| /* |
| * QEMU S390 bootmap interpreter |
| * |
| * Copyright (c) 2009 Alexander Graf <agraf@suse.de> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or (at |
| * your option) any later version. See the COPYING file in the top-level |
| * directory. |
| */ |
| |
| #include "s390-ccw.h" |
| #include "bootmap.h" |
| #include "virtio.h" |
| |
| #ifdef DEBUG |
| /* #define DEBUG_FALLBACK */ |
| #endif |
| |
| #ifdef DEBUG_FALLBACK |
| #define dputs(txt) \ |
| do { sclp_print("zipl: " txt); } while (0) |
| #else |
| #define dputs(fmt, ...) \ |
| do { } while (0) |
| #endif |
| |
| /* Scratch space */ |
| static uint8_t sec[MAX_SECTOR_SIZE*4] __attribute__((__aligned__(PAGE_SIZE))); |
| |
| typedef struct ResetInfo { |
| uint32_t ipl_mask; |
| uint32_t ipl_addr; |
| uint32_t ipl_continue; |
| } ResetInfo; |
| |
| static ResetInfo save; |
| |
| static void jump_to_IPL_2(void) |
| { |
| ResetInfo *current = 0; |
| |
| void (*ipl)(void) = (void *) (uint64_t) current->ipl_continue; |
| *current = save; |
| ipl(); /* should not return */ |
| } |
| |
| static void jump_to_IPL_code(uint64_t address) |
| { |
| /* store the subsystem information _after_ the bootmap was loaded */ |
| write_subsystem_identification(); |
| /* |
| * The IPL PSW is at address 0. We also must not overwrite the |
| * content of non-BIOS memory after we loaded the guest, so we |
| * save the original content and restore it in jump_to_IPL_2. |
| */ |
| ResetInfo *current = 0; |
| |
| save = *current; |
| current->ipl_addr = (uint32_t) (uint64_t) &jump_to_IPL_2; |
| current->ipl_continue = address & 0x7fffffff; |
| |
| debug_print_int("set IPL addr to", current->ipl_continue); |
| |
| /* Ensure the guest output starts fresh */ |
| sclp_print("\n"); |
| |
| /* |
| * HACK ALERT. |
| * We use the load normal reset to keep r15 unchanged. jump_to_IPL_2 |
| * can then use r15 as its stack pointer. |
| */ |
| asm volatile("lghi 1,1\n\t" |
| "diag 1,1,0x308\n\t" |
| : : : "1", "memory"); |
| panic("\n! IPL returns !\n"); |
| } |
| |
| /*********************************************************************** |
| * IPL an ECKD DASD (CDL or LDL/CMS format) |
| */ |
| |
| static unsigned char _bprs[8*1024]; /* guessed "max" ECKD sector size */ |
| static const int max_bprs_entries = sizeof(_bprs) / sizeof(ExtEckdBlockPtr); |
| |
| static inline void verify_boot_info(BootInfo *bip) |
| { |
| IPL_assert(magic_match(bip->magic, ZIPL_MAGIC), "No zIPL sig in BootInfo"); |
| IPL_assert(bip->version == BOOT_INFO_VERSION, "Wrong zIPL version"); |
| IPL_assert(bip->bp_type == BOOT_INFO_BP_TYPE_IPL, "DASD is not for IPL"); |
| IPL_assert(bip->dev_type == BOOT_INFO_DEV_TYPE_ECKD, "DASD is not ECKD"); |
| IPL_assert(bip->flags == BOOT_INFO_FLAGS_ARCH, "Not for this arch"); |
| IPL_assert(block_size_ok(bip->bp.ipl.bm_ptr.eckd.bptr.size), |
| "Bad block size in zIPL section of the 1st record."); |
| } |
| |
| static block_number_t eckd_block_num(BootMapPointer *p) |
| { |
| const uint64_t sectors = virtio_get_sectors(); |
| const uint64_t heads = virtio_get_heads(); |
