blob: 7f607c3afd6718f7fde4c6fef58ca4e75b4690dc [file] [log] [blame]
/*
* Helpers for HPPA instructions.
*
* Copyright (c) 2016 Richard Henderson <rth@twiddle.net>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "exec/helper-proto.h"
#include "exec/cpu_ldst.h"
#include "qemu/timer.h"
#include "trace.h"
G_NORETURN void HELPER(excp)(CPUHPPAState *env, int excp)
{
CPUState *cs = env_cpu(env);
cs->exception_index = excp;
cpu_loop_exit(cs);
}
G_NORETURN void hppa_dynamic_excp(CPUHPPAState *env, int excp, uintptr_t ra)
{
CPUState *cs = env_cpu(env);
cs->exception_index = excp;
cpu_loop_exit_restore(cs, ra);
}
void HELPER(tsv)(CPUHPPAState *env, target_ulong cond)
{
if (unlikely((target_long)cond < 0)) {
hppa_dynamic_excp(env, EXCP_OVERFLOW, GETPC());
}
}
void HELPER(tcond)(CPUHPPAState *env, target_ulong cond)
{
if (unlikely(cond)) {
hppa_dynamic_excp(env, EXCP_COND, GETPC());
}
}
static void atomic_store_mask32(CPUHPPAState *env, target_ulong addr,
uint32_t val, uint32_t mask, uintptr_t ra)
{
int mmu_idx = cpu_mmu_index(env, 0);
uint32_t old, new, cmp, *haddr;
void *vaddr;
vaddr = probe_access(env, addr, 3, MMU_DATA_STORE, mmu_idx, ra);
if (vaddr == NULL) {
cpu_loop_exit_atomic(env_cpu(env), ra);
}
haddr = (uint32_t *)((uintptr_t)vaddr & -4);
mask = addr & 1 ? 0x00ffffffu : 0xffffff00u;
old = *haddr;
while (1) {
new = be32_to_cpu((cpu_to_be32(old) & ~mask) | (val & mask));
cmp = qatomic_cmpxchg(haddr, old, new);
if (cmp == old) {
return;
}
old = cmp;
}
}
static void atomic_store_mask64(CPUHPPAState *env, target_ulong addr,
uint64_t val, uint64_t mask,
int size, uintptr_t ra)
{
#ifdef CONFIG_ATOMIC64
int mmu_idx = cpu_mmu_index(env, 0);
uint64_t old, new, cmp, *haddr;
void *vaddr;
vaddr = probe_access(env, addr, size, MMU_DATA_STORE, mmu_idx, ra);
if (vaddr == NULL) {
cpu_loop_exit_atomic(env_cpu(env), ra);
}
haddr = (uint64_t *)((uintptr_t)vaddr & -8);
old = *haddr;
while (1) {
new = be32_to_cpu((cpu_to_be32(old) & ~mask) | (val & mask));
cmp = qatomic_cmpxchg__nocheck(haddr, old, new);
if (cmp == old) {
return;
}
old = cmp;
}
#else
cpu_loop_exit_atomic(env_cpu(env), ra);
#endif
}
static void do_stby_b(CPUHPPAState *env, target_ulong addr, target_ulong val,
bool parallel, uintptr_t ra)
{
switch (addr & 3) {
case 3:
cpu_stb_data_ra(env, addr, val, ra);
break;
case 2:
cpu_stw_data_ra(env, addr, val, ra);
break;
case 1:
/* The 3 byte store must appear atomic. */
if (parallel) {
atomic_store_mask32(env, addr, val, 0x00ffffffu, ra);
} else {
cpu_stb_data_ra(env, addr, val >> 16, ra);
cpu_stw_data_ra(env, addr + 1, val, ra);
}
break;
default:
cpu_stl_data_ra(env, addr, val, ra);
break;
}
}
static void do_stdby_b(CPUHPPAState *env, target_ulong addr, uint64_t val,
bool parallel, uintptr_t ra)
{
switch (addr & 7) {
case 7:
cpu_stb_data_ra(env, addr, val, ra);
break;
case 6:
cpu_stw_data_ra(env, addr, val, ra);
break;
case 5:
/* The 3 byte store must appear atomic. */
if (parallel) {
atomic_store_mask32(env, addr, val, 0x00ffffffu, ra);
} else {
cpu_stb_data_ra(env, addr, val >> 16, ra);
cpu_stw_data_ra(env, addr + 1, val, ra);
}
break;
case 4:
cpu_stl_data_ra(env, addr, val, ra);
break;
case 3:
/* The 5 byte store must appear atomic. */
if (parallel) {
atomic_store_mask64(env, addr, val, 0x000000ffffffffffull, 5, ra);
} else {
cpu_stb_data_ra(env, addr, val >> 32, ra);
cpu_stl_data_ra(env, addr + 1, val, ra);
}
break;
case 2:
/* The 6 byte store must appear atomic. */
if (parallel) {
atomic_store_mask64(env, addr, val, 0x0000ffffffffffffull, 6, ra);
} else {
