|  | /* | 
|  | * QEMU model of the Xilinx Zynq SPI controller | 
|  | * | 
|  | * Copyright (c) 2012 Peter A. G. Crosthwaite | 
|  | * | 
|  | * Permission is hereby granted, free of charge, to any person obtaining a copy | 
|  | * of this software and associated documentation files (the "Software"), to deal | 
|  | * in the Software without restriction, including without limitation the rights | 
|  | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | 
|  | * copies of the Software, and to permit persons to whom the Software is | 
|  | * furnished to do so, subject to the following conditions: | 
|  | * | 
|  | * The above copyright notice and this permission notice shall be included in | 
|  | * all copies or substantial portions of the Software. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
|  | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
|  | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | 
|  | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
|  | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | 
|  | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | 
|  | * THE SOFTWARE. | 
|  | */ | 
|  |  | 
|  | #include "qemu/osdep.h" | 
|  | #include "hw/sysbus.h" | 
|  | #include "hw/irq.h" | 
|  | #include "hw/ptimer.h" | 
|  | #include "hw/qdev-properties.h" | 
|  | #include "qemu/log.h" | 
|  | #include "qemu/module.h" | 
|  | #include "qemu/bitops.h" | 
|  | #include "hw/ssi/xilinx_spips.h" | 
|  | #include "qapi/error.h" | 
|  | #include "hw/register.h" | 
|  | #include "sysemu/dma.h" | 
|  | #include "migration/blocker.h" | 
|  | #include "migration/vmstate.h" | 
|  |  | 
|  | #ifndef XILINX_SPIPS_ERR_DEBUG | 
|  | #define XILINX_SPIPS_ERR_DEBUG 0 | 
|  | #endif | 
|  |  | 
|  | #define DB_PRINT_L(level, ...) do { \ | 
|  | if (XILINX_SPIPS_ERR_DEBUG > (level)) { \ | 
|  | fprintf(stderr,  ": %s: ", __func__); \ | 
|  | fprintf(stderr, ## __VA_ARGS__); \ | 
|  | } \ | 
|  | } while (0) | 
|  |  | 
|  | /* config register */ | 
|  | #define R_CONFIG            (0x00 / 4) | 
|  | #define IFMODE              (1U << 31) | 
|  | #define R_CONFIG_ENDIAN     (1 << 26) | 
|  | #define MODEFAIL_GEN_EN     (1 << 17) | 
|  | #define MAN_START_COM       (1 << 16) | 
|  | #define MAN_START_EN        (1 << 15) | 
|  | #define MANUAL_CS           (1 << 14) | 
|  | #define CS                  (0xF << 10) | 
|  | #define CS_SHIFT            (10) | 
|  | #define PERI_SEL            (1 << 9) | 
|  | #define REF_CLK             (1 << 8) | 
|  | #define FIFO_WIDTH          (3 << 6) | 
|  | #define BAUD_RATE_DIV       (7 << 3) | 
|  | #define CLK_PH              (1 << 2) | 
|  | #define CLK_POL             (1 << 1) | 
|  | #define MODE_SEL            (1 << 0) | 
|  | #define R_CONFIG_RSVD       (0x7bf40000) | 
|  |  | 
|  | /* interrupt mechanism */ | 
|  | #define R_INTR_STATUS       (0x04 / 4) | 
|  | #define R_INTR_STATUS_RESET (0x104) | 
|  | #define R_INTR_EN           (0x08 / 4) | 
|  | #define R_INTR_DIS          (0x0C / 4) | 
|  | #define R_INTR_MASK         (0x10 / 4) | 
|  | #define IXR_TX_FIFO_UNDERFLOW   (1 << 6) | 
|  | /* Poll timeout not implemented */ | 
|  | #define IXR_RX_FIFO_EMPTY       (1 << 11) | 
|  | #define IXR_GENERIC_FIFO_FULL   (1 << 10) | 
|  | #define IXR_GENERIC_FIFO_NOT_FULL (1 << 9) | 
|  | #define IXR_TX_FIFO_EMPTY       (1 << 8) | 
|  | #define IXR_GENERIC_FIFO_EMPTY  (1 << 7) | 
|  | #define IXR_RX_FIFO_FULL        (1 << 5) | 
|  | #define IXR_RX_FIFO_NOT_EMPTY   (1 << 4) | 
|  | #define IXR_TX_FIFO_FULL        (1 << 3) | 
|  | #define IXR_TX_FIFO_NOT_FULL    (1 << 2) | 
|  | #define IXR_TX_FIFO_MODE_FAIL   (1 << 1) | 
|  | #define IXR_RX_FIFO_OVERFLOW    (1 << 0) | 
|  | #define IXR_ALL                 ((1 << 13) - 1) | 
|  | #define GQSPI_IXR_MASK          0xFBE | 
|  | #define IXR_SELF_CLEAR \ | 
|  | (IXR_GENERIC_FIFO_EMPTY \ | 
|  | | IXR_GENERIC_FIFO_FULL  \ | 
|  | | IXR_GENERIC_FIFO_NOT_FULL \ | 
|  | | IXR_TX_FIFO_EMPTY \ | 
|  | | IXR_TX_FIFO_FULL  \ | 
|  | | IXR_TX_FIFO_NOT_FULL \ | 
|  | | IXR_RX_FIFO_EMPTY \ | 
|  | | IXR_RX_FIFO_FULL  \ | 
|  | | IXR_RX_FIFO_NOT_EMPTY) | 
|  |  | 
|  | #define R_EN                (0x14 / 4) | 
|  | #define R_DELAY             (0x18 / 4) | 
|  | #define R_TX_DATA           (0x1C / 4) | 
|  | #define R_RX_DATA           (0x20 / 4) | 
|  | #define R_SLAVE_IDLE_COUNT  (0x24 / 4) | 
|  | #define R_TX_THRES          (0x28 / 4) | 
|  | #define R_RX_THRES          (0x2C / 4) | 
|  | #define R_GPIO              (0x30 / 4) | 
|  | #define R_LPBK_DLY_ADJ      (0x38 / 4) | 
|  | #define R_LPBK_DLY_ADJ_RESET (0x33) | 
|  | #define R_IOU_TAPDLY_BYPASS (0x3C / 4) | 
|  | #define R_TXD1              (0x80 / 4) | 