| const uint64_t cylinder = p->eckd.cylinder |
| + ((p->eckd.head & 0xfff0) << 12); |
| const uint64_t head = p->eckd.head & 0x000f; |
| const block_number_t block = sectors * heads * cylinder |
| + sectors * head |
| + p->eckd.sector |
| - 1; /* block nr starts with zero */ |
| return block; |
| } |
| |
| static bool eckd_valid_address(BootMapPointer *p) |
| { |
| const uint64_t head = p->eckd.head & 0x000f; |
| |
| if (head >= virtio_get_heads() |
| || p->eckd.sector > virtio_get_sectors() |
| || p->eckd.sector <= 0) { |
| return false; |
| } |
| |
| if (!virtio_guessed_disk_nature() && |
| eckd_block_num(p) >= virtio_get_blocks()) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static block_number_t load_eckd_segments(block_number_t blk, uint64_t *address) |
| { |
| block_number_t block_nr; |
| int j, rc; |
| BootMapPointer *bprs = (void *)_bprs; |
| bool more_data; |
| |
| memset(_bprs, FREE_SPACE_FILLER, sizeof(_bprs)); |
| read_block(blk, bprs, "BPRS read failed"); |
| |
| do { |
| more_data = false; |
| for (j = 0;; j++) { |
| block_nr = eckd_block_num((void *)&(bprs[j].xeckd)); |
| if (is_null_block_number(block_nr)) { /* end of chunk */ |
| break; |
| } |
| |
| /* we need the updated blockno for the next indirect entry |
| * in the chain, but don't want to advance address |
| */ |
| if (j == (max_bprs_entries - 1)) { |
| break; |
| } |
| |
| IPL_assert(block_size_ok(bprs[j].xeckd.bptr.size), |
| "bad chunk block size"); |
| IPL_assert(eckd_valid_address(&bprs[j]), "bad chunk ECKD addr"); |
| |
| if ((bprs[j].xeckd.bptr.count == 0) && unused_space(&(bprs[j+1]), |
| sizeof(EckdBlockPtr))) { |
| /* This is a "continue" pointer. |
| * This ptr should be the last one in the current |
| * script section. |
| * I.e. the next ptr must point to the unused memory area |
| */ |
| memset(_bprs, FREE_SPACE_FILLER, sizeof(_bprs)); |
| read_block(block_nr, bprs, "BPRS continuation read failed"); |
| more_data = true; |
| break; |
| } |
| |
| /* Load (count+1) blocks of code at (block_nr) |
| * to memory (address). |
| */ |
| rc = virtio_read_many(block_nr, (void *)(*address), |
| bprs[j].xeckd.bptr.count+1); |
| IPL_assert(rc == 0, "code chunk read failed"); |
| |
| *address += (bprs[j].xeckd.bptr.count+1) * virtio_get_block_size(); |
| } |
| } while (more_data); |
| return block_nr; |
| } |
| |
| static void run_eckd_boot_script(block_number_t mbr_block_nr) |
| { |
| int i; |
| block_number_t block_nr; |
| uint64_t address; |
| ScsiMbr *scsi_mbr = (void *)sec; |
| BootMapScript *bms = (void *)sec; |
| |
| memset(sec, FREE_SPACE_FILLER, sizeof(sec)); |
| read_block(mbr_block_nr, sec, "Cannot read MBR"); |
| |
| block_nr = eckd_block_num((void *)&(scsi_mbr->blockptr)); |
| |
| memset(sec, FREE_SPACE_FILLER, sizeof(sec)); |
| read_block(block_nr, sec, "Cannot read Boot Map Script"); |
| |
| for (i = 0; bms->entry[i].type == BOOT_SCRIPT_LOAD; i++) { |
| address = bms->entry[i].address.load_address; |
| block_nr = eckd_block_num(&(bms->entry[i].blkptr)); |
| |
| do { |
| block_nr = load_eckd_segments(block_nr, &address); |
