| /* |
| * ARM NEON vector operations. |
| * |
| * Copyright (c) 2007, 2008 CodeSourcery. |
| * Written by Paul Brook |
| * |
| * This code is licensed under the GNU GPL v2. |
| */ |
| #include <stdlib.h> |
| #include <stdio.h> |
| |
| #include "cpu.h" |
| #include "exec/exec-all.h" |
| #include "exec/helper-proto.h" |
| |
| #define SIGNBIT (uint32_t)0x80000000 |
| #define SIGNBIT64 ((uint64_t)1 << 63) |
| |
| #define SET_QC() env->vfp.xregs[ARM_VFP_FPSCR] |= CPSR_Q |
| |
| #define NEON_TYPE1(name, type) \ |
| typedef struct \ |
| { \ |
| type v1; \ |
| } neon_##name; |
| #ifdef HOST_WORDS_BIGENDIAN |
| #define NEON_TYPE2(name, type) \ |
| typedef struct \ |
| { \ |
| type v2; \ |
| type v1; \ |
| } neon_##name; |
| #define NEON_TYPE4(name, type) \ |
| typedef struct \ |
| { \ |
| type v4; \ |
| type v3; \ |
| type v2; \ |
| type v1; \ |
| } neon_##name; |
| #else |
| #define NEON_TYPE2(name, type) \ |
| typedef struct \ |
| { \ |
| type v1; \ |
| type v2; \ |
| } neon_##name; |
| #define NEON_TYPE4(name, type) \ |
| typedef struct \ |
| { \ |
| type v1; \ |
| type v2; \ |
| type v3; \ |
| type v4; \ |
| } neon_##name; |
| #endif |
| |
| NEON_TYPE4(s8, int8_t) |
| NEON_TYPE4(u8, uint8_t) |
| NEON_TYPE2(s16, int16_t) |
| NEON_TYPE2(u16, uint16_t) |
| NEON_TYPE1(s32, int32_t) |
| NEON_TYPE1(u32, uint32_t) |
| #undef NEON_TYPE4 |
| #undef NEON_TYPE2 |
| #undef NEON_TYPE1 |
| |
| /* Copy from a uint32_t to a vector structure type. */ |
| #define NEON_UNPACK(vtype, dest, val) do { \ |
| union { \ |
| vtype v; \ |
| uint32_t i; \ |
| } conv_u; \ |
| conv_u.i = (val); \ |
| dest = conv_u.v; \ |
| } while(0) |
| |
| /* Copy from a vector structure type to a uint32_t. */ |
| #define NEON_PACK(vtype, dest, val) do { \ |
| union { \ |
| vtype v; \ |
| uint32_t i; \ |
| } conv_u; \ |
| conv_u.v = (val); \ |
| dest = conv_u.i; \ |
| } while(0) |
| |
| #define NEON_DO1 \ |
| NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); |
| #define NEON_DO2 \ |
| NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \ |
| NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2); |
| #define NEON_DO4 \ |
| NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \ |
| NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2); \ |
| NEON_FN(vdest.v3, vsrc1.v3, vsrc2.v3); \ |
| NEON_FN(vdest.v4, vsrc1.v4, vsrc2.v4); |
| |
| #define NEON_VOP_BODY(vtype, n) \ |
| { \ |
| uint32_t res; \ |
| vtype vsrc1; \ |
| vtype vsrc2; \ |
| vtype vdest; \ |
| NEON_UNPACK(vtype, vsrc1, arg1); \ |
| NEON_UNPACK(vtype, vsrc2, arg2); \ |
| NEON_DO##n; \ |
| NEON_PACK(vtype, res, vdest); \ |
| return res; \ |
| } |
| |
| #define NEON_VOP(name, vtype, n) \ |
| uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \ |
| NEON_VOP_BODY(vtype, n) |
| |
| #define NEON_VOP_ENV(name, vtype, n) \ |
| uint32_t HELPER(glue(neon_,name))(CPUARMState *env, uint32_t arg1, uint32_t arg2) \ |
| NEON_VOP_BODY(vtype, n) |
| |
| /* Pairwise operations. */ |
| /* For 32-bit elements each segment only contains a single element, so |
| the elementwise and pairwise operations are the same. */ |
| #define NEON_PDO2 \ |
| NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \ |
| NEON_FN(vdest.v2, vsrc2.v1, vsrc2.v2); |
| #define NEON_PDO4 \ |
| NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \ |
| NEON_FN(vdest.v2, vsrc1.v3, vsrc1.v4); \ |
| NEON_FN(vdest.v3, vsrc2.v1, vsrc2.v2); \ |
| NEON_FN(vdest.v4, vsrc2.v3, vsrc2.v4); \ |
| |
| #define NEON_POP(name, vtype, n) \ |
| uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \ |
| { \ |
| uint32_t res; \ |
| vtype vsrc1; \ |
| vtype vsrc2; \ |
| vtype vdest; \ |
| NEON_UNPACK(vtype, vsrc1, arg1); \ |
| NEON_UNPACK(vtype, vsrc2, arg2); \ |
| NEON_PDO##n; \ |
| NEON_PACK(vtype, res, vdest); \ |
| return res; \ |
| } |
| |
| /* Unary operators. */ |
| #define NEON_VOP1(name, vtype, n) \ |
| uint32_t HELPER(glue(neon_,name))(uint32_t arg) \ |
| { \ |
| vtype vsrc1; \ |
| vtype vdest; \ |
| NEON_UNPACK(vtype, vsrc1, arg); \ |
| NEON_DO##n; \ |
| NEON_PACK(vtype, arg, vdest); \ |
| return arg; \ |
| } |
| |
| |
| #define NEON_USAT(dest, src1, src2, type) do { \ |
| uint32_t tmp = (uint32_t)src1 + (uint32_t)src2; \ |
| if (tmp != (type)tmp) { \ |
| SET_QC(); \ |
| dest = ~0; \ |
| } else { \ |
| dest = tmp; \ |
| }} while(0) |
| #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t) |
| NEON_VOP_ENV(qadd_u8, neon_u8, 4) |
| #undef NEON_FN |
| #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t) |
| NEON_VOP_ENV(qadd_u16, neon_u16, 2) |
| #undef NEON_FN |
| #undef NEON_USAT |
| |
| uint32_t HELPER(neon_qadd_u32)(CPUARMState *env, uint32_t a, uint32_t b) |
| { |
| uint32_t res = a + b; |
| if (res < a) { |
| SET_QC(); |
| res = ~0; |
| } |
| return res; |
| } |
| |
| uint64_t HELPER(neon_qadd_u64)(CPUARMState *env, uint64_t src1, uint64_t src2) |
| { |
| uint64_t res; |
| |
| res = src1 + src2; |
| if (res < src1) { |
| SET_QC(); |
| res = ~(uint64_t)0; |
| } |
| return res; |
| } |
| |
| #define NEON_SSAT(dest, src1, src2, type) do { \ |
| int32_t tmp = (uint32_t)src1 + (uint32_t)src2; \ |
| if (tmp != (type)tmp) { \ |
| SET_QC(); \ |
| if (src2 > 0) { \ |
| tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \ |
| } else { \ |
| tmp = 1 << (sizeof(type) * 8 - 1); \ |
| } \ |
| } \ |
| dest = tmp; \ |
| } while(0) |
| #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t) |
| NEON_VOP_ENV(qadd_s8, neon_s8, 4) |
| #undef NEON_FN |
| #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t) |
| NEON_VOP_ENV(qadd_s16, neon_s16, 2) |
| #undef NEON_FN |
| #undef NEON_SSAT |
| |
| uint32_t HELPER(neon_qadd_s32)(CPUARMState *env, uint32_t a, uint32_t b) |
| { |
| uint32_t res = a + b; |
| if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) { |
| SET_QC(); |
| res = ~(((int32_t)a >> 31) ^ SIGNBIT); |
| } |
| return res; |
| } |
| |
| uint64_t HELPER(neon_qadd_s64)(CPUARMState *env, uint64_t src1, uint64_t src2) |
| { |
| uint64_t res; |
| |
| res = src1 + src2; |
| if (((res ^ src1) & SIGNBIT64) && !((src1 ^ src2) & SIGNBIT64)) { |
| SET_QC(); |
| res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64; |
| } |
| return res; |
| } |
| |
| /* Unsigned saturating accumulate of signed value |
| * |
| * Op1/Rn is treated as signed |
| * Op2/Rd is treated as unsigned |
| * |
| * Explicit casting is used to ensure the correct sign extension of |
| * inputs. The result is treated as a unsigned value and saturated as such. |
| * |
| * We use a macro for the 8/16 bit cases which expects signed integers of va, |
| * vb, and vr for interim calculation and an unsigned 32 bit result value r. |
| */ |
| |
| #define USATACC(bits, shift) \ |
| do { \ |
| va = sextract32(a, shift, bits); \ |
| vb = extract32(b, shift, bits); \ |
| vr = va + vb; \ |
| if (vr > UINT##bits##_MAX) { \ |
| SET_QC(); \ |
| vr = UINT##bits##_MAX; \ |
| } else if (vr < 0) { \ |
| SET_QC(); \ |
| vr = 0; \ |
| } \ |
| r = deposit32(r, shift, bits, vr); \ |
| } while (0) |
| |
| uint32_t HELPER(neon_uqadd_s8)(CPUARMState *env, uint32_t a, uint32_t b) |
| { |
| int16_t va, vb, vr; |
| uint32_t r = 0; |
| |
| USATACC(8, 0); |
| USATACC(8, 8); |
| USATACC(8, 16); |
| USATACC(8, 24); |
| return r; |
| } |
| |
| uint32_t HELPER(neon_uqadd_s16)(CPUARMState *env, uint32_t a, uint32_t b) |
| { |
| int32_t va, vb, vr; |
| uint64_t r = 0; |
| |
| USATACC(16, 0); |
| USATACC(16, 16); |
| return r; |
| } |
| |
| #undef USATACC |
| |
| uint32_t HELPER(neon_uqadd_s32)(CPUARMState *env, uint32_t a, uint32_t b) |
| { |
| int64_t va = (int32_t)a; |
| int64_t vb = (uint32_t)b; |