|  | #define R_TXD2              (0x84 / 4) | 
|  | #define R_TXD3              (0x88 / 4) | 
|  |  | 
|  | #define R_LQSPI_CFG         (0xa0 / 4) | 
|  | #define R_LQSPI_CFG_RESET       0x03A002EB | 
|  | #define LQSPI_CFG_LQ_MODE       (1U << 31) | 
|  | #define LQSPI_CFG_TWO_MEM       (1 << 30) | 
|  | #define LQSPI_CFG_SEP_BUS       (1 << 29) | 
|  | #define LQSPI_CFG_U_PAGE        (1 << 28) | 
|  | #define LQSPI_CFG_ADDR4         (1 << 27) | 
|  | #define LQSPI_CFG_MODE_EN       (1 << 25) | 
|  | #define LQSPI_CFG_MODE_WIDTH    8 | 
|  | #define LQSPI_CFG_MODE_SHIFT    16 | 
|  | #define LQSPI_CFG_DUMMY_WIDTH   3 | 
|  | #define LQSPI_CFG_DUMMY_SHIFT   8 | 
|  | #define LQSPI_CFG_INST_CODE     0xFF | 
|  |  | 
|  | #define R_CMND        (0xc0 / 4) | 
|  | #define R_CMND_RXFIFO_DRAIN   (1 << 19) | 
|  | FIELD(CMND, PARTIAL_BYTE_LEN, 16, 3) | 
|  | #define R_CMND_EXT_ADD        (1 << 15) | 
|  | FIELD(CMND, RX_DISCARD, 8, 7) | 
|  | FIELD(CMND, DUMMY_CYCLES, 2, 6) | 
|  | #define R_CMND_DMA_EN         (1 << 1) | 
|  | #define R_CMND_PUSH_WAIT      (1 << 0) | 
|  | #define R_TRANSFER_SIZE     (0xc4 / 4) | 
|  | #define R_LQSPI_STS         (0xA4 / 4) | 
|  | #define LQSPI_STS_WR_RECVD      (1 << 1) | 
|  |  | 
|  | #define R_DUMMY_CYCLE_EN    (0xC8 / 4) | 
|  | #define R_ECO               (0xF8 / 4) | 
|  | #define R_MOD_ID            (0xFC / 4) | 
|  |  | 
|  | #define R_GQSPI_SELECT          (0x144 / 4) | 
|  | FIELD(GQSPI_SELECT, GENERIC_QSPI_EN, 0, 1) | 
|  | #define R_GQSPI_ISR         (0x104 / 4) | 
|  | #define R_GQSPI_IER         (0x108 / 4) | 
|  | #define R_GQSPI_IDR         (0x10c / 4) | 
|  | #define R_GQSPI_IMR         (0x110 / 4) | 
|  | #define R_GQSPI_IMR_RESET   (0xfbe) | 
|  | #define R_GQSPI_TX_THRESH   (0x128 / 4) | 
|  | #define R_GQSPI_RX_THRESH   (0x12c / 4) | 
|  | #define R_GQSPI_GPIO (0x130 / 4) | 
|  | #define R_GQSPI_LPBK_DLY_ADJ (0x138 / 4) | 
|  | #define R_GQSPI_LPBK_DLY_ADJ_RESET (0x33) | 
|  | #define R_GQSPI_CNFG        (0x100 / 4) | 
|  | FIELD(GQSPI_CNFG, MODE_EN, 30, 2) | 
|  | FIELD(GQSPI_CNFG, GEN_FIFO_START_MODE, 29, 1) | 
|  | FIELD(GQSPI_CNFG, GEN_FIFO_START, 28, 1) | 
|  | FIELD(GQSPI_CNFG, ENDIAN, 26, 1) | 
|  | /* Poll timeout not implemented */ | 
|  | FIELD(GQSPI_CNFG, EN_POLL_TIMEOUT, 20, 1) | 
|  | /* QEMU doesn't care about any of these last three */ | 
|  | FIELD(GQSPI_CNFG, BR, 3, 3) | 
|  | FIELD(GQSPI_CNFG, CPH, 2, 1) | 
|  | FIELD(GQSPI_CNFG, CPL, 1, 1) | 
|  | #define R_GQSPI_GEN_FIFO        (0x140 / 4) | 
|  | #define R_GQSPI_TXD             (0x11c / 4) | 
|  | #define R_GQSPI_RXD             (0x120 / 4) | 
|  | #define R_GQSPI_FIFO_CTRL       (0x14c / 4) | 
|  | FIELD(GQSPI_FIFO_CTRL, RX_FIFO_RESET, 2, 1) | 
|  | FIELD(GQSPI_FIFO_CTRL, TX_FIFO_RESET, 1, 1) | 
|  | FIELD(GQSPI_FIFO_CTRL, GENERIC_FIFO_RESET, 0, 1) | 
|  | #define R_GQSPI_GFIFO_THRESH    (0x150 / 4) | 
|  | #define R_GQSPI_DATA_STS (0x15c / 4) | 
|  | /* | 
|  | * We use the snapshot register to hold the core state for the currently | 
|  | * or most recently executed command. So the generic fifo format is defined | 
|  | * for the snapshot register | 
|  | */ | 
|  | #define R_GQSPI_GF_SNAPSHOT (0x160 / 4) | 
|  | FIELD(GQSPI_GF_SNAPSHOT, POLL, 19, 1) | 
|  | FIELD(GQSPI_GF_SNAPSHOT, STRIPE, 18, 1) | 
|  | FIELD(GQSPI_GF_SNAPSHOT, RECIEVE, 17, 1) | 
|  | FIELD(GQSPI_GF_SNAPSHOT, TRANSMIT, 16, 1) | 
|  | FIELD(GQSPI_GF_SNAPSHOT, DATA_BUS_SELECT, 14, 2) | 
|  | FIELD(GQSPI_GF_SNAPSHOT, CHIP_SELECT, 12, 2) | 
|  | FIELD(GQSPI_GF_SNAPSHOT, SPI_MODE, 10, 2) | 
|  | FIELD(GQSPI_GF_SNAPSHOT, EXPONENT, 9, 1) | 
|  | FIELD(GQSPI_GF_SNAPSHOT, DATA_XFER, 8, 1) | 
|  | FIELD(GQSPI_GF_SNAPSHOT, IMMEDIATE_DATA, 0, 8) | 
|  | #define R_GQSPI_MOD_ID        (0x1fc / 4) | 
|  | #define R_GQSPI_MOD_ID_RESET  (0x10a0000) | 
|  |  | 
|  | /* size of TXRX FIFOs */ | 
|  | #define RXFF_A          (128) | 
|  | #define TXFF_A          (128) | 
|  |  | 
|  | #define RXFF_A_Q          (64 * 4) | 
|  | #define TXFF_A_Q          (64 * 4) | 
|  |  | 
|  | /* 16MB per linear region */ | 
|  | #define LQSPI_ADDRESS_BITS 24 | 
|  |  | 
|  | #define SNOOP_CHECKING 0xFF | 
|  | #define SNOOP_ADDR 0xF0 | 
|  | #define SNOOP_NONE 0xEE | 
|  | #define SNOOP_STRIPING 0 | 
|  |  | 
|  | #define MIN_NUM_BUSSES 1 | 
|  | #define MAX_NUM_BUSSES 2 | 
|  |  | 
|  | static inline int num_effective_busses(XilinxSPIPS *s) | 
|  | { | 
|  | return (s->regs[R_LQSPI_CFG] & LQSPI_CFG_SEP_BUS && | 
|  | s->regs[R_LQSPI_CFG] & LQSPI_CFG_TWO_MEM) ? s->num_busses : 1; | 
|  | } | 
|  |  | 
|  | static void xilinx_spips_update_cs(XilinxSPIPS *s, int field) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < s->num_cs * s->num_busses; i++) { | 
