| /* |
| * Virtual hardware watchdog. |
| * |
| * Copyright (C) 2009 Red Hat Inc. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version 2 |
| * of the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, see <http://www.gnu.org/licenses/>. |
| * |
| * By Richard W.M. Jones (rjones@redhat.com). |
| */ |
| |
| #include <inttypes.h> |
| |
| #include "qemu-common.h" |
| #include "qemu-timer.h" |
| #include "watchdog.h" |
| #include "hw.h" |
| #include "isa.h" |
| #include "pc.h" |
| #include "pci.h" |
| |
| /*#define I6300ESB_DEBUG 1*/ |
| |
| #ifdef I6300ESB_DEBUG |
| #define i6300esb_debug(fs,...) \ |
| fprintf(stderr,"i6300esb: %s: "fs,__func__,##__VA_ARGS__) |
| #else |
| #define i6300esb_debug(fs,...) |
| #endif |
| |
| #ifndef PCI_DEVICE_ID_INTEL_ESB_9 |
| #define PCI_DEVICE_ID_INTEL_ESB_9 0x25ab |
| #endif |
| |
| /* PCI configuration registers */ |
| #define ESB_CONFIG_REG 0x60 /* Config register */ |
| #define ESB_LOCK_REG 0x68 /* WDT lock register */ |
| |
| /* Memory mapped registers (offset from base address) */ |
| #define ESB_TIMER1_REG 0x00 /* Timer1 value after each reset */ |
| #define ESB_TIMER2_REG 0x04 /* Timer2 value after each reset */ |
| #define ESB_GINTSR_REG 0x08 /* General Interrupt Status Register */ |
| #define ESB_RELOAD_REG 0x0c /* Reload register */ |
| |
| /* Lock register bits */ |
| #define ESB_WDT_FUNC (0x01 << 2) /* Watchdog functionality */ |
| #define ESB_WDT_ENABLE (0x01 << 1) /* Enable WDT */ |
| #define ESB_WDT_LOCK (0x01 << 0) /* Lock (nowayout) */ |
| |
| /* Config register bits */ |
| #define ESB_WDT_REBOOT (0x01 << 5) /* Enable reboot on timeout */ |
| #define ESB_WDT_FREQ (0x01 << 2) /* Decrement frequency */ |
| #define ESB_WDT_INTTYPE (0x11 << 0) /* Interrupt type on timer1 timeout */ |
| |
| /* Reload register bits */ |
| #define ESB_WDT_RELOAD (0x01 << 8) /* prevent timeout */ |
| |
| /* Magic constants */ |
| #define ESB_UNLOCK1 0x80 /* Step 1 to unlock reset registers */ |
| #define ESB_UNLOCK2 0x86 /* Step 2 to unlock reset registers */ |
| |
| /* Device state. */ |
| struct I6300State { |
| PCIDevice dev; /* PCI device state, must be first field. */ |
| |
| int reboot_enabled; /* "Reboot" on timer expiry. The real action |
| * performed depends on the -watchdog-action |
| * param passed on QEMU command line. |
| */ |
| int clock_scale; /* Clock scale. */ |
| #define CLOCK_SCALE_1KHZ 0 |
| #define CLOCK_SCALE_1MHZ 1 |
| |
| int int_type; /* Interrupt type generated. */ |
| #define INT_TYPE_IRQ 0 /* APIC 1, INT 10 */ |
| #define INT_TYPE_SMI 2 |
| #define INT_TYPE_DISABLED 3 |
| |
| int free_run; /* If true, reload timer on expiry. */ |
| int locked; /* If true, enabled field cannot be changed. */ |
| int enabled; /* If true, watchdog is enabled. */ |
| |
| QEMUTimer *timer; /* The actual watchdog timer. */ |
| |
| uint32_t timer1_preload; /* Values preloaded into timer1, timer2. */ |
| uint32_t timer2_preload; |
| int stage; /* Stage (1 or 2). */ |
| |
| int unlock_state; /* Guest writes 0x80, 0x86 to unlock the |
| * registers, and we transition through |
| * states 0 -> 1 -> 2 when this happens. |
| */ |
| |
| int previous_reboot_flag; /* If the watchdog caused the previous |
| * reboot, this flag will be set. |
| */ |
| }; |
| |
| typedef struct I6300State I6300State; |
| |
| /* This function is called when the watchdog has either been enabled |