| } while (block_nr != -1); |
| } |
| |
| IPL_assert(bms->entry[i].type == BOOT_SCRIPT_EXEC, |
| "Unknown script entry type"); |
| jump_to_IPL_code(bms->entry[i].address.load_address); /* no return */ |
| } |
| |
| static void ipl_eckd_cdl(void) |
| { |
| XEckdMbr *mbr; |
| Ipl2 *ipl2 = (void *)sec; |
| IplVolumeLabel *vlbl = (void *)sec; |
| block_number_t block_nr; |
| |
| /* we have just read the block #0 and recognized it as "IPL1" */ |
| sclp_print("CDL\n"); |
| |
| memset(sec, FREE_SPACE_FILLER, sizeof(sec)); |
| read_block(1, ipl2, "Cannot read IPL2 record at block 1"); |
| |
| mbr = &ipl2->u.x.mbr; |
| IPL_assert(magic_match(mbr, ZIPL_MAGIC), "No zIPL section in IPL2 record."); |
| IPL_assert(block_size_ok(mbr->blockptr.xeckd.bptr.size), |
| "Bad block size in zIPL section of IPL2 record."); |
| IPL_assert(mbr->dev_type == DEV_TYPE_ECKD, |
| "Non-ECKD device type in zIPL section of IPL2 record."); |
| |
| /* save pointer to Boot Script */ |
| block_nr = eckd_block_num((void *)&(mbr->blockptr)); |
| |
| memset(sec, FREE_SPACE_FILLER, sizeof(sec)); |
| read_block(2, vlbl, "Cannot read Volume Label at block 2"); |
| IPL_assert(magic_match(vlbl->key, VOL1_MAGIC), |
| "Invalid magic of volume label block"); |
| IPL_assert(magic_match(vlbl->f.key, VOL1_MAGIC), |
| "Invalid magic of volser block"); |
| print_volser(vlbl->f.volser); |
| |
| run_eckd_boot_script(block_nr); |
| /* no return */ |
| } |
| |
| static void print_eckd_ldl_msg(ECKD_IPL_mode_t mode) |
| { |
| LDL_VTOC *vlbl = (void *)sec; /* already read, 3rd block */ |
| char msg[4] = { '?', '.', '\n', '\0' }; |
| |
| sclp_print((mode == ECKD_CMS) ? "CMS" : "LDL"); |
| sclp_print(" version "); |
| switch (vlbl->LDL_version) { |
| case LDL1_VERSION: |
| msg[0] = '1'; |
| break; |
| case LDL2_VERSION: |
| msg[0] = '2'; |
| break; |
| default: |
| msg[0] = vlbl->LDL_version; |
| msg[0] &= 0x0f; /* convert EBCDIC */ |
| msg[0] |= 0x30; /* to ASCII (digit) */ |
| msg[1] = '?'; |
| break; |
| } |
| sclp_print(msg); |
| print_volser(vlbl->volser); |
| } |
| |
| static void ipl_eckd_ldl(ECKD_IPL_mode_t mode) |
| { |
| block_number_t block_nr; |
| BootInfo *bip = (void *)(sec + 0x70); /* BootInfo is MBR for LDL */ |
| |
| if (mode != ECKD_LDL_UNLABELED) { |
| print_eckd_ldl_msg(mode); |
| } |
| |
| /* DO NOT read BootMap pointer (only one, xECKD) at block #2 */ |
| |
| memset(sec, FREE_SPACE_FILLER, sizeof(sec)); |
| read_block(0, sec, "Cannot read block 0 to grab boot info."); |
| if (mode == ECKD_LDL_UNLABELED) { |
| if (!magic_match(bip->magic, ZIPL_MAGIC)) { |
| return; /* not applicable layout */ |
| } |
| sclp_print("unlabeled LDL.\n"); |
| } |
| verify_boot_info(bip); |
| |
| block_nr = eckd_block_num((void *)&(bip->bp.ipl.bm_ptr.eckd.bptr)); |
| run_eckd_boot_script(block_nr); |
| /* no return */ |
| } |
| |
| static void print_eckd_msg(void) |
| { |
| char msg[] = "Using ECKD scheme (block size *****), "; |
| char *p = &msg[34], *q = &msg[30]; |
| int n = virtio_get_block_size(); |
| |
| /* Fill in the block size and show up the message */ |