|  | bool old_state = s->cs_lines_state[i]; | 
|  | bool new_state = field & (1 << i); | 
|  |  | 
|  | if (old_state != new_state) { | 
|  | s->cs_lines_state[i] = new_state; | 
|  | s->rx_discard = ARRAY_FIELD_EX32(s->regs, CMND, RX_DISCARD); | 
|  | DB_PRINT_L(1, "%sselecting peripheral %d\n", | 
|  | new_state ? "" : "de", i); | 
|  | } | 
|  | qemu_set_irq(s->cs_lines[i], !new_state); | 
|  | } | 
|  | if (!(field & ((1 << (s->num_cs * s->num_busses)) - 1))) { | 
|  | s->snoop_state = SNOOP_CHECKING; | 
|  | s->cmd_dummies = 0; | 
|  | s->link_state = 1; | 
|  | s->link_state_next = 1; | 
|  | s->link_state_next_when = 0; | 
|  | DB_PRINT_L(1, "moving to snoop check state\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void xlnx_zynqmp_qspips_update_cs_lines(XlnxZynqMPQSPIPS *s) | 
|  | { | 
|  | if (s->regs[R_GQSPI_GF_SNAPSHOT]) { | 
|  | int field = ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, CHIP_SELECT); | 
|  | bool upper_cs_sel = field & (1 << 1); | 
|  | bool lower_cs_sel = field & 1; | 
|  | bool bus0_enabled; | 
|  | bool bus1_enabled; | 
|  | uint8_t buses; | 
|  | int cs = 0; | 
|  |  | 
|  | buses = ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, DATA_BUS_SELECT); | 
|  | bus0_enabled = buses & 1; | 
|  | bus1_enabled = buses & (1 << 1); | 
|  |  | 
|  | if (bus0_enabled && bus1_enabled) { | 
|  | if (lower_cs_sel) { | 
|  | cs |= 1; | 
|  | } | 
|  | if (upper_cs_sel) { | 
|  | cs |= 1 << 3; | 
|  | } | 
|  | } else if (bus0_enabled) { | 
|  | if (lower_cs_sel) { | 
|  | cs |= 1; | 
|  | } | 
|  | if (upper_cs_sel) { | 
|  | cs |= 1 << 1; | 
|  | } | 
|  | } else if (bus1_enabled) { | 
|  | if (lower_cs_sel) { | 
|  | cs |= 1 << 2; | 
|  | } | 
|  | if (upper_cs_sel) { | 
|  | cs |= 1 << 3; | 
|  | } | 
|  | } | 
|  | xilinx_spips_update_cs(XILINX_SPIPS(s), cs); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void xilinx_spips_update_cs_lines(XilinxSPIPS *s) | 
|  | { | 
|  | int field = ~((s->regs[R_CONFIG] & CS) >> CS_SHIFT); | 
|  |  | 
|  | /* In dual parallel, mirror low CS to both */ | 
|  | if (num_effective_busses(s) == 2) { | 
|  | /* Single bit chip-select for qspi */ | 
|  | field &= 0x1; | 
|  | field |= field << 3; | 
|  | /* Dual stack U-Page */ | 
|  | } else if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_TWO_MEM && | 
|  | s->regs[R_LQSPI_STS] & LQSPI_CFG_U_PAGE) { | 
|  | /* Single bit chip-select for qspi */ | 
|  | field &= 0x1; | 
|  | /* change from CS0 to CS1 */ | 
|  | field <<= 1; | 
|  | } | 
|  | /* Auto CS */ | 
|  | if (!(s->regs[R_CONFIG] & MANUAL_CS) && | 
|  | fifo8_is_empty(&s->tx_fifo)) { | 
|  | field = 0; | 
|  | } | 
|  | xilinx_spips_update_cs(s, field); | 
|  | } | 
|  |  | 
|  | static void xilinx_spips_update_ixr(XilinxSPIPS *s) | 
|  | { | 
|  | if (!(s->regs[R_LQSPI_CFG] & LQSPI_CFG_LQ_MODE)) { | 
|  | s->regs[R_INTR_STATUS] &= ~IXR_SELF_CLEAR; | 
|  | s->regs[R_INTR_STATUS] |= | 
|  | (fifo8_is_full(&s->rx_fifo) ? IXR_RX_FIFO_FULL : 0) | | 
|  | (s->rx_fifo.num >= s->regs[R_RX_THRES] ? | 
|  | IXR_RX_FIFO_NOT_EMPTY : 0) | | 
|  | (fifo8_is_full(&s->tx_fifo) ? IXR_TX_FIFO_FULL : 0) | | 
|  | (fifo8_is_empty(&s->tx_fifo) ? IXR_TX_FIFO_EMPTY : 0) | | 
|  | (s->tx_fifo.num < s->regs[R_TX_THRES] ? IXR_TX_FIFO_NOT_FULL : 0); | 
|  | } | 
|  | int new_irqline = !!(s->regs[R_INTR_MASK] & s->regs[R_INTR_STATUS] & | 
|  | IXR_ALL); | 
|  | if (new_irqline != s->irqline) { | 
|  | s->irqline = new_irqline; | 
|  | qemu_set_irq(s->irq, s->irqline); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void xlnx_zynqmp_qspips_update_ixr(XlnxZynqMPQSPIPS *s) | 
|  | { | 
|  | uint32_t gqspi_int; | 
|  | int new_irqline; | 
|  |  | 
|  | s->regs[R_GQSPI_ISR] &= ~IXR_SELF_CLEAR; | 
|  | s->regs[R_GQSPI_ISR] |= | 
|  | (fifo32_is_empty(&s->fifo_g) ? IXR_GENERIC_FIFO_EMPTY : 0) | | 
|  | (fifo32_is_full(&s->fifo_g) ? IXR_GENERIC_FIFO_FULL : 0) | | 
|  | (s->fifo_g.fifo.num < s->regs[R_GQSPI_GFIFO_THRESH] ? | 
|  | IXR_GENERIC_FIFO_NOT_FULL : 0) | | 
|  | (fifo8_is_empty(&s->rx_fifo_g) ? IXR_RX_FIFO_EMPTY : 0) | | 
|  | (fifo8_is_full(&s->rx_fifo_g) ? IXR_RX_FIFO_FULL : 0) | | 
|  | (s->rx_fifo_g.num >= s->regs[R_GQSPI_RX_THRESH] ? | 
|  | IXR_RX_FIFO_NOT_EMPTY : 0) | | 
|  | (fifo8_is_empty(&s->tx_fifo_g) ? IXR_TX_FIFO_EMPTY : 0) | | 
|  | (fifo8_is_full(&s->tx_fifo_g) ? IXR_TX_FIFO_FULL : 0) | | 
|  | (s->tx_fifo_g.num < s->regs[R_GQSPI_TX_THRESH] ? | 
|  | IXR_TX_FIFO_NOT_FULL : 0); | 
|  |  | 
|  | /* GQSPI Interrupt Trigger Status */ | 
|  | gqspi_int = (~s->regs[R_GQSPI_IMR]) & s->regs[R_GQSPI_ISR] & GQSPI_IXR_MASK; | 
|  | new_irqline = !!(gqspi_int & IXR_ALL); | 
|  |  | 
