|  | /* | 
|  | * QEMU System Emulator | 
|  | * | 
|  | * Copyright (c) 2003-2008 Fabrice Bellard | 
|  | * Copyright (c) 2011-2015 Red Hat Inc | 
|  | * | 
|  | * Authors: | 
|  | *  Juan Quintela <quintela@redhat.com> | 
|  | * | 
|  | * Permission is hereby granted, free of charge, to any person obtaining a copy | 
|  | * of this software and associated documentation files (the "Software"), to deal | 
|  | * in the Software without restriction, including without limitation the rights | 
|  | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | 
|  | * copies of the Software, and to permit persons to whom the Software is | 
|  | * furnished to do so, subject to the following conditions: | 
|  | * | 
|  | * The above copyright notice and this permission notice shall be included in | 
|  | * all copies or substantial portions of the Software. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
|  | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
|  | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | 
|  | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
|  | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | 
|  | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | 
|  | * THE SOFTWARE. | 
|  | */ | 
|  |  | 
|  | #include "qemu/osdep.h" | 
|  | #include "qemu/cutils.h" | 
|  | #include "qemu/bitops.h" | 
|  | #include "qemu/bitmap.h" | 
|  | #include "qemu/madvise.h" | 
|  | #include "qemu/main-loop.h" | 
|  | #include "xbzrle.h" | 
|  | #include "ram.h" | 
|  | #include "migration.h" | 
|  | #include "migration-stats.h" | 
|  | #include "migration/register.h" | 
|  | #include "migration/misc.h" | 
|  | #include "qemu-file.h" | 
|  | #include "postcopy-ram.h" | 
|  | #include "page_cache.h" | 
|  | #include "qemu/error-report.h" | 
|  | #include "qapi/error.h" | 
|  | #include "qapi/qapi-types-migration.h" | 
|  | #include "qapi/qapi-events-migration.h" | 
|  | #include "qapi/qapi-commands-migration.h" | 
|  | #include "qapi/qmp/qerror.h" | 
|  | #include "trace.h" | 
|  | #include "exec/ram_addr.h" | 
|  | #include "exec/target_page.h" | 
|  | #include "qemu/rcu_queue.h" | 
|  | #include "migration/colo.h" | 
|  | #include "system/cpu-throttle.h" | 
|  | #include "savevm.h" | 
|  | #include "qemu/iov.h" | 
|  | #include "multifd.h" | 
|  | #include "system/runstate.h" | 
|  | #include "rdma.h" | 
|  | #include "options.h" | 
|  | #include "system/dirtylimit.h" | 
|  | #include "system/kvm.h" | 
|  |  | 
|  | #include "hw/boards.h" /* for machine_dump_guest_core() */ | 
|  |  | 
|  | #if defined(__linux__) | 
|  | #include "qemu/userfaultfd.h" | 
|  | #endif /* defined(__linux__) */ | 
|  |  | 
|  | /***********************************************************/ | 
|  | /* ram save/restore */ | 
|  |  | 
|  | /* | 
|  | * mapped-ram migration supports O_DIRECT, so we need to make sure the | 
|  | * userspace buffer, the IO operation size and the file offset are | 
|  | * aligned according to the underlying device's block size. The first | 
|  | * two are already aligned to page size, but we need to add padding to | 
|  | * the file to align the offset.  We cannot read the block size | 
|  | * dynamically because the migration file can be moved between | 
|  | * different systems, so use 1M to cover most block sizes and to keep | 
|  | * the file offset aligned at page size as well. | 
|  | */ | 
|  | #define MAPPED_RAM_FILE_OFFSET_ALIGNMENT 0x100000 | 
|  |  | 
|  | /* | 
|  | * When doing mapped-ram migration, this is the amount we read from | 
|  | * the pages region in the migration file at a time. | 
|  | */ | 
|  | #define MAPPED_RAM_LOAD_BUF_SIZE 0x100000 | 
|  |  | 
|  | XBZRLECacheStats xbzrle_counters; | 
|  |  | 
|  | /* used by the search for pages to send */ | 
|  | struct PageSearchStatus { | 
|  | /* The migration channel used for a specific host page */ | 
|  | QEMUFile    *pss_channel; | 
|  | /* Last block from where we have sent data */ | 
|  | RAMBlock *last_sent_block; | 
|  | /* Current block being searched */ | 
|  | RAMBlock    *block; | 
|  | /* Current page to search from */ | 
|  | unsigned long page; | 
|  | /* Set once we wrap around */ | 
|  | bool         complete_round; | 
|  | /* Whether we're sending a host page */ | 
|  | bool          host_page_sending; | 
|  | /* The start/end of current host page.  Invalid if host_page_sending==false */ | 
|  | unsigned long host_page_start; | 
|  | unsigned long host_page_end; | 
|  | }; | 
|  | typedef struct PageSearchStatus PageSearchStatus; | 
|  |  | 
|  | /* struct contains XBZRLE cache and a static page | 
|  | used by the compression */ | 
|  | static struct { | 
|  | /* buffer used for XBZRLE encoding */ | 
|  | uint8_t *encoded_buf; | 
|  | /* buffer for storing page content */ | 
|  | uint8_t *current_buf; | 
|  | /* Cache for XBZRLE, Protected by lock. */ | 
|  | PageCache *cache; | 
|  | QemuMutex lock; | 
|  | /* it will store a page full of zeros */ | 
|  | uint8_t *zero_target_page; | 
|  | /* buffer used for XBZRLE decoding */ | 
|  | uint8_t *decoded_buf; | 
|  | } XBZRLE; | 
|  |  | 
|  | static void XBZRLE_cache_lock(void) | 
|  | { | 
|  | if (migrate_xbzrle()) { | 
|  | qemu_mutex_lock(&XBZRLE.lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void XBZRLE_cache_unlock(void) | 
|  | { | 
|  | if (migrate_xbzrle()) { | 
|  | qemu_mutex_unlock(&XBZRLE.lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * xbzrle_cache_resize: resize the xbzrle cache | 
|  | * | 
|  | * This function is called from migrate_params_apply in main | 
|  | * thread, possibly while a migration is in progress.  A running | 
|  | * migration may be using the cache and might finish during this call, | 
|  | * hence changes to the cache are protected by XBZRLE.lock(). | 
|  | * | 
|  | * Returns 0 for success or -1 for error | 
|  | * | 
|  | * @new_size: new cache size | 
|  | * @errp: set *errp if the check failed, with reason | 
|  | */ | 
|  | int xbzrle_cache_resize(uint64_t new_size, Error **errp) | 
|  | { | 
|  | PageCache *new_cache; | 
|  | int64_t ret = 0; | 
|  |  | 
|  | /* Check for truncation */ | 
|  | if (new_size != (size_t)new_size) { | 
|  | error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", | 
|  | "exceeding address space"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (new_size == migrate_xbzrle_cache_size()) { | 
|  | /* nothing to do */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | XBZRLE_cache_lock(); | 
|  |  | 
|  | if (XBZRLE.cache != NULL) { | 
|  | new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp); | 
|  | if (!new_cache) { | 
|  | ret = -1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | cache_fini(XBZRLE.cache); | 
|  | XBZRLE.cache = new_cache; | 
|  | } | 
|  | out: | 
|  | XBZRLE_cache_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool postcopy_preempt_active(void) | 
|  | { | 
|  | return migrate_postcopy_preempt() && migration_in_postcopy(); | 
|  | } | 
|  |  | 
|  | bool migrate_ram_is_ignored(RAMBlock *block) | 
|  | { | 
|  | MigMode mode = migrate_mode(); | 
|  | return !qemu_ram_is_migratable(block) || | 
|  | mode == MIG_MODE_CPR_TRANSFER || | 
|  | (migrate_ignore_shared() && qemu_ram_is_shared(block) | 
|  | && qemu_ram_is_named_file(block)); | 
|  | } | 
|  |  | 
|  | #undef RAMBLOCK_FOREACH | 
|  |  | 
|  | int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque) | 
|  | { | 
|  | RAMBlock *block; | 
|  | int ret = 0; | 
|  |  | 
|  | RCU_READ_LOCK_GUARD(); | 
|  |  | 
|  | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | 
|  | ret = func(block, opaque); | 
|  | if (ret) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void ramblock_recv_map_init(void) | 
|  | { | 
|  | RAMBlock *rb; | 
|  |  | 
|  | RAMBLOCK_FOREACH_NOT_IGNORED(rb) { | 
|  | assert(!rb->receivedmap); | 
|  | rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits()); | 
|  | } | 
|  | } | 
|  |  | 
|  | int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr) | 
|  | { | 
|  | return test_bit(ramblock_recv_bitmap_offset(host_addr, rb), | 
|  | rb->receivedmap); | 
|  | } | 
|  |  | 
|  | bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset) | 
|  | { | 
|  | return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); | 
|  | } | 
|  |  | 
|  | void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr) | 
|  | { | 
|  | set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap); | 
|  | } | 
|  |  | 
|  | void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr, | 
|  | size_t nr) | 
|  | { | 
|  | bitmap_set_atomic(rb->receivedmap, | 
|  | ramblock_recv_bitmap_offset(host_addr, rb), | 
|  | nr); | 
|  | } | 
|  |  | 
|  | void ramblock_recv_bitmap_set_offset(RAMBlock *rb, uint64_t byte_offset) | 
|  | { | 
|  | set_bit_atomic(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); | 
|  | } | 
|  | #define  RAMBLOCK_RECV_BITMAP_ENDING  (0x0123456789abcdefULL) | 
|  |  | 
|  | /* | 
|  | * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes). | 
|  | * | 
|  | * Returns >0 if success with sent bytes, or <0 if error. | 
|  | */ | 
|  | int64_t ramblock_recv_bitmap_send(QEMUFile *file, | 
|  | const char *block_name) | 
|  | { | 
|  | RAMBlock *block = qemu_ram_block_by_name(block_name); | 
|  | unsigned long *le_bitmap, nbits; | 
|  | uint64_t size; | 
|  |  | 
|  | if (!block) { | 
|  | error_report("%s: invalid block name: %s", __func__, block_name); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | nbits = block->postcopy_length >> TARGET_PAGE_BITS; | 
|  |  | 
|  | /* | 
|  | * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit | 
|  | * machines we may need 4 more bytes for padding (see below | 
|  | * comment). So extend it a bit before hand. | 
|  | */ | 
|  | le_bitmap = bitmap_new(nbits + BITS_PER_LONG); | 
|  |  | 
|  | /* | 
|  | * Always use little endian when sending the bitmap. This is | 
|  | * required that when source and destination VMs are not using the | 
|  | * same endianness. (Note: big endian won't work.) | 
|  | */ | 
|  | bitmap_to_le(le_bitmap, block->receivedmap, nbits); | 
|  |  | 
|  | /* Size of the bitmap, in bytes */ | 
|  | size = DIV_ROUND_UP(nbits, 8); | 
|  |  | 
|  | /* | 
|  | * size is always aligned to 8 bytes for 64bit machines, but it | 
|  | * may not be true for 32bit machines. We need this padding to | 
|  | * make sure the migration can survive even between 32bit and | 
|  | * 64bit machines. | 
|  | */ | 
|  | size = ROUND_UP(size, 8); | 
|  |  | 
|  | qemu_put_be64(file, size); | 
|  | qemu_put_buffer(file, (const uint8_t *)le_bitmap, size); | 
|  | g_free(le_bitmap); | 
|  | /* | 
|  | * Mark as an end, in case the middle part is screwed up due to | 
|  | * some "mysterious" reason. | 
|  | */ | 
|  | qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING); | 
|  | int ret = qemu_fflush(file); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return size + sizeof(size); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * An outstanding page request, on the source, having been received | 
|  | * and queued | 
|  | */ | 
|  | struct RAMSrcPageRequest { | 
|  | RAMBlock *rb; | 
|  | hwaddr    offset; | 
|  | hwaddr    len; | 
|  |  | 
|  | QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; | 
|  | }; | 
|  |  | 
|  | /* State of RAM for migration */ | 
|  | struct RAMState { | 
|  | /* | 
|  | * PageSearchStatus structures for the channels when send pages. | 
|  | * Protected by the bitmap_mutex. | 
|  | */ | 
|  | PageSearchStatus pss[RAM_CHANNEL_MAX]; | 
|  | /* UFFD file descriptor, used in 'write-tracking' migration */ | 
|  | int uffdio_fd; | 
|  | /* total ram size in bytes */ | 
|  | uint64_t ram_bytes_total; | 
|  | /* Last block that we have visited searching for dirty pages */ | 
|  | RAMBlock *last_seen_block; | 
|  | /* Last dirty target page we have sent */ | 
|  | ram_addr_t last_page; | 
|  | /* last ram version we have seen */ | 
|  | uint32_t last_version; | 
|  | /* How many times we have dirty too many pages */ | 
|  | int dirty_rate_high_cnt; | 
|  | /* these variables are used for bitmap sync */ | 
|  | /* last time we did a full bitmap_sync */ | 
|  | int64_t time_last_bitmap_sync; | 
|  | /* bytes transferred at start_time */ | 
|  | uint64_t bytes_xfer_prev; | 
|  | /* number of dirty pages since start_time */ | 
|  | uint64_t num_dirty_pages_period; | 
|  | /* xbzrle misses since the beginning of the period */ | 
|  | uint64_t xbzrle_cache_miss_prev; | 
|  | /* Amount of xbzrle pages since the beginning of the period */ | 
|  | uint64_t xbzrle_pages_prev; | 
|  | /* Amount of xbzrle encoded bytes since the beginning of the period */ | 
|  | uint64_t xbzrle_bytes_prev; | 
|  | /* Are we really using XBZRLE (e.g., after the first round). */ | 
|  | bool xbzrle_started; | 
|  | /* Are we on the last stage of migration */ | 
|  | bool last_stage; | 
|  |  | 
|  | /* total handled target pages at the beginning of period */ | 
|  | uint64_t target_page_count_prev; | 
|  | /* total handled target pages since start */ | 
|  | uint64_t target_page_count; | 
|  | /* number of dirty bits in the bitmap */ | 
|  | uint64_t migration_dirty_pages; | 
|  | /* | 
|  | * Protects: | 
|  | * - dirty/clear bitmap | 
|  | * - migration_dirty_pages | 
|  | * - pss structures | 
|  | */ | 
|  | QemuMutex bitmap_mutex; | 
|  | /* The RAMBlock used in the last src_page_requests */ | 
|  | RAMBlock *last_req_rb; | 
|  | /* Queue of outstanding page requests from the destination */ | 
|  | QemuMutex src_page_req_mutex; | 
|  | QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests; | 
|  |  | 
|  | /* | 
|  | * This is only used when postcopy is in recovery phase, to communicate | 
|  | * between the migration thread and the return path thread on dirty | 
|  | * bitmap synchronizations.  This field is unused in other stages of | 
|  | * RAM migration. | 
|  | */ | 
|  | unsigned int postcopy_bmap_sync_requested; | 
|  | }; | 
|  | typedef struct RAMState RAMState; | 
|  |  | 
|  | static RAMState *ram_state; | 
|  |  | 
|  | static NotifierWithReturnList precopy_notifier_list; | 
|  |  | 
|  | /* Whether postcopy has queued requests? */ | 
|  | static bool postcopy_has_request(RAMState *rs) | 
|  | { | 
|  | return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests); | 
|  | } | 
|  |  | 
|  | void precopy_infrastructure_init(void) | 
|  | { | 
|  | notifier_with_return_list_init(&precopy_notifier_list); | 
|  | } | 
|  |  | 
|  | void precopy_add_notifier(NotifierWithReturn *n) | 
|  | { | 
|  | notifier_with_return_list_add(&precopy_notifier_list, n); | 
|  | } | 
|  |  | 
|  | void precopy_remove_notifier(NotifierWithReturn *n) | 
|  | { | 
|  | notifier_with_return_remove(n); | 
|  | } | 
|  |  | 
|  | int precopy_notify(PrecopyNotifyReason reason, Error **errp) | 
|  | { | 
|  | PrecopyNotifyData pnd; | 
|  | pnd.reason = reason; | 
|  |  | 
|  | return notifier_with_return_list_notify(&precopy_notifier_list, &pnd, errp); | 
|  | } | 
|  |  | 
|  | uint64_t ram_bytes_remaining(void) | 
|  | { | 
|  | return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) : | 
|  | 0; | 
|  | } | 
|  |  | 
|  | void ram_transferred_add(uint64_t bytes) | 
|  | { | 
|  | if (runstate_is_running()) { | 
|  | stat64_add(&mig_stats.precopy_bytes, bytes); | 
|  | } else if (migration_in_postcopy()) { | 
|  | stat64_add(&mig_stats.postcopy_bytes, bytes); | 
|  | } else { | 
|  | stat64_add(&mig_stats.downtime_bytes, bytes); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int ram_save_host_page_urgent(PageSearchStatus *pss); | 
|  |  | 
|  | /* NOTE: page is the PFN not real ram_addr_t. */ | 
|  | static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page) | 
|  | { | 
|  | pss->block = rb; | 
|  | pss->page = page; | 
|  | pss->complete_round = false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check whether two PSSs are actively sending the same page.  Return true | 
|  | * if it is, false otherwise. | 
|  | */ | 
|  | static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2) | 
|  | { | 
|  | return pss1->host_page_sending && pss2->host_page_sending && | 
|  | (pss1->host_page_start == pss2->host_page_start); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * save_page_header: write page header to wire | 
|  | * | 
|  | * If this is the 1st block, it also writes the block identification | 
|  | * | 
|  | * Returns the number of bytes written | 
|  | * | 
|  | * @pss: current PSS channel status | 
|  | * @block: block that contains the page we want to send | 
|  | * @offset: offset inside the block for the page | 
|  | *          in the lower bits, it contains flags | 
|  | */ | 
|  | static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f, | 
|  | RAMBlock *block, ram_addr_t offset) | 
|  | { | 
|  | size_t size, len; | 
|  | bool same_block = (block == pss->last_sent_block); | 
|  |  | 
|  | if (same_block) { | 
|  | offset |= RAM_SAVE_FLAG_CONTINUE; | 
|  | } | 
|  | qemu_put_be64(f, offset); | 
|  | size = 8; | 
|  |  | 
|  | if (!same_block) { | 
|  | len = strlen(block->idstr); | 
|  | qemu_put_byte(f, len); | 
|  | qemu_put_buffer(f, (uint8_t *)block->idstr, len); | 
|  | size += 1 + len; | 
|  | pss->last_sent_block = block; | 
|  | } | 
|  | return size; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mig_throttle_guest_down: throttle down the guest | 
|  | * | 
|  | * Reduce amount of guest cpu execution to hopefully slow down memory | 
|  | * writes. If guest dirty memory rate is reduced below the rate at | 
|  | * which we can transfer pages to the destination then we should be | 
|  | * able to complete migration. Some workloads dirty memory way too | 
|  | * fast and will not effectively converge, even with auto-converge. | 
|  | */ | 
|  | static void mig_throttle_guest_down(uint64_t bytes_dirty_period, | 
|  | uint64_t bytes_dirty_threshold) | 
|  | { | 
|  | uint64_t pct_initial = migrate_cpu_throttle_initial(); | 
|  | uint64_t pct_increment = migrate_cpu_throttle_increment(); | 
|  | bool pct_tailslow = migrate_cpu_throttle_tailslow(); | 
|  | int pct_max = migrate_max_cpu_throttle(); | 
|  |  | 
|  | uint64_t throttle_now = cpu_throttle_get_percentage(); | 
|  | uint64_t cpu_now, cpu_ideal, throttle_inc; | 
|  |  | 
|  | /* We have not started throttling yet. Let's start it. */ | 
|  | if (!cpu_throttle_active()) { | 
|  | cpu_throttle_set(pct_initial); | 
|  | } else { | 
|  | /* Throttling already on, just increase the rate */ | 
|  | if (!pct_tailslow) { | 
|  | throttle_inc = pct_increment; | 
|  | } else { | 
|  | /* Compute the ideal CPU percentage used by Guest, which may | 