| int64_t vr = va + vb; |
| if (vr > UINT32_MAX) { |
| SET_QC(); |
| vr = UINT32_MAX; |
| } else if (vr < 0) { |
| SET_QC(); |
| vr = 0; |
| } |
| return vr; |
| } |
| |
| uint64_t HELPER(neon_uqadd_s64)(CPUARMState *env, uint64_t a, uint64_t b) |
| { |
| uint64_t res; |
| res = a + b; |
| /* We only need to look at the pattern of SIGN bits to detect |
| * +ve/-ve saturation |
| */ |
| if (~a & b & ~res & SIGNBIT64) { |
| SET_QC(); |
| res = UINT64_MAX; |
| } else if (a & ~b & res & SIGNBIT64) { |
| SET_QC(); |
| res = 0; |
| } |
| return res; |
| } |
| |
| /* Signed saturating accumulate of unsigned value |
| * |
| * Op1/Rn is treated as unsigned |
| * Op2/Rd is treated as signed |
| * |
| * The result is treated as a signed value and saturated as such |
| * |
| * We use a macro for the 8/16 bit cases which expects signed integers of va, |
| * vb, and vr for interim calculation and an unsigned 32 bit result value r. |
| */ |
| |
| #define SSATACC(bits, shift) \ |
| do { \ |
| va = extract32(a, shift, bits); \ |
| vb = sextract32(b, shift, bits); \ |
| vr = va + vb; \ |
| if (vr > INT##bits##_MAX) { \ |
| SET_QC(); \ |
| vr = INT##bits##_MAX; \ |
| } else if (vr < INT##bits##_MIN) { \ |
| SET_QC(); \ |
| vr = INT##bits##_MIN; \ |
| } \ |
| r = deposit32(r, shift, bits, vr); \ |
| } while (0) |
| |
| uint32_t HELPER(neon_sqadd_u8)(CPUARMState *env, uint32_t a, uint32_t b) |
| { |
| int16_t va, vb, vr; |
| uint32_t r = 0; |
| |
| SSATACC(8, 0); |
| SSATACC(8, 8); |
| SSATACC(8, 16); |
| SSATACC(8, 24); |
| return r; |
| } |
| |
| uint32_t HELPER(neon_sqadd_u16)(CPUARMState *env, uint32_t a, uint32_t b) |
| { |
| int32_t va, vb, vr; |
| uint32_t r = 0; |
| |
| SSATACC(16, 0); |
| SSATACC(16, 16); |
| |
| return r; |
| } |
| |
| #undef SSATACC |
| |
| uint32_t HELPER(neon_sqadd_u32)(CPUARMState *env, uint32_t a, uint32_t b) |
| { |
| int64_t res; |
| int64_t op1 = (uint32_t)a; |
| int64_t op2 = (int32_t)b; |
| res = op1 + op2; |
| if (res > INT32_MAX) { |
| SET_QC(); |
| res = INT32_MAX; |
| } else if (res < INT32_MIN) { |
| SET_QC(); |
| res = INT32_MIN; |
| } |
| return res; |
| } |
| |
| uint64_t HELPER(neon_sqadd_u64)(CPUARMState *env, uint64_t a, uint64_t b) |
| { |
| uint64_t res; |
| res = a + b; |
| /* We only need to look at the pattern of SIGN bits to detect an overflow */ |
| if (((a & res) |
| | (~b & res) |
| | (a & ~b)) & SIGNBIT64) { |
| SET_QC(); |
| res = INT64_MAX; |
| } |
| return res; |
| } |
| |
| |
| #define NEON_USAT(dest, src1, src2, type) do { \ |
| uint32_t tmp = (uint32_t)src1 - (uint32_t)src2; \ |
| if (tmp != (type)tmp) { \ |
| SET_QC(); \ |
| dest = 0; \ |
| } else { \ |
| dest = tmp; \ |
| }} while(0) |
| #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t) |
| NEON_VOP_ENV(qsub_u8, neon_u8, 4) |
| #undef NEON_FN |
| #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t) |
| NEON_VOP_ENV(qsub_u16, neon_u16, 2) |
| #undef NEON_FN |
| #undef NEON_USAT |
| |
| uint32_t HELPER(neon_qsub_u32)(CPUARMState *env, uint32_t a, uint32_t b) |
| { |
| uint32_t res = a - b; |
| if (res > a) { |
| SET_QC(); |
| res = 0; |
| } |
| return res; |
| } |
| |
| uint64_t HELPER(neon_qsub_u64)(CPUARMState *env, uint64_t src1, uint64_t src2) |
| { |
| uint64_t res; |
| |
| if (src1 < src2) { |
| SET_QC(); |
| res = 0; |
| } else { |
| res = src1 - src2; |
| } |
| return res; |
| } |
| |
| #define NEON_SSAT(dest, src1, src2, type) do { \ |
| int32_t tmp = (uint32_t)src1 - (uint32_t)src2; \ |
| if (tmp != (type)tmp) { \ |
| SET_QC(); \ |
| if (src2 < 0) { \ |
| tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \ |
| } else { \ |
| tmp = 1 << (sizeof(type) * 8 - 1); \ |
| } \ |
| } \ |
| dest = tmp; \ |
| } while(0) |
| #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t) |
| NEON_VOP_ENV(qsub_s8, neon_s8, 4) |
| #undef NEON_FN |
| #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t) |
| NEON_VOP_ENV(qsub_s16, neon_s16, 2) |
| #undef NEON_FN |
| #undef NEON_SSAT |
| |
| uint32_t HELPER(neon_qsub_s32)(CPUARMState *env, uint32_t a, uint32_t b) |
| { |
| uint32_t res = a - b; |
| if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) { |
| SET_QC(); |
| res = ~(((int32_t)a >> 31) ^ SIGNBIT); |
| } |
| return res; |
| } |
| |
| uint64_t HELPER(neon_qsub_s64)(CPUARMState *env, uint64_t src1, uint64_t src2) |
| { |
| uint64_t res; |
| |
| res = src1 - src2; |
| if (((res ^ src1) & SIGNBIT64) && ((src1 ^ src2) & SIGNBIT64)) { |
| SET_QC(); |
| res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64; |
| } |
| return res; |
| } |
| |
| #define NEON_FN(dest, src1, src2) dest = (src1 + src2) >> 1 |
| NEON_VOP(hadd_s8, neon_s8, 4) |
| NEON_VOP(hadd_u8, neon_u8, 4) |
| NEON_VOP(hadd_s16, neon_s16, 2) |
| NEON_VOP(hadd_u16, neon_u16, 2) |
| #undef NEON_FN |
| |
| int32_t HELPER(neon_hadd_s32)(int32_t src1, int32_t src2) |
| { |
| int32_t dest; |
| |
| dest = (src1 >> 1) + (src2 >> 1); |
| if (src1 & src2 & 1) |
| dest++; |
| return dest; |
| } |
| |
| uint32_t HELPER(neon_hadd_u32)(uint32_t src1, uint32_t src2) |
| { |
| uint32_t dest; |
| |
| dest = (src1 >> 1) + (src2 >> 1); |
| if (src1 & src2 & 1) |
| dest++; |
| return dest; |
| } |
| |
| #define NEON_FN(dest, src1, src2) dest = (src1 + src2 + 1) >> 1 |
| NEON_VOP(rhadd_s8, neon_s8, 4) |
| NEON_VOP(rhadd_u8, neon_u8, 4) |
| NEON_VOP(rhadd_s16, neon_s16, 2) |
| NEON_VOP(rhadd_u16, neon_u16, 2) |
| #undef NEON_FN |
| |
| int32_t HELPER(neon_rhadd_s32)(int32_t src1, int32_t src2) |
| { |
| int32_t dest; |
| |
| dest = (src1 >> 1) + (src2 >> 1); |
| if ((src1 | src2) & 1) |
| dest++; |
| return dest; |
| } |
| |
| uint32_t HELPER(neon_rhadd_u32)(uint32_t src1, uint32_t src2) |
| { |
| uint32_t dest; |
| |
| dest = (src1 >> 1) + (src2 >> 1); |
| if ((src1 | src2) & 1) |
| dest++; |
| return dest; |
| } |
| |
| #define NEON_FN(dest, src1, src2) dest = (src1 - src2) >> 1 |
| NEON_VOP(hsub_s8, neon_s8, 4) |
| NEON_VOP(hsub_u8, neon_u8, 4) |
| NEON_VOP(hsub_s16, neon_s16, 2) |
| NEON_VOP(hsub_u16, neon_u16, 2) |
| #undef NEON_FN |
| |
| int32_t HELPER(neon_hsub_s32)(int32_t src1, int32_t src2) |
| { |
| int32_t dest; |
| |
| dest = (src1 >> 1) - (src2 >> 1); |
| if ((~src1) & src2 & 1) |
| dest--; |
| return dest; |
| } |
| |
| uint32_t HELPER(neon_hsub_u32)(uint32_t src1, uint32_t src2) |
| { |
| uint32_t dest; |
| |
| dest = (src1 >> 1) - (src2 >> 1); |
| if ((~src1) & src2 & 1) |
| dest--; |
| return dest; |
| } |
| |
| #define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? ~0 : 0 |
| NEON_VOP(cgt_s8, neon_s8, 4) |
| NEON_VOP(cgt_u8, neon_u8, 4) |
| NEON_VOP(cgt_s16, neon_s16, 2) |
| NEON_VOP(cgt_u16, neon_u16, 2) |
| NEON_VOP(cgt_s32, neon_s32, 1) |
| NEON_VOP(cgt_u32, neon_u32, 1) |
| #undef NEON_FN |
| |
| #define NEON_FN(dest, src1, src2) dest = (src1 >= src2) ? ~0 : 0 |
| NEON_VOP(cge_s8, neon_s8, 4) |
| NEON_VOP(cge_u8, neon_u8, 4) |
| NEON_VOP(cge_s16, neon_s16, 2) |
| NEON_VOP(cge_u16, neon_u16, 2) |
| NEON_VOP(cge_s32, neon_s32, 1) |
| NEON_VOP(cge_u32, neon_u32, 1) |
| #undef NEON_FN |
| |
| #define NEON_FN(dest, src1, src2) dest = (src1 < src2) ? src1 : src2 |
| NEON_VOP(min_s8, neon_s8, 4) |
| NEON_VOP(min_u8, neon_u8, 4) |
| NEON_VOP(min_s16, neon_s16, 2) |
| NEON_VOP(min_u16, neon_u16, 2) |
| NEON_VOP(min_s32, neon_s32, 1) |
| NEON_VOP(min_u32, neon_u32, 1) |
| NEON_POP(pmin_s8, neon_s8, 4) |
| NEON_POP(pmin_u8, neon_u8, 4) |
| NEON_POP(pmin_s16, neon_s16, 2) |
| NEON_POP(pmin_u16, neon_u16, 2) |
| #undef NEON_FN |
| |
| #define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? src1 : src2 |
| NEON_VOP(max_s8, neon_s8, 4) |