|  | /* drive external interrupt pin */ | 
|  | if (new_irqline != s->gqspi_irqline) { | 
|  | s->gqspi_irqline = new_irqline; | 
|  | qemu_set_irq(XILINX_SPIPS(s)->irq, s->gqspi_irqline); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void xilinx_spips_reset(DeviceState *d) | 
|  | { | 
|  | XilinxSPIPS *s = XILINX_SPIPS(d); | 
|  |  | 
|  | memset(s->regs, 0, sizeof(s->regs)); | 
|  |  | 
|  | fifo8_reset(&s->rx_fifo); | 
|  | fifo8_reset(&s->rx_fifo); | 
|  | /* non zero resets */ | 
|  | s->regs[R_CONFIG] |= MODEFAIL_GEN_EN; | 
|  | s->regs[R_SLAVE_IDLE_COUNT] = 0xFF; | 
|  | s->regs[R_TX_THRES] = 1; | 
|  | s->regs[R_RX_THRES] = 1; | 
|  | /* FIXME: move magic number definition somewhere sensible */ | 
|  | s->regs[R_MOD_ID] = 0x01090106; | 
|  | s->regs[R_LQSPI_CFG] = R_LQSPI_CFG_RESET; | 
|  | s->link_state = 1; | 
|  | s->link_state_next = 1; | 
|  | s->link_state_next_when = 0; | 
|  | s->snoop_state = SNOOP_CHECKING; | 
|  | s->cmd_dummies = 0; | 
|  | s->man_start_com = false; | 
|  | xilinx_spips_update_ixr(s); | 
|  | xilinx_spips_update_cs_lines(s); | 
|  | } | 
|  |  | 
|  | static void xlnx_zynqmp_qspips_reset(DeviceState *d) | 
|  | { | 
|  | XlnxZynqMPQSPIPS *s = XLNX_ZYNQMP_QSPIPS(d); | 
|  |  | 
|  | xilinx_spips_reset(d); | 
|  |  | 
|  | memset(s->regs, 0, sizeof(s->regs)); | 
|  |  | 
|  | fifo8_reset(&s->rx_fifo_g); | 
|  | fifo8_reset(&s->rx_fifo_g); | 
|  | fifo32_reset(&s->fifo_g); | 
|  | s->regs[R_INTR_STATUS] = R_INTR_STATUS_RESET; | 
|  | s->regs[R_GPIO] = 1; | 
|  | s->regs[R_LPBK_DLY_ADJ] = R_LPBK_DLY_ADJ_RESET; | 
|  | s->regs[R_GQSPI_GFIFO_THRESH] = 0x10; | 
|  | s->regs[R_MOD_ID] = 0x01090101; | 
|  | s->regs[R_GQSPI_IMR] = R_GQSPI_IMR_RESET; | 
|  | s->regs[R_GQSPI_TX_THRESH] = 1; | 
|  | s->regs[R_GQSPI_RX_THRESH] = 1; | 
|  | s->regs[R_GQSPI_GPIO] = 1; | 
|  | s->regs[R_GQSPI_LPBK_DLY_ADJ] = R_GQSPI_LPBK_DLY_ADJ_RESET; | 
|  | s->regs[R_GQSPI_MOD_ID] = R_GQSPI_MOD_ID_RESET; | 
|  | s->man_start_com_g = false; | 
|  | s->gqspi_irqline = 0; | 
|  | xlnx_zynqmp_qspips_update_ixr(s); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * N way (num) in place bit striper. Lay out row wise bits (MSB to LSB) | 
|  | * column wise (from element 0 to N-1). num is the length of x, and dir | 
|  | * reverses the direction of the transform. Best illustrated by example: | 
|  | * Each digit in the below array is a single bit (num == 3): | 
|  | * | 
|  | * {{ 76543210, }  ----- stripe (dir == false) -----> {{ 741gdaFC, } | 
|  | *  { hgfedcba, }                                      { 630fcHEB, } | 
|  | *  { HGFEDCBA, }} <---- upstripe (dir == true) -----  { 52hebGDA, }} | 
|  | */ | 
|  |  | 
|  | static inline void stripe8(uint8_t *x, int num, bool dir) | 
|  | { | 
|  | uint8_t r[MAX_NUM_BUSSES]; | 
|  | int idx[2] = {0, 0}; | 
|  | int bit[2] = {0, 7}; | 
|  | int d = dir; | 
|  |  | 
|  | assert(num <= MAX_NUM_BUSSES); | 
|  | memset(r, 0, sizeof(uint8_t) * num); | 
|  |  | 
|  | for (idx[0] = 0; idx[0] < num; ++idx[0]) { | 
|  | for (bit[0] = 7; bit[0] >= 0; bit[0]--) { | 
|  | r[idx[!d]] |= x[idx[d]] & 1 << bit[d] ? 1 << bit[!d] : 0; | 
|  | idx[1] = (idx[1] + 1) % num; | 
|  | if (!idx[1]) { | 
|  | bit[1]--; | 
|  | } | 
|  | } | 
|  | } | 
|  | memcpy(x, r, sizeof(uint8_t) * num); | 
|  | } | 
|  |  | 
|  | static void xlnx_zynqmp_qspips_flush_fifo_g(XlnxZynqMPQSPIPS *s) | 
|  | { | 
|  | while (s->regs[R_GQSPI_DATA_STS] || !fifo32_is_empty(&s->fifo_g)) { | 
|  | uint8_t tx_rx[2] = { 0 }; | 
|  | int num_stripes = 1; | 
|  | uint8_t busses; | 
|  | int i; | 
|  |  | 
|  | if (!s->regs[R_GQSPI_DATA_STS]) { | 
|  | uint8_t imm; | 
|  |  | 
|  | s->regs[R_GQSPI_GF_SNAPSHOT] = fifo32_pop(&s->fifo_g); | 
|  | DB_PRINT_L(0, "GQSPI command: %x\n", s->regs[R_GQSPI_GF_SNAPSHOT]); | 
|  | if (!s->regs[R_GQSPI_GF_SNAPSHOT]) { | 
|  | DB_PRINT_L(0, "Dummy GQSPI Delay Command Entry, Do nothing"); | 
|  | continue; | 
|  | } | 
|  | xlnx_zynqmp_qspips_update_cs_lines(s); | 
|  |  | 
|  | imm = ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, IMMEDIATE_DATA); | 
|  | if (!ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, DATA_XFER)) { | 
|  | /* immediate transfer */ | 
|  | if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, TRANSMIT) || | 
|  | ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, RECIEVE)) { | 
|  | s->regs[R_GQSPI_DATA_STS] = 1; | 
|  | /* CS setup/hold - do nothing */ | 
|  | } else { | 
|  | s->regs[R_GQSPI_DATA_STS] = 0; | 
|  | } | 
|  | } else if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, EXPONENT)) { | 
|  | if (imm > 31) { | 
|  | qemu_log_mask(LOG_UNIMP, "QSPI exponential transfer too" | 
|  | " long - 2 ^ %" PRId8 " requested\n", imm); | 