|  | * make the dirty rate match the dirty rate threshold. */ | 
|  | cpu_now = 100 - throttle_now; | 
|  | cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 / | 
|  | bytes_dirty_period); | 
|  | throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment); | 
|  | } | 
|  | cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void mig_throttle_counter_reset(void) | 
|  | { | 
|  | RAMState *rs = ram_state; | 
|  |  | 
|  | rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); | 
|  | rs->num_dirty_pages_period = 0; | 
|  | rs->bytes_xfer_prev = migration_transferred_bytes(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache | 
|  | * | 
|  | * @current_addr: address for the zero page | 
|  | * | 
|  | * Update the xbzrle cache to reflect a page that's been sent as all 0. | 
|  | * The important thing is that a stale (not-yet-0'd) page be replaced | 
|  | * by the new data. | 
|  | * As a bonus, if the page wasn't in the cache it gets added so that | 
|  | * when a small write is made into the 0'd page it gets XBZRLE sent. | 
|  | */ | 
|  | static void xbzrle_cache_zero_page(ram_addr_t current_addr) | 
|  | { | 
|  | /* We don't care if this fails to allocate a new cache page | 
|  | * as long as it updated an old one */ | 
|  | cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, | 
|  | stat64_get(&mig_stats.dirty_sync_count)); | 
|  | } | 
|  |  | 
|  | #define ENCODING_FLAG_XBZRLE 0x1 | 
|  |  | 
|  | /** | 
|  | * save_xbzrle_page: compress and send current page | 
|  | * | 
|  | * Returns: 1 means that we wrote the page | 
|  | *          0 means that page is identical to the one already sent | 
|  | *          -1 means that xbzrle would be longer than normal | 
|  | * | 
|  | * @rs: current RAM state | 
|  | * @pss: current PSS channel | 
|  | * @current_data: pointer to the address of the page contents | 
|  | * @current_addr: addr of the page | 
|  | * @block: block that contains the page we want to send | 
|  | * @offset: offset inside the block for the page | 
|  | */ | 
|  | static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss, | 
|  | uint8_t **current_data, ram_addr_t current_addr, | 
|  | RAMBlock *block, ram_addr_t offset) | 
|  | { | 
|  | int encoded_len = 0, bytes_xbzrle; | 
|  | uint8_t *prev_cached_page; | 
|  | QEMUFile *file = pss->pss_channel; | 
|  | uint64_t generation = stat64_get(&mig_stats.dirty_sync_count); | 
|  |  | 
|  | if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) { | 
|  | xbzrle_counters.cache_miss++; | 
|  | if (!rs->last_stage) { | 
|  | if (cache_insert(XBZRLE.cache, current_addr, *current_data, | 
|  | generation) == -1) { | 
|  | return -1; | 
|  | } else { | 
|  | /* update *current_data when the page has been | 
|  | inserted into cache */ | 
|  | *current_data = get_cached_data(XBZRLE.cache, current_addr); | 
|  | } | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reaching here means the page has hit the xbzrle cache, no matter what | 
|  | * encoding result it is (normal encoding, overflow or skipping the page), | 
|  | * count the page as encoded. This is used to calculate the encoding rate. | 
|  | * | 
|  | * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB, | 
|  | * 2nd page turns out to be skipped (i.e. no new bytes written to the | 
|  | * page), the overall encoding rate will be 8KB / 2KB = 4, which has the | 
|  | * skipped page included. In this way, the encoding rate can tell if the | 
|  | * guest page is good for xbzrle encoding. | 
|  | */ | 
|  | xbzrle_counters.pages++; | 
|  | prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); | 
|  |  | 
|  | /* save current buffer into memory */ | 
|  | memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); | 
|  |  | 
|  | /* XBZRLE encoding (if there is no overflow) */ | 
|  | encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, | 
|  | TARGET_PAGE_SIZE, XBZRLE.encoded_buf, | 
|  | TARGET_PAGE_SIZE); | 
|  |  | 
|  | /* | 
|  | * Update the cache contents, so that it corresponds to the data | 
|  | * sent, in all cases except where we skip the page. | 
|  | */ | 
|  | if (!rs->last_stage && encoded_len != 0) { | 
|  | memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); | 
|  | /* | 
|  | * In the case where we couldn't compress, ensure that the caller | 
|  | * sends the data from the cache, since the guest might have | 
|  | * changed the RAM since we copied it. | 
|  | */ | 
|  | *current_data = prev_cached_page; | 
|  | } | 
|  |  | 
|  | if (encoded_len == 0) { | 
|  | trace_save_xbzrle_page_skipping(); | 
|  | return 0; | 
|  | } else if (encoded_len == -1) { | 
|  | trace_save_xbzrle_page_overflow(); | 
|  | xbzrle_counters.overflow++; | 
|  | xbzrle_counters.bytes += TARGET_PAGE_SIZE; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Send XBZRLE based compressed page */ | 
|  | bytes_xbzrle = save_page_header(pss, pss->pss_channel, block, | 
|  | offset | RAM_SAVE_FLAG_XBZRLE); | 
|  | qemu_put_byte(file, ENCODING_FLAG_XBZRLE); | 
|  | qemu_put_be16(file, encoded_len); | 
|  | qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len); | 
|  | bytes_xbzrle += encoded_len + 1 + 2; | 
|  | /* | 
|  | * The xbzrle encoded bytes don't count the 8 byte header with | 
|  | * RAM_SAVE_FLAG_CONTINUE. | 
|  | */ | 
|  | xbzrle_counters.bytes += bytes_xbzrle - 8; | 
|  | ram_transferred_add(bytes_xbzrle); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pss_find_next_dirty: find the next dirty page of current ramblock | 
|  | * | 
|  | * This function updates pss->page to point to the next dirty page index | 
|  | * within the ramblock to migrate, or the end of ramblock when nothing | 
|  | * found.  Note that when pss->host_page_sending==true it means we're | 
|  | * during sending a host page, so we won't look for dirty page that is | 
|  | * outside the host page boundary. | 
|  | * | 
|  | * @pss: the current page search status | 
|  | */ | 
|  | static void pss_find_next_dirty(PageSearchStatus *pss) | 
|  | { | 
|  | RAMBlock *rb = pss->block; | 
|  | unsigned long size = rb->used_length >> TARGET_PAGE_BITS; | 
|  | unsigned long *bitmap = rb->bmap; | 
|  |  | 
|  | if (migrate_ram_is_ignored(rb)) { | 
|  | /* Points directly to the end, so we know no dirty page */ | 
|  | pss->page = size; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If during sending a host page, only look for dirty pages within the | 
|  | * current host page being send. | 
|  | */ | 
|  | if (pss->host_page_sending) { | 
|  | assert(pss->host_page_end); | 
|  | size = MIN(size, pss->host_page_end); | 
|  | } | 
|  |  | 
|  | pss->page = find_next_bit(bitmap, size, pss->page); | 
|  | } | 
|  |  | 
|  | static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb, | 
|  | unsigned long page) | 
|  | { | 
|  | uint8_t shift; | 
|  | hwaddr size, start; | 
|  |  | 
|  | if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | shift = rb->clear_bmap_shift; | 
|  | /* | 
|  | * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this | 
|  | * can make things easier sometimes since then start address | 
|  | * of the small chunk will always be 64 pages aligned so the | 
|  | * bitmap will always be aligned to unsigned long. We should | 
|  | * even be able to remove this restriction but I'm simply | 
|  | * keeping it. | 
|  | */ | 
|  | assert(shift >= 6); | 
|  |  | 
|  | size = 1ULL << (TARGET_PAGE_BITS + shift); | 
|  | start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size); | 
|  | trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page); | 
|  | memory_region_clear_dirty_bitmap(rb->mr, start, size); | 
|  | } | 
|  |  | 
|  | static void | 
|  | migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb, | 
|  | unsigned long start, | 
|  | unsigned long npages) | 
|  | { | 
|  | unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift; | 
|  | unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages); | 
|  | unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages); | 
|  |  | 
|  | /* | 
|  | * Clear pages from start to start + npages - 1, so the end boundary is | 
|  | * exclusive. | 
|  | */ | 
|  | for (i = chunk_start; i < chunk_end; i += chunk_pages) { | 
|  | migration_clear_memory_region_dirty_bitmap(rb, i); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * colo_bitmap_find_diry:find contiguous dirty pages from start | 
|  | * | 
|  | * Returns the page offset within memory region of the start of the contiguout | 
|  | * dirty page | 
|  | * | 
|  | * @rs: current RAM state | 
|  | * @rb: RAMBlock where to search for dirty pages | 
|  | * @start: page where we start the search | 
|  | * @num: the number of contiguous dirty pages | 
|  | */ | 
|  | static inline | 
|  | unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, | 
|  | unsigned long start, unsigned long *num) | 
|  | { | 
|  | unsigned long size = rb->used_length >> TARGET_PAGE_BITS; | 
|  | unsigned long *bitmap = rb->bmap; | 
|  | unsigned long first, next; | 
|  |  | 
|  | *num = 0; | 
|  |  | 
|  | if (migrate_ram_is_ignored(rb)) { | 
|  | return size; | 
|  | } | 
|  |  | 
|  | first = find_next_bit(bitmap, size, start); | 
|  | if (first >= size) { | 
|  | return first; | 
|  | } | 
|  | next = find_next_zero_bit(bitmap, size, first + 1); | 
|  | assert(next >= first); | 
|  | *num = next - first; | 
|  | return first; | 
|  | } | 
|  |  | 
|  | static inline bool migration_bitmap_clear_dirty(RAMState *rs, | 
|  | RAMBlock *rb, | 
|  | unsigned long page) | 
|  | { | 
|  | bool ret; | 
|  |  | 
|  | /* | 
|  | * Clear dirty bitmap if needed.  This _must_ be called before we | 
|  | * send any of the page in the chunk because we need to make sure | 
|  | * we can capture further page content changes when we sync dirty | 
|  | * log the next time.  So as long as we are going to send any of | 
|  | * the page in the chunk we clear the remote dirty bitmap for all. | 
|  | * Clearing it earlier won't be a problem, but too late will. | 
|  | */ | 
|  | migration_clear_memory_region_dirty_bitmap(rb, page); | 
|  |  | 
|  | ret = test_and_clear_bit(page, rb->bmap); | 
|  | if (ret) { | 
|  | rs->migration_dirty_pages--; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void dirty_bitmap_clear_section(MemoryRegionSection *section, | 
|  | void *opaque) | 
|  | { | 
|  | const hwaddr offset = section->offset_within_region; | 
|  | const hwaddr size = int128_get64(section->size); | 
|  | const unsigned long start = offset >> TARGET_PAGE_BITS; | 
|  | const unsigned long npages = size >> TARGET_PAGE_BITS; | 
|  | RAMBlock *rb = section->mr->ram_block; | 
|  | uint64_t *cleared_bits = opaque; | 
|  |  | 
|  | /* | 
|  | * We don't grab ram_state->bitmap_mutex because we expect to run | 
|  | * only when starting migration or during postcopy recovery where | 
|  | * we don't have concurrent access. | 
|  | */ | 
|  | if (!migration_in_postcopy() && !migrate_background_snapshot()) { | 
|  | migration_clear_memory_region_dirty_bitmap_range(rb, start, npages); | 
|  | } | 
|  | *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages); | 
|  | bitmap_clear(rb->bmap, start, npages); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Exclude all dirty pages from migration that fall into a discarded range as | 
|  | * managed by a RamDiscardManager responsible for the mapped memory region of | 
|  | * the RAMBlock. Clear the corresponding bits in the dirty bitmaps. | 
|  | * | 
|  | * Discarded pages ("logically unplugged") have undefined content and must | 
|  | * not get migrated, because even reading these pages for migration might | 
|  | * result in undesired behavior. | 
|  | * | 
|  | * Returns the number of cleared bits in the RAMBlock dirty bitmap. | 
|  | * | 
|  | * Note: The result is only stable while migrating (precopy/postcopy). | 
|  | */ | 
|  | static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb) | 
|  | { | 
|  | uint64_t cleared_bits = 0; | 
|  |  | 
|  | if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) { | 
|  | RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); | 
|  | MemoryRegionSection section = { | 
|  | .mr = rb->mr, | 
|  | .offset_within_region = 0, | 
|  | .size = int128_make64(qemu_ram_get_used_length(rb)), | 
|  | }; | 
|  |  | 
|  | ram_discard_manager_replay_discarded(rdm, §ion, | 
|  | dirty_bitmap_clear_section, | 
|  | &cleared_bits); | 
|  | } | 
|  | return cleared_bits; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if a host-page aligned page falls into a discarded range as managed by | 
|  | * a RamDiscardManager responsible for the mapped memory region of the RAMBlock. | 
|  | * | 
|  | * Note: The result is only stable while migrating (precopy/postcopy). | 
|  | */ | 
|  | bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start) | 
|  | { | 
|  | if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { | 
|  | RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); | 
|  | MemoryRegionSection section = { | 
|  | .mr = rb->mr, | 
|  | .offset_within_region = start, | 
|  | .size = int128_make64(qemu_ram_pagesize(rb)), | 
|  | }; | 
|  |  | 
|  | return !ram_discard_manager_is_populated(rdm, §ion); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Called with RCU critical section */ | 
|  | static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb) | 
|  | { | 
|  | uint64_t new_dirty_pages = | 
|  | cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length); | 
|  |  | 
|  | rs->migration_dirty_pages += new_dirty_pages; | 
|  | rs->num_dirty_pages_period += new_dirty_pages; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ram_pagesize_summary: calculate all the pagesizes of a VM | 
|  | * | 
|  | * Returns a summary bitmap of the page sizes of all RAMBlocks | 
|  | * | 
|  | * For VMs with just normal pages this is equivalent to the host page | 
|  | * size. If it's got some huge pages then it's the OR of all the | 
|  | * different page sizes. | 
|  | */ | 
|  | uint64_t ram_pagesize_summary(void) | 
|  | { | 
|  | RAMBlock *block; | 
|  | uint64_t summary = 0; | 
|  |  | 
|  | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | 
|  | summary |= block->page_size; | 
|  | } | 
|  |  | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | uint64_t ram_get_total_transferred_pages(void) | 
|  | { | 
|  | return stat64_get(&mig_stats.normal_pages) + | 
|  | stat64_get(&mig_stats.zero_pages) + | 
|  | xbzrle_counters.pages; | 
|  | } | 
|  |  | 
|  | static void migration_update_rates(RAMState *rs, int64_t end_time) | 
|  | { | 
|  | uint64_t page_count = rs->target_page_count - rs->target_page_count_prev; | 
|  |  | 
|  | /* calculate period counters */ | 
|  | stat64_set(&mig_stats.dirty_pages_rate, | 
|  | rs->num_dirty_pages_period * 1000 / | 
|  | (end_time - rs->time_last_bitmap_sync)); | 
|  |  | 
|  | if (!page_count) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (migrate_xbzrle()) { | 
|  | double encoded_size, unencoded_size; | 
|  |  | 
|  | xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss - | 
|  | rs->xbzrle_cache_miss_prev) / page_count; | 
|  | rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; | 
|  | unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) * | 
|  | TARGET_PAGE_SIZE; | 
|  | encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev; | 
|  | if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) { | 
|  | xbzrle_counters.encoding_rate = 0; | 
|  | } else { | 
|  | xbzrle_counters.encoding_rate = unencoded_size / encoded_size; | 
|  | } | 
|  | rs->xbzrle_pages_prev = xbzrle_counters.pages; | 
|  | rs->xbzrle_bytes_prev = xbzrle_counters.bytes; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enable dirty-limit to throttle down the guest | 
|  | */ | 
|  | static void migration_dirty_limit_guest(void) | 
|  | { | 
|  | /* | 
|  | * dirty page rate quota for all vCPUs fetched from | 
|  | * migration parameter 'vcpu_dirty_limit' | 
|  | */ | 
|  | static int64_t quota_dirtyrate; | 
|  | MigrationState *s = migrate_get_current(); | 
|  |  | 
|  | /* | 
|  | * If dirty limit already enabled and migration parameter | 
|  | * vcpu-dirty-limit untouched. | 
|  | */ | 
|  | if (dirtylimit_in_service() && | 
|  | quota_dirtyrate == s->parameters.vcpu_dirty_limit) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | quota_dirtyrate = s->parameters.vcpu_dirty_limit; | 
|  |  | 
|  | /* | 
|  | * Set all vCPU a quota dirtyrate, note that the second | 
|  | * parameter will be ignored if setting all vCPU for the vm | 
|  | */ | 
|  | qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL); | 
|  | trace_migration_dirty_limit_guest(quota_dirtyrate); | 
|  | } | 
|  |  | 
|  | static void migration_trigger_throttle(RAMState *rs) | 
|  | { | 
|  | uint64_t threshold = migrate_throttle_trigger_threshold(); | 
|  | uint64_t bytes_xfer_period = | 
|  | migration_transferred_bytes() - rs->bytes_xfer_prev; | 
|  | uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE; | 
|  | uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100; | 
|  |  | 
|  | /* | 
|  | * The following detection logic can be refined later. For now: | 
|  | * Check to see if the ratio between dirtied bytes and the approx. | 
|  | * amount of bytes that just got transferred since the last time | 
|  | * we were in this routine reaches the threshold. If that happens | 
|  | * twice, start or increase throttling. | 
|  | */ | 
|  | if ((bytes_dirty_period > bytes_dirty_threshold) && | 
|  | (++rs->dirty_rate_high_cnt >= 2)) { | 
|  | rs->dirty_rate_high_cnt = 0; | 
|  | if (migrate_auto_converge()) { | 
|  | trace_migration_throttle(); | 
|  | mig_throttle_guest_down(bytes_dirty_period, | 
|  | bytes_dirty_threshold); | 
|  | } else if (migrate_dirty_limit()) { | 
|  | migration_dirty_limit_guest(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void migration_bitmap_sync(RAMState *rs, bool last_stage) | 
|  | { | 
|  | RAMBlock *block; | 
|  | int64_t end_time; | 
|  |  | 
|  | stat64_add(&mig_stats.dirty_sync_count, 1); | 
|  |  | 
|  | if (!rs->time_last_bitmap_sync) { | 
|  | rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); | 
|  | } | 
|  |  | 
|  | trace_migration_bitmap_sync_start(); | 
|  | memory_global_dirty_log_sync(last_stage); | 
|  |  | 
|  | WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) { | 
|  | WITH_RCU_READ_LOCK_GUARD() { | 
|  | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | 
|  | ramblock_sync_dirty_bitmap(rs, block); | 
|  | } | 
|  | stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining()); | 
|  | } | 
|  | } | 
|  |  | 