| if (n > 0 && n <= 99999) { |
| while (n) { |
| *p-- = '0' + (n % 10); |
| n /= 10; |
| } |
| while (p >= q) { |
| *p-- = ' '; |
| } |
| } |
| sclp_print(msg); |
| } |
| |
| static void ipl_eckd(void) |
| { |
| ScsiMbr *mbr = (void *)sec; |
| LDL_VTOC *vlbl = (void *)sec; |
| |
| print_eckd_msg(); |
| |
| /* Grab the MBR again */ |
| memset(sec, FREE_SPACE_FILLER, sizeof(sec)); |
| read_block(0, mbr, "Cannot read block 0 on DASD"); |
| |
| if (magic_match(mbr->magic, IPL1_MAGIC)) { |
| ipl_eckd_cdl(); /* no return */ |
| } |
| |
| /* LDL/CMS? */ |
| memset(sec, FREE_SPACE_FILLER, sizeof(sec)); |
| read_block(2, vlbl, "Cannot read block 2"); |
| |
| if (magic_match(vlbl->magic, CMS1_MAGIC)) { |
| ipl_eckd_ldl(ECKD_CMS); /* no return */ |
| } |
| if (magic_match(vlbl->magic, LNX1_MAGIC)) { |
| ipl_eckd_ldl(ECKD_LDL); /* no return */ |
| } |
| |
| ipl_eckd_ldl(ECKD_LDL_UNLABELED); /* it still may return */ |
| /* |
| * Ok, it is not a LDL by any means. |
| * It still might be a CDL with zero record keys for IPL1 and IPL2 |
| */ |
| ipl_eckd_cdl(); |
| } |
| |
| /*********************************************************************** |
| * IPL a SCSI disk |
| */ |
| |
| static void zipl_load_segment(ComponentEntry *entry) |
| { |
| const int max_entries = (MAX_SECTOR_SIZE / sizeof(ScsiBlockPtr)); |
| ScsiBlockPtr *bprs = (void *)sec; |
| const int bprs_size = sizeof(sec); |
| block_number_t blockno; |
| uint64_t address; |
| int i; |
| char err_msg[] = "zIPL failed to read BPRS at 0xZZZZZZZZZZZZZZZZ"; |
| char *blk_no = &err_msg[30]; /* where to print blockno in (those ZZs) */ |
| |
| blockno = entry->data.blockno; |
| address = entry->load_address; |
| |
| debug_print_int("loading segment at block", blockno); |
| debug_print_int("addr", address); |
| |
| do { |
| memset(bprs, FREE_SPACE_FILLER, bprs_size); |
| fill_hex_val(blk_no, &blockno, sizeof(blockno)); |
| read_block(blockno, bprs, err_msg); |
| |
| for (i = 0;; i++) { |
| uint64_t *cur_desc = (void *)&bprs[i]; |
| |
| blockno = bprs[i].blockno; |
| if (!blockno) { |
| break; |
| } |
| |
| /* we need the updated blockno for the next indirect entry in the |
| chain, but don't want to advance address */ |
| if (i == (max_entries - 1)) { |
| break; |
| } |
| |
| if (bprs[i].blockct == 0 && unused_space(&bprs[i + 1], |
| sizeof(ScsiBlockPtr))) { |
| /* This is a "continue" pointer. |
| * This ptr is the last one in the current script section. |
| * I.e. the next ptr must point to the unused memory area. |
| * The blockno is not zero, so the upper loop must continue |
| * reading next section of BPRS. |
| */ |
| break; |
| } |
| address = virtio_load_direct(cur_desc[0], cur_desc[1], 0, |
| (void *)address); |
| IPL_assert(address != -1, "zIPL load segment failed"); |
| } |
| } while (blockno); |
| } |
| |
| /* Run a zipl program */ |
| static void zipl_run(ScsiBlockPtr *pte) |
| { |
| ComponentHeader *header; |
| ComponentEntry *entry; |
| uint8_t tmp_sec[MAX_SECTOR_SIZE]; |
| |
| read_block(pte->blockno, tmp_sec, "Cannot read header"); |
| header = (ComponentHeader *)tmp_sec; |