|  | } | 
|  | s->regs[R_GQSPI_DATA_STS] = 1ul << imm; | 
|  | } else { | 
|  | s->regs[R_GQSPI_DATA_STS] = imm; | 
|  | } | 
|  | } | 
|  | /* Zero length transfer check */ | 
|  | if (!s->regs[R_GQSPI_DATA_STS]) { | 
|  | continue; | 
|  | } | 
|  | if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, RECIEVE) && | 
|  | fifo8_is_full(&s->rx_fifo_g)) { | 
|  | /* No space in RX fifo for transfer - try again later */ | 
|  | return; | 
|  | } | 
|  | if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, STRIPE) && | 
|  | (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, TRANSMIT) || | 
|  | ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, RECIEVE))) { | 
|  | num_stripes = 2; | 
|  | } | 
|  | if (!ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, DATA_XFER)) { | 
|  | tx_rx[0] = ARRAY_FIELD_EX32(s->regs, | 
|  | GQSPI_GF_SNAPSHOT, IMMEDIATE_DATA); | 
|  | } else if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, TRANSMIT)) { | 
|  | for (i = 0; i < num_stripes; ++i) { | 
|  | if (!fifo8_is_empty(&s->tx_fifo_g)) { | 
|  | tx_rx[i] = fifo8_pop(&s->tx_fifo_g); | 
|  | s->tx_fifo_g_align++; | 
|  | } else { | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (num_stripes == 1) { | 
|  | /* mirror */ | 
|  | tx_rx[1] = tx_rx[0]; | 
|  | } | 
|  | busses = ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, DATA_BUS_SELECT); | 
|  | for (i = 0; i < 2; ++i) { | 
|  | DB_PRINT_L(1, "bus %d tx = %02x\n", i, tx_rx[i]); | 
|  | tx_rx[i] = ssi_transfer(XILINX_SPIPS(s)->spi[i], tx_rx[i]); | 
|  | DB_PRINT_L(1, "bus %d rx = %02x\n", i, tx_rx[i]); | 
|  | } | 
|  | if (s->regs[R_GQSPI_DATA_STS] > 1 && | 
|  | busses == 0x3 && num_stripes == 2) { | 
|  | s->regs[R_GQSPI_DATA_STS] -= 2; | 
|  | } else if (s->regs[R_GQSPI_DATA_STS] > 0) { | 
|  | s->regs[R_GQSPI_DATA_STS]--; | 
|  | } | 
|  | if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, RECIEVE)) { | 
|  | for (i = 0; i < 2; ++i) { | 
|  | if (busses & (1 << i)) { | 
|  | DB_PRINT_L(1, "bus %d push_byte = %02x\n", i, tx_rx[i]); | 
|  | fifo8_push(&s->rx_fifo_g, tx_rx[i]); | 
|  | s->rx_fifo_g_align++; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (!s->regs[R_GQSPI_DATA_STS]) { | 
|  | for (; s->tx_fifo_g_align % 4; s->tx_fifo_g_align++) { | 
|  | fifo8_pop(&s->tx_fifo_g); | 
|  | } | 
|  | for (; s->rx_fifo_g_align % 4; s->rx_fifo_g_align++) { | 
|  | fifo8_push(&s->rx_fifo_g, 0); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int xilinx_spips_num_dummies(XilinxQSPIPS *qs, uint8_t command) | 
|  | { | 
|  | if (!qs) { | 
|  | /* The SPI device is not a QSPI device */ | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | switch (command) { /* check for dummies */ | 
|  | case READ: /* no dummy bytes/cycles */ | 
|  | case PP: | 
|  | case DPP: | 
|  | case QPP: | 
|  | case READ_4: | 
|  | case PP_4: | 
|  | case QPP_4: | 
|  | return 0; | 
|  | case FAST_READ: | 
|  | case DOR: | 
|  | case QOR: | 
|  | case FAST_READ_4: | 
|  | case DOR_4: | 
|  | case QOR_4: | 
|  | return 1; | 
|  | case DIOR: | 
|  | case DIOR_4: | 
|  | return 2; | 
|  | case QIOR: | 
|  | case QIOR_4: | 
|  | return 4; | 
|  | default: | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline uint8_t get_addr_length(XilinxSPIPS *s, uint8_t cmd) | 
|  | { | 
|  | switch (cmd) { | 
|  | case PP_4: | 
|  | case QPP_4: | 
|  | case READ_4: | 
|  | case QIOR_4: | 
|  | case FAST_READ_4: | 
|  | case DOR_4: | 
|  | case QOR_4: | 
|  | case DIOR_4: | 
|  | return 4; | 
|  | default: | 
|  | return (s->regs[R_CMND] & R_CMND_EXT_ADD) ? 4 : 3; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void xilinx_spips_flush_txfifo(XilinxSPIPS *s) | 
|  | { | 
|  | int debug_level = 0; | 
|  | XilinxQSPIPS *q = (XilinxQSPIPS *) object_dynamic_cast(OBJECT(s), | 
|  | TYPE_XILINX_QSPIPS); | 
|  |  | 
|  | for (;;) { | 
|  | int i; | 
|  | uint8_t tx = 0; | 
|  | uint8_t tx_rx[MAX_NUM_BUSSES] = { 0 }; | 
|  | uint8_t dummy_cycles = 0; | 
|  | uint8_t addr_length; | 
|  |  | 
|  | if (fifo8_is_empty(&s->tx_fifo)) { | 
|  | xilinx_spips_update_ixr(s); | 
|  | return; | 
|  | } else if (s->snoop_state == SNOOP_STRIPING || | 
|  | s->snoop_state == SNOOP_NONE) { | 
|  | for (i = 0; i < num_effective_busses(s); ++i) { | 
|  | tx_rx[i] = fifo8_pop(&s->tx_fifo); | 
|  | } | 
|  | stripe8(tx_rx, num_effective_busses(s), false); | 
|  | } else if (s->snoop_state >= SNOOP_ADDR) { | 
|  | tx = fifo8_pop(&s->tx_fifo); | 
|  | for (i = 0; i < num_effective_busses(s); ++i) { | 
|  | tx_rx[i] = tx; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * Extract a dummy byte and generate dummy cycles according to the | 
|  | * link state | 
|  | */ | 