cpu_stw_data_ra(env, addr, val >> 32, ra);
cpu_stl_data_ra(env, addr + 2, val, ra);
}
break;
case 1:
/* The 7 byte store must appear atomic. */
if (parallel) {
atomic_store_mask64(env, addr, val, 0x00ffffffffffffffull, 7, ra);
} else {
cpu_stb_data_ra(env, addr, val >> 48, ra);
cpu_stw_data_ra(env, addr + 1, val >> 32, ra);
cpu_stl_data_ra(env, addr + 3, val, ra);
}
break;
default:
cpu_stq_data_ra(env, addr, val, ra);
break;
}
}
void HELPER(stby_b)(CPUHPPAState *env, target_ulong addr, target_ulong val)
{
do_stby_b(env, addr, val, false, GETPC());
}
void HELPER(stby_b_parallel)(CPUHPPAState *env, target_ulong addr,
target_ulong val)
{
do_stby_b(env, addr, val, true, GETPC());
}
void HELPER(stdby_b)(CPUHPPAState *env, target_ulong addr, target_ulong val)
{
do_stdby_b(env, addr, val, false, GETPC());
}
void HELPER(stdby_b_parallel)(CPUHPPAState *env, target_ulong addr,
target_ulong val)
{
do_stdby_b(env, addr, val, true, GETPC());
}
static void do_stby_e(CPUHPPAState *env, target_ulong addr, target_ulong val,
bool parallel, uintptr_t ra)
{
switch (addr & 3) {
case 3:
/* The 3 byte store must appear atomic. */
if (parallel) {
atomic_store_mask32(env, addr - 3, val, 0xffffff00u, ra);
} else {
cpu_stw_data_ra(env, addr - 3, val >> 16, ra);
cpu_stb_data_ra(env, addr - 1, val >> 8, ra);
}
break;
case 2:
cpu_stw_data_ra(env, addr - 2, val >> 16, ra);
break;
case 1:
cpu_stb_data_ra(env, addr - 1, val >> 24, ra);
break;
default:
/* Nothing is stored, but protection is checked and the
cacheline is marked dirty. */
probe_write(env, addr, 0, cpu_mmu_index(env, 0), ra);
break;
}
}
static void do_stdby_e(CPUHPPAState *env, target_ulong addr, uint64_t val,
bool parallel, uintptr_t ra)
{
switch (addr & 7) {
case 7:
/* The 7 byte store must appear atomic. */
if (parallel) {
atomic_store_mask64(env, addr - 7, val,
0xffffffffffffff00ull, 7, ra);
} else {
cpu_stl_data_ra(env, addr - 7, val >> 32, ra);
cpu_stw_data_ra(env, addr - 3, val >> 16, ra);
cpu_stb_data_ra(env, addr - 1, val >> 8, ra);
}
break;
case 6:
/* The 6 byte store must appear atomic. */
if (parallel) {
atomic_store_mask64(env, addr - 6, val,
0xffffffffffff0000ull, 6, ra);
} else {
cpu_stl_data_ra(env, addr - 6, val >> 32, ra);
cpu_stw_data_ra(env, addr - 2, val >> 16, ra);
}
break;
case 5:
/* The 5 byte store must appear atomic. */
if (parallel) {
atomic_store_mask64(env, addr - 5, val,
0xffffffffff000000ull, 5, ra);
} else {
cpu_stl_data_ra(env, addr - 5, val >> 32, ra);
cpu_stb_data_ra(env, addr - 1, val >> 24, ra);
}
break;
case 4:
cpu_stl_data_ra(env, addr - 4, val >> 32, ra);
break;
case 3:
/* The 3 byte store must appear atomic. */
if (parallel) {
atomic_store_mask32(env, addr - 3, val, 0xffffff00u, ra);
} else {
cpu_stw_data_ra(env, addr - 3, val >> 16, ra);
cpu_stb_data_ra(env, addr - 1, val >> 8, ra);
}
break;
case 2:
cpu_stw_data_ra(env, addr - 2, val >> 16, ra);
break;
case 1:
cpu_stb_data_ra(env, addr - 1, val >> 24, ra);
break;
default:
/* Nothing is stored, but protection is checked and the
cacheline is marked dirty. */
probe_write(env, addr, 0, cpu_mmu_index(env, 0), ra);
break;
}
}
void HELPER(stby_e)(CPUHPPAState *env, target_ulong addr, target_ulong val)
{
do_stby_e(env, addr, val, false, GETPC());
}
void HELPER(stby_e_parallel)(CPUHPPAState *env, target_ulong addr,
target_ulong val)
{
do_stby_e(env, addr, val, true, GETPC());
}
void HELPER(stdby_e)(CPUHPPAState *env, target_ulong addr, target_ulong val)
{
do_stdby_e(env, addr, val, false, GETPC());
}