| NEON_VOP(max_u8, neon_u8, 4) |
| NEON_VOP(max_s16, neon_s16, 2) |
| NEON_VOP(max_u16, neon_u16, 2) |
| NEON_VOP(max_s32, neon_s32, 1) |
| NEON_VOP(max_u32, neon_u32, 1) |
| NEON_POP(pmax_s8, neon_s8, 4) |
| NEON_POP(pmax_u8, neon_u8, 4) |
| NEON_POP(pmax_s16, neon_s16, 2) |
| NEON_POP(pmax_u16, neon_u16, 2) |
| #undef NEON_FN |
| |
| #define NEON_FN(dest, src1, src2) \ |
| dest = (src1 > src2) ? (src1 - src2) : (src2 - src1) |
| NEON_VOP(abd_s8, neon_s8, 4) |
| NEON_VOP(abd_u8, neon_u8, 4) |
| NEON_VOP(abd_s16, neon_s16, 2) |
| NEON_VOP(abd_u16, neon_u16, 2) |
| NEON_VOP(abd_s32, neon_s32, 1) |
| NEON_VOP(abd_u32, neon_u32, 1) |
| #undef NEON_FN |
| |
| #define NEON_FN(dest, src1, src2) do { \ |
| int8_t tmp; \ |
| tmp = (int8_t)src2; \ |
| if (tmp >= (ssize_t)sizeof(src1) * 8 || \ |
| tmp <= -(ssize_t)sizeof(src1) * 8) { \ |
| dest = 0; \ |
| } else if (tmp < 0) { \ |
| dest = src1 >> -tmp; \ |
| } else { \ |
| dest = src1 << tmp; \ |
| }} while (0) |
| NEON_VOP(shl_u8, neon_u8, 4) |
| NEON_VOP(shl_u16, neon_u16, 2) |
| NEON_VOP(shl_u32, neon_u32, 1) |
| #undef NEON_FN |
| |
| uint64_t HELPER(neon_shl_u64)(uint64_t val, uint64_t shiftop) |
| { |
| int8_t shift = (int8_t)shiftop; |
| if (shift >= 64 || shift <= -64) { |
| val = 0; |
| } else if (shift < 0) { |
| val >>= -shift; |
| } else { |
| val <<= shift; |
| } |
| return val; |
| } |
| |
| #define NEON_FN(dest, src1, src2) do { \ |
| int8_t tmp; \ |
| tmp = (int8_t)src2; \ |
| if (tmp >= (ssize_t)sizeof(src1) * 8) { \ |
| dest = 0; \ |
| } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \ |
| dest = src1 >> (sizeof(src1) * 8 - 1); \ |
| } else if (tmp < 0) { \ |
| dest = src1 >> -tmp; \ |
| } else { \ |
| dest = src1 << tmp; \ |
| }} while (0) |
| NEON_VOP(shl_s8, neon_s8, 4) |
| NEON_VOP(shl_s16, neon_s16, 2) |
| NEON_VOP(shl_s32, neon_s32, 1) |
| #undef NEON_FN |
| |
| uint64_t HELPER(neon_shl_s64)(uint64_t valop, uint64_t shiftop) |
| { |
| int8_t shift = (int8_t)shiftop; |
| int64_t val = valop; |
| if (shift >= 64) { |
| val = 0; |
| } else if (shift <= -64) { |
| val >>= 63; |
| } else if (shift < 0) { |
| val >>= -shift; |
| } else { |
| val <<= shift; |
| } |
| return val; |
| } |
| |
| #define NEON_FN(dest, src1, src2) do { \ |
| int8_t tmp; \ |
| tmp = (int8_t)src2; \ |
| if ((tmp >= (ssize_t)sizeof(src1) * 8) \ |
| || (tmp <= -(ssize_t)sizeof(src1) * 8)) { \ |
| dest = 0; \ |
| } else if (tmp < 0) { \ |
| dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \ |
| } else { \ |
| dest = src1 << tmp; \ |
| }} while (0) |
| NEON_VOP(rshl_s8, neon_s8, 4) |
| NEON_VOP(rshl_s16, neon_s16, 2) |
| #undef NEON_FN |
| |
| /* The addition of the rounding constant may overflow, so we use an |
| * intermediate 64 bit accumulator. */ |
| uint32_t HELPER(neon_rshl_s32)(uint32_t valop, uint32_t shiftop) |
| { |
| int32_t dest; |
| int32_t val = (int32_t)valop; |
| int8_t shift = (int8_t)shiftop; |
| if ((shift >= 32) || (shift <= -32)) { |
| dest = 0; |
| } else if (shift < 0) { |
| int64_t big_dest = ((int64_t)val + (1 << (-1 - shift))); |
| dest = big_dest >> -shift; |
| } else { |
| dest = val << shift; |
| } |
| return dest; |
| } |
| |
| /* Handling addition overflow with 64 bit input values is more |
| * tricky than with 32 bit values. */ |
| uint64_t HELPER(neon_rshl_s64)(uint64_t valop, uint64_t shiftop) |
| { |
| int8_t shift = (int8_t)shiftop; |
| int64_t val = valop; |
| if ((shift >= 64) || (shift <= -64)) { |
| val = 0; |
| } else if (shift < 0) { |
| val >>= (-shift - 1); |
| if (val == INT64_MAX) { |
| /* In this case, it means that the rounding constant is 1, |
| * and the addition would overflow. Return the actual |
| * result directly. */ |
| val = 0x4000000000000000LL; |
| } else { |
| val++; |
| val >>= 1; |
| } |
| } else { |
| val <<= shift; |
| } |
| return val; |
| } |
| |
| #define NEON_FN(dest, src1, src2) do { \ |
| int8_t tmp; \ |
| tmp = (int8_t)src2; \ |
| if (tmp >= (ssize_t)sizeof(src1) * 8 || \ |
| tmp < -(ssize_t)sizeof(src1) * 8) { \ |
| dest = 0; \ |
| } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \ |
| dest = src1 >> (-tmp - 1); \ |
| } else if (tmp < 0) { \ |
| dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \ |
| } else { \ |
| dest = src1 << tmp; \ |
| }} while (0) |
| NEON_VOP(rshl_u8, neon_u8, 4) |
| NEON_VOP(rshl_u16, neon_u16, 2) |
| #undef NEON_FN |
| |
| /* The addition of the rounding constant may overflow, so we use an |
| * intermediate 64 bit accumulator. */ |
| uint32_t HELPER(neon_rshl_u32)(uint32_t val, uint32_t shiftop) |
| { |
| uint32_t dest; |
| int8_t shift = (int8_t)shiftop; |
| if (shift >= 32 || shift < -32) { |
| dest = 0; |
| } else if (shift == -32) { |
| dest = val >> 31; |
| } else if (shift < 0) { |
| uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift))); |
| dest = big_dest >> -shift; |
| } else { |
| dest = val << shift; |
| } |
| return dest; |
| } |
| |
| /* Handling addition overflow with 64 bit input values is more |
| * tricky than with 32 bit values. */ |
| uint64_t HELPER(neon_rshl_u64)(uint64_t val, uint64_t shiftop) |
| { |
| int8_t shift = (uint8_t)shiftop; |
| if (shift >= 64 || shift < -64) { |
| val = 0; |
| } else if (shift == -64) { |
| /* Rounding a 1-bit result just preserves that bit. */ |
| val >>= 63; |
| } else if (shift < 0) { |
| val >>= (-shift - 1); |
| if (val == UINT64_MAX) { |
| /* In this case, it means that the rounding constant is 1, |
| * and the addition would overflow. Return the actual |
| * result directly. */ |
| val = 0x8000000000000000ULL; |
| } else { |
| val++; |
| val >>= 1; |
| } |
| } else { |
| val <<= shift; |
| } |
| return val; |
| } |
| |
| #define NEON_FN(dest, src1, src2) do { \ |
| int8_t tmp; \ |
| tmp = (int8_t)src2; \ |
| if (tmp >= (ssize_t)sizeof(src1) * 8) { \ |
| if (src1) { \ |
| SET_QC(); \ |
| dest = ~0; \ |
| } else { \ |
| dest = 0; \ |
| } \ |
| } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \ |
| dest = 0; \ |
| } else if (tmp < 0) { \ |
| dest = src1 >> -tmp; \ |
| } else { \ |
| dest = src1 << tmp; \ |
| if ((dest >> tmp) != src1) { \ |
| SET_QC(); \ |
| dest = ~0; \ |
| } \ |
| }} while (0) |
| NEON_VOP_ENV(qshl_u8, neon_u8, 4) |
| NEON_VOP_ENV(qshl_u16, neon_u16, 2) |
| NEON_VOP_ENV(qshl_u32, neon_u32, 1) |
| #undef NEON_FN |
| |
| uint64_t HELPER(neon_qshl_u64)(CPUARMState *env, uint64_t val, uint64_t shiftop) |
| { |
| int8_t shift = (int8_t)shiftop; |
| if (shift >= 64) { |
| if (val) { |
| val = ~(uint64_t)0; |
| SET_QC(); |
| } |
| } else if (shift <= -64) { |
| val = 0; |
| } else if (shift < 0) { |
| val >>= -shift; |
| } else { |
| uint64_t tmp = val; |
| val <<= shift; |
| if ((val >> shift) != tmp) { |
| SET_QC(); |
| val = ~(uint64_t)0; |
| } |
| } |
| return val; |
| } |
| |
| #define NEON_FN(dest, src1, src2) do { \ |
| int8_t tmp; \ |
| tmp = (int8_t)src2; \ |
| if (tmp >= (ssize_t)sizeof(src1) * 8) { \ |
| if (src1) { \ |
| SET_QC(); \ |
| dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \ |
| if (src1 > 0) { \ |
| dest--; \ |
| } \ |
| } else { \ |
| dest = src1; \ |
| } \ |
| } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \ |
| dest = src1 >> 31; \ |
| } else if (tmp < 0) { \ |
| dest = src1 >> -tmp; \ |
| } else { \ |
| dest = src1 << tmp; \ |
| if ((dest >> tmp) != src1) { \ |
| SET_QC(); \ |
| dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \ |
| if (src1 > 0) { \ |
| dest--; \ |
| } \ |
| } \ |
| }} while (0) |
| NEON_VOP_ENV(qshl_s8, neon_s8, 4) |
| NEON_VOP_ENV(qshl_s16, neon_s16, 2) |
| NEON_VOP_ENV(qshl_s32, neon_s32, 1) |
| #undef NEON_FN |
| |