|  | tx = fifo8_pop(&s->tx_fifo); | 
|  | dummy_cycles = 8 / s->link_state; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < num_effective_busses(s); ++i) { | 
|  | int bus = num_effective_busses(s) - 1 - i; | 
|  | if (dummy_cycles) { | 
|  | int d; | 
|  | for (d = 0; d < dummy_cycles; ++d) { | 
|  | tx_rx[0] = ssi_transfer(s->spi[bus], (uint32_t)tx_rx[0]); | 
|  | } | 
|  | } else { | 
|  | DB_PRINT_L(debug_level, "tx = %02x\n", tx_rx[i]); | 
|  | tx_rx[i] = ssi_transfer(s->spi[bus], (uint32_t)tx_rx[i]); | 
|  | DB_PRINT_L(debug_level, "rx = %02x\n", tx_rx[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (s->regs[R_CMND] & R_CMND_RXFIFO_DRAIN) { | 
|  | DB_PRINT_L(debug_level, "dircarding drained rx byte\n"); | 
|  | /* Do nothing */ | 
|  | } else if (s->rx_discard) { | 
|  | DB_PRINT_L(debug_level, "dircarding discarded rx byte\n"); | 
|  | s->rx_discard -= 8 / s->link_state; | 
|  | } else if (fifo8_is_full(&s->rx_fifo)) { | 
|  | s->regs[R_INTR_STATUS] |= IXR_RX_FIFO_OVERFLOW; | 
|  | DB_PRINT_L(0, "rx FIFO overflow"); | 
|  | } else if (s->snoop_state == SNOOP_STRIPING) { | 
|  | stripe8(tx_rx, num_effective_busses(s), true); | 
|  | for (i = 0; i < num_effective_busses(s); ++i) { | 
|  | fifo8_push(&s->rx_fifo, (uint8_t)tx_rx[i]); | 
|  | DB_PRINT_L(debug_level, "pushing striped rx byte\n"); | 
|  | } | 
|  | } else { | 
|  | DB_PRINT_L(debug_level, "pushing unstriped rx byte\n"); | 
|  | fifo8_push(&s->rx_fifo, (uint8_t)tx_rx[0]); | 
|  | } | 
|  |  | 
|  | if (s->link_state_next_when) { | 
|  | s->link_state_next_when--; | 
|  | if (!s->link_state_next_when) { | 
|  | s->link_state = s->link_state_next; | 
|  | } | 
|  | } | 
|  |  | 
|  | DB_PRINT_L(debug_level, "initial snoop state: %x\n", | 
|  | (unsigned)s->snoop_state); | 
|  | switch (s->snoop_state) { | 
|  | case (SNOOP_CHECKING): | 
|  | /* Store the count of dummy bytes in the txfifo */ | 
|  | s->cmd_dummies = xilinx_spips_num_dummies(q, tx); | 
|  | addr_length = get_addr_length(s, tx); | 
|  | if (s->cmd_dummies < 0) { | 
|  | s->snoop_state = SNOOP_NONE; | 
|  | } else { | 
|  | s->snoop_state = SNOOP_ADDR + addr_length - 1; | 
|  | } | 
|  | switch (tx) { | 
|  | case DPP: | 
|  | case DOR: | 
|  | case DOR_4: | 
|  | s->link_state_next = 2; | 
|  | s->link_state_next_when = addr_length + s->cmd_dummies; | 
|  | break; | 
|  | case QPP: | 
|  | case QPP_4: | 
|  | case QOR: | 
|  | case QOR_4: | 
|  | s->link_state_next = 4; | 
|  | s->link_state_next_when = addr_length + s->cmd_dummies; | 
|  | break; | 
|  | case DIOR: | 
|  | case DIOR_4: | 
|  | s->link_state = 2; | 
|  | break; | 
|  | case QIOR: | 
|  | case QIOR_4: | 
|  | s->link_state = 4; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case (SNOOP_ADDR): | 
|  | /* | 
|  | * Address has been transmitted, transmit dummy cycles now if needed | 
|  | */ | 
|  | if (s->cmd_dummies < 0) { | 
|  | s->snoop_state = SNOOP_NONE; | 
|  | } else { | 
|  | s->snoop_state = s->cmd_dummies; | 
|  | } | 
|  | break; | 
|  | case (SNOOP_STRIPING): | 
|  | case (SNOOP_NONE): | 
|  | /* Once we hit the boring stuff - squelch debug noise */ | 
|  | if (!debug_level) { | 
|  | DB_PRINT_L(0, "squelching debug info ....\n"); | 
|  | debug_level = 1; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | s->snoop_state--; | 
|  | } | 
|  | DB_PRINT_L(debug_level, "final snoop state: %x\n", | 
|  | (unsigned)s->snoop_state); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void tx_data_bytes(Fifo8 *fifo, uint32_t value, int num, bool be) | 
|  | { | 
|  | int i; | 
|  | for (i = 0; i < num && !fifo8_is_full(fifo); ++i) { | 
|  | if (be) { | 
|  | fifo8_push(fifo, (uint8_t)(value >> 24)); | 
|  | value <<= 8; | 
|  | } else { | 
|  | fifo8_push(fifo, (uint8_t)value); | 
|  | value >>= 8; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void xilinx_spips_check_zero_pump(XilinxSPIPS *s) | 
|  | { | 
|  | if (!s->regs[R_TRANSFER_SIZE]) { | 
|  | return; | 
|  | } | 
|  | if (!fifo8_is_empty(&s->tx_fifo) && s->regs[R_CMND] & R_CMND_PUSH_WAIT) { | 
|  | return; | 
|  | } | 
|  | /* | 
|  | * The zero pump must never fill tx fifo such that rx overflow is | 
|  | * possible | 
|  | */ | 
|  | while (s->regs[R_TRANSFER_SIZE] && | 
|  | s->rx_fifo.num + s->tx_fifo.num < RXFF_A_Q - 3) { | 
|  | /* endianness just doesn't matter when zero pumping */ | 
|  | tx_data_bytes(&s->tx_fifo, 0, 4, false); | 
|  | s->regs[R_TRANSFER_SIZE] &= ~0x03ull; | 
|  | s->regs[R_TRANSFER_SIZE] -= 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void xilinx_spips_check_flush(XilinxSPIPS *s) | 
|  | { | 
|  | if (s->man_start_com || | 
|  | (!fifo8_is_empty(&s->tx_fifo) && | 