|  | memory_global_after_dirty_log_sync(); | 
|  | trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); | 
|  |  | 
|  | end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); | 
|  |  | 
|  | /* more than 1 second = 1000 millisecons */ | 
|  | if (end_time > rs->time_last_bitmap_sync + 1000) { | 
|  | migration_trigger_throttle(rs); | 
|  |  | 
|  | migration_update_rates(rs, end_time); | 
|  |  | 
|  | rs->target_page_count_prev = rs->target_page_count; | 
|  |  | 
|  | /* reset period counters */ | 
|  | rs->time_last_bitmap_sync = end_time; | 
|  | rs->num_dirty_pages_period = 0; | 
|  | rs->bytes_xfer_prev = migration_transferred_bytes(); | 
|  | } | 
|  | if (migrate_events()) { | 
|  | uint64_t generation = stat64_get(&mig_stats.dirty_sync_count); | 
|  | qapi_event_send_migration_pass(generation); | 
|  | } | 
|  | } | 
|  |  | 
|  | void migration_bitmap_sync_precopy(bool last_stage) | 
|  | { | 
|  | Error *local_err = NULL; | 
|  | assert(ram_state); | 
|  |  | 
|  | /* | 
|  | * The current notifier usage is just an optimization to migration, so we | 
|  | * don't stop the normal migration process in the error case. | 
|  | */ | 
|  | if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) { | 
|  | error_report_err(local_err); | 
|  | local_err = NULL; | 
|  | } | 
|  |  | 
|  | migration_bitmap_sync(ram_state, last_stage); | 
|  |  | 
|  | if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) { | 
|  | error_report_err(local_err); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ram_release_page(const char *rbname, uint64_t offset) | 
|  | { | 
|  | if (!migrate_release_ram() || !migration_in_postcopy()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | ram_discard_range(rbname, offset, TARGET_PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * save_zero_page: send the zero page to the stream | 
|  | * | 
|  | * Returns the number of pages written. | 
|  | * | 
|  | * @rs: current RAM state | 
|  | * @pss: current PSS channel | 
|  | * @offset: offset inside the block for the page | 
|  | */ | 
|  | static int save_zero_page(RAMState *rs, PageSearchStatus *pss, | 
|  | ram_addr_t offset) | 
|  | { | 
|  | uint8_t *p = pss->block->host + offset; | 
|  | QEMUFile *file = pss->pss_channel; | 
|  | int len = 0; | 
|  |  | 
|  | if (migrate_zero_page_detection() == ZERO_PAGE_DETECTION_NONE) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!buffer_is_zero(p, TARGET_PAGE_SIZE)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | stat64_add(&mig_stats.zero_pages, 1); | 
|  |  | 
|  | if (migrate_mapped_ram()) { | 
|  | /* zero pages are not transferred with mapped-ram */ | 
|  | clear_bit_atomic(offset >> TARGET_PAGE_BITS, pss->block->file_bmap); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | len += save_page_header(pss, file, pss->block, offset | RAM_SAVE_FLAG_ZERO); | 
|  | qemu_put_byte(file, 0); | 
|  | len += 1; | 
|  | ram_release_page(pss->block->idstr, offset); | 
|  | ram_transferred_add(len); | 
|  |  | 
|  | /* | 
|  | * Must let xbzrle know, otherwise a previous (now 0'd) cached | 
|  | * page would be stale. | 
|  | */ | 
|  | if (rs->xbzrle_started) { | 
|  | XBZRLE_cache_lock(); | 
|  | xbzrle_cache_zero_page(pss->block->offset + offset); | 
|  | XBZRLE_cache_unlock(); | 
|  | } | 
|  |  | 
|  | return len; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * @pages: the number of pages written by the control path, | 
|  | *        < 0 - error | 
|  | *        > 0 - number of pages written | 
|  | * | 
|  | * Return true if the pages has been saved, otherwise false is returned. | 
|  | */ | 
|  | static bool control_save_page(PageSearchStatus *pss, | 
|  | ram_addr_t offset, int *pages) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = rdma_control_save_page(pss->pss_channel, pss->block->offset, offset, | 
|  | TARGET_PAGE_SIZE); | 
|  | if (ret == RAM_SAVE_CONTROL_NOT_SUPP) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (ret == RAM_SAVE_CONTROL_DELAYED) { | 
|  | *pages = 1; | 
|  | return true; | 
|  | } | 
|  | *pages = ret; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * directly send the page to the stream | 
|  | * | 
|  | * Returns the number of pages written. | 
|  | * | 
|  | * @pss: current PSS channel | 
|  | * @block: block that contains the page we want to send | 
|  | * @offset: offset inside the block for the page | 
|  | * @buf: the page to be sent | 
|  | * @async: send to page asyncly | 
|  | */ | 
|  | static int save_normal_page(PageSearchStatus *pss, RAMBlock *block, | 
|  | ram_addr_t offset, uint8_t *buf, bool async) | 
|  | { | 
|  | QEMUFile *file = pss->pss_channel; | 
|  |  | 
|  | if (migrate_mapped_ram()) { | 
|  | qemu_put_buffer_at(file, buf, TARGET_PAGE_SIZE, | 
|  | block->pages_offset + offset); | 
|  | set_bit(offset >> TARGET_PAGE_BITS, block->file_bmap); | 
|  | } else { | 
|  | ram_transferred_add(save_page_header(pss, pss->pss_channel, block, | 
|  | offset | RAM_SAVE_FLAG_PAGE)); | 
|  | if (async) { | 
|  | qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE, | 
|  | migrate_release_ram() && | 
|  | migration_in_postcopy()); | 
|  | } else { | 
|  | qemu_put_buffer(file, buf, TARGET_PAGE_SIZE); | 
|  | } | 
|  | } | 
|  | ram_transferred_add(TARGET_PAGE_SIZE); | 
|  | stat64_add(&mig_stats.normal_pages, 1); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ram_save_page: send the given page to the stream | 
|  | * | 
|  | * Returns the number of pages written. | 
|  | *          < 0 - error | 
|  | *          >=0 - Number of pages written - this might legally be 0 | 
|  | *                if xbzrle noticed the page was the same. | 
|  | * | 
|  | * @rs: current RAM state | 
|  | * @block: block that contains the page we want to send | 
|  | * @offset: offset inside the block for the page | 
|  | */ | 
|  | static int ram_save_page(RAMState *rs, PageSearchStatus *pss) | 
|  | { | 
|  | int pages = -1; | 
|  | uint8_t *p; | 
|  | bool send_async = true; | 
|  | RAMBlock *block = pss->block; | 
|  | ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; | 
|  | ram_addr_t current_addr = block->offset + offset; | 
|  |  | 
|  | p = block->host + offset; | 
|  | trace_ram_save_page(block->idstr, (uint64_t)offset, p); | 
|  |  | 
|  | XBZRLE_cache_lock(); | 
|  | if (rs->xbzrle_started && !migration_in_postcopy()) { | 
|  | pages = save_xbzrle_page(rs, pss, &p, current_addr, | 
|  | block, offset); | 
|  | if (!rs->last_stage) { | 
|  | /* Can't send this cached data async, since the cache page | 
|  | * might get updated before it gets to the wire | 
|  | */ | 
|  | send_async = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* XBZRLE overflow or normal page */ | 
|  | if (pages == -1) { | 
|  | pages = save_normal_page(pss, block, offset, p, send_async); | 
|  | } | 
|  |  | 
|  | XBZRLE_cache_unlock(); | 
|  |  | 
|  | return pages; | 
|  | } | 
|  |  | 
|  | static int ram_save_multifd_page(RAMBlock *block, ram_addr_t offset) | 
|  | { | 
|  | if (!multifd_queue_page(block, offset)) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | #define PAGE_ALL_CLEAN 0 | 
|  | #define PAGE_TRY_AGAIN 1 | 
|  | #define PAGE_DIRTY_FOUND 2 | 
|  | /** | 
|  | * find_dirty_block: find the next dirty page and update any state | 
|  | * associated with the search process. | 
|  | * | 
|  | * Returns: | 
|  | *         <0: An error happened | 
|  | *         PAGE_ALL_CLEAN: no dirty page found, give up | 
|  | *         PAGE_TRY_AGAIN: no dirty page found, retry for next block | 
|  | *         PAGE_DIRTY_FOUND: dirty page found | 
|  | * | 
|  | * @rs: current RAM state | 
|  | * @pss: data about the state of the current dirty page scan | 
|  | * @again: set to false if the search has scanned the whole of RAM | 
|  | */ | 
|  | static int find_dirty_block(RAMState *rs, PageSearchStatus *pss) | 
|  | { | 
|  | /* Update pss->page for the next dirty bit in ramblock */ | 
|  | pss_find_next_dirty(pss); | 
|  |  | 
|  | if (pss->complete_round && pss->block == rs->last_seen_block && | 
|  | pss->page >= rs->last_page) { | 
|  | /* | 
|  | * We've been once around the RAM and haven't found anything. | 
|  | * Give up. | 
|  | */ | 
|  | return PAGE_ALL_CLEAN; | 
|  | } | 
|  | if (!offset_in_ramblock(pss->block, | 
|  | ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) { | 
|  | /* Didn't find anything in this RAM Block */ | 
|  | pss->page = 0; | 
|  | pss->block = QLIST_NEXT_RCU(pss->block, next); | 
|  | if (!pss->block) { | 
|  | if (multifd_ram_sync_per_round()) { | 
|  | QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel; | 
|  | int ret = multifd_ram_flush_and_sync(f); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Hit the end of the list */ | 
|  | pss->block = QLIST_FIRST_RCU(&ram_list.blocks); | 
|  | /* Flag that we've looped */ | 
|  | pss->complete_round = true; | 
|  | /* After the first round, enable XBZRLE. */ | 
|  | if (migrate_xbzrle()) { | 
|  | rs->xbzrle_started = true; | 
|  | } | 
|  | } | 
|  | /* Didn't find anything this time, but try again on the new block */ | 
|  | return PAGE_TRY_AGAIN; | 
|  | } else { | 
|  | /* We've found something */ | 
|  | return PAGE_DIRTY_FOUND; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * unqueue_page: gets a page of the queue | 
|  | * | 
|  | * Helper for 'get_queued_page' - gets a page off the queue | 
|  | * | 
|  | * Returns the block of the page (or NULL if none available) | 
|  | * | 
|  | * @rs: current RAM state | 
|  | * @offset: used to return the offset within the RAMBlock | 
|  | */ | 
|  | static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) | 
|  | { | 
|  | struct RAMSrcPageRequest *entry; | 
|  | RAMBlock *block = NULL; | 
|  |  | 
|  | if (!postcopy_has_request(rs)) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | QEMU_LOCK_GUARD(&rs->src_page_req_mutex); | 
|  |  | 
|  | /* | 
|  | * This should _never_ change even after we take the lock, because no one | 
|  | * should be taking anything off the request list other than us. | 
|  | */ | 
|  | assert(postcopy_has_request(rs)); | 
|  |  | 
|  | entry = QSIMPLEQ_FIRST(&rs->src_page_requests); | 
|  | block = entry->rb; | 
|  | *offset = entry->offset; | 
|  |  | 
|  | if (entry->len > TARGET_PAGE_SIZE) { | 
|  | entry->len -= TARGET_PAGE_SIZE; | 
|  | entry->offset += TARGET_PAGE_SIZE; | 
|  | } else { | 
|  | memory_region_unref(block->mr); | 
|  | QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); | 
|  | g_free(entry); | 
|  | migration_consume_urgent_request(); | 
|  | } | 
|  |  | 
|  | return block; | 
|  | } | 
|  |  | 
|  | #if defined(__linux__) | 
|  | /** | 
|  | * poll_fault_page: try to get next UFFD write fault page and, if pending fault | 
|  | *   is found, return RAM block pointer and page offset | 
|  | * | 
|  | * Returns pointer to the RAMBlock containing faulting page, | 
|  | *   NULL if no write faults are pending | 
|  | * | 
|  | * @rs: current RAM state | 
|  | * @offset: page offset from the beginning of the block | 
|  | */ | 
|  | static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset) | 
|  | { | 
|  | struct uffd_msg uffd_msg; | 
|  | void *page_address; | 
|  | RAMBlock *block; | 
|  | int res; | 
|  |  | 
|  | if (!migrate_background_snapshot()) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1); | 
|  | if (res <= 0) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address; | 
|  | block = qemu_ram_block_from_host(page_address, false, offset); | 
|  | assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0); | 
|  | return block; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ram_save_release_protection: release UFFD write protection after | 
|  | *   a range of pages has been saved | 
|  | * | 
|  | * @rs: current RAM state | 
|  | * @pss: page-search-status structure | 
|  | * @start_page: index of the first page in the range relative to pss->block | 
|  | * | 
|  | * Returns 0 on success, negative value in case of an error | 
|  | */ | 
|  | static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss, | 
|  | unsigned long start_page) | 
|  | { | 
|  | int res = 0; | 
|  |  | 
|  | /* Check if page is from UFFD-managed region. */ | 
|  | if (pss->block->flags & RAM_UF_WRITEPROTECT) { | 
|  | void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS); | 
|  | uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS; | 
|  |  | 
|  | /* Flush async buffers before un-protect. */ | 
|  | qemu_fflush(pss->pss_channel); | 
|  | /* Un-protect memory range. */ | 
|  | res = uffd_change_protection(rs->uffdio_fd, page_address, run_length, | 
|  | false, false); | 
|  | } | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* ram_write_tracking_available: check if kernel supports required UFFD features | 
|  | * | 
|  | * Returns true if supports, false otherwise | 
|  | */ | 
|  | bool ram_write_tracking_available(void) | 
|  | { | 
|  | uint64_t uffd_features; | 
|  | int res; | 
|  |  | 
|  | res = uffd_query_features(&uffd_features); | 
|  | return (res == 0 && | 
|  | (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0); | 
|  | } | 
|  |  | 
|  | /* ram_write_tracking_compatible: check if guest configuration is | 
|  | *   compatible with 'write-tracking' | 
|  | * | 
|  | * Returns true if compatible, false otherwise | 
|  | */ | 
|  | bool ram_write_tracking_compatible(void) | 
|  | { | 
|  | const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT); | 
|  | int uffd_fd; | 
|  | RAMBlock *block; | 
|  | bool ret = false; | 
|  |  | 
|  | /* Open UFFD file descriptor */ | 
|  | uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false); | 
|  | if (uffd_fd < 0) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | RCU_READ_LOCK_GUARD(); | 
|  |  | 
|  | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | 
|  | uint64_t uffd_ioctls; | 
|  |  | 
|  | /* Nothing to do with read-only and MMIO-writable regions */ | 
|  | if (block->mr->readonly || block->mr->rom_device) { | 
|  | continue; | 
|  | } | 
|  | /* Try to register block memory via UFFD-IO to track writes */ | 
|  | if (uffd_register_memory(uffd_fd, block->host, block->max_length, | 
|  | UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) { | 
|  | goto out; | 
|  | } | 
|  | if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) { | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | ret = true; | 
|  |  | 
|  | out: | 
|  | uffd_close_fd(uffd_fd); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline void populate_read_range(RAMBlock *block, ram_addr_t offset, | 
|  | ram_addr_t size) | 
|  | { | 
|  | const ram_addr_t end = offset + size; | 
|  |  | 
|  | /* | 
|  | * We read one byte of each page; this will preallocate page tables if | 
|  | * required and populate the shared zeropage on MAP_PRIVATE anonymous memory | 
|  | * where no page was populated yet. This might require adaption when | 
|  | * supporting other mappings, like shmem. | 
|  | */ | 
|  | for (; offset < end; offset += block->page_size) { | 
|  | char tmp = *((char *)block->host + offset); | 
|  |  | 
|  | /* Don't optimize the read out */ | 
|  | asm volatile("" : "+r" (tmp)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int populate_read_section(MemoryRegionSection *section, | 
|  | void *opaque) | 
|  | { | 
|  | const hwaddr size = int128_get64(section->size); | 
|  | hwaddr offset = section->offset_within_region; | 
|  | RAMBlock *block = section->mr->ram_block; | 
|  |  | 
|  | populate_read_range(block, offset, size); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ram_block_populate_read: preallocate page tables and populate pages in the | 
|  | *   RAM block by reading a byte of each page. | 
|  | * | 
|  | * Since it's solely used for userfault_fd WP feature, here we just | 
|  | *   hardcode page size to qemu_real_host_page_size. | 
|  | * | 
|  | * @block: RAM block to populate | 
|  | */ | 
|  | static void ram_block_populate_read(RAMBlock *rb) | 
|  | { | 
|  | /* | 
|  | * Skip populating all pages that fall into a discarded range as managed by | 
|  | * a RamDiscardManager responsible for the mapped memory region of the | 
|  | * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock | 
|  | * must not get populated automatically. We don't have to track | 
|  | * modifications via userfaultfd WP reliably, because these pages will | 
|  | * not be part of the migration stream either way -- see | 
|  | * ramblock_dirty_bitmap_exclude_discarded_pages(). | 
|  | * | 
|  | * Note: The result is only stable while migrating (precopy/postcopy). | 
|  | */ | 
|  | if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { | 
|  | RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); | 
|  | MemoryRegionSection section = { | 
|  | .mr = rb->mr, | 
|  | .offset_within_region = 0, | 
|  | .size = rb->mr->size, | 
|  | }; | 
|  |  | 
|  | ram_discard_manager_replay_populated(rdm, §ion, | 
|  | populate_read_section, NULL); | 
|  | } else { | 
|  | populate_read_range(rb, 0, rb->used_length); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking | 
|  | */ | 
|  | void ram_write_tracking_prepare(void) | 
|  | { | 
|  | RAMBlock *block; | 
|  |  | 
|  | RCU_READ_LOCK_GUARD(); | 
|  |  | 
|  | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | 
|  | /* Nothing to do with read-only and MMIO-writable regions */ | 
|  | if (block->mr->readonly || block->mr->rom_device) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Populate pages of the RAM block before enabling userfault_fd | 
|  | * write protection. | 
|  | * | 
|  | * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with | 
|  | * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip | 
|  | * pages with pte_none() entries in page table. | 
|  | */ | 
|  | ram_block_populate_read(block); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int uffd_protect_section(MemoryRegionSection *section, | 
|  | void *opaque) | 
|  | { | 
|  | const hwaddr size = int128_get64(section->size); | 
|  | const hwaddr offset = section->offset_within_region; | 
|  | RAMBlock *rb = section->mr->ram_block; | 
|  | int uffd_fd = (uintptr_t)opaque; | 
|  |  | 
|  | return uffd_change_protection(uffd_fd, rb->host + offset, size, true, | 
|  | false); | 
|  | } | 
|  |  | 
|  | static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd) | 
|  | { | 
|  | assert(rb->flags & RAM_UF_WRITEPROTECT); | 
|  |  | 
|  | /* See ram_block_populate_read() */ | 
|  | if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { | 
|  | RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); | 
|  | MemoryRegionSection section = { | 
|  | .mr = rb->mr, | 