| uint64_t HELPER(neon_qshl_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop) |
| { |
| int8_t shift = (uint8_t)shiftop; |
| int64_t val = valop; |
| if (shift >= 64) { |
| if (val) { |
| SET_QC(); |
| val = (val >> 63) ^ ~SIGNBIT64; |
| } |
| } else if (shift <= -64) { |
| val >>= 63; |
| } else if (shift < 0) { |
| val >>= -shift; |
| } else { |
| int64_t tmp = val; |
| val <<= shift; |
| if ((val >> shift) != tmp) { |
| SET_QC(); |
| val = (tmp >> 63) ^ ~SIGNBIT64; |
| } |
| } |
| return val; |
| } |
| |
| #define NEON_FN(dest, src1, src2) do { \ |
| if (src1 & (1 << (sizeof(src1) * 8 - 1))) { \ |
| SET_QC(); \ |
| dest = 0; \ |
| } else { \ |
| int8_t tmp; \ |
| tmp = (int8_t)src2; \ |
| if (tmp >= (ssize_t)sizeof(src1) * 8) { \ |
| if (src1) { \ |
| SET_QC(); \ |
| dest = ~0; \ |
| } else { \ |
| dest = 0; \ |
| } \ |
| } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \ |
| dest = 0; \ |
| } else if (tmp < 0) { \ |
| dest = src1 >> -tmp; \ |
| } else { \ |
| dest = src1 << tmp; \ |
| if ((dest >> tmp) != src1) { \ |
| SET_QC(); \ |
| dest = ~0; \ |
| } \ |
| } \ |
| }} while (0) |
| NEON_VOP_ENV(qshlu_s8, neon_u8, 4) |
| NEON_VOP_ENV(qshlu_s16, neon_u16, 2) |
| #undef NEON_FN |
| |
| uint32_t HELPER(neon_qshlu_s32)(CPUARMState *env, uint32_t valop, uint32_t shiftop) |
| { |
| if ((int32_t)valop < 0) { |
| SET_QC(); |
| return 0; |
| } |
| return helper_neon_qshl_u32(env, valop, shiftop); |
| } |
| |
| uint64_t HELPER(neon_qshlu_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop) |
| { |
| if ((int64_t)valop < 0) { |
| SET_QC(); |
| return 0; |
| } |
| return helper_neon_qshl_u64(env, valop, shiftop); |
| } |
| |
| #define NEON_FN(dest, src1, src2) do { \ |
| int8_t tmp; \ |
| tmp = (int8_t)src2; \ |
| if (tmp >= (ssize_t)sizeof(src1) * 8) { \ |
| if (src1) { \ |
| SET_QC(); \ |
| dest = ~0; \ |
| } else { \ |
| dest = 0; \ |
| } \ |
| } else if (tmp < -(ssize_t)sizeof(src1) * 8) { \ |
| dest = 0; \ |
| } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \ |
| dest = src1 >> (sizeof(src1) * 8 - 1); \ |
| } else if (tmp < 0) { \ |
| dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \ |
| } else { \ |
| dest = src1 << tmp; \ |
| if ((dest >> tmp) != src1) { \ |
| SET_QC(); \ |
| dest = ~0; \ |
| } \ |
| }} while (0) |
| NEON_VOP_ENV(qrshl_u8, neon_u8, 4) |
| NEON_VOP_ENV(qrshl_u16, neon_u16, 2) |
| #undef NEON_FN |
| |
| /* The addition of the rounding constant may overflow, so we use an |
| * intermediate 64 bit accumulator. */ |
| uint32_t HELPER(neon_qrshl_u32)(CPUARMState *env, uint32_t val, uint32_t shiftop) |
| { |
| uint32_t dest; |
| int8_t shift = (int8_t)shiftop; |
| if (shift >= 32) { |
| if (val) { |
| SET_QC(); |
| dest = ~0; |
| } else { |
| dest = 0; |
| } |
| } else if (shift < -32) { |
| dest = 0; |
| } else if (shift == -32) { |
| dest = val >> 31; |
| } else if (shift < 0) { |
| uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift))); |
| dest = big_dest >> -shift; |
| } else { |
| dest = val << shift; |
| if ((dest >> shift) != val) { |
| SET_QC(); |
| dest = ~0; |
| } |
| } |
| return dest; |
| } |
| |
| /* Handling addition overflow with 64 bit input values is more |
| * tricky than with 32 bit values. */ |
| uint64_t HELPER(neon_qrshl_u64)(CPUARMState *env, uint64_t val, uint64_t shiftop) |
| { |
| int8_t shift = (int8_t)shiftop; |
| if (shift >= 64) { |
| if (val) { |
| SET_QC(); |
| val = ~0; |
| } |
| } else if (shift < -64) { |
| val = 0; |
| } else if (shift == -64) { |
| val >>= 63; |
| } else if (shift < 0) { |
| val >>= (-shift - 1); |
| if (val == UINT64_MAX) { |
| /* In this case, it means that the rounding constant is 1, |
| * and the addition would overflow. Return the actual |
| * result directly. */ |
| val = 0x8000000000000000ULL; |
| } else { |
| val++; |
| val >>= 1; |
| } |
| } else { \ |
| uint64_t tmp = val; |
| val <<= shift; |
| if ((val >> shift) != tmp) { |
| SET_QC(); |
| val = ~0; |
| } |
| } |
| return val; |
| } |
| |
| #define NEON_FN(dest, src1, src2) do { \ |
| int8_t tmp; \ |
| tmp = (int8_t)src2; \ |
| if (tmp >= (ssize_t)sizeof(src1) * 8) { \ |
| if (src1) { \ |
| SET_QC(); \ |
| dest = (1 << (sizeof(src1) * 8 - 1)); \ |
| if (src1 > 0) { \ |
| dest--; \ |
| } \ |
| } else { \ |
| dest = 0; \ |
| } \ |
| } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \ |
| dest = 0; \ |
| } else if (tmp < 0) { \ |
| dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \ |
| } else { \ |
| dest = src1 << tmp; \ |
| if ((dest >> tmp) != src1) { \ |
| SET_QC(); \ |
| dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \ |
| if (src1 > 0) { \ |
| dest--; \ |
| } \ |
| } \ |
| }} while (0) |
| NEON_VOP_ENV(qrshl_s8, neon_s8, 4) |
| NEON_VOP_ENV(qrshl_s16, neon_s16, 2) |
| #undef NEON_FN |
| |
| /* The addition of the rounding constant may overflow, so we use an |
| * intermediate 64 bit accumulator. */ |
| uint32_t HELPER(neon_qrshl_s32)(CPUARMState *env, uint32_t valop, uint32_t shiftop) |
| { |
| int32_t dest; |
| int32_t val = (int32_t)valop; |
| int8_t shift = (int8_t)shiftop; |
| if (shift >= 32) { |
| if (val) { |
| SET_QC(); |
| dest = (val >> 31) ^ ~SIGNBIT; |
| } else { |
| dest = 0; |
| } |
| } else if (shift <= -32) { |
| dest = 0; |
| } else if (shift < 0) { |
| int64_t big_dest = ((int64_t)val + (1 << (-1 - shift))); |
| dest = big_dest >> -shift; |
| } else { |
| dest = val << shift; |
| if ((dest >> shift) != val) { |
| SET_QC(); |
| dest = (val >> 31) ^ ~SIGNBIT; |
| } |
| } |
| return dest; |
| } |
| |
| /* Handling addition overflow with 64 bit input values is more |
| * tricky than with 32 bit values. */ |
| uint64_t HELPER(neon_qrshl_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop) |
| { |
| int8_t shift = (uint8_t)shiftop; |
| int64_t val = valop; |
| |
| if (shift >= 64) { |
| if (val) { |
| SET_QC(); |
| val = (val >> 63) ^ ~SIGNBIT64; |
| } |
| } else if (shift <= -64) { |
| val = 0; |
| } else if (shift < 0) { |
| val >>= (-shift - 1); |
| if (val == INT64_MAX) { |
| /* In this case, it means that the rounding constant is 1, |
| * and the addition would overflow. Return the actual |
| * result directly. */ |
| val = 0x4000000000000000ULL; |
| } else { |
| val++; |
| val >>= 1; |
| } |
| } else { |
| int64_t tmp = val; |
| val <<= shift; |
| if ((val >> shift) != tmp) { |
| SET_QC(); |
| val = (tmp >> 63) ^ ~SIGNBIT64; |
| } |
| } |
| return val; |
| } |
| |
| uint32_t HELPER(neon_add_u8)(uint32_t a, uint32_t b) |
| { |
| uint32_t mask; |
| mask = (a ^ b) & 0x80808080u; |
| a &= ~0x80808080u; |
| b &= ~0x80808080u; |
| return (a + b) ^ mask; |
| } |
| |
| uint32_t HELPER(neon_add_u16)(uint32_t a, uint32_t b) |
| { |
| uint32_t mask; |
| mask = (a ^ b) & 0x80008000u; |
| a &= ~0x80008000u; |
| b &= ~0x80008000u; |
| return (a + b) ^ mask; |
| } |
| |
| #define NEON_FN(dest, src1, src2) dest = src1 + src2 |
| NEON_POP(padd_u8, neon_u8, 4) |
| NEON_POP(padd_u16, neon_u16, 2) |
| #undef NEON_FN |
| |
| #define NEON_FN(dest, src1, src2) dest = src1 - src2 |
| NEON_VOP(sub_u8, neon_u8, 4) |
| NEON_VOP(sub_u16, neon_u16, 2) |
| #undef NEON_FN |
| |
| #define NEON_FN(dest, src1, src2) dest = src1 * src2 |
| NEON_VOP(mul_u8, neon_u8, 4) |
| NEON_VOP(mul_u16, neon_u16, 2) |
| #undef NEON_FN |
| |
| /* Polynomial multiplication is like integer multiplication except the |
| partial products are XORed, not added. */ |
| uint32_t HELPER(neon_mul_p8)(uint32_t op1, uint32_t op2) |
| { |
| uint32_t mask; |
| uint32_t result; |
| result = 0; |
| while (op1) { |
| mask = 0; |
| if (op1 & 1) |
| mask |= 0xff; |
| if (op1 & (1 << 8)) |
