries-2.9 |
| */ |
| |
| static void spapr_machine_2_9_class_options(MachineClass *mc) |
| { |
| sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); |
| static GlobalProperty compat[] = { |
| { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, |
| }; |
| |
| spapr_machine_2_10_class_options(mc); |
| compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); |
| compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); |
| mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram; |
| smc->pre_2_10_has_unused_icps = true; |
| smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; |
| } |
| |
| DEFINE_SPAPR_MACHINE(2_9, "2.9", false); |
| |
| /* |
| * pseries-2.8 |
| */ |
| |
| static void spapr_machine_2_8_class_options(MachineClass *mc) |
| { |
| static GlobalProperty compat[] = { |
| { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, |
| }; |
| |
| spapr_machine_2_9_class_options(mc); |
| compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); |
| compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); |
| mc->numa_mem_align_shift = 23; |
| } |
| |
| DEFINE_SPAPR_MACHINE(2_8, "2.8", false); |
| |
| /* |
| * pseries-2.7 |
| */ |
| |
| static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index, |
| uint64_t *buid, hwaddr *pio, |
| hwaddr *mmio32, hwaddr *mmio64, |
| unsigned n_dma, uint32_t *liobns, Error **errp) |
| { |
| /* Legacy PHB placement for pseries-2.7 and earlier machine types */ |
| const uint64_t base_buid = 0x800000020000000ULL; |
| const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ |
| const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ |
| const hwaddr pio_offset = 0x80000000; /* 2 GiB */ |
| const uint32_t max_index = 255; |
| const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ |
| |
| uint64_t ram_top = MACHINE(spapr)->ram_size; |
| hwaddr phb0_base, phb_base; |
| int i; |
| |
| /* Do we have device memory? */ |
| if (MACHINE(spapr)->maxram_size > ram_top) { |
| /* Can't just use maxram_size, because there may be an |
| * alignment gap between normal and device memory regions |
| */ |
| ram_top = MACHINE(spapr)->device_memory->base + |
| memory_region_size(&MACHINE(spapr)->device_memory->mr); |
| } |
| |
| phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); |
| |
| if (index > max_index) { |
| error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", |
| max_index); |
| return; |
| } |
| |
| *buid = base_buid + index; |
| for (i = 0; i < n_dma; ++i) { |
| liobns[i] = SPAPR_PCI_LIOBN(index, i); |
| } |
| |
| phb_base = phb0_base + index * phb_spacing; |
| *pio = phb_base + pio_offset; |
| *mmio32 = phb_base + mmio_offset; |
| /* |
| * We don't set the 64-bit MMIO window, relying on the PHB's |
| * fallback behaviour of automatically splitting a large "32-bit" |
| * window into contiguous 32-bit and 64-bit windows |
| */ |
| } |
| |
| static void spapr_machine_2_7_class_options(MachineClass *mc) |
| { |
| sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); |
| static GlobalProperty compat[] = { |
| { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, |
| { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, |
| { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, |
| { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, |
| }; |
| |
| spapr_machine_2_8_class_options(mc); |
| mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); |
| mc->default_machine_opts = "modern-hotplug-events=off"; |
| compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); |
| compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); |
| smc->phb_placement = phb_placement_2_7; |
| } |
| |
| DEFINE_SPAPR_MACHINE(2_7, "2.7", false); |
| |
| /* |
| * pseries-2.6 |
| */ |
| |
| static void spapr_machine_2_6_class_options(MachineClass *mc) |
| { |
| static GlobalProperty compat[] = { |
| { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, |
| }; |
| |
| spapr_machine_2_7_class_options(mc); |
| mc->has_hotpluggable_cpus = false; |
| compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); |
| compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); |
| } |
| |
| DEFINE_SPAPR_MACHINE(2_6, "2.6", false); |
| |
| /* |
| * pseries-2.5 |
| */ |
| |
| static void spapr_machine_2_5_class_options(MachineClass *mc) |
| { |
| sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); |
| static GlobalProperty compat[] = { |
| { "spapr-vlan", "use-rx-buffer-pools", "off" }, |
| }; |
| |
| spapr_machine_2_6_class_options(mc); |
| smc->use_ohci_by_default = true; |
| compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); |
| compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); |
| } |
| |
| DEFINE_SPAPR_MACHINE(2_5, "2.5", false); |
| |
| /* |
| * pseries-2.4 |
| */ |
| |
| static void spapr_machine_2_4_class_options(MachineClass *mc) |
| { |
| sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); |
| |
| spapr_machine_2_5_class_options(mc); |
| smc->dr_lmb_enabled = false; |
| compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); |
| } |
| |
| DEFINE_SPAPR_MACHINE(2_4, "2.4", false); |
| |
| /* |
| * pseries-2.3 |
| */ |
| |
| static void spapr_machine_2_3_class_options(MachineClass *mc) |
| { |
| static GlobalProperty compat[] = { |
| { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, |
| }; |
| spapr_machine_2_4_class_options(mc); |
| compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); |
| compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); |
| } |
| DEFINE_SPAPR_MACHINE(2_3, "2.3", false); |
| |
| /* |
| * pseries-2.2 |
| */ |
| |
| static void spapr_machine_2_2_class_options(MachineClass *mc) |
| { |
| static GlobalProperty compat[] = { |
| { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, |
| }; |
| |
| spapr_machine_2_3_class_options(mc); |
| compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); |
| compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); |
| mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; |
| } |
| DEFINE_SPAPR_MACHINE(2_2, "2.2", false); |
| |
| /* |
| * pseries-2.1 |
| */ |
| |
| static void spapr_machine_2_1_class_options(MachineClass *mc) |
| { |
| spapr_machine_2_2_class_options(mc); |
| compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); |
| } |
| DEFINE_SPAPR_MACHINE(2_1, "2.1", false); |
| |
| static void spapr_machine_register_types(void) |
| { |
| type_register_static(&spapr_machine_info); |
| } |
| |
| type_init(spapr_machine_register_types) |