|  | .offset_within_region = 0, | 
|  | .size = rb->mr->size, | 
|  | }; | 
|  |  | 
|  | return ram_discard_manager_replay_populated(rdm, §ion, | 
|  | uffd_protect_section, | 
|  | (void *)(uintptr_t)uffd_fd); | 
|  | } | 
|  | return uffd_change_protection(uffd_fd, rb->host, | 
|  | rb->used_length, true, false); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ram_write_tracking_start: start UFFD-WP memory tracking | 
|  | * | 
|  | * Returns 0 for success or negative value in case of error | 
|  | */ | 
|  | int ram_write_tracking_start(void) | 
|  | { | 
|  | int uffd_fd; | 
|  | RAMState *rs = ram_state; | 
|  | RAMBlock *block; | 
|  |  | 
|  | /* Open UFFD file descriptor */ | 
|  | uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true); | 
|  | if (uffd_fd < 0) { | 
|  | return uffd_fd; | 
|  | } | 
|  | rs->uffdio_fd = uffd_fd; | 
|  |  | 
|  | RCU_READ_LOCK_GUARD(); | 
|  |  | 
|  | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | 
|  | /* Nothing to do with read-only and MMIO-writable regions */ | 
|  | if (block->mr->readonly || block->mr->rom_device) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Register block memory with UFFD to track writes */ | 
|  | if (uffd_register_memory(rs->uffdio_fd, block->host, | 
|  | block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) { | 
|  | goto fail; | 
|  | } | 
|  | block->flags |= RAM_UF_WRITEPROTECT; | 
|  | memory_region_ref(block->mr); | 
|  |  | 
|  | /* Apply UFFD write protection to the block memory range */ | 
|  | if (ram_block_uffd_protect(block, uffd_fd)) { | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size, | 
|  | block->host, block->max_length); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | error_report("ram_write_tracking_start() failed: restoring initial memory state"); | 
|  |  | 
|  | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | 
|  | if ((block->flags & RAM_UF_WRITEPROTECT) == 0) { | 
|  | continue; | 
|  | } | 
|  | uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length); | 
|  | /* Cleanup flags and remove reference */ | 
|  | block->flags &= ~RAM_UF_WRITEPROTECT; | 
|  | memory_region_unref(block->mr); | 
|  | } | 
|  |  | 
|  | uffd_close_fd(uffd_fd); | 
|  | rs->uffdio_fd = -1; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection | 
|  | */ | 
|  | void ram_write_tracking_stop(void) | 
|  | { | 
|  | RAMState *rs = ram_state; | 
|  | RAMBlock *block; | 
|  |  | 
|  | RCU_READ_LOCK_GUARD(); | 
|  |  | 
|  | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | 
|  | if ((block->flags & RAM_UF_WRITEPROTECT) == 0) { | 
|  | continue; | 
|  | } | 
|  | uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length); | 
|  |  | 
|  | trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size, | 
|  | block->host, block->max_length); | 
|  |  | 
|  | /* Cleanup flags and remove reference */ | 
|  | block->flags &= ~RAM_UF_WRITEPROTECT; | 
|  | memory_region_unref(block->mr); | 
|  | } | 
|  |  | 
|  | /* Finally close UFFD file descriptor */ | 
|  | uffd_close_fd(rs->uffdio_fd); | 
|  | rs->uffdio_fd = -1; | 
|  | } | 
|  |  | 
|  | #else | 
|  | /* No target OS support, stubs just fail or ignore */ | 
|  |  | 
|  | static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset) | 
|  | { | 
|  | (void) rs; | 
|  | (void) offset; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss, | 
|  | unsigned long start_page) | 
|  | { | 
|  | (void) rs; | 
|  | (void) pss; | 
|  | (void) start_page; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bool ram_write_tracking_available(void) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ram_write_tracking_compatible(void) | 
|  | { | 
|  | g_assert_not_reached(); | 
|  | } | 
|  |  | 
|  | int ram_write_tracking_start(void) | 
|  | { | 
|  | g_assert_not_reached(); | 
|  | } | 
|  |  | 
|  | void ram_write_tracking_stop(void) | 
|  | { | 
|  | g_assert_not_reached(); | 
|  | } | 
|  | #endif /* defined(__linux__) */ | 
|  |  | 
|  | /** | 
|  | * get_queued_page: unqueue a page from the postcopy requests | 
|  | * | 
|  | * Skips pages that are already sent (!dirty) | 
|  | * | 
|  | * Returns true if a queued page is found | 
|  | * | 
|  | * @rs: current RAM state | 
|  | * @pss: data about the state of the current dirty page scan | 
|  | */ | 
|  | static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) | 
|  | { | 
|  | RAMBlock  *block; | 
|  | ram_addr_t offset; | 
|  | bool dirty = false; | 
|  |  | 
|  | do { | 
|  | block = unqueue_page(rs, &offset); | 
|  | /* | 
|  | * We're sending this page, and since it's postcopy nothing else | 
|  | * will dirty it, and we must make sure it doesn't get sent again | 
|  | * even if this queue request was received after the background | 
|  | * search already sent it. | 
|  | */ | 
|  | if (block) { | 
|  | unsigned long page; | 
|  |  | 
|  | page = offset >> TARGET_PAGE_BITS; | 
|  | dirty = test_bit(page, block->bmap); | 
|  | if (!dirty) { | 
|  | trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, | 
|  | page); | 
|  | } else { | 
|  | trace_get_queued_page(block->idstr, (uint64_t)offset, page); | 
|  | } | 
|  | } | 
|  |  | 
|  | } while (block && !dirty); | 
|  |  | 
|  | if (!block) { | 
|  | /* | 
|  | * Poll write faults too if background snapshot is enabled; that's | 
|  | * when we have vcpus got blocked by the write protected pages. | 
|  | */ | 
|  | block = poll_fault_page(rs, &offset); | 
|  | } | 
|  |  | 
|  | if (block) { | 
|  | /* | 
|  | * We want the background search to continue from the queued page | 
|  | * since the guest is likely to want other pages near to the page | 
|  | * it just requested. | 
|  | */ | 
|  | pss->block = block; | 
|  | pss->page = offset >> TARGET_PAGE_BITS; | 
|  |  | 
|  | /* | 
|  | * This unqueued page would break the "one round" check, even is | 
|  | * really rare. | 
|  | */ | 
|  | pss->complete_round = false; | 
|  | } | 
|  |  | 
|  | return !!block; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * migration_page_queue_free: drop any remaining pages in the ram | 
|  | * request queue | 
|  | * | 
|  | * It should be empty at the end anyway, but in error cases there may | 
|  | * be some left.  in case that there is any page left, we drop it. | 
|  | * | 
|  | */ | 
|  | static void migration_page_queue_free(RAMState *rs) | 
|  | { | 
|  | struct RAMSrcPageRequest *mspr, *next_mspr; | 
|  | /* This queue generally should be empty - but in the case of a failed | 
|  | * migration might have some droppings in. | 
|  | */ | 
|  | RCU_READ_LOCK_GUARD(); | 
|  | QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { | 
|  | memory_region_unref(mspr->rb->mr); | 
|  | QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); | 
|  | g_free(mspr); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ram_save_queue_pages: queue the page for transmission | 
|  | * | 
|  | * A request from postcopy destination for example. | 
|  | * | 
|  | * Returns zero on success or negative on error | 
|  | * | 
|  | * @rbname: Name of the RAMBLock of the request. NULL means the | 
|  | *          same that last one. | 
|  | * @start: starting address from the start of the RAMBlock | 
|  | * @len: length (in bytes) to send | 
|  | */ | 
|  | int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len, | 
|  | Error **errp) | 
|  | { | 
|  | RAMBlock *ramblock; | 
|  | RAMState *rs = ram_state; | 
|  |  | 
|  | stat64_add(&mig_stats.postcopy_requests, 1); | 
|  | RCU_READ_LOCK_GUARD(); | 
|  |  | 
|  | if (!rbname) { | 
|  | /* Reuse last RAMBlock */ | 
|  | ramblock = rs->last_req_rb; | 
|  |  | 
|  | if (!ramblock) { | 
|  | /* | 
|  | * Shouldn't happen, we can't reuse the last RAMBlock if | 
|  | * it's the 1st request. | 
|  | */ | 
|  | error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no previous block"); | 
|  | return -1; | 
|  | } | 
|  | } else { | 
|  | ramblock = qemu_ram_block_by_name(rbname); | 
|  |  | 
|  | if (!ramblock) { | 
|  | /* We shouldn't be asked for a non-existent RAMBlock */ | 
|  | error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no block '%s'", rbname); | 
|  | return -1; | 
|  | } | 
|  | rs->last_req_rb = ramblock; | 
|  | } | 
|  | trace_ram_save_queue_pages(ramblock->idstr, start, len); | 
|  | if (!offset_in_ramblock(ramblock, start + len - 1)) { | 
|  | error_setg(errp, "MIG_RP_MSG_REQ_PAGES request overrun, " | 
|  | "start=" RAM_ADDR_FMT " len=" | 
|  | RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, | 
|  | start, len, ramblock->used_length); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When with postcopy preempt, we send back the page directly in the | 
|  | * rp-return thread. | 
|  | */ | 
|  | if (postcopy_preempt_active()) { | 
|  | ram_addr_t page_start = start >> TARGET_PAGE_BITS; | 
|  | size_t page_size = qemu_ram_pagesize(ramblock); | 
|  | PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY]; | 
|  | int ret = 0; | 
|  |  | 
|  | qemu_mutex_lock(&rs->bitmap_mutex); | 
|  |  | 
|  | pss_init(pss, ramblock, page_start); | 
|  | /* | 
|  | * Always use the preempt channel, and make sure it's there.  It's | 
|  | * safe to access without lock, because when rp-thread is running | 
|  | * we should be the only one who operates on the qemufile | 
|  | */ | 
|  | pss->pss_channel = migrate_get_current()->postcopy_qemufile_src; | 
|  | assert(pss->pss_channel); | 
|  |  | 
|  | /* | 
|  | * It must be either one or multiple of host page size.  Just | 
|  | * assert; if something wrong we're mostly split brain anyway. | 
|  | */ | 
|  | assert(len % page_size == 0); | 
|  | while (len) { | 
|  | if (ram_save_host_page_urgent(pss)) { | 
|  | error_setg(errp, "ram_save_host_page_urgent() failed: " | 
|  | "ramblock=%s, start_addr=0x"RAM_ADDR_FMT, | 
|  | ramblock->idstr, start); | 
|  | ret = -1; | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * NOTE: after ram_save_host_page_urgent() succeeded, pss->page | 
|  | * will automatically be moved and point to the next host page | 
|  | * we're going to send, so no need to update here. | 
|  | * | 
|  | * Normally QEMU never sends >1 host page in requests, so | 
|  | * logically we don't even need that as the loop should only | 
|  | * run once, but just to be consistent. | 
|  | */ | 
|  | len -= page_size; | 
|  | }; | 
|  | qemu_mutex_unlock(&rs->bitmap_mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct RAMSrcPageRequest *new_entry = | 
|  | g_new0(struct RAMSrcPageRequest, 1); | 
|  | new_entry->rb = ramblock; | 
|  | new_entry->offset = start; | 
|  | new_entry->len = len; | 
|  |  | 
|  | memory_region_ref(ramblock->mr); | 
|  | qemu_mutex_lock(&rs->src_page_req_mutex); | 
|  | QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); | 
|  | migration_make_urgent_request(); | 
|  | qemu_mutex_unlock(&rs->src_page_req_mutex); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ram_save_target_page: save one target page to the precopy thread | 
|  | * OR to multifd workers. | 
|  | * | 
|  | * @rs: current RAM state | 
|  | * @pss: data about the page we want to send | 
|  | */ | 
|  | static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss) | 
|  | { | 
|  | ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; | 
|  | int res; | 
|  |  | 
|  | /* Hand over to RDMA first */ | 
|  | if (control_save_page(pss, offset, &res)) { | 
|  | return res; | 
|  | } | 
|  |  | 
|  | if (!migrate_multifd() | 
|  | || migrate_zero_page_detection() == ZERO_PAGE_DETECTION_LEGACY) { | 
|  | if (save_zero_page(rs, pss, offset)) { | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (migrate_multifd()) { | 
|  | RAMBlock *block = pss->block; | 
|  | return ram_save_multifd_page(block, offset); | 
|  | } | 
|  |  | 
|  | return ram_save_page(rs, pss); | 
|  | } | 
|  |  | 
|  | /* Should be called before sending a host page */ | 
|  | static void pss_host_page_prepare(PageSearchStatus *pss) | 
|  | { | 
|  | /* How many guest pages are there in one host page? */ | 
|  | size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; | 
|  |  | 
|  | pss->host_page_sending = true; | 
|  | if (guest_pfns <= 1) { | 
|  | /* | 
|  | * This covers both when guest psize == host psize, or when guest | 
|  | * has larger psize than the host (guest_pfns==0). | 
|  | * | 
|  | * For the latter, we always send one whole guest page per | 
|  | * iteration of the host page (example: an Alpha VM on x86 host | 
|  | * will have guest psize 8K while host psize 4K). | 
|  | */ | 
|  | pss->host_page_start = pss->page; | 
|  | pss->host_page_end = pss->page + 1; | 
|  | } else { | 
|  | /* | 
|  | * The host page spans over multiple guest pages, we send them | 
|  | * within the same host page iteration. | 
|  | */ | 
|  | pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns); | 
|  | pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Whether the page pointed by PSS is within the host page being sent. | 
|  | * Must be called after a previous pss_host_page_prepare(). | 
|  | */ | 
|  | static bool pss_within_range(PageSearchStatus *pss) | 
|  | { | 
|  | ram_addr_t ram_addr; | 
|  |  | 
|  | assert(pss->host_page_sending); | 
|  |  | 
|  | /* Over host-page boundary? */ | 
|  | if (pss->page >= pss->host_page_end) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; | 
|  |  | 
|  | return offset_in_ramblock(pss->block, ram_addr); | 
|  | } | 
|  |  | 
|  | static void pss_host_page_finish(PageSearchStatus *pss) | 
|  | { | 
|  | pss->host_page_sending = false; | 
|  | /* This is not needed, but just to reset it */ | 
|  | pss->host_page_start = pss->host_page_end = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Send an urgent host page specified by `pss'.  Need to be called with | 
|  | * bitmap_mutex held. | 
|  | * | 
|  | * Returns 0 if save host page succeeded, false otherwise. | 
|  | */ | 
|  | static int ram_save_host_page_urgent(PageSearchStatus *pss) | 
|  | { | 
|  | bool page_dirty, sent = false; | 
|  | RAMState *rs = ram_state; | 
|  | int ret = 0; | 
|  |  | 
|  | trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page); | 
|  | pss_host_page_prepare(pss); | 
|  |  | 
|  | /* | 
|  | * If precopy is sending the same page, let it be done in precopy, or | 
|  | * we could send the same page in two channels and none of them will | 
|  | * receive the whole page. | 
|  | */ | 
|  | if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) { | 
|  | trace_postcopy_preempt_hit(pss->block->idstr, | 
|  | pss->page << TARGET_PAGE_BITS); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | do { | 
|  | page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page); | 
|  |  | 
|  | if (page_dirty) { | 
|  | /* Be strict to return code; it must be 1, or what else? */ | 
|  | if (ram_save_target_page(rs, pss) != 1) { | 
|  | error_report_once("%s: ram_save_target_page failed", __func__); | 
|  | ret = -1; | 
|  | goto out; | 
|  | } | 
|  | sent = true; | 
|  | } | 
|  | pss_find_next_dirty(pss); | 
|  | } while (pss_within_range(pss)); | 
|  | out: | 
|  | pss_host_page_finish(pss); | 
|  | /* For urgent requests, flush immediately if sent */ | 
|  | if (sent) { | 
|  | qemu_fflush(pss->pss_channel); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ram_save_host_page: save a whole host page | 
|  | * | 
|  | * Starting at *offset send pages up to the end of the current host | 
|  | * page. It's valid for the initial offset to point into the middle of | 
|  | * a host page in which case the remainder of the hostpage is sent. | 
|  | * Only dirty target pages are sent. Note that the host page size may | 
|  | * be a huge page for this block. | 
|  | * | 
|  | * The saving stops at the boundary of the used_length of the block | 
|  | * if the RAMBlock isn't a multiple of the host page size. | 
|  | * | 
|  | * The caller must be with ram_state.bitmap_mutex held to call this | 
|  | * function.  Note that this function can temporarily release the lock, but | 
|  | * when the function is returned it'll make sure the lock is still held. | 
|  | * | 
|  | * Returns the number of pages written or negative on error | 
|  | * | 
|  | * @rs: current RAM state | 
|  | * @pss: data about the page we want to send | 
|  | */ | 
|  | static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss) | 
|  | { | 
|  | bool page_dirty, preempt_active = postcopy_preempt_active(); | 
|  | int tmppages, pages = 0; | 
|  | size_t pagesize_bits = | 
|  | qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; | 
|  | unsigned long start_page = pss->page; | 
|  | int res; | 
|  |  | 
|  | if (migrate_ram_is_ignored(pss->block)) { | 
|  | error_report("block %s should not be migrated !", pss->block->idstr); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Update host page boundary information */ | 
|  | pss_host_page_prepare(pss); | 
|  |  | 
|  | do { | 
|  | page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page); | 
|  |  | 
|  | /* Check the pages is dirty and if it is send it */ | 
|  | if (page_dirty) { | 
|  | /* | 
|  | * Properly yield the lock only in postcopy preempt mode | 
|  | * because both migration thread and rp-return thread can | 
|  | * operate on the bitmaps. | 
|  | */ | 
|  | if (preempt_active) { | 
|  | qemu_mutex_unlock(&rs->bitmap_mutex); | 
|  | } | 
|  | tmppages = ram_save_target_page(rs, pss); | 
|  | if (tmppages >= 0) { | 
|  | pages += tmppages; | 
|  | /* | 
|  | * Allow rate limiting to happen in the middle of huge pages if | 
|  | * something is sent in the current iteration. | 
|  | */ | 
|  | if (pagesize_bits > 1 && tmppages > 0) { | 
|  | migration_rate_limit(); | 
|  | } | 
|  | } | 
|  | if (preempt_active) { | 
|  | qemu_mutex_lock(&rs->bitmap_mutex); | 
|  | } | 
|  | } else { | 
|  | tmppages = 0; | 
|  | } | 
|  |  | 
|  | if (tmppages < 0) { | 
|  | pss_host_page_finish(pss); | 
|  | return tmppages; | 
|  | } | 
|  |  | 
|  | pss_find_next_dirty(pss); | 
|  | } while (pss_within_range(pss)); | 
|  |  | 
|  | pss_host_page_finish(pss); | 
|  |  | 
|  | res = ram_save_release_protection(rs, pss, start_page); | 
|  | return (res < 0 ? res : pages); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ram_find_and_save_block: finds a dirty page and sends it to f | 
|  | * | 
|  | * Called within an RCU critical section. | 
|  | * | 
|  | * Returns the number of pages written where zero means no dirty pages, | 
|  | * or negative on error | 
|  | * | 
|  | * @rs: current RAM state | 
|  | * | 
|  | * On systems where host-page-size > target-page-size it will send all the | 
|  | * pages in a host page that are dirty. | 
|  | */ | 