|  | !(s->regs[R_CONFIG] & MAN_START_EN))) { | 
|  | xilinx_spips_check_zero_pump(s); | 
|  | xilinx_spips_flush_txfifo(s); | 
|  | } | 
|  | if (fifo8_is_empty(&s->tx_fifo) && !s->regs[R_TRANSFER_SIZE]) { | 
|  | s->man_start_com = false; | 
|  | } | 
|  | xilinx_spips_update_ixr(s); | 
|  | } | 
|  |  | 
|  | static void xlnx_zynqmp_qspips_check_flush(XlnxZynqMPQSPIPS *s) | 
|  | { | 
|  | bool gqspi_has_work = s->regs[R_GQSPI_DATA_STS] || | 
|  | !fifo32_is_empty(&s->fifo_g); | 
|  |  | 
|  | if (ARRAY_FIELD_EX32(s->regs, GQSPI_SELECT, GENERIC_QSPI_EN)) { | 
|  | if (s->man_start_com_g || (gqspi_has_work && | 
|  | !ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, GEN_FIFO_START_MODE))) { | 
|  | xlnx_zynqmp_qspips_flush_fifo_g(s); | 
|  | } | 
|  | } else { | 
|  | xilinx_spips_check_flush(XILINX_SPIPS(s)); | 
|  | } | 
|  | if (!gqspi_has_work) { | 
|  | s->man_start_com_g = false; | 
|  | } | 
|  | xlnx_zynqmp_qspips_update_ixr(s); | 
|  | } | 
|  |  | 
|  | static inline int rx_data_bytes(Fifo8 *fifo, uint8_t *value, int max) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < max && !fifo8_is_empty(fifo); ++i) { | 
|  | value[i] = fifo8_pop(fifo); | 
|  | } | 
|  | return max - i; | 
|  | } | 
|  |  | 
|  | static const void *pop_buf(Fifo8 *fifo, uint32_t max, uint32_t *num) | 
|  | { | 
|  | void *ret; | 
|  |  | 
|  | if (max == 0 || max > fifo->num) { | 
|  | abort(); | 
|  | } | 
|  | *num = MIN(fifo->capacity - fifo->head, max); | 
|  | ret = &fifo->data[fifo->head]; | 
|  | fifo->head += *num; | 
|  | fifo->head %= fifo->capacity; | 
|  | fifo->num -= *num; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void xlnx_zynqmp_qspips_notify(void *opaque) | 
|  | { | 
|  | XlnxZynqMPQSPIPS *rq = XLNX_ZYNQMP_QSPIPS(opaque); | 
|  | XilinxSPIPS *s = XILINX_SPIPS(rq); | 
|  | Fifo8 *recv_fifo; | 
|  |  | 
|  | if (ARRAY_FIELD_EX32(rq->regs, GQSPI_SELECT, GENERIC_QSPI_EN)) { | 
|  | if (!(ARRAY_FIELD_EX32(rq->regs, GQSPI_CNFG, MODE_EN) == 2)) { | 
|  | return; | 
|  | } | 
|  | recv_fifo = &rq->rx_fifo_g; | 
|  | } else { | 
|  | if (!(s->regs[R_CMND] & R_CMND_DMA_EN)) { | 
|  | return; | 
|  | } | 
|  | recv_fifo = &s->rx_fifo; | 
|  | } | 
|  | while (recv_fifo->num >= 4 | 
|  | && stream_can_push(rq->dma, xlnx_zynqmp_qspips_notify, rq)) | 
|  | { | 
|  | size_t ret; | 
|  | uint32_t num; | 
|  | const void *rxd; | 
|  | int len; | 
|  |  | 
|  | len = recv_fifo->num >= rq->dma_burst_size ? rq->dma_burst_size : | 
|  | recv_fifo->num; | 
|  | rxd = pop_buf(recv_fifo, len, &num); | 
|  |  | 
|  | memcpy(rq->dma_buf, rxd, num); | 
|  |  | 
|  | ret = stream_push(rq->dma, rq->dma_buf, num, false); | 
|  | assert(ret == num); | 
|  | xlnx_zynqmp_qspips_check_flush(rq); | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint64_t xilinx_spips_read(void *opaque, hwaddr addr, | 
|  | unsigned size) | 
|  | { | 
|  | XilinxSPIPS *s = opaque; | 
|  | uint32_t mask = ~0; | 
|  | uint32_t ret; | 
|  | uint8_t rx_buf[4]; | 
|  | int shortfall; | 
|  |  | 
|  | addr >>= 2; | 
|  | switch (addr) { | 
|  | case R_CONFIG: | 
|  | mask = ~(R_CONFIG_RSVD | MAN_START_COM); | 
|  | break; | 
|  | case R_INTR_STATUS: | 
|  | ret = s->regs[addr] & IXR_ALL; | 
|  | s->regs[addr] = 0; | 
|  | DB_PRINT_L(0, "addr=" HWADDR_FMT_plx " = %x\n", addr * 4, ret); | 
|  | xilinx_spips_update_ixr(s); | 
|  | return ret; | 
|  | case R_INTR_MASK: | 
|  | mask = IXR_ALL; | 
|  | break; | 
|  | case  R_EN: | 
|  | mask = 0x1; | 
|  | break; | 
|  | case R_SLAVE_IDLE_COUNT: | 
|  | mask = 0xFF; | 
|  | break; | 
|  | case R_MOD_ID: | 
|  | mask = 0x01FFFFFF; | 
|  | break; | 
|  | case R_INTR_EN: | 
|  | case R_INTR_DIS: | 
|  | case R_TX_DATA: | 
|  | mask = 0; | 
|  | break; | 
|  | case R_RX_DATA: | 
|  | memset(rx_buf, 0, sizeof(rx_buf)); | 
|  | shortfall = rx_data_bytes(&s->rx_fifo, rx_buf, s->num_txrx_bytes); | 
|  | ret = s->regs[R_CONFIG] & R_CONFIG_ENDIAN ? | 
|  | cpu_to_be32(*(uint32_t *)rx_buf) : | 
|  | cpu_to_le32(*(uint32_t *)rx_buf); | 
|  | if (!(s->regs[R_CONFIG] & R_CONFIG_ENDIAN)) { | 
|  | ret <<= 8 * shortfall; | 
|  | } | 
|  | DB_PRINT_L(0, "addr=" HWADDR_FMT_plx " = %x\n", addr * 4, ret); | 
|  | xilinx_spips_check_flush(s); | 
|  | xilinx_spips_update_ixr(s); | 
|  | return ret; | 
|  | } | 
|  | DB_PRINT_L(0, "addr=" HWADDR_FMT_plx " = %x\n", addr * 4, | 
|  | s->regs[addr] & mask); | 
|  | return s->regs[addr] & mask; | 
|  |  | 
|  | } | 
|  |  | 
|  | static uint64_t xlnx_zynqmp_qspips_read(void *opaque, | 
|  | hwaddr addr, unsigned size) | 
|  | { | 
|  | XlnxZynqMPQSPIPS *s = XLNX_ZYNQMP_QSPIPS(opaque); | 
|  | uint32_t reg = addr / 4; | 
|  | uint32_t ret; | 
|  | uint8_t rx_buf[4]; | 