| mask |= (0xff << 8); |
| if (op1 & (1 << 16)) |
| mask |= (0xff << 16); |
| if (op1 & (1 << 24)) |
| mask |= (0xff << 24); |
| result ^= op2 & mask; |
| op1 = (op1 >> 1) & 0x7f7f7f7f; |
| op2 = (op2 << 1) & 0xfefefefe; |
| } |
| return result; |
| } |
| |
| uint64_t HELPER(neon_mull_p8)(uint32_t op1, uint32_t op2) |
| { |
| uint64_t result = 0; |
| uint64_t mask; |
| uint64_t op2ex = op2; |
| op2ex = (op2ex & 0xff) | |
| ((op2ex & 0xff00) << 8) | |
| ((op2ex & 0xff0000) << 16) | |
| ((op2ex & 0xff000000) << 24); |
| while (op1) { |
| mask = 0; |
| if (op1 & 1) { |
| mask |= 0xffff; |
| } |
| if (op1 & (1 << 8)) { |
| mask |= (0xffffU << 16); |
| } |
| if (op1 & (1 << 16)) { |
| mask |= (0xffffULL << 32); |
| } |
| if (op1 & (1 << 24)) { |
| mask |= (0xffffULL << 48); |
| } |
| result ^= op2ex & mask; |
| op1 = (op1 >> 1) & 0x7f7f7f7f; |
| op2ex <<= 1; |
| } |
| return result; |
| } |
| |
| #define NEON_FN(dest, src1, src2) dest = (src1 & src2) ? -1 : 0 |
| NEON_VOP(tst_u8, neon_u8, 4) |
| NEON_VOP(tst_u16, neon_u16, 2) |
| NEON_VOP(tst_u32, neon_u32, 1) |
| #undef NEON_FN |
| |
| #define NEON_FN(dest, src1, src2) dest = (src1 == src2) ? -1 : 0 |
| NEON_VOP(ceq_u8, neon_u8, 4) |
| NEON_VOP(ceq_u16, neon_u16, 2) |
| NEON_VOP(ceq_u32, neon_u32, 1) |
| #undef NEON_FN |
| |
| #define NEON_FN(dest, src, dummy) dest = (src < 0) ? -src : src |
| NEON_VOP1(abs_s8, neon_s8, 4) |
| NEON_VOP1(abs_s16, neon_s16, 2) |
| #undef NEON_FN |
| |
| /* Count Leading Sign/Zero Bits. */ |
| static inline int do_clz8(uint8_t x) |
| { |
| int n; |
| for (n = 8; x; n--) |
| x >>= 1; |
| return n; |
| } |
| |
| static inline int do_clz16(uint16_t x) |
| { |
| int n; |
| for (n = 16; x; n--) |
| x >>= 1; |
| return n; |
| } |
| |
| #define NEON_FN(dest, src, dummy) dest = do_clz8(src) |
| NEON_VOP1(clz_u8, neon_u8, 4) |
| #undef NEON_FN |
| |
| #define NEON_FN(dest, src, dummy) dest = do_clz16(src) |
| NEON_VOP1(clz_u16, neon_u16, 2) |
| #undef NEON_FN |
| |
| #define NEON_FN(dest, src, dummy) dest = do_clz8((src < 0) ? ~src : src) - 1 |
| NEON_VOP1(cls_s8, neon_s8, 4) |
| #undef NEON_FN |
| |
| #define NEON_FN(dest, src, dummy) dest = do_clz16((src < 0) ? ~src : src) - 1 |
| NEON_VOP1(cls_s16, neon_s16, 2) |
| #undef NEON_FN |
| |
| uint32_t HELPER(neon_cls_s32)(uint32_t x) |
| { |
| int count; |
| if ((int32_t)x < 0) |
| x = ~x; |
| for (count = 32; x; count--) |
| x = x >> 1; |
| return count - 1; |
| } |
| |
| /* Bit count. */ |
| uint32_t HELPER(neon_cnt_u8)(uint32_t x) |
| { |
| x = (x & 0x55555555) + ((x >> 1) & 0x55555555); |
| x = (x & 0x33333333) + ((x >> 2) & 0x33333333); |
| x = (x & 0x0f0f0f0f) + ((x >> 4) & 0x0f0f0f0f); |
| return x; |
| } |
| |
| /* Reverse bits in each 8 bit word */ |
| uint32_t HELPER(neon_rbit_u8)(uint32_t x) |
| { |
| x = ((x & 0xf0f0f0f0) >> 4) |
| | ((x & 0x0f0f0f0f) << 4); |
| x = ((x & 0x88888888) >> 3) |
| | ((x & 0x44444444) >> 1) |
| | ((x & 0x22222222) << 1) |
| | ((x & 0x11111111) << 3); |
| return x; |
| } |
| |
| #define NEON_QDMULH16(dest, src1, src2, round) do { \ |
| uint32_t tmp = (int32_t)(int16_t) src1 * (int16_t) src2; \ |
| if ((tmp ^ (tmp << 1)) & SIGNBIT) { \ |
| SET_QC(); \ |
| tmp = (tmp >> 31) ^ ~SIGNBIT; \ |
| } else { \ |
| tmp <<= 1; \ |
| } \ |
| if (round) { \ |
| int32_t old = tmp; \ |
| tmp += 1 << 15; \ |
| if ((int32_t)tmp < old) { \ |
| SET_QC(); \ |
| tmp = SIGNBIT - 1; \ |
| } \ |
| } \ |
| dest = tmp >> 16; \ |
| } while(0) |
| #define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 0) |
| NEON_VOP_ENV(qdmulh_s16, neon_s16, 2) |
| #undef NEON_FN |
| #define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 1) |
| NEON_VOP_ENV(qrdmulh_s16, neon_s16, 2) |
| #undef NEON_FN |
| #undef NEON_QDMULH16 |
| |
| #define NEON_QDMULH32(dest, src1, src2, round) do { \ |
| uint64_t tmp = (int64_t)(int32_t) src1 * (int32_t) src2; \ |
| if ((tmp ^ (tmp << 1)) & SIGNBIT64) { \ |
| SET_QC(); \ |
| tmp = (tmp >> 63) ^ ~SIGNBIT64; \ |
| } else { \ |
| tmp <<= 1; \ |
| } \ |
| if (round) { \ |
| int64_t old = tmp; \ |
| tmp += (int64_t)1 << 31; \ |
| if ((int64_t)tmp < old) { \ |
| SET_QC(); \ |
| tmp = SIGNBIT64 - 1; \ |
| } \ |
| } \ |
| dest = tmp >> 32; \ |
| } while(0) |
| #define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 0) |
| NEON_VOP_ENV(qdmulh_s32, neon_s32, 1) |
| #undef NEON_FN |
| #define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 1) |
| NEON_VOP_ENV(qrdmulh_s32, neon_s32, 1) |
| #undef NEON_FN |
| #undef NEON_QDMULH32 |
| |
| uint32_t HELPER(neon_narrow_u8)(uint64_t x) |
| { |
| return (x & 0xffu) | ((x >> 8) & 0xff00u) | ((x >> 16) & 0xff0000u) |
| | ((x >> 24) & 0xff000000u); |
| } |
| |
| uint32_t HELPER(neon_narrow_u16)(uint64_t x) |
| { |
| return (x & 0xffffu) | ((x >> 16) & 0xffff0000u); |
| } |
| |
| uint32_t HELPER(neon_narrow_high_u8)(uint64_t x) |
| { |
| return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00) |
| | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000); |
| } |
| |
| uint32_t HELPER(neon_narrow_high_u16)(uint64_t x) |
| { |
| return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000); |
| } |
| |
| uint32_t HELPER(neon_narrow_round_high_u8)(uint64_t x) |
| { |
| x &= 0xff80ff80ff80ff80ull; |
| x += 0x0080008000800080ull; |
| return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00) |
| | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000); |
| } |
| |
| uint32_t HELPER(neon_narrow_round_high_u16)(uint64_t x) |
| { |
| x &= 0xffff8000ffff8000ull; |
| x += 0x0000800000008000ull; |
| return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000); |
| } |
| |
| uint32_t HELPER(neon_unarrow_sat8)(CPUARMState *env, uint64_t x) |
| { |
| uint16_t s; |
| uint8_t d; |
| uint32_t res = 0; |
| #define SAT8(n) \ |
| s = x >> n; \ |
| if (s & 0x8000) { \ |
| SET_QC(); \ |
| } else { \ |
| if (s > 0xff) { \ |
| d = 0xff; \ |
| SET_QC(); \ |
| } else { \ |
| d = s; \ |
| } \ |
| res |= (uint32_t)d << (n / 2); \ |
| } |
| |
| SAT8(0); |
| SAT8(16); |
| SAT8(32); |
| SAT8(48); |
| #undef SAT8 |
| return res; |
| } |
| |
| uint32_t HELPER(neon_narrow_sat_u8)(CPUARMState *env, uint64_t x) |
| { |
| uint16_t s; |
| uint8_t d; |
| uint32_t res = 0; |
| #define SAT8(n) \ |
| s = x >> n; \ |
| if (s > 0xff) { \ |
| d = 0xff; \ |
| SET_QC(); \ |
| } else { \ |
| d = s; \ |
| } \ |
| res |= (uint32_t)d << (n / 2); |
| |
| SAT8(0); |
| SAT8(16); |
| SAT8(32); |
| SAT8(48); |
| #undef SAT8 |
| return res; |
| } |
| |
| uint32_t HELPER(neon_narrow_sat_s8)(CPUARMState *env, uint64_t x) |
| { |
| int16_t s; |
| uint8_t d; |
| uint32_t res = 0; |
| #define SAT8(n) \ |
| s = x >> n; \ |
| if (s != (int8_t)s) { \ |
| d = (s >> 15) ^ 0x7f; \ |
| SET_QC(); \ |
| } else { \ |
| d = s; \ |
| } \ |
| res |= (uint32_t)d << (n / 2); |
| |
| SAT8(0); |
| SAT8(16); |
| SAT8(32); |
| SAT8(48); |
| #undef SAT8 |
| return res; |
| } |
| |
| uint32_t HELPER(neon_unarrow_sat16)(CPUARMState *env, uint64_t x) |
| { |
| uint32_t high; |
| uint32_t low; |
| low = x; |
| if (low & 0x80000000) { |
| low = 0; |
| SET_QC(); |
| } else if (low > 0xffff) { |
| low = 0xffff; |
| SET_QC(); |
| } |
| high = x >> 32; |
| if (high & 0x80000000) { |
| high = 0; |
| SET_QC(); |
| } else if (high > 0xffff) { |
| high = 0xffff; |
| SET_QC(); |
| } |
| return low | (high << 16); |
| } |
| |
| uint32_t HELPER(neon_narrow_sat_u16)(CPUARMState *env, uint64_t x) |
| { |
| uint32_t high; |
| uint32_t low; |
| low = x; |
| if (low > 0xffff) { |
| low = 0xffff; |
| SET_QC(); |
| } |
| high = x >> 32; |
| if (high > 0xffff) { |
| high = 0xffff; |
| SET_QC(); |
| } |