|  | static int ram_find_and_save_block(RAMState *rs) | 
|  | { | 
|  | PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY]; | 
|  | int pages = 0; | 
|  |  | 
|  | /* No dirty page as there is zero RAM */ | 
|  | if (!rs->ram_bytes_total) { | 
|  | return pages; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Always keep last_seen_block/last_page valid during this procedure, | 
|  | * because find_dirty_block() relies on these values (e.g., we compare | 
|  | * last_seen_block with pss.block to see whether we searched all the | 
|  | * ramblocks) to detect the completion of migration.  Having NULL value | 
|  | * of last_seen_block can conditionally cause below loop to run forever. | 
|  | */ | 
|  | if (!rs->last_seen_block) { | 
|  | rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks); | 
|  | rs->last_page = 0; | 
|  | } | 
|  |  | 
|  | pss_init(pss, rs->last_seen_block, rs->last_page); | 
|  |  | 
|  | while (true){ | 
|  | if (!get_queued_page(rs, pss)) { | 
|  | /* priority queue empty, so just search for something dirty */ | 
|  | int res = find_dirty_block(rs, pss); | 
|  | if (res != PAGE_DIRTY_FOUND) { | 
|  | if (res == PAGE_ALL_CLEAN) { | 
|  | break; | 
|  | } else if (res == PAGE_TRY_AGAIN) { | 
|  | continue; | 
|  | } else if (res < 0) { | 
|  | pages = res; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | pages = ram_save_host_page(rs, pss); | 
|  | if (pages) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | rs->last_seen_block = pss->block; | 
|  | rs->last_page = pss->page; | 
|  |  | 
|  | return pages; | 
|  | } | 
|  |  | 
|  | static uint64_t ram_bytes_total_with_ignored(void) | 
|  | { | 
|  | RAMBlock *block; | 
|  | uint64_t total = 0; | 
|  |  | 
|  | RCU_READ_LOCK_GUARD(); | 
|  |  | 
|  | RAMBLOCK_FOREACH_MIGRATABLE(block) { | 
|  | total += block->used_length; | 
|  | } | 
|  | return total; | 
|  | } | 
|  |  | 
|  | uint64_t ram_bytes_total(void) | 
|  | { | 
|  | RAMBlock *block; | 
|  | uint64_t total = 0; | 
|  |  | 
|  | RCU_READ_LOCK_GUARD(); | 
|  |  | 
|  | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | 
|  | total += block->used_length; | 
|  | } | 
|  | return total; | 
|  | } | 
|  |  | 
|  | static void xbzrle_load_setup(void) | 
|  | { | 
|  | XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | static void xbzrle_load_cleanup(void) | 
|  | { | 
|  | g_free(XBZRLE.decoded_buf); | 
|  | XBZRLE.decoded_buf = NULL; | 
|  | } | 
|  |  | 
|  | static void ram_state_cleanup(RAMState **rsp) | 
|  | { | 
|  | if (*rsp) { | 
|  | migration_page_queue_free(*rsp); | 
|  | qemu_mutex_destroy(&(*rsp)->bitmap_mutex); | 
|  | qemu_mutex_destroy(&(*rsp)->src_page_req_mutex); | 
|  | g_free(*rsp); | 
|  | *rsp = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void xbzrle_cleanup(void) | 
|  | { | 
|  | XBZRLE_cache_lock(); | 
|  | if (XBZRLE.cache) { | 
|  | cache_fini(XBZRLE.cache); | 
|  | g_free(XBZRLE.encoded_buf); | 
|  | g_free(XBZRLE.current_buf); | 
|  | g_free(XBZRLE.zero_target_page); | 
|  | XBZRLE.cache = NULL; | 
|  | XBZRLE.encoded_buf = NULL; | 
|  | XBZRLE.current_buf = NULL; | 
|  | XBZRLE.zero_target_page = NULL; | 
|  | } | 
|  | XBZRLE_cache_unlock(); | 
|  | } | 
|  |  | 
|  | static void ram_bitmaps_destroy(void) | 
|  | { | 
|  | RAMBlock *block; | 
|  |  | 
|  | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | 
|  | g_free(block->clear_bmap); | 
|  | block->clear_bmap = NULL; | 
|  | g_free(block->bmap); | 
|  | block->bmap = NULL; | 
|  | g_free(block->file_bmap); | 
|  | block->file_bmap = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ram_save_cleanup(void *opaque) | 
|  | { | 
|  | RAMState **rsp = opaque; | 
|  |  | 
|  | /* We don't use dirty log with background snapshots */ | 
|  | if (!migrate_background_snapshot()) { | 
|  | /* caller have hold BQL or is in a bh, so there is | 
|  | * no writing race against the migration bitmap | 
|  | */ | 
|  | if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) { | 
|  | /* | 
|  | * do not stop dirty log without starting it, since | 
|  | * memory_global_dirty_log_stop will assert that | 
|  | * memory_global_dirty_log_start/stop used in pairs | 
|  | */ | 
|  | memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION); | 
|  | } | 
|  | } | 
|  |  | 
|  | ram_bitmaps_destroy(); | 
|  |  | 
|  | xbzrle_cleanup(); | 
|  | multifd_ram_save_cleanup(); | 
|  | ram_state_cleanup(rsp); | 
|  | } | 
|  |  | 
|  | static void ram_state_reset(RAMState *rs) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < RAM_CHANNEL_MAX; i++) { | 
|  | rs->pss[i].last_sent_block = NULL; | 
|  | } | 
|  |  | 
|  | rs->last_seen_block = NULL; | 
|  | rs->last_page = 0; | 
|  | rs->last_version = ram_list.version; | 
|  | rs->xbzrle_started = false; | 
|  | } | 
|  |  | 
|  | #define MAX_WAIT 50 /* ms, half buffered_file limit */ | 
|  |  | 
|  | /* **** functions for postcopy ***** */ | 
|  |  | 
|  | void ram_postcopy_migrated_memory_release(MigrationState *ms) | 
|  | { | 
|  | struct RAMBlock *block; | 
|  |  | 
|  | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | 
|  | unsigned long *bitmap = block->bmap; | 
|  | unsigned long range = block->used_length >> TARGET_PAGE_BITS; | 
|  | unsigned long run_start = find_next_zero_bit(bitmap, range, 0); | 
|  |  | 
|  | while (run_start < range) { | 
|  | unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); | 
|  | ram_discard_range(block->idstr, | 
|  | ((ram_addr_t)run_start) << TARGET_PAGE_BITS, | 
|  | ((ram_addr_t)(run_end - run_start)) | 
|  | << TARGET_PAGE_BITS); | 
|  | run_start = find_next_zero_bit(bitmap, range, run_end + 1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * postcopy_send_discard_bm_ram: discard a RAMBlock | 
|  | * | 
|  | * Callback from postcopy_each_ram_send_discard for each RAMBlock | 
|  | * | 
|  | * @ms: current migration state | 
|  | * @block: RAMBlock to discard | 
|  | */ | 
|  | static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block) | 
|  | { | 
|  | unsigned long end = block->used_length >> TARGET_PAGE_BITS; | 
|  | unsigned long current; | 
|  | unsigned long *bitmap = block->bmap; | 
|  |  | 
|  | for (current = 0; current < end; ) { | 
|  | unsigned long one = find_next_bit(bitmap, end, current); | 
|  | unsigned long zero, discard_length; | 
|  |  | 
|  | if (one >= end) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | zero = find_next_zero_bit(bitmap, end, one + 1); | 
|  |  | 
|  | if (zero >= end) { | 
|  | discard_length = end - one; | 
|  | } else { | 
|  | discard_length = zero - one; | 
|  | } | 
|  | postcopy_discard_send_range(ms, one, discard_length); | 
|  | current = one + discard_length; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block); | 
|  |  | 
|  | /** | 
|  | * postcopy_each_ram_send_discard: discard all RAMBlocks | 
|  | * | 
|  | * Utility for the outgoing postcopy code. | 
|  | *   Calls postcopy_send_discard_bm_ram for each RAMBlock | 
|  | *   passing it bitmap indexes and name. | 
|  | * (qemu_ram_foreach_block ends up passing unscaled lengths | 
|  | *  which would mean postcopy code would have to deal with target page) | 
|  | * | 
|  | * @ms: current migration state | 
|  | */ | 
|  | static void postcopy_each_ram_send_discard(MigrationState *ms) | 
|  | { | 
|  | struct RAMBlock *block; | 
|  |  | 
|  | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | 
|  | postcopy_discard_send_init(ms, block->idstr); | 
|  |  | 
|  | /* | 
|  | * Deal with TPS != HPS and huge pages.  It discard any partially sent | 
|  | * host-page size chunks, mark any partially dirty host-page size | 
|  | * chunks as all dirty.  In this case the host-page is the host-page | 
|  | * for the particular RAMBlock, i.e. it might be a huge page. | 
|  | */ | 
|  | postcopy_chunk_hostpages_pass(ms, block); | 
|  |  | 
|  | /* | 
|  | * Postcopy sends chunks of bitmap over the wire, but it | 
|  | * just needs indexes at this point, avoids it having | 
|  | * target page specific code. | 
|  | */ | 
|  | postcopy_send_discard_bm_ram(ms, block); | 
|  | postcopy_discard_send_finish(ms); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages | 
|  | * | 
|  | * Helper for postcopy_chunk_hostpages; it's called twice to | 
|  | * canonicalize the two bitmaps, that are similar, but one is | 
|  | * inverted. | 
|  | * | 
|  | * Postcopy requires that all target pages in a hostpage are dirty or | 
|  | * clean, not a mix.  This function canonicalizes the bitmaps. | 
|  | * | 
|  | * @ms: current migration state | 
|  | * @block: block that contains the page we want to canonicalize | 
|  | */ | 
|  | static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block) | 
|  | { | 
|  | RAMState *rs = ram_state; | 
|  | unsigned long *bitmap = block->bmap; | 
|  | unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; | 
|  | unsigned long pages = block->used_length >> TARGET_PAGE_BITS; | 
|  | unsigned long run_start; | 
|  |  | 
|  | if (block->page_size == TARGET_PAGE_SIZE) { | 
|  | /* Easy case - TPS==HPS for a non-huge page RAMBlock */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Find a dirty page */ | 
|  | run_start = find_next_bit(bitmap, pages, 0); | 
|  |  | 
|  | while (run_start < pages) { | 
|  |  | 
|  | /* | 
|  | * If the start of this run of pages is in the middle of a host | 
|  | * page, then we need to fixup this host page. | 
|  | */ | 
|  | if (QEMU_IS_ALIGNED(run_start, host_ratio)) { | 
|  | /* Find the end of this run */ | 
|  | run_start = find_next_zero_bit(bitmap, pages, run_start + 1); | 
|  | /* | 
|  | * If the end isn't at the start of a host page, then the | 
|  | * run doesn't finish at the end of a host page | 
|  | * and we need to discard. | 
|  | */ | 
|  | } | 
|  |  | 
|  | if (!QEMU_IS_ALIGNED(run_start, host_ratio)) { | 
|  | unsigned long page; | 
|  | unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start, | 
|  | host_ratio); | 
|  | run_start = QEMU_ALIGN_UP(run_start, host_ratio); | 
|  |  | 
|  | /* Clean up the bitmap */ | 
|  | for (page = fixup_start_addr; | 
|  | page < fixup_start_addr + host_ratio; page++) { | 
|  | /* | 
|  | * Remark them as dirty, updating the count for any pages | 
|  | * that weren't previously dirty. | 
|  | */ | 
|  | rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Find the next dirty page for the next iteration */ | 
|  | run_start = find_next_bit(bitmap, pages, run_start); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ram_postcopy_send_discard_bitmap: transmit the discard bitmap | 
|  | * | 
|  | * Transmit the set of pages to be discarded after precopy to the target | 
|  | * these are pages that: | 
|  | *     a) Have been previously transmitted but are now dirty again | 
|  | *     b) Pages that have never been transmitted, this ensures that | 
|  | *        any pages on the destination that have been mapped by background | 
|  | *        tasks get discarded (transparent huge pages is the specific concern) | 
|  | * Hopefully this is pretty sparse | 
|  | * | 
|  | * @ms: current migration state | 
|  | */ | 
|  | void ram_postcopy_send_discard_bitmap(MigrationState *ms) | 
|  | { | 
|  | RAMState *rs = ram_state; | 
|  |  | 
|  | RCU_READ_LOCK_GUARD(); | 
|  |  | 
|  | /* This should be our last sync, the src is now paused */ | 
|  | migration_bitmap_sync(rs, false); | 
|  |  | 
|  | /* Easiest way to make sure we don't resume in the middle of a host-page */ | 
|  | rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL; | 
|  | rs->last_seen_block = NULL; | 
|  | rs->last_page = 0; | 
|  |  | 
|  | postcopy_each_ram_send_discard(ms); | 
|  |  | 
|  | trace_ram_postcopy_send_discard_bitmap(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ram_discard_range: discard dirtied pages at the beginning of postcopy | 
|  | * | 
|  | * Returns zero on success | 
|  | * | 
|  | * @rbname: name of the RAMBlock of the request. NULL means the | 
|  | *          same that last one. | 
|  | * @start: RAMBlock starting page | 
|  | * @length: RAMBlock size | 
|  | */ | 
|  | int ram_discard_range(const char *rbname, uint64_t start, size_t length) | 
|  | { | 
|  | trace_ram_discard_range(rbname, start, length); | 
|  |  | 
|  | RCU_READ_LOCK_GUARD(); | 
|  | RAMBlock *rb = qemu_ram_block_by_name(rbname); | 
|  |  | 
|  | if (!rb) { | 
|  | error_report("ram_discard_range: Failed to find block '%s'", rbname); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * On source VM, we don't need to update the received bitmap since | 
|  | * we don't even have one. | 
|  | */ | 
|  | if (rb->receivedmap) { | 
|  | bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(), | 
|  | length >> qemu_target_page_bits()); | 
|  | } | 
|  |  | 
|  | return ram_block_discard_range(rb, start, length); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For every allocation, we will try not to crash the VM if the | 
|  | * allocation failed. | 
|  | */ | 
|  | static bool xbzrle_init(Error **errp) | 
|  | { | 
|  | if (!migrate_xbzrle()) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | XBZRLE_cache_lock(); | 
|  |  | 
|  | XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE); | 
|  | if (!XBZRLE.zero_target_page) { | 
|  | error_setg(errp, "%s: Error allocating zero page", __func__); | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(), | 
|  | TARGET_PAGE_SIZE, errp); | 
|  | if (!XBZRLE.cache) { | 
|  | goto free_zero_page; | 
|  | } | 
|  |  | 
|  | XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); | 
|  | if (!XBZRLE.encoded_buf) { | 
|  | error_setg(errp, "%s: Error allocating encoded_buf", __func__); | 
|  | goto free_cache; | 
|  | } | 
|  |  | 
|  | XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); | 
|  | if (!XBZRLE.current_buf) { | 
|  | error_setg(errp, "%s: Error allocating current_buf", __func__); | 
|  | goto free_encoded_buf; | 
|  | } | 
|  |  | 
|  | /* We are all good */ | 
|  | XBZRLE_cache_unlock(); | 
|  | return true; | 
|  |  | 
|  | free_encoded_buf: | 
|  | g_free(XBZRLE.encoded_buf); | 
|  | XBZRLE.encoded_buf = NULL; | 
|  | free_cache: | 
|  | cache_fini(XBZRLE.cache); | 
|  | XBZRLE.cache = NULL; | 
|  | free_zero_page: | 
|  | g_free(XBZRLE.zero_target_page); | 
|  | XBZRLE.zero_target_page = NULL; | 
|  | err_out: | 
|  | XBZRLE_cache_unlock(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool ram_state_init(RAMState **rsp, Error **errp) | 
|  | { | 
|  | *rsp = g_try_new0(RAMState, 1); | 
|  |  | 
|  | if (!*rsp) { | 
|  | error_setg(errp, "%s: Init ramstate fail", __func__); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | qemu_mutex_init(&(*rsp)->bitmap_mutex); | 
|  | qemu_mutex_init(&(*rsp)->src_page_req_mutex); | 
|  | QSIMPLEQ_INIT(&(*rsp)->src_page_requests); | 
|  | (*rsp)->ram_bytes_total = ram_bytes_total(); | 
|  |  | 
|  | /* | 
|  | * Count the total number of pages used by ram blocks not including any | 
|  | * gaps due to alignment or unplugs. | 
|  | * This must match with the initial values of dirty bitmap. | 
|  | */ | 
|  | (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS; | 
|  | ram_state_reset(*rsp); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void ram_list_init_bitmaps(void) | 
|  | { | 
|  | MigrationState *ms = migrate_get_current(); | 
|  | RAMBlock *block; | 
|  | unsigned long pages; | 
|  | uint8_t shift; | 
|  |  | 
|  | /* Skip setting bitmap if there is no RAM */ | 
|  | if (ram_bytes_total()) { | 
|  | shift = ms->clear_bitmap_shift; | 
|  | if (shift > CLEAR_BITMAP_SHIFT_MAX) { | 
|  | error_report("clear_bitmap_shift (%u) too big, using " | 
|  | "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX); | 
|  | shift = CLEAR_BITMAP_SHIFT_MAX; | 
|  | } else if (shift < CLEAR_BITMAP_SHIFT_MIN) { | 
|  | error_report("clear_bitmap_shift (%u) too small, using " | 
|  | "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN); | 
|  | shift = CLEAR_BITMAP_SHIFT_MIN; | 
|  | } | 
|  |  | 
|  | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | 
|  | pages = block->max_length >> TARGET_PAGE_BITS; | 
|  | /* | 
|  | * The initial dirty bitmap for migration must be set with all | 
|  | * ones to make sure we'll migrate every guest RAM page to | 
|  | * destination. | 
|  | * Here we set RAMBlock.bmap all to 1 because when rebegin a | 
|  | * new migration after a failed migration, ram_list. | 
|  | * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole | 
|  | * guest memory. | 
|  | */ | 
|  | block->bmap = bitmap_new(pages); | 
|  | bitmap_set(block->bmap, 0, pages); | 
|  | if (migrate_mapped_ram()) { | 
|  | block->file_bmap = bitmap_new(pages); | 
|  | } | 
|  | block->clear_bmap_shift = shift; | 
|  | block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void migration_bitmap_clear_discarded_pages(RAMState *rs) | 
|  | { | 
|  | unsigned long pages; | 
|  | RAMBlock *rb; | 
|  |  | 
|  | RCU_READ_LOCK_GUARD(); | 
|  |  | 
|  | RAMBLOCK_FOREACH_NOT_IGNORED(rb) { | 
|  | pages = ramblock_dirty_bitmap_clear_discarded_pages(rb); | 
|  | rs->migration_dirty_pages -= pages; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool ram_init_bitmaps(RAMState *rs, Error **errp) | 
|  | { | 
|  | bool ret = true; | 
|  |  | 
|  | qemu_mutex_lock_ramlist(); | 
|  |  | 
|  | WITH_RCU_READ_LOCK_GUARD() { | 
|  | ram_list_init_bitmaps(); | 
|  | /* We don't use dirty log with background snapshots */ | 
|  | if (!migrate_background_snapshot()) { | 
|  | ret = memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION, errp); | 
|  | if (!ret) { | 
|  | goto out_unlock; | 
|  | } | 
|  | migration_bitmap_sync_precopy(false); | 
|  | } | 
|  | } | 
|  | out_unlock: | 
|  | qemu_mutex_unlock_ramlist(); | 
|  |  | 
|  | if (!ret) { | 
|  | ram_bitmaps_destroy(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * After an eventual first bitmap sync, fixup the initial bitmap | 
|  | * containing all 1s to exclude any discarded pages from migration. | 
|  | */ | 
|  | migration_bitmap_clear_discarded_pages(rs); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int ram_init_all(RAMState **rsp, Error **errp) | 
|  | { | 
|  | if (!ram_state_init(rsp, errp)) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (!xbzrle_init(errp)) { | 
|  | ram_state_cleanup(rsp); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (!ram_init_bitmaps(*rsp, errp)) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out) | 
|  | { | 
|  | RAMBlock *block; | 
|  | uint64_t pages = 0; | 
|  |  | 
|  | /* | 
|  | * Postcopy is not using xbzrle/compression, so no need for that. | 
|  | * Also, since source are already halted, we don't need to care | 