| * (hence it starts counting down) or has been keep-alived. |
| */ |
| static void i6300esb_restart_timer(I6300State *d, int stage) |
| { |
| int64_t timeout; |
| |
| if (!d->enabled) |
| return; |
| |
| d->stage = stage; |
| |
| if (d->stage <= 1) |
| timeout = d->timer1_preload; |
| else |
| timeout = d->timer2_preload; |
| |
| if (d->clock_scale == CLOCK_SCALE_1KHZ) |
| timeout <<= 15; |
| else |
| timeout <<= 5; |
| |
| /* Get the timeout in units of ticks_per_sec. */ |
| timeout = ticks_per_sec * timeout / 33000000; |
| |
| i6300esb_debug("stage %d, timeout %" PRIi64 "\n", d->stage, timeout); |
| |
| qemu_mod_timer(d->timer, qemu_get_clock(vm_clock) + timeout); |
| } |
| |
| /* This is called when the guest disables the watchdog. */ |
| static void i6300esb_disable_timer(I6300State *d) |
| { |
| i6300esb_debug("timer disabled\n"); |
| |
| qemu_del_timer(d->timer); |
| } |
| |
| static void i6300esb_reset(I6300State *d) |
| { |
| /* XXX We should probably reset other parts of the state here, |
| * but we should also reset our state on general machine reset |
| * too. For now just disable the timer so it doesn't fire |
| * again after the reboot. |
| */ |
| i6300esb_disable_timer(d); |
| } |
| |
| /* This function is called when the watchdog expires. Note that |
| * the hardware has two timers, and so expiry happens in two stages. |
| * If d->stage == 1 then we perform the first stage action (usually, |
| * sending an interrupt) and then restart the timer again for the |
| * second stage. If the second stage expires then the watchdog |
| * really has run out. |
| */ |
| static void i6300esb_timer_expired(void *vp) |
| { |
| I6300State *d = (I6300State *) vp; |
| |
| i6300esb_debug("stage %d\n", d->stage); |
| |
| if (d->stage == 1) { |
| /* What to do at the end of stage 1? */ |
| switch (d->int_type) { |
| case INT_TYPE_IRQ: |
| fprintf(stderr, "i6300esb_timer_expired: I would send APIC 1 INT 10 here if I knew how (XXX)\n"); |
| break; |
| case INT_TYPE_SMI: |
| fprintf(stderr, "i6300esb_timer_expired: I would send SMI here if I knew how (XXX)\n"); |
| break; |
| } |
| |
| /* Start the second stage. */ |
| i6300esb_restart_timer(d, 2); |
| } else { |
| /* Second stage expired, reboot for real. */ |
| if (d->reboot_enabled) { |
| d->previous_reboot_flag = 1; |
| watchdog_perform_action(); /* This reboots, exits, etc */ |
| i6300esb_reset(d); |
| } |
| |
| /* In "free running mode" we start stage 1 again. */ |
| if (d->free_run) |
| i6300esb_restart_timer(d, 1); |
| } |
| } |
| |
| static void i6300esb_config_write(PCIDevice *dev, uint32_t addr, |
| uint32_t data, int len) |
| { |
| I6300State *d = (I6300State *) dev; |
| int old; |
| |
| i6300esb_debug("addr = %x, data = %x, len = %d\n", addr, data, len); |
| |
| if (addr == ESB_CONFIG_REG && len == 2) { |
| d->reboot_enabled = (data & ESB_WDT_REBOOT) == 0; |
| d->clock_scale = |
| (data & ESB_WDT_FREQ) != 0 ? CLOCK_SCALE_1MHZ : CLOCK_SCALE_1KHZ; |
| d->int_type = (data & ESB_WDT_INTTYPE); |
| } else if (addr == ESB_LOCK_REG && len == 1) { |
| if (!d->locked) { |
| d->locked = (data & ESB_WDT_LOCK) != 0; |
| d->free_run = (data & ESB_WDT_FUNC) != 0; |
| old = d->enabled; |
| d->enabled = (data & ESB_WDT_ENABLE) != 0; |
| if (!old && d->enabled) /* Enabled transitioned from 0 -> 1 */ |
| i6300esb_restart_timer(d, 1); |
| else if (!d->enabled) |
| i6300esb_disable_timer(d); |
| } |
| } else { |