| |
| IPL_assert(magic_match(tmp_sec, ZIPL_MAGIC), "No zIPL magic in header"); |
| IPL_assert(header->type == ZIPL_COMP_HEADER_IPL, "Bad header type"); |
| |
| dputs("start loading images\n"); |
| |
| /* Load image(s) into RAM */ |
| entry = (ComponentEntry *)(&header[1]); |
| while (entry->component_type == ZIPL_COMP_ENTRY_LOAD) { |
| zipl_load_segment(entry); |
| |
| entry++; |
| |
| IPL_assert((uint8_t *)(&entry[1]) <= (tmp_sec + MAX_SECTOR_SIZE), |
| "Wrong entry value"); |
| } |
| |
| IPL_assert(entry->component_type == ZIPL_COMP_ENTRY_EXEC, "No EXEC entry"); |
| |
| /* should not return */ |
| jump_to_IPL_code(entry->load_address); |
| } |
| |
| static void ipl_scsi(void) |
| { |
| ScsiMbr *mbr = (void *)sec; |
| uint8_t *ns, *ns_end; |
| int program_table_entries = 0; |
| const int pte_len = sizeof(ScsiBlockPtr); |
| ScsiBlockPtr *prog_table_entry; |
| |
| /* Grab the MBR */ |
| memset(sec, FREE_SPACE_FILLER, sizeof(sec)); |
| read_block(0, mbr, "Cannot read block 0"); |
| |
| if (!magic_match(mbr->magic, ZIPL_MAGIC)) { |
| return; |
| } |
| |
| sclp_print("Using SCSI scheme.\n"); |
| debug_print_int("MBR Version", mbr->version_id); |
| IPL_check(mbr->version_id == 1, |
| "Unknown MBR layout version, assuming version 1"); |
| debug_print_int("program table", mbr->blockptr.blockno); |
| IPL_assert(mbr->blockptr.blockno, "No Program Table"); |
| |
| /* Parse the program table */ |
| read_block(mbr->blockptr.blockno, sec, |
| "Error reading Program Table"); |
| |
| IPL_assert(magic_match(sec, ZIPL_MAGIC), "No zIPL magic in PT"); |
| |
| ns_end = sec + virtio_get_block_size(); |
| for (ns = (sec + pte_len); (ns + pte_len) < ns_end; ns += pte_len) { |
| prog_table_entry = (ScsiBlockPtr *)ns; |
| if (!prog_table_entry->blockno) { |
| break; |
| } |
| |
| program_table_entries++; |
| } |
| |
| debug_print_int("program table entries", program_table_entries); |
| |
| IPL_assert(program_table_entries != 0, "Empty Program Table"); |
| |
| /* Run the default entry */ |
| |
| prog_table_entry = (ScsiBlockPtr *)(sec + pte_len); |
| |
| zipl_run(prog_table_entry); /* no return */ |
| } |
| |
| /*********************************************************************** |
| * IPL El Torito ISO9660 image or DVD |
| */ |
| |
| static bool is_iso_bc_entry_compatible(IsoBcSection *s) |
| { |
| uint8_t *magic_sec = (uint8_t *)(sec + ISO_SECTOR_SIZE); |
| |
| if (s->unused || !s->sector_count) { |
| return false; |
| } |
| read_iso_sector(bswap32(s->load_rba), magic_sec, |
| "Failed to read image sector 0"); |
| |
| /* Checking bytes 8 - 32 for S390 Linux magic */ |
| return !_memcmp(magic_sec + 8, linux_s390_magic, 24); |
| } |
| |
| /* Location of the current sector of the directory */ |
| static uint32_t sec_loc[ISO9660_MAX_DIR_DEPTH]; |
| /* Offset in the current sector of the directory */ |
| static uint32_t sec_offset[ISO9660_MAX_DIR_DEPTH]; |
| /* Remained directory space in bytes */ |
| static uint32_t dir_rem[ISO9660_MAX_DIR_DEPTH]; |
| |
| static inline uint32_t iso_get_file_size(uint32_t load_rba) |