| return low | (high << 16); |
| } |
| |
| uint32_t HELPER(neon_narrow_sat_s16)(CPUARMState *env, uint64_t x) |
| { |
| int32_t low; |
| int32_t high; |
| low = x; |
| if (low != (int16_t)low) { |
| low = (low >> 31) ^ 0x7fff; |
| SET_QC(); |
| } |
| high = x >> 32; |
| if (high != (int16_t)high) { |
| high = (high >> 31) ^ 0x7fff; |
| SET_QC(); |
| } |
| return (uint16_t)low | (high << 16); |
| } |
| |
| uint32_t HELPER(neon_unarrow_sat32)(CPUARMState *env, uint64_t x) |
| { |
| if (x & 0x8000000000000000ull) { |
| SET_QC(); |
| return 0; |
| } |
| if (x > 0xffffffffu) { |
| SET_QC(); |
| return 0xffffffffu; |
| } |
| return x; |
| } |
| |
| uint32_t HELPER(neon_narrow_sat_u32)(CPUARMState *env, uint64_t x) |
| { |
| if (x > 0xffffffffu) { |
| SET_QC(); |
| return 0xffffffffu; |
| } |
| return x; |
| } |
| |
| uint32_t HELPER(neon_narrow_sat_s32)(CPUARMState *env, uint64_t x) |
| { |
| if ((int64_t)x != (int32_t)x) { |
| SET_QC(); |
| return ((int64_t)x >> 63) ^ 0x7fffffff; |
| } |
| return x; |
| } |
| |
| uint64_t HELPER(neon_widen_u8)(uint32_t x) |
| { |
| uint64_t tmp; |
| uint64_t ret; |
| ret = (uint8_t)x; |
| tmp = (uint8_t)(x >> 8); |
| ret |= tmp << 16; |
| tmp = (uint8_t)(x >> 16); |
| ret |= tmp << 32; |
| tmp = (uint8_t)(x >> 24); |
| ret |= tmp << 48; |
| return ret; |
| } |
| |
| uint64_t HELPER(neon_widen_s8)(uint32_t x) |
| { |
| uint64_t tmp; |
| uint64_t ret; |
| ret = (uint16_t)(int8_t)x; |
| tmp = (uint16_t)(int8_t)(x >> 8); |
| ret |= tmp << 16; |
| tmp = (uint16_t)(int8_t)(x >> 16); |
| ret |= tmp << 32; |
| tmp = (uint16_t)(int8_t)(x >> 24); |
| ret |= tmp << 48; |
| return ret; |
| } |
| |
| uint64_t HELPER(neon_widen_u16)(uint32_t x) |
| { |
| uint64_t high = (uint16_t)(x >> 16); |
| return ((uint16_t)x) | (high << 32); |
| } |
| |
| uint64_t HELPER(neon_widen_s16)(uint32_t x) |
| { |
| uint64_t high = (int16_t)(x >> 16); |
| return ((uint32_t)(int16_t)x) | (high << 32); |
| } |
| |
| uint64_t HELPER(neon_addl_u16)(uint64_t a, uint64_t b) |
| { |
| uint64_t mask; |
| mask = (a ^ b) & 0x8000800080008000ull; |
| a &= ~0x8000800080008000ull; |
| b &= ~0x8000800080008000ull; |
| return (a + b) ^ mask; |
| } |
| |
| uint64_t HELPER(neon_addl_u32)(uint64_t a, uint64_t b) |
| { |
| uint64_t mask; |
| mask = (a ^ b) & 0x8000000080000000ull; |
| a &= ~0x8000000080000000ull; |
| b &= ~0x8000000080000000ull; |
| return (a + b) ^ mask; |
| } |
| |
| uint64_t HELPER(neon_paddl_u16)(uint64_t a, uint64_t b) |
| { |
| uint64_t tmp; |
| uint64_t tmp2; |
| |
| tmp = a & 0x0000ffff0000ffffull; |
| tmp += (a >> 16) & 0x0000ffff0000ffffull; |
| tmp2 = b & 0xffff0000ffff0000ull; |
| tmp2 += (b << 16) & 0xffff0000ffff0000ull; |
| return ( tmp & 0xffff) |
| | ((tmp >> 16) & 0xffff0000ull) |
| | ((tmp2 << 16) & 0xffff00000000ull) |
| | ( tmp2 & 0xffff000000000000ull); |
| } |
| |
| uint64_t HELPER(neon_paddl_u32)(uint64_t a, uint64_t b) |
| { |
| uint32_t low = a + (a >> 32); |
| uint32_t high = b + (b >> 32); |
| return low + ((uint64_t)high << 32); |
| } |
| |
| uint64_t HELPER(neon_subl_u16)(uint64_t a, uint64_t b) |
| { |
| uint64_t mask; |
| mask = (a ^ ~b) & 0x8000800080008000ull; |
| a |= 0x8000800080008000ull; |
| b &= ~0x8000800080008000ull; |
| return (a - b) ^ mask; |
| } |
| |
| uint64_t HELPER(neon_subl_u32)(uint64_t a, uint64_t b) |
| { |
| uint64_t mask; |
| mask = (a ^ ~b) & 0x8000000080000000ull; |
| a |= 0x8000000080000000ull; |
| b &= ~0x8000000080000000ull; |
| return (a - b) ^ mask; |
| } |
| |
| uint64_t HELPER(neon_addl_saturate_s32)(CPUARMState *env, uint64_t a, uint64_t b) |
| { |
| uint32_t x, y; |
| uint32_t low, high; |
| |
| x = a; |
| y = b; |
| low = x + y; |
| if (((low ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) { |
| SET_QC(); |
| low = ((int32_t)x >> 31) ^ ~SIGNBIT; |
| } |
| x = a >> 32; |
| y = b >> 32; |
| high = x + y; |
| if (((high ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) { |
| SET_QC(); |
| high = ((int32_t)x >> 31) ^ ~SIGNBIT; |
| } |
| return low | ((uint64_t)high << 32); |
| } |
| |
| uint64_t HELPER(neon_addl_saturate_s64)(CPUARMState *env, uint64_t a, uint64_t b) |
| { |
| uint64_t result; |
| |
| result = a + b; |
| if (((result ^ a) & SIGNBIT64) && !((a ^ b) & SIGNBIT64)) { |
| SET_QC(); |
| result = ((int64_t)a >> 63) ^ ~SIGNBIT64; |
| } |
| return result; |
| } |
| |
| /* We have to do the arithmetic in a larger type than |
| * the input type, because for example with a signed 32 bit |
| * op the absolute difference can overflow a signed 32 bit value. |
| */ |
| #define DO_ABD(dest, x, y, intype, arithtype) do { \ |
| arithtype tmp_x = (intype)(x); \ |
| arithtype tmp_y = (intype)(y); \ |
| dest = ((tmp_x > tmp_y) ? tmp_x - tmp_y : tmp_y - tmp_x); \ |
| } while(0) |
| |
| uint64_t HELPER(neon_abdl_u16)(uint32_t a, uint32_t b) |
| { |
| uint64_t tmp; |
| uint64_t result; |
| DO_ABD(result, a, b, uint8_t, uint32_t); |
| DO_ABD(tmp, a >> 8, b >> 8, uint8_t, uint32_t); |
| result |= tmp << 16; |
| DO_ABD(tmp, a >> 16, b >> 16, uint8_t, uint32_t); |
| result |= tmp << 32; |
| DO_ABD(tmp, a >> 24, b >> 24, uint8_t, uint32_t); |
| result |= tmp << 48; |
| return result; |
| } |
| |
| uint64_t HELPER(neon_abdl_s16)(uint32_t a, uint32_t b) |
| { |
| uint64_t tmp; |
| uint64_t result; |
| DO_ABD(result, a, b, int8_t, int32_t); |
| DO_ABD(tmp, a >> 8, b >> 8, int8_t, int32_t); |
| result |= tmp << 16; |
| DO_ABD(tmp, a >> 16, b >> 16, int8_t, int32_t); |
| result |= tmp << 32; |
| DO_ABD(tmp, a >> 24, b >> 24, int8_t, int32_t); |
| result |= tmp << 48; |
| return result; |
| } |
| |
| uint64_t HELPER(neon_abdl_u32)(uint32_t a, uint32_t b) |
| { |
| uint64_t tmp; |
| uint64_t result; |
| DO_ABD(result, a, b, uint16_t, uint32_t); |
| DO_ABD(tmp, a >> 16, b >> 16, uint16_t, uint32_t); |
| return result | (tmp << 32); |
| } |
| |
| uint64_t HELPER(neon_abdl_s32)(uint32_t a, uint32_t b) |
| { |
| uint64_t tmp; |
| uint64_t result; |
| DO_ABD(result, a, b, int16_t, int32_t); |
| DO_ABD(tmp, a >> 16, b >> 16, int16_t, int32_t); |
| return result | (tmp << 32); |
| } |
| |
| uint64_t HELPER(neon_abdl_u64)(uint32_t a, uint32_t b) |
| { |
| uint64_t result; |
| DO_ABD(result, a, b, uint32_t, uint64_t); |
| return result; |
| } |
| |
| uint64_t HELPER(neon_abdl_s64)(uint32_t a, uint32_t b) |
| { |
| uint64_t result; |
| DO_ABD(result, a, b, int32_t, int64_t); |
| return result; |
| } |
| #undef DO_ABD |
| |
| /* Widening multiply. Named type is the source type. */ |
| #define DO_MULL(dest, x, y, type1, type2) do { \ |
| type1 tmp_x = x; \ |
| type1 tmp_y = y; \ |
| dest = (type2)((type2)tmp_x * (type2)tmp_y); \ |
| } while(0) |
| |
| uint64_t HELPER(neon_mull_u8)(uint32_t a, uint32_t b) |
| { |
| uint64_t tmp; |
| uint64_t result; |
| |
| DO_MULL(result, a, b, uint8_t, uint16_t); |
| DO_MULL(tmp, a >> 8, b >> 8, uint8_t, uint16_t); |
| result |= tmp << 16; |
| DO_MULL(tmp, a >> 16, b >> 16, uint8_t, uint16_t); |
| result |= tmp << 32; |
| DO_MULL(tmp, a >> 24, b >> 24, uint8_t, uint16_t); |
| result |= tmp << 48; |
| return result; |
| } |
| |
| uint64_t HELPER(neon_mull_s8)(uint32_t a, uint32_t b) |
| { |
| uint64_t tmp; |
| uint64_t result; |
| |
| DO_MULL(result, a, b, int8_t, uint16_t); |
| DO_MULL(tmp, a >> 8, b >> 8, int8_t, uint16_t); |
| result |= tmp << 16; |
| DO_MULL(tmp, a >> 16, b >> 16, int8_t, uint16_t); |
| result |= tmp << 32; |
| DO_MULL(tmp, a >> 24, b >> 24, int8_t, uint16_t); |
| result |= tmp << 48; |
| return result; |
| } |
| |
| uint64_t HELPER(neon_mull_u16)(uint32_t a, uint32_t b) |
| { |
| uint64_t tmp; |
| uint64_t result; |
| |