void HELPER(stdby_e_parallel)(CPUHPPAState *env, target_ulong addr,
target_ulong val)
{
do_stdby_e(env, addr, val, true, GETPC());
}
void HELPER(ldc_check)(target_ulong addr)
{
if (unlikely(addr & 0xf)) {
qemu_log_mask(LOG_GUEST_ERROR,
"Undefined ldc to unaligned address mod 16: "
TARGET_FMT_lx "\n", addr);
}
}
target_ulong HELPER(probe)(CPUHPPAState *env, target_ulong addr,
uint32_t level, uint32_t want)
{
#ifdef CONFIG_USER_ONLY
return page_check_range(addr, 1, want);
#else
int prot, excp, mmu_idx;
hwaddr phys;
trace_hppa_tlb_probe(addr, level, want);
/* Fail if the requested privilege level is higher than current. */
if (level < (env->iaoq_f & 3)) {
return 0;
}
mmu_idx = PRIV_P_TO_MMU_IDX(level, env->psw & PSW_P);
excp = hppa_get_physical_address(env, addr, mmu_idx, 0, &phys,
&prot, NULL);
if (excp >= 0) {
if (env->psw & PSW_Q) {
/* ??? Needs tweaking for hppa64. */
env->cr[CR_IOR] = addr;
env->cr[CR_ISR] = addr >> 32;
}
if (excp == EXCP_DTLB_MISS) {
excp = EXCP_NA_DTLB_MISS;
}
hppa_dynamic_excp(env, excp, GETPC());
}
return (want & prot) != 0;
#endif
}
target_ulong HELPER(read_interval_timer)(void)
{
#ifdef CONFIG_USER_ONLY
/* In user-mode, QEMU_CLOCK_VIRTUAL doesn't exist.
Just pass through the host cpu clock ticks. */
return cpu_get_host_ticks();
#else
/* In system mode we have access to a decent high-resolution clock.
In order to make OS-level time accounting work with the cr16,
present it with a well-timed clock fixed at 250MHz. */
return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) >> 2;
#endif
}
uint64_t HELPER(hadd_ss)(uint64_t r1, uint64_t r2)
{
uint64_t ret = 0;
for (int i = 0; i < 64; i += 16) {
int f1 = sextract64(r1, i, 16);
int f2 = sextract64(r2, i, 16);
int fr = f1 + f2;
fr = MIN(fr, INT16_MAX);
fr = MAX(fr, INT16_MIN);
ret = deposit64(ret, i, 16, fr);
}
return ret;
}
uint64_t HELPER(hadd_us)(uint64_t r1, uint64_t r2)
{
uint64_t ret = 0;
for (int i = 0; i < 64; i += 16) {
int f1 = extract64(r1, i, 16);
int f2 = sextract64(r2, i, 16);
int fr = f1 + f2;
fr = MIN(fr, UINT16_MAX);
fr = MAX(fr, 0);
ret = deposit64(ret, i, 16, fr);
}
return ret;
}
uint64_t HELPER(havg)(uint64_t r1, uint64_t r2)
{
uint64_t ret = 0;
for (int i = 0; i < 64; i += 16) {
int f1 = extract64(r1, i, 16);
int f2 = extract64(r2, i, 16);
int fr = f1 + f2;
ret = deposit64(ret, i, 16, (fr >> 1) | (fr & 1));
}
return ret;
}
uint64_t HELPER(hsub_ss)(uint64_t r1, uint64_t r2)
{
uint64_t ret = 0;
for (int i = 0; i < 64; i += 16) {
int f1 = sextract64(r1, i, 16);
int f2 = sextract64(r2, i, 16);
int fr = f1 - f2;
fr = MIN(fr, INT16_MAX);
fr = MAX(fr, INT16_MIN);
ret = deposit64(ret, i, 16, fr);
}
return ret;
}
uint64_t HELPER(hsub_us)(uint64_t r1, uint64_t r2)
{
uint64_t ret = 0;
for (int i = 0; i < 64; i += 16) {
int f1 = extract64(r1, i, 16);
int f2 = sextract64(r2, i, 16);
int fr = f1 - f2;
fr = MIN(fr, UINT16_MAX);
fr = MAX(fr, 0);
ret = deposit64(ret, i, 16, fr);
}
return ret;
}
uint64_t HELPER(hshladd)(uint64_t r1, uint64_t r2, uint32_t sh)
{
uint64_t ret = 0;
for (int i = 0; i < 64; i += 16) {
int f1 = sextract64(r1, i, 16);
int f2 = sextract64(r2, i, 16);
int fr = (f1 << sh) + f2;
fr = MIN(fr, INT16_MAX);
fr = MAX(fr, INT16_MIN);
ret = deposit64(ret, i, 16, fr);
}
return ret;
}
uint64_t HELPER(hshradd)(uint64_t r1, uint64_t r2, uint32_t sh)
{
uint64_t ret = 0;
for (int i = 0; i < 64; i += 16) {
int f1 = sextract64(r1, i, 16);
int f2 = sextract64(r2, i, 16);
int fr = (f1 >> sh) + f2;
fr = MIN(fr, INT16_MAX);
fr = MAX(fr, INT16_MIN);
ret = deposit64(ret, i, 16, fr);
}
return ret;
}