| pci_default_write_config(dev, addr, data, len); |
| } |
| } |
| |
| static uint32_t i6300esb_config_read(PCIDevice *dev, uint32_t addr, int len) |
| { |
| I6300State *d = (I6300State *) dev; |
| uint32_t data; |
| |
| i6300esb_debug ("addr = %x, len = %d\n", addr, len); |
| |
| if (addr == ESB_CONFIG_REG && len == 2) { |
| data = |
| (d->reboot_enabled ? 0 : ESB_WDT_REBOOT) | |
| (d->clock_scale == CLOCK_SCALE_1MHZ ? ESB_WDT_FREQ : 0) | |
| d->int_type; |
| return data; |
| } else if (addr == ESB_LOCK_REG && len == 1) { |
| data = |
| (d->free_run ? ESB_WDT_FUNC : 0) | |
| (d->locked ? ESB_WDT_LOCK : 0) | |
| (d->enabled ? ESB_WDT_ENABLE : 0); |
| return data; |
| } else { |
| return pci_default_read_config(dev, addr, len); |
| } |
| } |
| |
| static uint32_t i6300esb_mem_readb(void *vp, target_phys_addr_t addr) |
| { |
| i6300esb_debug ("addr = %x\n", (int) addr); |
| |
| return 0; |
| } |
| |
| static uint32_t i6300esb_mem_readw(void *vp, target_phys_addr_t addr) |
| { |
| uint32_t data = 0; |
| I6300State *d = (I6300State *) vp; |
| |
| i6300esb_debug("addr = %x\n", (int) addr); |
| |
| if (addr == 0xc) { |
| /* The previous reboot flag is really bit 9, but there is |
| * a bug in the Linux driver where it thinks it's bit 12. |
| * Set both. |
| */ |
| data = d->previous_reboot_flag ? 0x1200 : 0; |
| } |
| |
| return data; |
| } |
| |
| static uint32_t i6300esb_mem_readl(void *vp, target_phys_addr_t addr) |
| { |
| i6300esb_debug("addr = %x\n", (int) addr); |
| |
| return 0; |
| } |
| |
| static void i6300esb_mem_writeb(void *vp, target_phys_addr_t addr, uint32_t val) |
| { |
| I6300State *d = (I6300State *) vp; |
| |
| i6300esb_debug("addr = %x, val = %x\n", (int) addr, val); |
| |
| if (addr == 0xc && val == 0x80) |
| d->unlock_state = 1; |
| else if (addr == 0xc && val == 0x86 && d->unlock_state == 1) |
| d->unlock_state = 2; |
| } |
| |
| static void i6300esb_mem_writew(void *vp, target_phys_addr_t addr, uint32_t val) |
| { |
| I6300State *d = (I6300State *) vp; |
| |
| i6300esb_debug("addr = %x, val = %x\n", (int) addr, val); |
| |
| if (addr == 0xc && val == 0x80) |
| d->unlock_state = 1; |
| else if (addr == 0xc && val == 0x86 && d->unlock_state == 1) |
| d->unlock_state = 2; |
| else { |
| if (d->unlock_state == 2) { |
| if (addr == 0xc) { |
| if ((val & 0x100) != 0) |
| /* This is the "ping" from the userspace watchdog in |
| * the guest ... |
| */ |
| i6300esb_restart_timer(d, 1); |
| |
| /* Setting bit 9 resets the previous reboot flag. |
| * There's a bug in the Linux driver where it sets |
| * bit 12 instead. |
| */ |
| if ((val & 0x200) != 0 || (val & 0x1000) != 0) { |
| d->previous_reboot_flag = 0; |
| } |
| } |
| |
| d->unlock_state = 0; |
| } |
| } |
| } |
| |
| static void i6300esb_mem_writel(void *vp, target_phys_addr_t addr, uint32_t val) |
| { |
| I6300State *d = (I6300State *) vp; |
| |
| i6300esb_debug ("addr = %x, val = %x\n", (int) addr, val); |
| |
| if (addr == 0xc && val == 0x80) |
| d->unlock_state = 1; |
| else if (addr == 0xc && val == 0x86 && d->unlock_state == 1) |
| d->unlock_state = 2; |
| else { |
| if (d->unlock_state == 2) { |
| if (addr == 0) |
| d->timer1_preload = val & 0xfffff; |
| else if (addr == 4) |
| d->timer2_preload = val & 0xfffff; |
| |
| d->unlock_state = 0; |
| } |
| } |
| } |
| |
| static void i6300esb_map(PCIDevice *dev, int region_num, |
| uint32_t addr, uint32_t size, int type) |