| { |
| IsoVolDesc *vd = (IsoVolDesc *)sec; |
| IsoDirHdr *cur_record = &vd->vd.primary.rootdir; |
| uint8_t *temp = sec + ISO_SECTOR_SIZE; |
| int level = 0; |
| |
| read_iso_sector(ISO_PRIMARY_VD_SECTOR, sec, |
| "Failed to read ISO primary descriptor"); |
| sec_loc[0] = iso_733_to_u32(cur_record->ext_loc); |
| dir_rem[0] = 0; |
| sec_offset[0] = 0; |
| |
| while (level >= 0) { |
| IPL_assert(sec_offset[level] <= ISO_SECTOR_SIZE, |
| "Directory tree structure violation"); |
| |
| cur_record = (IsoDirHdr *)(temp + sec_offset[level]); |
| |
| if (sec_offset[level] == 0) { |
| read_iso_sector(sec_loc[level], temp, |
| "Failed to read ISO directory"); |
| if (dir_rem[level] == 0) { |
| /* Skip self and parent records */ |
| dir_rem[level] = iso_733_to_u32(cur_record->data_len) - |
| cur_record->dr_len; |
| sec_offset[level] += cur_record->dr_len; |
| |
| cur_record = (IsoDirHdr *)(temp + sec_offset[level]); |
| dir_rem[level] -= cur_record->dr_len; |
| sec_offset[level] += cur_record->dr_len; |
| continue; |
| } |
| } |
| |
| if (!cur_record->dr_len || sec_offset[level] == ISO_SECTOR_SIZE) { |
| /* Zero-padding and/or the end of current sector */ |
| dir_rem[level] -= ISO_SECTOR_SIZE - sec_offset[level]; |
| sec_offset[level] = 0; |
| sec_loc[level]++; |
| } else { |
| /* The directory record is valid */ |
| if (load_rba == iso_733_to_u32(cur_record->ext_loc)) { |
| return iso_733_to_u32(cur_record->data_len); |
| } |
| |
| dir_rem[level] -= cur_record->dr_len; |
| sec_offset[level] += cur_record->dr_len; |
| |
| if (cur_record->file_flags & 0x2) { |
| /* Subdirectory */ |
| if (level == ISO9660_MAX_DIR_DEPTH - 1) { |
| sclp_print("ISO-9660 directory depth limit exceeded\n"); |
| } else { |
| level++; |
| sec_loc[level] = iso_733_to_u32(cur_record->ext_loc); |
| sec_offset[level] = 0; |
| dir_rem[level] = 0; |
| continue; |
| } |
| } |
| } |
| |
| if (dir_rem[level] == 0) { |
| /* Nothing remaining */ |
| level--; |
| read_iso_sector(sec_loc[level], temp, |
| "Failed to read ISO directory"); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void load_iso_bc_entry(IsoBcSection *load) |
| { |
| IsoBcSection s = *load; |
| /* |
| * According to spec, extent for each file |
| * is padded and ISO_SECTOR_SIZE bytes aligned |
| */ |
| uint32_t blks_to_load = bswap16(s.sector_count) >> ET_SECTOR_SHIFT; |
| uint32_t real_size = iso_get_file_size(bswap32(s.load_rba)); |
| |
| if (real_size) { |
| /* Round up blocks to load */ |
| blks_to_load = (real_size + ISO_SECTOR_SIZE - 1) / ISO_SECTOR_SIZE; |
| sclp_print("ISO boot image size verified\n"); |
| } else { |
| sclp_print("ISO boot image size could not be verified\n"); |
| } |
| |
| read_iso_boot_image(bswap32(s.load_rba), |
| (void *)((uint64_t)bswap16(s.load_segment)), |
| blks_to_load); |
| |
| /* Trying to get PSW at zero address */ |
| if (*((uint64_t *)0) & IPL_PSW_MASK) { |
| jump_to_IPL_code((*((uint64_t *)0)) & 0x7fffffff); |
| } |
| |
| /* Try default linux start address */ |
| jump_to_IPL_code(KERN_IMAGE_START); |
| } |
| |
| static uint32_t find_iso_bc(void) |