|  | * about dirty page logging as well. | 
|  | */ | 
|  |  | 
|  | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | 
|  | pages += bitmap_count_one(block->bmap, | 
|  | block->used_length >> TARGET_PAGE_BITS); | 
|  | } | 
|  |  | 
|  | /* This may not be aligned with current bitmaps. Recalculate. */ | 
|  | rs->migration_dirty_pages = pages; | 
|  |  | 
|  | ram_state_reset(rs); | 
|  |  | 
|  | /* Update RAMState cache of output QEMUFile */ | 
|  | rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out; | 
|  |  | 
|  | trace_ram_state_resume_prepare(pages); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function clears bits of the free pages reported by the caller from the | 
|  | * migration dirty bitmap. @addr is the host address corresponding to the | 
|  | * start of the continuous guest free pages, and @len is the total bytes of | 
|  | * those pages. | 
|  | */ | 
|  | void qemu_guest_free_page_hint(void *addr, size_t len) | 
|  | { | 
|  | RAMBlock *block; | 
|  | ram_addr_t offset; | 
|  | size_t used_len, start, npages; | 
|  |  | 
|  | /* This function is currently expected to be used during live migration */ | 
|  | if (!migration_is_running()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (; len > 0; len -= used_len, addr += used_len) { | 
|  | block = qemu_ram_block_from_host(addr, false, &offset); | 
|  | if (unlikely(!block || offset >= block->used_length)) { | 
|  | /* | 
|  | * The implementation might not support RAMBlock resize during | 
|  | * live migration, but it could happen in theory with future | 
|  | * updates. So we add a check here to capture that case. | 
|  | */ | 
|  | error_report_once("%s unexpected error", __func__); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (len <= block->used_length - offset) { | 
|  | used_len = len; | 
|  | } else { | 
|  | used_len = block->used_length - offset; | 
|  | } | 
|  |  | 
|  | start = offset >> TARGET_PAGE_BITS; | 
|  | npages = used_len >> TARGET_PAGE_BITS; | 
|  |  | 
|  | qemu_mutex_lock(&ram_state->bitmap_mutex); | 
|  | /* | 
|  | * The skipped free pages are equavalent to be sent from clear_bmap's | 
|  | * perspective, so clear the bits from the memory region bitmap which | 
|  | * are initially set. Otherwise those skipped pages will be sent in | 
|  | * the next round after syncing from the memory region bitmap. | 
|  | */ | 
|  | migration_clear_memory_region_dirty_bitmap_range(block, start, npages); | 
|  | ram_state->migration_dirty_pages -= | 
|  | bitmap_count_one_with_offset(block->bmap, start, npages); | 
|  | bitmap_clear(block->bmap, start, npages); | 
|  | qemu_mutex_unlock(&ram_state->bitmap_mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define MAPPED_RAM_HDR_VERSION 1 | 
|  | struct MappedRamHeader { | 
|  | uint32_t version; | 
|  | /* | 
|  | * The target's page size, so we know how many pages are in the | 
|  | * bitmap. | 
|  | */ | 
|  | uint64_t page_size; | 
|  | /* | 
|  | * The offset in the migration file where the pages bitmap is | 
|  | * stored. | 
|  | */ | 
|  | uint64_t bitmap_offset; | 
|  | /* | 
|  | * The offset in the migration file where the actual pages (data) | 
|  | * are stored. | 
|  | */ | 
|  | uint64_t pages_offset; | 
|  | } QEMU_PACKED; | 
|  | typedef struct MappedRamHeader MappedRamHeader; | 
|  |  | 
|  | static void mapped_ram_setup_ramblock(QEMUFile *file, RAMBlock *block) | 
|  | { | 
|  | g_autofree MappedRamHeader *header = NULL; | 
|  | size_t header_size, bitmap_size; | 
|  | long num_pages; | 
|  |  | 
|  | header = g_new0(MappedRamHeader, 1); | 
|  | header_size = sizeof(MappedRamHeader); | 
|  |  | 
|  | num_pages = block->used_length >> TARGET_PAGE_BITS; | 
|  | bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long); | 
|  |  | 
|  | /* | 
|  | * Save the file offsets of where the bitmap and the pages should | 
|  | * go as they are written at the end of migration and during the | 
|  | * iterative phase, respectively. | 
|  | */ | 
|  | block->bitmap_offset = qemu_get_offset(file) + header_size; | 
|  | block->pages_offset = ROUND_UP(block->bitmap_offset + | 
|  | bitmap_size, | 
|  | MAPPED_RAM_FILE_OFFSET_ALIGNMENT); | 
|  |  | 
|  | header->version = cpu_to_be32(MAPPED_RAM_HDR_VERSION); | 
|  | header->page_size = cpu_to_be64(TARGET_PAGE_SIZE); | 
|  | header->bitmap_offset = cpu_to_be64(block->bitmap_offset); | 
|  | header->pages_offset = cpu_to_be64(block->pages_offset); | 
|  |  | 
|  | qemu_put_buffer(file, (uint8_t *) header, header_size); | 
|  |  | 
|  | /* prepare offset for next ramblock */ | 
|  | qemu_set_offset(file, block->pages_offset + block->used_length, SEEK_SET); | 
|  | } | 
|  |  | 
|  | static bool mapped_ram_read_header(QEMUFile *file, MappedRamHeader *header, | 
|  | Error **errp) | 
|  | { | 
|  | size_t ret, header_size = sizeof(MappedRamHeader); | 
|  |  | 
|  | ret = qemu_get_buffer(file, (uint8_t *)header, header_size); | 
|  | if (ret != header_size) { | 
|  | error_setg(errp, "Could not read whole mapped-ram migration header " | 
|  | "(expected %zd, got %zd bytes)", header_size, ret); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* migration stream is big-endian */ | 
|  | header->version = be32_to_cpu(header->version); | 
|  |  | 
|  | if (header->version > MAPPED_RAM_HDR_VERSION) { | 
|  | error_setg(errp, "Migration mapped-ram capability version not " | 
|  | "supported (expected <= %d, got %d)", MAPPED_RAM_HDR_VERSION, | 
|  | header->version); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | header->page_size = be64_to_cpu(header->page_size); | 
|  | header->bitmap_offset = be64_to_cpu(header->bitmap_offset); | 
|  | header->pages_offset = be64_to_cpu(header->pages_offset); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Each of ram_save_setup, ram_save_iterate and ram_save_complete has | 
|  | * long-running RCU critical section.  When rcu-reclaims in the code | 
|  | * start to become numerous it will be necessary to reduce the | 
|  | * granularity of these critical sections. | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * ram_save_setup: Setup RAM for migration | 
|  | * | 
|  | * Returns zero to indicate success and negative for error | 
|  | * | 
|  | * @f: QEMUFile where to send the data | 
|  | * @opaque: RAMState pointer | 
|  | * @errp: pointer to Error*, to store an error if it happens. | 
|  | */ | 
|  | static int ram_save_setup(QEMUFile *f, void *opaque, Error **errp) | 
|  | { | 
|  | RAMState **rsp = opaque; | 
|  | RAMBlock *block; | 
|  | int ret, max_hg_page_size; | 
|  |  | 
|  | /* migration has already setup the bitmap, reuse it. */ | 
|  | if (!migration_in_colo_state()) { | 
|  | if (ram_init_all(rsp, errp) != 0) { | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f; | 
|  |  | 
|  | /* | 
|  | * ??? Mirrors the previous value of qemu_host_page_size, | 
|  | * but is this really what was intended for the migration? | 
|  | */ | 
|  | max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE); | 
|  |  | 
|  | WITH_RCU_READ_LOCK_GUARD() { | 
|  | qemu_put_be64(f, ram_bytes_total_with_ignored() | 
|  | | RAM_SAVE_FLAG_MEM_SIZE); | 
|  |  | 
|  | RAMBLOCK_FOREACH_MIGRATABLE(block) { | 
|  | qemu_put_byte(f, strlen(block->idstr)); | 
|  | qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); | 
|  | qemu_put_be64(f, block->used_length); | 
|  | if (migrate_postcopy_ram() && | 
|  | block->page_size != max_hg_page_size) { | 
|  | qemu_put_be64(f, block->page_size); | 
|  | } | 
|  | if (migrate_ignore_shared()) { | 
|  | qemu_put_be64(f, block->mr->addr); | 
|  | } | 
|  |  | 
|  | if (migrate_mapped_ram()) { | 
|  | mapped_ram_setup_ramblock(f, block); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = rdma_registration_start(f, RAM_CONTROL_SETUP); | 
|  | if (ret < 0) { | 
|  | error_setg(errp, "%s: failed to start RDMA registration", __func__); | 
|  | qemu_file_set_error(f, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = rdma_registration_stop(f, RAM_CONTROL_SETUP); | 
|  | if (ret < 0) { | 
|  | error_setg(errp, "%s: failed to stop RDMA registration", __func__); | 
|  | qemu_file_set_error(f, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (migrate_multifd()) { | 
|  | multifd_ram_save_setup(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This operation is unfortunate.. | 
|  | * | 
|  | * For legacy QEMUs using per-section sync | 
|  | * ======================================= | 
|  | * | 
|  | * This must exist because the EOS below requires the SYNC messages | 
|  | * per-channel to work. | 
|  | * | 
|  | * For modern QEMUs using per-round sync | 
|  | * ===================================== | 
|  | * | 
|  | * Logically such sync is not needed, and recv threads should not run | 
|  | * until setup ready (using things like channels_ready on src).  Then | 
|  | * we should be all fine. | 
|  | * | 
|  | * However even if we add channels_ready to recv side in new QEMUs, old | 
|  | * QEMU won't have them so this sync will still be needed to make sure | 
|  | * multifd recv threads won't start processing guest pages early before | 
|  | * ram_load_setup() is properly done. | 
|  | * | 
|  | * Let's stick with this.  Fortunately the overhead is low to sync | 
|  | * during setup because the VM is running, so at least it's not | 
|  | * accounted as part of downtime. | 
|  | */ | 
|  | bql_unlock(); | 
|  | ret = multifd_ram_flush_and_sync(f); | 
|  | bql_lock(); | 
|  | if (ret < 0) { | 
|  | error_setg(errp, "%s: multifd synchronization failed", __func__); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | qemu_put_be64(f, RAM_SAVE_FLAG_EOS); | 
|  | ret = qemu_fflush(f); | 
|  | if (ret < 0) { | 
|  | error_setg_errno(errp, -ret, "%s failed", __func__); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void ram_save_file_bmap(QEMUFile *f) | 
|  | { | 
|  | RAMBlock *block; | 
|  |  | 
|  | RAMBLOCK_FOREACH_MIGRATABLE(block) { | 
|  | long num_pages = block->used_length >> TARGET_PAGE_BITS; | 
|  | long bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long); | 
|  |  | 
|  | qemu_put_buffer_at(f, (uint8_t *)block->file_bmap, bitmap_size, | 
|  | block->bitmap_offset); | 
|  | ram_transferred_add(bitmap_size); | 
|  |  | 
|  | /* | 
|  | * Free the bitmap here to catch any synchronization issues | 
|  | * with multifd channels. No channels should be sending pages | 
|  | * after we've written the bitmap to file. | 
|  | */ | 
|  | g_free(block->file_bmap); | 
|  | block->file_bmap = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | void ramblock_set_file_bmap_atomic(RAMBlock *block, ram_addr_t offset, bool set) | 
|  | { | 
|  | if (set) { | 
|  | set_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap); | 
|  | } else { | 
|  | clear_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ram_save_iterate: iterative stage for migration | 
|  | * | 
|  | * Returns zero to indicate success and negative for error | 
|  | * | 
|  | * @f: QEMUFile where to send the data | 
|  | * @opaque: RAMState pointer | 
|  | */ | 
|  | static int ram_save_iterate(QEMUFile *f, void *opaque) | 
|  | { | 
|  | RAMState **temp = opaque; | 
|  | RAMState *rs = *temp; | 
|  | int ret = 0; | 
|  | int i; | 
|  | int64_t t0; | 
|  | int done = 0; | 
|  |  | 
|  | /* | 
|  | * We'll take this lock a little bit long, but it's okay for two reasons. | 
|  | * Firstly, the only possible other thread to take it is who calls | 
|  | * qemu_guest_free_page_hint(), which should be rare; secondly, see | 
|  | * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which | 
|  | * guarantees that we'll at least released it in a regular basis. | 
|  | */ | 
|  | WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) { | 
|  | WITH_RCU_READ_LOCK_GUARD() { | 
|  | if (ram_list.version != rs->last_version) { | 
|  | ram_state_reset(rs); | 
|  | } | 
|  |  | 
|  | /* Read version before ram_list.blocks */ | 
|  | smp_rmb(); | 
|  |  | 
|  | ret = rdma_registration_start(f, RAM_CONTROL_ROUND); | 
|  | if (ret < 0) { | 
|  | qemu_file_set_error(f, ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); | 
|  | i = 0; | 
|  | while ((ret = migration_rate_exceeded(f)) == 0 || | 
|  | postcopy_has_request(rs)) { | 
|  | int pages; | 
|  |  | 
|  | if (qemu_file_get_error(f)) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | pages = ram_find_and_save_block(rs); | 
|  | /* no more pages to sent */ | 
|  | if (pages == 0) { | 
|  | done = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (pages < 0) { | 
|  | qemu_file_set_error(f, pages); | 
|  | break; | 
|  | } | 
|  |  | 
|  | rs->target_page_count += pages; | 
|  |  | 
|  | /* | 
|  | * we want to check in the 1st loop, just in case it was the 1st | 
|  | * time and we had to sync the dirty bitmap. | 
|  | * qemu_clock_get_ns() is a bit expensive, so we only check each | 
|  | * some iterations | 
|  | */ | 
|  | if ((i & 63) == 0) { | 
|  | uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / | 
|  | 1000000; | 
|  | if (t1 > MAX_WAIT) { | 
|  | trace_ram_save_iterate_big_wait(t1, i); | 
|  | break; | 
|  | } | 
|  | } | 
|  | i++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Must occur before EOS (or any QEMUFile operation) | 
|  | * because of RDMA protocol. | 
|  | */ | 
|  | ret = rdma_registration_stop(f, RAM_CONTROL_ROUND); | 
|  | if (ret < 0) { | 
|  | qemu_file_set_error(f, ret); | 
|  | } | 
|  |  | 
|  | out: | 
|  | if (ret >= 0 && migration_is_running()) { | 
|  | if (multifd_ram_sync_per_section()) { | 
|  | ret = multifd_ram_flush_and_sync(f); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | qemu_put_be64(f, RAM_SAVE_FLAG_EOS); | 
|  | ram_transferred_add(8); | 
|  | ret = qemu_fflush(f); | 
|  | } | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return done; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ram_save_complete: function called to send the remaining amount of ram | 
|  | * | 
|  | * Returns zero to indicate success or negative on error | 
|  | * | 
|  | * Called with the BQL | 
|  | * | 
|  | * @f: QEMUFile where to send the data | 
|  | * @opaque: RAMState pointer | 
|  | */ | 
|  | static int ram_save_complete(QEMUFile *f, void *opaque) | 
|  | { | 
|  | RAMState **temp = opaque; | 
|  | RAMState *rs = *temp; | 
|  | int ret = 0; | 
|  |  | 
|  | rs->last_stage = !migration_in_colo_state(); | 
|  |  | 
|  | WITH_RCU_READ_LOCK_GUARD() { | 
|  | if (!migration_in_postcopy()) { | 
|  | migration_bitmap_sync_precopy(true); | 
|  | } | 
|  |  | 
|  | ret = rdma_registration_start(f, RAM_CONTROL_FINISH); | 
|  | if (ret < 0) { | 
|  | qemu_file_set_error(f, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* try transferring iterative blocks of memory */ | 
|  |  | 
|  | /* flush all remaining blocks regardless of rate limiting */ | 
|  | qemu_mutex_lock(&rs->bitmap_mutex); | 
|  | while (true) { | 
|  | int pages; | 
|  |  | 
|  | pages = ram_find_and_save_block(rs); | 
|  | /* no more blocks to sent */ | 
|  | if (pages == 0) { | 
|  | break; | 
|  | } | 
|  | if (pages < 0) { | 
|  | qemu_mutex_unlock(&rs->bitmap_mutex); | 
|  | return pages; | 
|  | } | 
|  | } | 
|  | qemu_mutex_unlock(&rs->bitmap_mutex); | 
|  |  | 
|  | ret = rdma_registration_stop(f, RAM_CONTROL_FINISH); | 
|  | if (ret < 0) { | 
|  | qemu_file_set_error(f, ret); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (multifd_ram_sync_per_section()) { | 
|  | /* | 
|  | * Only the old dest QEMU will need this sync, because each EOS | 
|  | * will require one SYNC message on each channel. | 
|  | */ | 
|  | ret = multifd_ram_flush_and_sync(f); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (migrate_mapped_ram()) { | 
|  | ram_save_file_bmap(f); | 
|  |  | 
|  | if (qemu_file_get_error(f)) { | 
|  | Error *local_err = NULL; | 
|  | int err = qemu_file_get_error_obj(f, &local_err); | 
|  |  | 
|  | error_reportf_err(local_err, "Failed to write bitmap to file: "); | 
|  | return -err; | 
|  | } | 
|  | } | 
|  |  | 
|  | qemu_put_be64(f, RAM_SAVE_FLAG_EOS); | 
|  | return qemu_fflush(f); | 
|  | } | 
|  |  | 
|  | static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy, | 
|  | uint64_t *can_postcopy) | 
|  | { | 
|  | RAMState **temp = opaque; | 
|  | RAMState *rs = *temp; | 
|  |  | 
|  | uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; | 
|  |  | 
|  | if (migrate_postcopy_ram()) { | 
|  | /* We can do postcopy, and all the data is postcopiable */ | 
|  | *can_postcopy += remaining_size; | 
|  | } else { | 
|  | *must_precopy += remaining_size; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy, | 
|  | uint64_t *can_postcopy) | 
|  | { | 
|  | RAMState **temp = opaque; | 
|  | RAMState *rs = *temp; | 
|  | uint64_t remaining_size; | 
|  |  | 
|  | if (!migration_in_postcopy()) { | 
|  | bql_lock(); | 
|  | WITH_RCU_READ_LOCK_GUARD() { | 
|  | migration_bitmap_sync_precopy(false); | 
|  | } | 
|  | bql_unlock(); | 
|  | } | 
|  |  | 
|  | remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; | 
|  |  | 
|  | if (migrate_postcopy_ram()) { | 
|  | /* We can do postcopy, and all the data is postcopiable */ | 
|  | *can_postcopy += remaining_size; | 
|  | } else { | 
|  | *must_precopy += remaining_size; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) | 
|  | { | 
|  | unsigned int xh_len; | 
|  | int xh_flags; | 
|  | uint8_t *loaded_data; | 
|  |  | 
|  | /* extract RLE header */ | 
|  | xh_flags = qemu_get_byte(f); | 
|  | xh_len = qemu_get_be16(f); | 
|  |  | 
|  | if (xh_flags != ENCODING_FLAG_XBZRLE) { | 
|  | error_report("Failed to load XBZRLE page - wrong compression!"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (xh_len > TARGET_PAGE_SIZE) { | 
|  | error_report("Failed to load XBZRLE page - len overflow!"); | 
|  | return -1; | 
|  | } | 
|  | loaded_data = XBZRLE.decoded_buf; | 
|  | /* load data and decode */ | 
|  | /* it can change loaded_data to point to an internal buffer */ | 
|  | qemu_get_buffer_in_place(f, &loaded_data, xh_len); | 
|  |  | 
|  | /* decode RLE */ | 
|  | if (xbzrle_decode_buffer(loaded_data, xh_len, host, | 
|  | TARGET_PAGE_SIZE) == -1) { | 
|  | error_report("Failed to load XBZRLE page - decode error!"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ram_block_from_stream: read a RAMBlock id from the migration stream | 
|  | * | 
|  | * Must be called from within a rcu critical section. | 
|  | * | 
|  | * Returns a pointer from within the RCU-protected ram_list. | 
|  | * | 
|  | * @mis: the migration incoming state pointer | 
|  | * @f: QEMUFile where to read the data from | 
|  | * @flags: Page flags (mostly to see if it's a continuation of previous block) | 