| { |
| static CPUReadMemoryFunc *mem_read[3] = { |
| i6300esb_mem_readb, |
| i6300esb_mem_readw, |
| i6300esb_mem_readl, |
| }; |
| static CPUWriteMemoryFunc *mem_write[3] = { |
| i6300esb_mem_writeb, |
| i6300esb_mem_writew, |
| i6300esb_mem_writel, |
| }; |
| I6300State *d = (I6300State *) dev; |
| int io_mem; |
| |
| i6300esb_debug("addr = %x, size = %x, type = %d\n", addr, size, type); |
| |
| io_mem = cpu_register_io_memory(mem_read, mem_write, d); |
| cpu_register_physical_memory (addr, 0x10, io_mem); |
| /* qemu_register_coalesced_mmio (addr, 0x10); ? */ |
| } |
| |
| static void i6300esb_save(QEMUFile *f, void *vp) |
| { |
| I6300State *d = (I6300State *) vp; |
| |
| pci_device_save(&d->dev, f); |
| qemu_put_be32(f, d->reboot_enabled); |
| qemu_put_be32(f, d->clock_scale); |
| qemu_put_be32(f, d->int_type); |
| qemu_put_be32(f, d->free_run); |
| qemu_put_be32(f, d->locked); |
| qemu_put_be32(f, d->enabled); |
| qemu_put_timer(f, d->timer); |
| qemu_put_be32(f, d->timer1_preload); |
| qemu_put_be32(f, d->timer2_preload); |
| qemu_put_be32(f, d->stage); |
| qemu_put_be32(f, d->unlock_state); |
| qemu_put_be32(f, d->previous_reboot_flag); |
| } |
| |
| static int i6300esb_load(QEMUFile *f, void *vp, int version) |
| { |
| I6300State *d = (I6300State *) vp; |
| |
| if (version != sizeof (I6300State)) |
| return -EINVAL; |
| |
| pci_device_load(&d->dev, f); |
| d->reboot_enabled = qemu_get_be32(f); |
| d->clock_scale = qemu_get_be32(f); |
| d->int_type = qemu_get_be32(f); |
| d->free_run = qemu_get_be32(f); |
| d->locked = qemu_get_be32(f); |
| d->enabled = qemu_get_be32(f); |
| qemu_get_timer(f, d->timer); |
| d->timer1_preload = qemu_get_be32(f); |
| d->timer2_preload = qemu_get_be32(f); |
| d->stage = qemu_get_be32(f); |
| d->unlock_state = qemu_get_be32(f); |
| d->previous_reboot_flag = qemu_get_be32(f); |
| |
| return 0; |
| } |
| |
| /* Create and initialize a virtual Intel 6300ESB during PC creation. */ |
| static void i6300esb_pc_init(PCIBus *pci_bus) |
| { |
| I6300State *d; |
| uint8_t *pci_conf; |
| |
| if (!pci_bus) { |
| fprintf(stderr, "wdt_i6300esb: no PCI bus in this machine\n"); |
| return; |
| } |
| |
| d = (I6300State *) |
| pci_register_device (pci_bus, "i6300esb_wdt", sizeof (I6300State), |
| -1, |
| i6300esb_config_read, i6300esb_config_write); |
| |
| d->reboot_enabled = 1; |
| d->clock_scale = CLOCK_SCALE_1KHZ; |
| d->int_type = INT_TYPE_IRQ; |
| d->free_run = 0; |
| d->locked = 0; |
| d->enabled = 0; |
| d->timer = qemu_new_timer(vm_clock, i6300esb_timer_expired, d); |
| d->timer1_preload = 0xfffff; |
| d->timer2_preload = 0xfffff; |
| d->stage = 1; |
| d->unlock_state = 0; |
| d->previous_reboot_flag = 0; |
| |
| pci_conf = d->dev.config; |
| pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL); |
| pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_ESB_9); |
| pci_config_set_class(pci_conf, PCI_CLASS_SYSTEM_OTHER); |
| pci_conf[0x0e] = 0x00; |
| |
| pci_register_bar(&d->dev, 0, 0x10, |
| PCI_ADDRESS_SPACE_MEM, i6300esb_map); |
| |
| register_savevm("i6300esb_wdt", -1, sizeof(I6300State), |
| i6300esb_save, i6300esb_load, d); |
| } |
| |
| static WatchdogTimerModel model = { |
| .wdt_name = "i6300esb", |
| .wdt_description = "Intel 6300ESB", |
| .wdt_pc_init = i6300esb_pc_init, |
| }; |
| |
| void wdt_i6300esb_init(void) |
| { |
| watchdog_add_model(&model); |
| } |