| { |
| IsoVolDesc *vd = (IsoVolDesc *)sec; |
| uint32_t block_num = ISO_PRIMARY_VD_SECTOR; |
| |
| if (virtio_read_many(block_num++, sec, 1)) { |
| /* If primary vd cannot be read, there is no boot catalog */ |
| return 0; |
| } |
| |
| while (is_iso_vd_valid(vd) && vd->type != VOL_DESC_TERMINATOR) { |
| if (vd->type == VOL_DESC_TYPE_BOOT) { |
| IsoVdElTorito *et = &vd->vd.boot; |
| |
| if (!_memcmp(&et->el_torito[0], el_torito_magic, 32)) { |
| return bswap32(et->bc_offset); |
| } |
| } |
| read_iso_sector(block_num++, sec, |
| "Failed to read ISO volume descriptor"); |
| } |
| |
| return 0; |
| } |
| |
| static IsoBcSection *find_iso_bc_entry(void) |
| { |
| IsoBcEntry *e = (IsoBcEntry *)sec; |
| uint32_t offset = find_iso_bc(); |
| int i; |
| |
| if (!offset) { |
| return NULL; |
| } |
| |
| read_iso_sector(offset, sec, "Failed to read El Torito boot catalog"); |
| |
| if (!is_iso_bc_valid(e)) { |
| /* The validation entry is mandatory */ |
| panic("No valid boot catalog found!\n"); |
| return NULL; |
| } |
| |
| /* |
| * Each entry has 32 bytes size, so one sector cannot contain > 64 entries. |
| * We consider only boot catalogs with no more than 64 entries. |
| */ |
| for (i = 1; i < ISO_BC_ENTRY_PER_SECTOR; i++) { |
| if (e[i].id == ISO_BC_BOOTABLE_SECTION) { |
| if (is_iso_bc_entry_compatible(&e[i].body.sect)) { |
| return &e[i].body.sect; |
| } |
| } |
| } |
| |
| panic("No suitable boot entry found on ISO-9660 media!\n"); |
| |
| return NULL; |
| } |
| |
| static void ipl_iso_el_torito(void) |
| { |
| IsoBcSection *s = find_iso_bc_entry(); |
| |
| if (s) { |
| load_iso_bc_entry(s); |
| /* no return */ |
| } |
| } |
| |
| /*********************************************************************** |
| * Bus specific IPL sequences |
| */ |
| |
| static void zipl_load_vblk(void) |
| { |
| if (virtio_guessed_disk_nature()) { |
| virtio_assume_iso9660(); |
| } |
| ipl_iso_el_torito(); |
| |
| if (virtio_guessed_disk_nature()) { |
| sclp_print("Using guessed DASD geometry.\n"); |
| virtio_assume_eckd(); |
| } |
| ipl_eckd(); |
| } |
| |
| static void zipl_load_vscsi(void) |
| { |
| if (virtio_get_block_size() == VIRTIO_ISO_BLOCK_SIZE) { |
| /* Is it an ISO image in non-CD drive? */ |
| ipl_iso_el_torito(); |
| } |
| |
| sclp_print("Using guessed DASD geometry.\n"); |
| virtio_assume_eckd(); |
| ipl_eckd(); |
| } |
| |
| /*********************************************************************** |
| * IPL starts here |
| */ |
| |
| void zipl_load(void) |
| { |
| VDev *vdev = virtio_get_device(); |
| |
| if (vdev->is_cdrom) { |
| ipl_iso_el_torito(); |
| panic("\n! Cannot IPL this ISO image !\n"); |
| } |
| |
| if (virtio_get_device_type() == VIRTIO_ID_NET) { |
| jump_to_IPL_code(vdev->netboot_start_addr); |
| } |
| |
| ipl_scsi(); |
| |
| switch (virtio_get_device_type()) { |
| case VIRTIO_ID_BLOCK: |
| zipl_load_vblk(); |
| break; |
| case VIRTIO_ID_SCSI: |
| zipl_load_vscsi(); |
| break; |
| default: |
| panic("\n! Unknown IPL device type !\n"); |
| } |
| |
| panic("\n* this can never happen *\n"); |
| } |