|  | * @channel: the channel we're using | 
|  | */ | 
|  | static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis, | 
|  | QEMUFile *f, int flags, | 
|  | int channel) | 
|  | { | 
|  | RAMBlock *block = mis->last_recv_block[channel]; | 
|  | char id[256]; | 
|  | uint8_t len; | 
|  |  | 
|  | if (flags & RAM_SAVE_FLAG_CONTINUE) { | 
|  | if (!block) { | 
|  | error_report("Ack, bad migration stream!"); | 
|  | return NULL; | 
|  | } | 
|  | return block; | 
|  | } | 
|  |  | 
|  | len = qemu_get_byte(f); | 
|  | qemu_get_buffer(f, (uint8_t *)id, len); | 
|  | id[len] = 0; | 
|  |  | 
|  | block = qemu_ram_block_by_name(id); | 
|  | if (!block) { | 
|  | error_report("Can't find block %s", id); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (migrate_ram_is_ignored(block)) { | 
|  | error_report("block %s should not be migrated !", id); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | mis->last_recv_block[channel] = block; | 
|  |  | 
|  | return block; | 
|  | } | 
|  |  | 
|  | static inline void *host_from_ram_block_offset(RAMBlock *block, | 
|  | ram_addr_t offset) | 
|  | { | 
|  | if (!offset_in_ramblock(block, offset)) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return block->host + offset; | 
|  | } | 
|  |  | 
|  | static void *host_page_from_ram_block_offset(RAMBlock *block, | 
|  | ram_addr_t offset) | 
|  | { | 
|  | /* Note: Explicitly no check against offset_in_ramblock(). */ | 
|  | return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset), | 
|  | block->page_size); | 
|  | } | 
|  |  | 
|  | static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block, | 
|  | ram_addr_t offset) | 
|  | { | 
|  | return ((uintptr_t)block->host + offset) & (block->page_size - 1); | 
|  | } | 
|  |  | 
|  | void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages) | 
|  | { | 
|  | qemu_mutex_lock(&ram_state->bitmap_mutex); | 
|  | for (int i = 0; i < pages; i++) { | 
|  | ram_addr_t offset = normal[i]; | 
|  | ram_state->migration_dirty_pages += !test_and_set_bit( | 
|  | offset >> TARGET_PAGE_BITS, | 
|  | block->bmap); | 
|  | } | 
|  | qemu_mutex_unlock(&ram_state->bitmap_mutex); | 
|  | } | 
|  |  | 
|  | static inline void *colo_cache_from_block_offset(RAMBlock *block, | 
|  | ram_addr_t offset, bool record_bitmap) | 
|  | { | 
|  | if (!offset_in_ramblock(block, offset)) { | 
|  | return NULL; | 
|  | } | 
|  | if (!block->colo_cache) { | 
|  | error_report("%s: colo_cache is NULL in block :%s", | 
|  | __func__, block->idstr); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * During colo checkpoint, we need bitmap of these migrated pages. | 
|  | * It help us to decide which pages in ram cache should be flushed | 
|  | * into VM's RAM later. | 
|  | */ | 
|  | if (record_bitmap) { | 
|  | colo_record_bitmap(block, &offset, 1); | 
|  | } | 
|  | return block->colo_cache + offset; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ram_handle_zero: handle the zero page case | 
|  | * | 
|  | * If a page (or a whole RDMA chunk) has been | 
|  | * determined to be zero, then zap it. | 
|  | * | 
|  | * @host: host address for the zero page | 
|  | * @ch: what the page is filled from.  We only support zero | 
|  | * @size: size of the zero page | 
|  | */ | 
|  | void ram_handle_zero(void *host, uint64_t size) | 
|  | { | 
|  | if (!buffer_is_zero(host, size)) { | 
|  | memset(host, 0, size); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void colo_init_ram_state(void) | 
|  | { | 
|  | Error *local_err = NULL; | 
|  |  | 
|  | if (!ram_state_init(&ram_state, &local_err)) { | 
|  | error_report_err(local_err); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * colo cache: this is for secondary VM, we cache the whole | 
|  | * memory of the secondary VM, it is need to hold the global lock | 
|  | * to call this helper. | 
|  | */ | 
|  | int colo_init_ram_cache(void) | 
|  | { | 
|  | RAMBlock *block; | 
|  |  | 
|  | WITH_RCU_READ_LOCK_GUARD() { | 
|  | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | 
|  | block->colo_cache = qemu_anon_ram_alloc(block->used_length, | 
|  | NULL, false, false); | 
|  | if (!block->colo_cache) { | 
|  | error_report("%s: Can't alloc memory for COLO cache of block %s," | 
|  | "size 0x" RAM_ADDR_FMT, __func__, block->idstr, | 
|  | block->used_length); | 
|  | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | 
|  | if (block->colo_cache) { | 
|  | qemu_anon_ram_free(block->colo_cache, block->used_length); | 
|  | block->colo_cache = NULL; | 
|  | } | 
|  | } | 
|  | return -errno; | 
|  | } | 
|  | if (!machine_dump_guest_core(current_machine)) { | 
|  | qemu_madvise(block->colo_cache, block->used_length, | 
|  | QEMU_MADV_DONTDUMP); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Record the dirty pages that sent by PVM, we use this dirty bitmap together | 
|  | * with to decide which page in cache should be flushed into SVM's RAM. Here | 
|  | * we use the same name 'ram_bitmap' as for migration. | 
|  | */ | 
|  | if (ram_bytes_total()) { | 
|  | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | 
|  | unsigned long pages = block->max_length >> TARGET_PAGE_BITS; | 
|  | block->bmap = bitmap_new(pages); | 
|  | } | 
|  | } | 
|  |  | 
|  | colo_init_ram_state(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* TODO: duplicated with ram_init_bitmaps */ | 
|  | void colo_incoming_start_dirty_log(void) | 
|  | { | 
|  | RAMBlock *block = NULL; | 
|  | Error *local_err = NULL; | 
|  |  | 
|  | /* For memory_global_dirty_log_start below. */ | 
|  | bql_lock(); | 
|  | qemu_mutex_lock_ramlist(); | 
|  |  | 
|  | memory_global_dirty_log_sync(false); | 
|  | WITH_RCU_READ_LOCK_GUARD() { | 
|  | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | 
|  | ramblock_sync_dirty_bitmap(ram_state, block); | 
|  | /* Discard this dirty bitmap record */ | 
|  | bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS); | 
|  | } | 
|  | if (!memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION, | 
|  | &local_err)) { | 
|  | error_report_err(local_err); | 
|  | } | 
|  | } | 
|  | ram_state->migration_dirty_pages = 0; | 
|  | qemu_mutex_unlock_ramlist(); | 
|  | bql_unlock(); | 
|  | } | 
|  |  | 
|  | /* It is need to hold the global lock to call this helper */ | 
|  | void colo_release_ram_cache(void) | 
|  | { | 
|  | RAMBlock *block; | 
|  |  | 
|  | memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION); | 
|  | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | 
|  | g_free(block->bmap); | 
|  | block->bmap = NULL; | 
|  | } | 
|  |  | 
|  | WITH_RCU_READ_LOCK_GUARD() { | 
|  | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | 
|  | if (block->colo_cache) { | 
|  | qemu_anon_ram_free(block->colo_cache, block->used_length); | 
|  | block->colo_cache = NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  | ram_state_cleanup(&ram_state); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ram_load_setup: Setup RAM for migration incoming side | 
|  | * | 
|  | * Returns zero to indicate success and negative for error | 
|  | * | 
|  | * @f: QEMUFile where to receive the data | 
|  | * @opaque: RAMState pointer | 
|  | * @errp: pointer to Error*, to store an error if it happens. | 
|  | */ | 
|  | static int ram_load_setup(QEMUFile *f, void *opaque, Error **errp) | 
|  | { | 
|  | xbzrle_load_setup(); | 
|  | ramblock_recv_map_init(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ram_load_cleanup(void *opaque) | 
|  | { | 
|  | RAMBlock *rb; | 
|  |  | 
|  | RAMBLOCK_FOREACH_NOT_IGNORED(rb) { | 
|  | qemu_ram_block_writeback(rb); | 
|  | } | 
|  |  | 
|  | xbzrle_load_cleanup(); | 
|  |  | 
|  | RAMBLOCK_FOREACH_NOT_IGNORED(rb) { | 
|  | g_free(rb->receivedmap); | 
|  | rb->receivedmap = NULL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ram_postcopy_incoming_init: allocate postcopy data structures | 
|  | * | 
|  | * Returns 0 for success and negative if there was one error | 
|  | * | 
|  | * @mis: current migration incoming state | 
|  | * | 
|  | * Allocate data structures etc needed by incoming migration with | 
|  | * postcopy-ram. postcopy-ram's similarly names | 
|  | * postcopy_ram_incoming_init does the work. | 
|  | */ | 
|  | int ram_postcopy_incoming_init(MigrationIncomingState *mis) | 
|  | { | 
|  | return postcopy_ram_incoming_init(mis); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ram_load_postcopy: load a page in postcopy case | 
|  | * | 
|  | * Returns 0 for success or -errno in case of error | 
|  | * | 
|  | * Called in postcopy mode by ram_load(). | 
|  | * rcu_read_lock is taken prior to this being called. | 
|  | * | 
|  | * @f: QEMUFile where to send the data | 
|  | * @channel: the channel to use for loading | 
|  | */ | 
|  | int ram_load_postcopy(QEMUFile *f, int channel) | 
|  | { | 
|  | int flags = 0, ret = 0; | 
|  | bool place_needed = false; | 
|  | bool matches_target_page_size = false; | 
|  | MigrationIncomingState *mis = migration_incoming_get_current(); | 
|  | PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel]; | 
|  |  | 
|  | while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { | 
|  | ram_addr_t addr; | 
|  | void *page_buffer = NULL; | 
|  | void *place_source = NULL; | 
|  | RAMBlock *block = NULL; | 
|  | uint8_t ch; | 
|  |  | 
|  | addr = qemu_get_be64(f); | 
|  |  | 
|  | /* | 
|  | * If qemu file error, we should stop here, and then "addr" | 
|  | * may be invalid | 
|  | */ | 
|  | ret = qemu_file_get_error(f); | 
|  | if (ret) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | flags = addr & ~TARGET_PAGE_MASK; | 
|  | addr &= TARGET_PAGE_MASK; | 
|  |  | 
|  | trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags); | 
|  | if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) { | 
|  | block = ram_block_from_stream(mis, f, flags, channel); | 
|  | if (!block) { | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Relying on used_length is racy and can result in false positives. | 
|  | * We might place pages beyond used_length in case RAM was shrunk | 
|  | * while in postcopy, which is fine - trying to place via | 
|  | * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault. | 
|  | */ | 
|  | if (!block->host || addr >= block->postcopy_length) { | 
|  | error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | } | 
|  | tmp_page->target_pages++; | 
|  | matches_target_page_size = block->page_size == TARGET_PAGE_SIZE; | 
|  | /* | 
|  | * Postcopy requires that we place whole host pages atomically; | 
|  | * these may be huge pages for RAMBlocks that are backed by | 
|  | * hugetlbfs. | 
|  | * To make it atomic, the data is read into a temporary page | 
|  | * that's moved into place later. | 
|  | * The migration protocol uses,  possibly smaller, target-pages | 
|  | * however the source ensures it always sends all the components | 
|  | * of a host page in one chunk. | 
|  | */ | 
|  | page_buffer = tmp_page->tmp_huge_page + | 
|  | host_page_offset_from_ram_block_offset(block, addr); | 
|  | /* If all TP are zero then we can optimise the place */ | 
|  | if (tmp_page->target_pages == 1) { | 
|  | tmp_page->host_addr = | 
|  | host_page_from_ram_block_offset(block, addr); | 
|  | } else if (tmp_page->host_addr != | 
|  | host_page_from_ram_block_offset(block, addr)) { | 
|  | /* not the 1st TP within the HP */ | 
|  | error_report("Non-same host page detected on channel %d: " | 
|  | "Target host page %p, received host page %p " | 
|  | "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)", | 
|  | channel, tmp_page->host_addr, | 
|  | host_page_from_ram_block_offset(block, addr), | 
|  | block->idstr, addr, tmp_page->target_pages); | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If it's the last part of a host page then we place the host | 
|  | * page | 
|  | */ | 
|  | if (tmp_page->target_pages == | 
|  | (block->page_size / TARGET_PAGE_SIZE)) { | 
|  | place_needed = true; | 
|  | } | 
|  | place_source = tmp_page->tmp_huge_page; | 
|  | } | 
|  |  | 
|  | switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { | 
|  | case RAM_SAVE_FLAG_ZERO: | 
|  | ch = qemu_get_byte(f); | 
|  | if (ch != 0) { | 
|  | error_report("Found a zero page with value %d", ch); | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * Can skip to set page_buffer when | 
|  | * this is a zero page and (block->page_size == TARGET_PAGE_SIZE). | 
|  | */ | 
|  | if (!matches_target_page_size) { | 
|  | memset(page_buffer, ch, TARGET_PAGE_SIZE); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case RAM_SAVE_FLAG_PAGE: | 
|  | tmp_page->all_zero = false; | 
|  | if (!matches_target_page_size) { | 
|  | /* For huge pages, we always use temporary buffer */ | 
|  | qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); | 
|  | } else { | 
|  | /* | 
|  | * For small pages that matches target page size, we | 
|  | * avoid the qemu_file copy.  Instead we directly use | 
|  | * the buffer of QEMUFile to place the page.  Note: we | 
|  | * cannot do any QEMUFile operation before using that | 
|  | * buffer to make sure the buffer is valid when | 
|  | * placing the page. | 
|  | */ | 
|  | qemu_get_buffer_in_place(f, (uint8_t **)&place_source, | 
|  | TARGET_PAGE_SIZE); | 
|  | } | 
|  | break; | 
|  | case RAM_SAVE_FLAG_EOS: | 
|  | break; | 
|  | default: | 
|  | error_report("Unknown combination of migration flags: 0x%x" | 
|  | " (postcopy mode)", flags); | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Detect for any possible file errors */ | 
|  | if (!ret && qemu_file_get_error(f)) { | 
|  | ret = qemu_file_get_error(f); | 
|  | } | 
|  |  | 
|  | if (!ret && place_needed) { | 
|  | if (tmp_page->all_zero) { | 
|  | ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block); | 
|  | } else { | 
|  | ret = postcopy_place_page(mis, tmp_page->host_addr, | 
|  | place_source, block); | 
|  | } | 
|  | place_needed = false; | 
|  | postcopy_temp_page_reset(tmp_page); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool postcopy_is_running(void) | 
|  | { | 
|  | PostcopyState ps = postcopy_state_get(); | 
|  | return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Flush content of RAM cache into SVM's memory. | 
|  | * Only flush the pages that be dirtied by PVM or SVM or both. | 
|  | */ | 
|  | void colo_flush_ram_cache(void) | 
|  | { | 
|  | RAMBlock *block = NULL; | 
|  | void *dst_host; | 
|  | void *src_host; | 
|  | unsigned long offset = 0; | 
|  |  | 
|  | memory_global_dirty_log_sync(false); | 
|  | qemu_mutex_lock(&ram_state->bitmap_mutex); | 
|  | WITH_RCU_READ_LOCK_GUARD() { | 
|  | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | 
|  | ramblock_sync_dirty_bitmap(ram_state, block); | 
|  | } | 
|  | } | 
|  |  | 
|  | trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages); | 
|  | WITH_RCU_READ_LOCK_GUARD() { | 
|  | block = QLIST_FIRST_RCU(&ram_list.blocks); | 
|  |  | 
|  | while (block) { | 
|  | unsigned long num = 0; | 
|  |  | 
|  | offset = colo_bitmap_find_dirty(ram_state, block, offset, &num); | 
|  | if (!offset_in_ramblock(block, | 
|  | ((ram_addr_t)offset) << TARGET_PAGE_BITS)) { | 
|  | offset = 0; | 
|  | num = 0; | 
|  | block = QLIST_NEXT_RCU(block, next); | 
|  | } else { | 
|  | unsigned long i = 0; | 
|  |  | 
|  | for (i = 0; i < num; i++) { | 
|  | migration_bitmap_clear_dirty(ram_state, block, offset + i); | 
|  | } | 
|  | dst_host = block->host | 
|  | + (((ram_addr_t)offset) << TARGET_PAGE_BITS); | 
|  | src_host = block->colo_cache | 
|  | + (((ram_addr_t)offset) << TARGET_PAGE_BITS); | 
|  | memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num); | 
|  | offset += num; | 
|  | } | 
|  | } | 
|  | } | 
|  | qemu_mutex_unlock(&ram_state->bitmap_mutex); | 
|  | trace_colo_flush_ram_cache_end(); | 
|  | } | 
|  |  | 
|  | static size_t ram_load_multifd_pages(void *host_addr, size_t size, | 
|  | uint64_t offset) | 
|  | { | 
|  | MultiFDRecvData *data = multifd_get_recv_data(); | 
|  |  | 
|  | data->opaque = host_addr; | 
|  | data->file_offset = offset; | 
|  | data->size = size; | 
|  |  | 
|  | if (!multifd_recv()) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return size; | 
|  | } | 
|  |  | 
|  | static bool read_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block, | 
|  | long num_pages, unsigned long *bitmap, | 
|  | Error **errp) | 
|  | { | 
|  | ERRP_GUARD(); | 
|  | unsigned long set_bit_idx, clear_bit_idx; | 
|  | ram_addr_t offset; | 
|  | void *host; | 
|  | size_t read, unread, size; | 
|  |  | 
|  | for (set_bit_idx = find_first_bit(bitmap, num_pages); | 
|  | set_bit_idx < num_pages; | 
|  | set_bit_idx = find_next_bit(bitmap, num_pages, clear_bit_idx + 1)) { | 
|  |  | 
|  | clear_bit_idx = find_next_zero_bit(bitmap, num_pages, set_bit_idx + 1); | 
|  |  | 
|  | unread = TARGET_PAGE_SIZE * (clear_bit_idx - set_bit_idx); | 
|  | offset = set_bit_idx << TARGET_PAGE_BITS; | 
|  |  | 
|  | while (unread > 0) { | 
|  | host = host_from_ram_block_offset(block, offset); | 
|  | if (!host) { | 
|  | error_setg(errp, "page outside of ramblock %s range", | 
|  | block->idstr); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | size = MIN(unread, MAPPED_RAM_LOAD_BUF_SIZE); | 
|  |  | 
|  | if (migrate_multifd()) { | 
|  | read = ram_load_multifd_pages(host, size, | 
|  | block->pages_offset + offset); | 
|  | } else { | 
|  | read = qemu_get_buffer_at(f, host, size, | 
|  | block->pages_offset + offset); | 
|  | } | 
|  |  | 
|  | if (!read) { | 
|  | goto err; | 
|  | } | 
|  | offset += read; | 
|  | unread -= read; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  |  | 
|  | err: | 
|  | qemu_file_get_error_obj(f, errp); | 
|  | error_prepend(errp, "(%s) failed to read page " RAM_ADDR_FMT | 
|  | "from file offset %" PRIx64 ": ", block->idstr, offset, | 
|  | block->pages_offset + offset); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void parse_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block, | 
|  | ram_addr_t length, Error **errp) | 
|  | { | 
|  | g_autofree unsigned long *bitmap = NULL; | 
|  | MappedRamHeader header; | 
|  | size_t bitmap_size; | 
|  | long num_pages; | 
|  |  | 
|  | if (!mapped_ram_read_header(f, &header, errp)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | block->pages_offset = header.pages_offset; | 
|  |  | 
|  | /* | 
|  | * Check the alignment of the file region that contains pages. We | 
|  | * don't enforce MAPPED_RAM_FILE_OFFSET_ALIGNMENT to allow that | 
|  | * value to change in the future. Do only a sanity check with page | 
|  | * size alignment. | 
|  | */ | 