| DO_MULL(result, a, b, uint16_t, uint32_t); |
| DO_MULL(tmp, a >> 16, b >> 16, uint16_t, uint32_t); |
| return result | (tmp << 32); |
| } |
| |
| uint64_t HELPER(neon_mull_s16)(uint32_t a, uint32_t b) |
| { |
| uint64_t tmp; |
| uint64_t result; |
| |
| DO_MULL(result, a, b, int16_t, uint32_t); |
| DO_MULL(tmp, a >> 16, b >> 16, int16_t, uint32_t); |
| return result | (tmp << 32); |
| } |
| |
| uint64_t HELPER(neon_negl_u16)(uint64_t x) |
| { |
| uint16_t tmp; |
| uint64_t result; |
| result = (uint16_t)-x; |
| tmp = -(x >> 16); |
| result |= (uint64_t)tmp << 16; |
| tmp = -(x >> 32); |
| result |= (uint64_t)tmp << 32; |
| tmp = -(x >> 48); |
| result |= (uint64_t)tmp << 48; |
| return result; |
| } |
| |
| uint64_t HELPER(neon_negl_u32)(uint64_t x) |
| { |
| uint32_t low = -x; |
| uint32_t high = -(x >> 32); |
| return low | ((uint64_t)high << 32); |
| } |
| |
| /* Saturating sign manipulation. */ |
| /* ??? Make these use NEON_VOP1 */ |
| #define DO_QABS8(x) do { \ |
| if (x == (int8_t)0x80) { \ |
| x = 0x7f; \ |
| SET_QC(); \ |
| } else if (x < 0) { \ |
| x = -x; \ |
| }} while (0) |
| uint32_t HELPER(neon_qabs_s8)(CPUARMState *env, uint32_t x) |
| { |
| neon_s8 vec; |
| NEON_UNPACK(neon_s8, vec, x); |
| DO_QABS8(vec.v1); |
| DO_QABS8(vec.v2); |
| DO_QABS8(vec.v3); |
| DO_QABS8(vec.v4); |
| NEON_PACK(neon_s8, x, vec); |
| return x; |
| } |
| #undef DO_QABS8 |
| |
| #define DO_QNEG8(x) do { \ |
| if (x == (int8_t)0x80) { \ |
| x = 0x7f; \ |
| SET_QC(); \ |
| } else { \ |
| x = -x; \ |
| }} while (0) |
| uint32_t HELPER(neon_qneg_s8)(CPUARMState *env, uint32_t x) |
| { |
| neon_s8 vec; |
| NEON_UNPACK(neon_s8, vec, x); |
| DO_QNEG8(vec.v1); |
| DO_QNEG8(vec.v2); |
| DO_QNEG8(vec.v3); |
| DO_QNEG8(vec.v4); |
| NEON_PACK(neon_s8, x, vec); |
| return x; |
| } |
| #undef DO_QNEG8 |
| |
| #define DO_QABS16(x) do { \ |
| if (x == (int16_t)0x8000) { \ |
| x = 0x7fff; \ |
| SET_QC(); \ |
| } else if (x < 0) { \ |
| x = -x; \ |
| }} while (0) |
| uint32_t HELPER(neon_qabs_s16)(CPUARMState *env, uint32_t x) |
| { |
| neon_s16 vec; |
| NEON_UNPACK(neon_s16, vec, x); |
| DO_QABS16(vec.v1); |
| DO_QABS16(vec.v2); |
| NEON_PACK(neon_s16, x, vec); |
| return x; |
| } |
| #undef DO_QABS16 |
| |
| #define DO_QNEG16(x) do { \ |
| if (x == (int16_t)0x8000) { \ |
| x = 0x7fff; \ |
| SET_QC(); \ |
| } else { \ |
| x = -x; \ |
| }} while (0) |
| uint32_t HELPER(neon_qneg_s16)(CPUARMState *env, uint32_t x) |
| { |
| neon_s16 vec; |
| NEON_UNPACK(neon_s16, vec, x); |
| DO_QNEG16(vec.v1); |
| DO_QNEG16(vec.v2); |
| NEON_PACK(neon_s16, x, vec); |
| return x; |
| } |
| #undef DO_QNEG16 |
| |
| uint32_t HELPER(neon_qabs_s32)(CPUARMState *env, uint32_t x) |
| { |
| if (x == SIGNBIT) { |
| SET_QC(); |
| x = ~SIGNBIT; |
| } else if ((int32_t)x < 0) { |
| x = -x; |
| } |
| return x; |
| } |
| |
| uint32_t HELPER(neon_qneg_s32)(CPUARMState *env, uint32_t x) |
| { |
| if (x == SIGNBIT) { |
| SET_QC(); |
| x = ~SIGNBIT; |
| } else { |
| x = -x; |
| } |
| return x; |
| } |
| |
| uint64_t HELPER(neon_qabs_s64)(CPUARMState *env, uint64_t x) |
| { |
| if (x == SIGNBIT64) { |
| SET_QC(); |
| x = ~SIGNBIT64; |
| } else if ((int64_t)x < 0) { |
| x = -x; |
| } |
| return x; |
| } |
| |
| uint64_t HELPER(neon_qneg_s64)(CPUARMState *env, uint64_t x) |
| { |
| if (x == SIGNBIT64) { |
| SET_QC(); |
| x = ~SIGNBIT64; |
| } else { |
| x = -x; |
| } |
| return x; |
| } |
| |
| /* NEON Float helpers. */ |
| uint32_t HELPER(neon_abd_f32)(uint32_t a, uint32_t b, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| float32 f0 = make_float32(a); |
| float32 f1 = make_float32(b); |
| return float32_val(float32_abs(float32_sub(f0, f1, fpst))); |
| } |
| |
| /* Floating point comparisons produce an integer result. |
| * Note that EQ doesn't signal InvalidOp for QNaNs but GE and GT do. |
| * Softfloat routines return 0/1, which we convert to the 0/-1 Neon requires. |
| */ |
| uint32_t HELPER(neon_ceq_f32)(uint32_t a, uint32_t b, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| return -float32_eq_quiet(make_float32(a), make_float32(b), fpst); |
| } |
| |
| uint32_t HELPER(neon_cge_f32)(uint32_t a, uint32_t b, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| return -float32_le(make_float32(b), make_float32(a), fpst); |
| } |
| |
| uint32_t HELPER(neon_cgt_f32)(uint32_t a, uint32_t b, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| return -float32_lt(make_float32(b), make_float32(a), fpst); |
| } |
| |
| uint32_t HELPER(neon_acge_f32)(uint32_t a, uint32_t b, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| float32 f0 = float32_abs(make_float32(a)); |
| float32 f1 = float32_abs(make_float32(b)); |
| return -float32_le(f1, f0, fpst); |
| } |
| |
| uint32_t HELPER(neon_acgt_f32)(uint32_t a, uint32_t b, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| float32 f0 = float32_abs(make_float32(a)); |
| float32 f1 = float32_abs(make_float32(b)); |
| return -float32_lt(f1, f0, fpst); |
| } |
| |
| uint64_t HELPER(neon_acge_f64)(uint64_t a, uint64_t b, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| float64 f0 = float64_abs(make_float64(a)); |
| float64 f1 = float64_abs(make_float64(b)); |
| return -float64_le(f1, f0, fpst); |
| } |
| |
| uint64_t HELPER(neon_acgt_f64)(uint64_t a, uint64_t b, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| float64 f0 = float64_abs(make_float64(a)); |
| float64 f1 = float64_abs(make_float64(b)); |
| return -float64_lt(f1, f0, fpst); |
| } |
| |
| #define ELEM(V, N, SIZE) (((V) >> ((N) * (SIZE))) & ((1ull << (SIZE)) - 1)) |
| |
| void HELPER(neon_qunzip8)(CPUARMState *env, uint32_t rd, uint32_t rm) |
| { |
| uint64_t zm0 = float64_val(env->vfp.regs[rm]); |
| uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]); |
| uint64_t zd0 = float64_val(env->vfp.regs[rd]); |
| uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]); |
| uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zd0, 2, 8) << 8) |
| | (ELEM(zd0, 4, 8) << 16) | (ELEM(zd0, 6, 8) << 24) |
| | (ELEM(zd1, 0, 8) << 32) | (ELEM(zd1, 2, 8) << 40) |
| | (ELEM(zd1, 4, 8) << 48) | (ELEM(zd1, 6, 8) << 56); |
| uint64_t d1 = ELEM(zm0, 0, 8) | (ELEM(zm0, 2, 8) << 8) |
| | (ELEM(zm0, 4, 8) << 16) | (ELEM(zm0, 6, 8) << 24) |
| | (ELEM(zm1, 0, 8) << 32) | (ELEM(zm1, 2, 8) << 40) |
| | (ELEM(zm1, 4, 8) << 48) | (ELEM(zm1, 6, 8) << 56); |
| uint64_t m0 = ELEM(zd0, 1, 8) | (ELEM(zd0, 3, 8) << 8) |
| | (ELEM(zd0, 5, 8) << 16) | (ELEM(zd0, 7, 8) << 24) |
| | (ELEM(zd1, 1, 8) << 32) | (ELEM(zd1, 3, 8) << 40) |
| | (ELEM(zd1, 5, 8) << 48) | (ELEM(zd1, 7, 8) << 56); |
| uint64_t m1 = ELEM(zm0, 1, 8) | (ELEM(zm0, 3, 8) << 8) |
| | (ELEM(zm0, 5, 8) << 16) | (ELEM(zm0, 7, 8) << 24) |
| | (ELEM(zm1, 1, 8) << 32) | (ELEM(zm1, 3, 8) << 40) |
| | (ELEM(zm1, 5, 8) << 48) | (ELEM(zm1, 7, 8) << 56); |
| env->vfp.regs[rm] = make_float64(m0); |
| env->vfp.regs[rm + 1] = make_float64(m1); |
| env->vfp.regs[rd] = make_float64(d0); |
| env->vfp.regs[rd + 1] = make_float64(d1); |
| } |
| |
| void HELPER(neon_qunzip16)(CPUARMState *env, uint32_t rd, uint32_t rm) |
| { |
| uint64_t zm0 = float64_val(env->vfp.regs[rm]); |
| uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]); |
| uint64_t zd0 = float64_val(env->vfp.regs[rd]); |
| uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]); |
| uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zd0, 2, 16) << 16) |
| | (ELEM(zd1, 0, 16) << 32) | (ELEM(zd1, 2, 16) << 48); |
| uint64_t d1 = ELEM(zm0, 0, 16) | (ELEM(zm0, 2, 16) << 16) |
| | (ELEM(zm1, 0, 16) << 32) | (ELEM(zm1, 2, 16) << 48); |
| uint64_t m0 = ELEM(zd0, 1, 16) | (ELEM(zd0, 3, 16) << 16) |