|  | if (!QEMU_IS_ALIGNED(block->pages_offset, TARGET_PAGE_SIZE)) { | 
|  | error_setg(errp, | 
|  | "Error reading ramblock %s pages, region has bad alignment", | 
|  | block->idstr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | num_pages = length / header.page_size; | 
|  | bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long); | 
|  |  | 
|  | bitmap = g_malloc0(bitmap_size); | 
|  | if (qemu_get_buffer_at(f, (uint8_t *)bitmap, bitmap_size, | 
|  | header.bitmap_offset) != bitmap_size) { | 
|  | error_setg(errp, "Error reading dirty bitmap"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!read_ramblock_mapped_ram(f, block, num_pages, bitmap, errp)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Skip pages array */ | 
|  | qemu_set_offset(f, block->pages_offset + length, SEEK_SET); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | static int parse_ramblock(QEMUFile *f, RAMBlock *block, ram_addr_t length) | 
|  | { | 
|  | int ret = 0; | 
|  | /* ADVISE is earlier, it shows the source has the postcopy capability on */ | 
|  | bool postcopy_advised = migration_incoming_postcopy_advised(); | 
|  | int max_hg_page_size; | 
|  | Error *local_err = NULL; | 
|  |  | 
|  | assert(block); | 
|  |  | 
|  | if (migrate_mapped_ram()) { | 
|  | parse_ramblock_mapped_ram(f, block, length, &local_err); | 
|  | if (local_err) { | 
|  | error_report_err(local_err); | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!qemu_ram_is_migratable(block)) { | 
|  | error_report("block %s should not be migrated !", block->idstr); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (length != block->used_length) { | 
|  | ret = qemu_ram_resize(block, length, &local_err); | 
|  | if (local_err) { | 
|  | error_report_err(local_err); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ??? Mirrors the previous value of qemu_host_page_size, | 
|  | * but is this really what was intended for the migration? | 
|  | */ | 
|  | max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE); | 
|  |  | 
|  | /* For postcopy we need to check hugepage sizes match */ | 
|  | if (postcopy_advised && migrate_postcopy_ram() && | 
|  | block->page_size != max_hg_page_size) { | 
|  | uint64_t remote_page_size = qemu_get_be64(f); | 
|  | if (remote_page_size != block->page_size) { | 
|  | error_report("Mismatched RAM page size %s " | 
|  | "(local) %zd != %" PRId64, block->idstr, | 
|  | block->page_size, remote_page_size); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  | if (migrate_ignore_shared()) { | 
|  | hwaddr addr = qemu_get_be64(f); | 
|  | if (migrate_ram_is_ignored(block) && | 
|  | block->mr->addr != addr) { | 
|  | error_report("Mismatched GPAs for block %s " | 
|  | "%" PRId64 "!= %" PRId64, block->idstr, | 
|  | (uint64_t)addr, (uint64_t)block->mr->addr); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  | ret = rdma_block_notification_handle(f, block->idstr); | 
|  | if (ret < 0) { | 
|  | qemu_file_set_error(f, ret); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int parse_ramblocks(QEMUFile *f, ram_addr_t total_ram_bytes) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | /* Synchronize RAM block list */ | 
|  | while (!ret && total_ram_bytes) { | 
|  | RAMBlock *block; | 
|  | char id[256]; | 
|  | ram_addr_t length; | 
|  | int len = qemu_get_byte(f); | 
|  |  | 
|  | qemu_get_buffer(f, (uint8_t *)id, len); | 
|  | id[len] = 0; | 
|  | length = qemu_get_be64(f); | 
|  |  | 
|  | block = qemu_ram_block_by_name(id); | 
|  | if (block) { | 
|  | ret = parse_ramblock(f, block, length); | 
|  | } else { | 
|  | error_report("Unknown ramblock \"%s\", cannot accept " | 
|  | "migration", id); | 
|  | ret = -EINVAL; | 
|  | } | 
|  | total_ram_bytes -= length; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ram_load_precopy: load pages in precopy case | 
|  | * | 
|  | * Returns 0 for success or -errno in case of error | 
|  | * | 
|  | * Called in precopy mode by ram_load(). | 
|  | * rcu_read_lock is taken prior to this being called. | 
|  | * | 
|  | * @f: QEMUFile where to send the data | 
|  | */ | 
|  | static int ram_load_precopy(QEMUFile *f) | 
|  | { | 
|  | MigrationIncomingState *mis = migration_incoming_get_current(); | 
|  | int flags = 0, ret = 0, invalid_flags = 0, i = 0; | 
|  |  | 
|  | if (migrate_mapped_ram()) { | 
|  | invalid_flags |= (RAM_SAVE_FLAG_HOOK | RAM_SAVE_FLAG_MULTIFD_FLUSH | | 
|  | RAM_SAVE_FLAG_PAGE | RAM_SAVE_FLAG_XBZRLE | | 
|  | RAM_SAVE_FLAG_ZERO); | 
|  | } | 
|  |  | 
|  | while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { | 
|  | ram_addr_t addr; | 
|  | void *host = NULL, *host_bak = NULL; | 
|  | uint8_t ch; | 
|  |  | 
|  | /* | 
|  | * Yield periodically to let main loop run, but an iteration of | 
|  | * the main loop is expensive, so do it each some iterations | 
|  | */ | 
|  | if ((i & 32767) == 0 && qemu_in_coroutine()) { | 
|  | aio_co_schedule(qemu_get_current_aio_context(), | 
|  | qemu_coroutine_self()); | 
|  | qemu_coroutine_yield(); | 
|  | } | 
|  | i++; | 
|  |  | 
|  | addr = qemu_get_be64(f); | 
|  | ret = qemu_file_get_error(f); | 
|  | if (ret) { | 
|  | error_report("Getting RAM address failed"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | flags = addr & ~TARGET_PAGE_MASK; | 
|  | addr &= TARGET_PAGE_MASK; | 
|  |  | 
|  | if (flags & invalid_flags) { | 
|  | error_report("Unexpected RAM flags: %d", flags & invalid_flags); | 
|  |  | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | | 
|  | RAM_SAVE_FLAG_XBZRLE)) { | 
|  | RAMBlock *block = ram_block_from_stream(mis, f, flags, | 
|  | RAM_CHANNEL_PRECOPY); | 
|  |  | 
|  | host = host_from_ram_block_offset(block, addr); | 
|  | /* | 
|  | * After going into COLO stage, we should not load the page | 
|  | * into SVM's memory directly, we put them into colo_cache firstly. | 
|  | * NOTE: We need to keep a copy of SVM's ram in colo_cache. | 
|  | * Previously, we copied all these memory in preparing stage of COLO | 
|  | * while we need to stop VM, which is a time-consuming process. | 
|  | * Here we optimize it by a trick, back-up every page while in | 
|  | * migration process while COLO is enabled, though it affects the | 
|  | * speed of the migration, but it obviously reduce the downtime of | 
|  | * back-up all SVM'S memory in COLO preparing stage. | 
|  | */ | 
|  | if (migration_incoming_colo_enabled()) { | 
|  | if (migration_incoming_in_colo_state()) { | 
|  | /* In COLO stage, put all pages into cache temporarily */ | 
|  | host = colo_cache_from_block_offset(block, addr, true); | 
|  | } else { | 
|  | /* | 
|  | * In migration stage but before COLO stage, | 
|  | * Put all pages into both cache and SVM's memory. | 
|  | */ | 
|  | host_bak = colo_cache_from_block_offset(block, addr, false); | 
|  | } | 
|  | } | 
|  | if (!host) { | 
|  | error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | } | 
|  | if (!migration_incoming_in_colo_state()) { | 
|  | ramblock_recv_bitmap_set(block, host); | 
|  | } | 
|  |  | 
|  | trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); | 
|  | } | 
|  |  | 
|  | switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { | 
|  | case RAM_SAVE_FLAG_MEM_SIZE: | 
|  | ret = parse_ramblocks(f, addr); | 
|  | /* | 
|  | * For mapped-ram migration (to a file) using multifd, we sync | 
|  | * once and for all here to make sure all tasks we queued to | 
|  | * multifd threads are completed, so that all the ramblocks | 
|  | * (including all the guest memory pages within) are fully | 
|  | * loaded after this sync returns. | 
|  | */ | 
|  | if (migrate_mapped_ram()) { | 
|  | multifd_recv_sync_main(); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case RAM_SAVE_FLAG_ZERO: | 
|  | ch = qemu_get_byte(f); | 
|  | if (ch != 0) { | 
|  | error_report("Found a zero page with value %d", ch); | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | } | 
|  | ram_handle_zero(host, TARGET_PAGE_SIZE); | 
|  | break; | 
|  |  | 
|  | case RAM_SAVE_FLAG_PAGE: | 
|  | qemu_get_buffer(f, host, TARGET_PAGE_SIZE); | 
|  | break; | 
|  |  | 
|  | case RAM_SAVE_FLAG_XBZRLE: | 
|  | if (load_xbzrle(f, addr, host) < 0) { | 
|  | error_report("Failed to decompress XBZRLE page at " | 
|  | RAM_ADDR_FMT, addr); | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case RAM_SAVE_FLAG_MULTIFD_FLUSH: | 
|  | multifd_recv_sync_main(); | 
|  | break; | 
|  | case RAM_SAVE_FLAG_EOS: | 
|  | /* normal exit */ | 
|  | if (migrate_multifd() && | 
|  | migrate_multifd_flush_after_each_section() && | 
|  | /* | 
|  | * Mapped-ram migration flushes once and for all after | 
|  | * parsing ramblocks. Always ignore EOS for it. | 
|  | */ | 
|  | !migrate_mapped_ram()) { | 
|  | multifd_recv_sync_main(); | 
|  | } | 
|  | break; | 
|  | case RAM_SAVE_FLAG_HOOK: | 
|  | ret = rdma_registration_handle(f); | 
|  | if (ret < 0) { | 
|  | qemu_file_set_error(f, ret); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | error_report("Unknown combination of migration flags: 0x%x", flags); | 
|  | ret = -EINVAL; | 
|  | } | 
|  | if (!ret) { | 
|  | ret = qemu_file_get_error(f); | 
|  | } | 
|  | if (!ret && host_bak) { | 
|  | memcpy(host_bak, host, TARGET_PAGE_SIZE); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int ram_load(QEMUFile *f, void *opaque, int version_id) | 
|  | { | 
|  | int ret = 0; | 
|  | static uint64_t seq_iter; | 
|  | /* | 
|  | * If system is running in postcopy mode, page inserts to host memory must | 
|  | * be atomic | 
|  | */ | 
|  | bool postcopy_running = postcopy_is_running(); | 
|  |  | 
|  | seq_iter++; | 
|  |  | 
|  | if (version_id != 4) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This RCU critical section can be very long running. | 
|  | * When RCU reclaims in the code start to become numerous, | 
|  | * it will be necessary to reduce the granularity of this | 
|  | * critical section. | 
|  | */ | 
|  | trace_ram_load_start(); | 
|  | WITH_RCU_READ_LOCK_GUARD() { | 
|  | if (postcopy_running) { | 
|  | /* | 
|  | * Note!  Here RAM_CHANNEL_PRECOPY is the precopy channel of | 
|  | * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to | 
|  | * service fast page faults. | 
|  | */ | 
|  | ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY); | 
|  | } else { | 
|  | ret = ram_load_precopy(f); | 
|  | } | 
|  | } | 
|  | trace_ram_load_complete(ret, seq_iter); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool ram_has_postcopy(void *opaque) | 
|  | { | 
|  | RAMBlock *rb; | 
|  | RAMBLOCK_FOREACH_NOT_IGNORED(rb) { | 
|  | if (ramblock_is_pmem(rb)) { | 
|  | info_report("Block: %s, host: %p is a nvdimm memory, postcopy" | 
|  | "is not supported now!", rb->idstr, rb->host); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return migrate_postcopy_ram(); | 
|  | } | 
|  |  | 
|  | /* Sync all the dirty bitmap with destination VM.  */ | 
|  | static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs) | 
|  | { | 
|  | RAMBlock *block; | 
|  | QEMUFile *file = s->to_dst_file; | 
|  |  | 
|  | trace_ram_dirty_bitmap_sync_start(); | 
|  |  | 
|  | qatomic_set(&rs->postcopy_bmap_sync_requested, 0); | 
|  | RAMBLOCK_FOREACH_NOT_IGNORED(block) { | 
|  | qemu_savevm_send_recv_bitmap(file, block->idstr); | 
|  | trace_ram_dirty_bitmap_request(block->idstr); | 
|  | qatomic_inc(&rs->postcopy_bmap_sync_requested); | 
|  | } | 
|  |  | 
|  | trace_ram_dirty_bitmap_sync_wait(); | 
|  |  | 
|  | /* Wait until all the ramblocks' dirty bitmap synced */ | 
|  | while (qatomic_read(&rs->postcopy_bmap_sync_requested)) { | 
|  | if (migration_rp_wait(s)) { | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | trace_ram_dirty_bitmap_sync_complete(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read the received bitmap, revert it as the initial dirty bitmap. | 
|  | * This is only used when the postcopy migration is paused but wants | 
|  | * to resume from a middle point. | 
|  | * | 
|  | * Returns true if succeeded, false for errors. | 
|  | */ | 
|  | bool ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block, Error **errp) | 
|  | { | 
|  | /* from_dst_file is always valid because we're within rp_thread */ | 
|  | QEMUFile *file = s->rp_state.from_dst_file; | 
|  | g_autofree unsigned long *le_bitmap = NULL; | 
|  | unsigned long nbits = block->used_length >> TARGET_PAGE_BITS; | 
|  | uint64_t local_size = DIV_ROUND_UP(nbits, 8); | 
|  | uint64_t size, end_mark; | 
|  | RAMState *rs = ram_state; | 
|  |  | 
|  | trace_ram_dirty_bitmap_reload_begin(block->idstr); | 
|  |  | 
|  | if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) { | 
|  | error_setg(errp, "Reload bitmap in incorrect state %s", | 
|  | MigrationStatus_str(s->state)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note: see comments in ramblock_recv_bitmap_send() on why we | 
|  | * need the endianness conversion, and the paddings. | 
|  | */ | 
|  | local_size = ROUND_UP(local_size, 8); | 
|  |  | 
|  | /* Add paddings */ | 
|  | le_bitmap = bitmap_new(nbits + BITS_PER_LONG); | 
|  |  | 
|  | size = qemu_get_be64(file); | 
|  |  | 
|  | /* The size of the bitmap should match with our ramblock */ | 
|  | if (size != local_size) { | 
|  | error_setg(errp, "ramblock '%s' bitmap size mismatch (0x%"PRIx64 | 
|  | " != 0x%"PRIx64")", block->idstr, size, local_size); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size); | 
|  | end_mark = qemu_get_be64(file); | 
|  |  | 
|  | if (qemu_file_get_error(file) || size != local_size) { | 
|  | error_setg(errp, "read bitmap failed for ramblock '%s': " | 
|  | "(size 0x%"PRIx64", got: 0x%"PRIx64")", | 
|  | block->idstr, local_size, size); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) { | 
|  | error_setg(errp, "ramblock '%s' end mark incorrect: 0x%"PRIx64, | 
|  | block->idstr, end_mark); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Endianness conversion. We are during postcopy (though paused). | 
|  | * The dirty bitmap won't change. We can directly modify it. | 
|  | */ | 
|  | bitmap_from_le(block->bmap, le_bitmap, nbits); | 
|  |  | 
|  | /* | 
|  | * What we received is "received bitmap". Revert it as the initial | 
|  | * dirty bitmap for this ramblock. | 
|  | */ | 
|  | bitmap_complement(block->bmap, block->bmap, nbits); | 
|  |  | 
|  | /* Clear dirty bits of discarded ranges that we don't want to migrate. */ | 
|  | ramblock_dirty_bitmap_clear_discarded_pages(block); | 
|  |  | 
|  | /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */ | 
|  | trace_ram_dirty_bitmap_reload_complete(block->idstr); | 
|  |  | 
|  | qatomic_dec(&rs->postcopy_bmap_sync_requested); | 
|  |  | 
|  | /* | 
|  | * We succeeded to sync bitmap for current ramblock. Always kick the | 
|  | * migration thread to check whether all requested bitmaps are | 
|  | * reloaded.  NOTE: it's racy to only kick when requested==0, because | 
|  | * we don't know whether the migration thread may still be increasing | 
|  | * it. | 
|  | */ | 
|  | migration_rp_kick(s); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int ram_resume_prepare(MigrationState *s, void *opaque) | 
|  | { | 
|  | RAMState *rs = *(RAMState **)opaque; | 
|  | int ret; | 
|  |  | 
|  | ret = ram_dirty_bitmap_sync_all(s, rs); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ram_state_resume_prepare(rs, s->to_dst_file); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void postcopy_preempt_shutdown_file(MigrationState *s) | 
|  | { | 
|  | qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS); | 
|  | qemu_fflush(s->postcopy_qemufile_src); | 
|  | } | 
|  |  | 
|  | static SaveVMHandlers savevm_ram_handlers = { | 
|  | .save_setup = ram_save_setup, | 
|  | .save_live_iterate = ram_save_iterate, | 
|  | .save_live_complete_postcopy = ram_save_complete, | 
|  | .save_live_complete_precopy = ram_save_complete, | 
|  | .has_postcopy = ram_has_postcopy, | 
|  | .state_pending_exact = ram_state_pending_exact, | 
|  | .state_pending_estimate = ram_state_pending_estimate, | 
|  | .load_state = ram_load, | 
|  | .save_cleanup = ram_save_cleanup, | 
|  | .load_setup = ram_load_setup, | 
|  | .load_cleanup = ram_load_cleanup, | 
|  | .resume_prepare = ram_resume_prepare, | 
|  | }; | 
|  |  | 
|  | static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host, | 
|  | size_t old_size, size_t new_size) | 
|  | { | 
|  | PostcopyState ps = postcopy_state_get(); | 
|  | ram_addr_t offset; | 
|  | RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset); | 
|  | Error *err = NULL; | 
|  |  | 
|  | if (!rb) { | 
|  | error_report("RAM block not found"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (migrate_ram_is_ignored(rb)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (migration_is_running()) { | 
|  | /* | 
|  | * Precopy code on the source cannot deal with the size of RAM blocks | 
|  | * changing at random points in time - especially after sending the | 
|  | * RAM block sizes in the migration stream, they must no longer change. | 
|  | * Abort and indicate a proper reason. | 
|  | */ | 
|  | error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr); | 
|  | migrate_set_error(migrate_get_current(), err); | 
|  | error_free(err); | 
|  |  | 
|  | migration_cancel(); | 
|  | } | 
|  |  | 
|  | switch (ps) { | 
|  | case POSTCOPY_INCOMING_ADVISE: | 
|  | /* | 
|  | * Update what ram_postcopy_incoming_init()->init_range() does at the | 
|  | * time postcopy was advised. Syncing RAM blocks with the source will | 
|  | * result in RAM resizes. | 
|  | */ | 
|  | if (old_size < new_size) { | 
|  | if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) { | 
|  | error_report("RAM block '%s' discard of resized RAM failed", | 
|  | rb->idstr); | 
|  | } | 
|  | } | 
|  | rb->postcopy_length = new_size; | 
|  | break; | 
|  | case POSTCOPY_INCOMING_NONE: | 
|  | case POSTCOPY_INCOMING_RUNNING: | 
|  | case POSTCOPY_INCOMING_END: | 
|  | /* | 
|  | * Once our guest is running, postcopy does no longer care about | 
|  | * resizes. When growing, the new memory was not available on the | 
|  | * source, no handler needed. | 
|  | */ | 
|  | break; | 
|  | default: | 
|  | error_report("RAM block '%s' resized during postcopy state: %d", | 
|  | rb->idstr, ps); | 
|  | exit(-1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static RAMBlockNotifier ram_mig_ram_notifier = { | 
|  | .ram_block_resized = ram_mig_ram_block_resized, | 
|  | }; | 
|  |  | 
|  | void ram_mig_init(void) | 
|  | { | 
|  | qemu_mutex_init(&XBZRLE.lock); | 
|  | register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state); | 
|  | ram_block_notifier_add(&ram_mig_ram_notifier); | 
|  | } |