| | (ELEM(zd1, 1, 16) << 32) | (ELEM(zd1, 3, 16) << 48); |
| uint64_t m1 = ELEM(zm0, 1, 16) | (ELEM(zm0, 3, 16) << 16) |
| | (ELEM(zm1, 1, 16) << 32) | (ELEM(zm1, 3, 16) << 48); |
| env->vfp.regs[rm] = make_float64(m0); |
| env->vfp.regs[rm + 1] = make_float64(m1); |
| env->vfp.regs[rd] = make_float64(d0); |
| env->vfp.regs[rd + 1] = make_float64(d1); |
| } |
| |
| void HELPER(neon_qunzip32)(CPUARMState *env, uint32_t rd, uint32_t rm) |
| { |
| uint64_t zm0 = float64_val(env->vfp.regs[rm]); |
| uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]); |
| uint64_t zd0 = float64_val(env->vfp.regs[rd]); |
| uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]); |
| uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zd1, 0, 32) << 32); |
| uint64_t d1 = ELEM(zm0, 0, 32) | (ELEM(zm1, 0, 32) << 32); |
| uint64_t m0 = ELEM(zd0, 1, 32) | (ELEM(zd1, 1, 32) << 32); |
| uint64_t m1 = ELEM(zm0, 1, 32) | (ELEM(zm1, 1, 32) << 32); |
| env->vfp.regs[rm] = make_float64(m0); |
| env->vfp.regs[rm + 1] = make_float64(m1); |
| env->vfp.regs[rd] = make_float64(d0); |
| env->vfp.regs[rd + 1] = make_float64(d1); |
| } |
| |
| void HELPER(neon_unzip8)(CPUARMState *env, uint32_t rd, uint32_t rm) |
| { |
| uint64_t zm = float64_val(env->vfp.regs[rm]); |
| uint64_t zd = float64_val(env->vfp.regs[rd]); |
| uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zd, 2, 8) << 8) |
| | (ELEM(zd, 4, 8) << 16) | (ELEM(zd, 6, 8) << 24) |
| | (ELEM(zm, 0, 8) << 32) | (ELEM(zm, 2, 8) << 40) |
| | (ELEM(zm, 4, 8) << 48) | (ELEM(zm, 6, 8) << 56); |
| uint64_t m0 = ELEM(zd, 1, 8) | (ELEM(zd, 3, 8) << 8) |
| | (ELEM(zd, 5, 8) << 16) | (ELEM(zd, 7, 8) << 24) |
| | (ELEM(zm, 1, 8) << 32) | (ELEM(zm, 3, 8) << 40) |
| | (ELEM(zm, 5, 8) << 48) | (ELEM(zm, 7, 8) << 56); |
| env->vfp.regs[rm] = make_float64(m0); |
| env->vfp.regs[rd] = make_float64(d0); |
| } |
| |
| void HELPER(neon_unzip16)(CPUARMState *env, uint32_t rd, uint32_t rm) |
| { |
| uint64_t zm = float64_val(env->vfp.regs[rm]); |
| uint64_t zd = float64_val(env->vfp.regs[rd]); |
| uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zd, 2, 16) << 16) |
| | (ELEM(zm, 0, 16) << 32) | (ELEM(zm, 2, 16) << 48); |
| uint64_t m0 = ELEM(zd, 1, 16) | (ELEM(zd, 3, 16) << 16) |
| | (ELEM(zm, 1, 16) << 32) | (ELEM(zm, 3, 16) << 48); |
| env->vfp.regs[rm] = make_float64(m0); |
| env->vfp.regs[rd] = make_float64(d0); |
| } |
| |
| void HELPER(neon_qzip8)(CPUARMState *env, uint32_t rd, uint32_t rm) |
| { |
| uint64_t zm0 = float64_val(env->vfp.regs[rm]); |
| uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]); |
| uint64_t zd0 = float64_val(env->vfp.regs[rd]); |
| uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]); |
| uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zm0, 0, 8) << 8) |
| | (ELEM(zd0, 1, 8) << 16) | (ELEM(zm0, 1, 8) << 24) |
| | (ELEM(zd0, 2, 8) << 32) | (ELEM(zm0, 2, 8) << 40) |
| | (ELEM(zd0, 3, 8) << 48) | (ELEM(zm0, 3, 8) << 56); |
| uint64_t d1 = ELEM(zd0, 4, 8) | (ELEM(zm0, 4, 8) << 8) |
| | (ELEM(zd0, 5, 8) << 16) | (ELEM(zm0, 5, 8) << 24) |
| | (ELEM(zd0, 6, 8) << 32) | (ELEM(zm0, 6, 8) << 40) |
| | (ELEM(zd0, 7, 8) << 48) | (ELEM(zm0, 7, 8) << 56); |
| uint64_t m0 = ELEM(zd1, 0, 8) | (ELEM(zm1, 0, 8) << 8) |
| | (ELEM(zd1, 1, 8) << 16) | (ELEM(zm1, 1, 8) << 24) |
| | (ELEM(zd1, 2, 8) << 32) | (ELEM(zm1, 2, 8) << 40) |
| | (ELEM(zd1, 3, 8) << 48) | (ELEM(zm1, 3, 8) << 56); |
| uint64_t m1 = ELEM(zd1, 4, 8) | (ELEM(zm1, 4, 8) << 8) |
| | (ELEM(zd1, 5, 8) << 16) | (ELEM(zm1, 5, 8) << 24) |
| | (ELEM(zd1, 6, 8) << 32) | (ELEM(zm1, 6, 8) << 40) |
| | (ELEM(zd1, 7, 8) << 48) | (ELEM(zm1, 7, 8) << 56); |
| env->vfp.regs[rm] = make_float64(m0); |
| env->vfp.regs[rm + 1] = make_float64(m1); |
| env->vfp.regs[rd] = make_float64(d0); |
| env->vfp.regs[rd + 1] = make_float64(d1); |
| } |
| |
| void HELPER(neon_qzip16)(CPUARMState *env, uint32_t rd, uint32_t rm) |
| { |
| uint64_t zm0 = float64_val(env->vfp.regs[rm]); |
| uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]); |
| uint64_t zd0 = float64_val(env->vfp.regs[rd]); |
| uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]); |
| uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zm0, 0, 16) << 16) |
| | (ELEM(zd0, 1, 16) << 32) | (ELEM(zm0, 1, 16) << 48); |
| uint64_t d1 = ELEM(zd0, 2, 16) | (ELEM(zm0, 2, 16) << 16) |
| | (ELEM(zd0, 3, 16) << 32) | (ELEM(zm0, 3, 16) << 48); |
| uint64_t m0 = ELEM(zd1, 0, 16) | (ELEM(zm1, 0, 16) << 16) |
| | (ELEM(zd1, 1, 16) << 32) | (ELEM(zm1, 1, 16) << 48); |
| uint64_t m1 = ELEM(zd1, 2, 16) | (ELEM(zm1, 2, 16) << 16) |
| | (ELEM(zd1, 3, 16) << 32) | (ELEM(zm1, 3, 16) << 48); |
| env->vfp.regs[rm] = make_float64(m0); |
| env->vfp.regs[rm + 1] = make_float64(m1); |
| env->vfp.regs[rd] = make_float64(d0); |
| env->vfp.regs[rd + 1] = make_float64(d1); |
| } |
| |
| void HELPER(neon_qzip32)(CPUARMState *env, uint32_t rd, uint32_t rm) |
| { |
| uint64_t zm0 = float64_val(env->vfp.regs[rm]); |
| uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]); |
| uint64_t zd0 = float64_val(env->vfp.regs[rd]); |
| uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]); |
| uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zm0, 0, 32) << 32); |
| uint64_t d1 = ELEM(zd0, 1, 32) | (ELEM(zm0, 1, 32) << 32); |
| uint64_t m0 = ELEM(zd1, 0, 32) | (ELEM(zm1, 0, 32) << 32); |
| uint64_t m1 = ELEM(zd1, 1, 32) | (ELEM(zm1, 1, 32) << 32); |
| env->vfp.regs[rm] = make_float64(m0); |
| env->vfp.regs[rm + 1] = make_float64(m1); |
| env->vfp.regs[rd] = make_float64(d0); |
| env->vfp.regs[rd + 1] = make_float64(d1); |
| } |
| |
| void HELPER(neon_zip8)(CPUARMState *env, uint32_t rd, uint32_t rm) |
| { |
| uint64_t zm = float64_val(env->vfp.regs[rm]); |
| uint64_t zd = float64_val(env->vfp.regs[rd]); |
| uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zm, 0, 8) << 8) |
| | (ELEM(zd, 1, 8) << 16) | (ELEM(zm, 1, 8) << 24) |
| | (ELEM(zd, 2, 8) << 32) | (ELEM(zm, 2, 8) << 40) |
| | (ELEM(zd, 3, 8) << 48) | (ELEM(zm, 3, 8) << 56); |
| uint64_t m0 = ELEM(zd, 4, 8) | (ELEM(zm, 4, 8) << 8) |
| | (ELEM(zd, 5, 8) << 16) | (ELEM(zm, 5, 8) << 24) |
| | (ELEM(zd, 6, 8) << 32) | (ELEM(zm, 6, 8) << 40) |
| | (ELEM(zd, 7, 8) << 48) | (ELEM(zm, 7, 8) << 56); |
| env->vfp.regs[rm] = make_float64(m0); |
| env->vfp.regs[rd] = make_float64(d0); |
| } |
| |
| void HELPER(neon_zip16)(CPUARMState *env, uint32_t rd, uint32_t rm) |
| { |
| uint64_t zm = float64_val(env->vfp.regs[rm]); |
| uint64_t zd = float64_val(env->vfp.regs[rd]); |
| uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zm, 0, 16) << 16) |
| | (ELEM(zd, 1, 16) << 32) | (ELEM(zm, 1, 16) << 48); |
| uint64_t m0 = ELEM(zd, 2, 16) | (ELEM(zm, 2, 16) << 16) |
| | (ELEM(zd, 3, 16) << 32) | (ELEM(zm, 3, 16) << 48); |
| env->vfp.regs[rm] = make_float64(m0); |
| env->vfp.regs[rd] = make_float64(d0); |
| } |
| |
| /* Helper function for 64 bit polynomial multiply case: |
| * perform PolynomialMult(op1, op2) and return either the top or |
| * bottom half of the 128 bit result. |
| */ |
| uint64_t HELPER(neon_pmull_64_lo)(uint64_t op1, uint64_t op2) |
| { |
| int bitnum; |
| uint64_t res = 0; |
| |
| for (bitnum = 0; bitnum < 64; bitnum++) { |
| if (op1 & (1ULL << bitnum)) { |
| res ^= op2 << bitnum; |
| } |
| } |
| return res; |
| } |
| uint64_t HELPER(neon_pmull_64_hi)(uint64_t op1, uint64_t op2) |
| { |
| int bitnum; |
| uint64_t res = 0; |
| |
| /* bit 0 of op1 can't influence the high 64 bits at all */ |
| for (bitnum = 1; bitnum < 64; bitnum++) { |
| if (op1 & (1ULL << bitnum)) { |
| res ^= op2 >> (64 - bitnum); |
| } |
| } |
| return res; |
| } |