|  | int shortfall; | 
|  |  | 
|  | if (reg <= R_MOD_ID) { | 
|  | return xilinx_spips_read(opaque, addr, size); | 
|  | } else { | 
|  | switch (reg) { | 
|  | case R_GQSPI_RXD: | 
|  | if (fifo8_is_empty(&s->rx_fifo_g)) { | 
|  | qemu_log_mask(LOG_GUEST_ERROR, | 
|  | "Read from empty GQSPI RX FIFO\n"); | 
|  | return 0; | 
|  | } | 
|  | memset(rx_buf, 0, sizeof(rx_buf)); | 
|  | shortfall = rx_data_bytes(&s->rx_fifo_g, rx_buf, | 
|  | XILINX_SPIPS(s)->num_txrx_bytes); | 
|  | ret = ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, ENDIAN) ? | 
|  | cpu_to_be32(*(uint32_t *)rx_buf) : | 
|  | cpu_to_le32(*(uint32_t *)rx_buf); | 
|  | if (!ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, ENDIAN)) { | 
|  | ret <<= 8 * shortfall; | 
|  | } | 
|  | xlnx_zynqmp_qspips_check_flush(s); | 
|  | xlnx_zynqmp_qspips_update_ixr(s); | 
|  | return ret; | 
|  | default: | 
|  | return s->regs[reg]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void xilinx_spips_write(void *opaque, hwaddr addr, | 
|  | uint64_t value, unsigned size) | 
|  | { | 
|  | int mask = ~0; | 
|  | XilinxSPIPS *s = opaque; | 
|  | bool try_flush = true; | 
|  |  | 
|  | DB_PRINT_L(0, "addr=" HWADDR_FMT_plx " = %x\n", addr, (unsigned)value); | 
|  | addr >>= 2; | 
|  | assert(addr < XLNX_SPIPS_R_MAX); | 
|  |  | 
|  | switch (addr) { | 
|  | case R_CONFIG: | 
|  | mask = ~(R_CONFIG_RSVD | MAN_START_COM); | 
|  | if ((value & MAN_START_COM) && (s->regs[R_CONFIG] & MAN_START_EN)) { | 
|  | s->man_start_com = true; | 
|  | } | 
|  | break; | 
|  | case R_INTR_STATUS: | 
|  | mask = IXR_ALL; | 
|  | s->regs[R_INTR_STATUS] &= ~(mask & value); | 
|  | goto no_reg_update; | 
|  | case R_INTR_DIS: | 
|  | mask = IXR_ALL; | 
|  | s->regs[R_INTR_MASK] &= ~(mask & value); | 
|  | goto no_reg_update; | 
|  | case R_INTR_EN: | 
|  | mask = IXR_ALL; | 
|  | s->regs[R_INTR_MASK] |= mask & value; | 
|  | goto no_reg_update; | 
|  | case R_EN: | 
|  | mask = 0x1; | 
|  | break; | 
|  | case R_SLAVE_IDLE_COUNT: | 
|  | mask = 0xFF; | 
|  | break; | 
|  | case R_RX_DATA: | 
|  | case R_INTR_MASK: | 
|  | case R_MOD_ID: | 
|  | mask = 0; | 
|  | break; | 
|  | case R_TX_DATA: | 
|  | tx_data_bytes(&s->tx_fifo, (uint32_t)value, s->num_txrx_bytes, | 
|  | s->regs[R_CONFIG] & R_CONFIG_ENDIAN); | 
|  | goto no_reg_update; | 
|  | case R_TXD1: | 
|  | tx_data_bytes(&s->tx_fifo, (uint32_t)value, 1, | 
|  | s->regs[R_CONFIG] & R_CONFIG_ENDIAN); | 
|  | goto no_reg_update; | 
|  | case R_TXD2: | 
|  | tx_data_bytes(&s->tx_fifo, (uint32_t)value, 2, | 
|  | s->regs[R_CONFIG] & R_CONFIG_ENDIAN); | 
|  | goto no_reg_update; | 
|  | case R_TXD3: | 
|  | tx_data_bytes(&s->tx_fifo, (uint32_t)value, 3, | 
|  | s->regs[R_CONFIG] & R_CONFIG_ENDIAN); | 
|  | goto no_reg_update; | 
|  | /* Skip SPI bus update for below registers writes */ | 
|  | case R_GPIO: | 
|  | case R_LPBK_DLY_ADJ: | 
|  | case R_IOU_TAPDLY_BYPASS: | 
|  | case R_DUMMY_CYCLE_EN: | 
|  | case R_ECO: | 
|  | try_flush = false; | 
|  | break; | 
|  | } | 
|  | s->regs[addr] = (s->regs[addr] & ~mask) | (value & mask); | 
|  | no_reg_update: | 
|  | if (try_flush) { | 
|  | xilinx_spips_update_cs_lines(s); | 
|  | xilinx_spips_check_flush(s); | 
|  | xilinx_spips_update_cs_lines(s); | 
|  | xilinx_spips_update_ixr(s); | 
|  | } | 
|  | } | 
|  |  | 
|  | static const MemoryRegionOps spips_ops = { | 
|  | .read = xilinx_spips_read, | 
|  | .write = xilinx_spips_write, | 
|  | .endianness = DEVICE_LITTLE_ENDIAN, | 
|  | }; | 
|  |  | 
|  | static void xilinx_qspips_invalidate_mmio_ptr(XilinxQSPIPS *q) | 
|  | { | 
|  | q->lqspi_cached_addr = ~0ULL; | 
|  | } | 
|  |  | 
|  | static void xilinx_qspips_write(void *opaque, hwaddr addr, | 
|  | uint64_t value, unsigned size) | 
|  | { | 
|  | XilinxQSPIPS *q = XILINX_QSPIPS(opaque); | 
|  | XilinxSPIPS *s = XILINX_SPIPS(opaque); | 
|  |  | 
|  | xilinx_spips_write(opaque, addr, value, size); | 
|  | addr >>= 2; | 
|  |  | 
|  | if (addr == R_LQSPI_CFG) { | 
|  | xilinx_qspips_invalidate_mmio_ptr(q); | 
|  | } | 
|  | if (s->regs[R_CMND] & R_CMND_RXFIFO_DRAIN) { | 
|  | fifo8_reset(&s->rx_fifo); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void xlnx_zynqmp_qspips_write(void *opaque, hwaddr addr, | 
|  | uint64_t value, unsigned size) | 
|  | { | 
|  | XlnxZynqMPQSPIPS *s = XLNX_ZYNQMP_QSPIPS(opaque); | 
|  | uint32_t reg = addr / 4; | 
|  |  | 
|  | if (reg <= R_MOD_ID) { | 
|  | xilinx_qspips_write(opaque, addr, value, size); | 
|  | } else { | 
|  | switch (reg) { | 
|  | case R_GQSPI_CNFG: | 
|  | if (FIELD_EX32(value, GQSPI_CNFG, GEN_FIFO_START) && | 
|  | ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, GEN_FIFO_START_MODE)) { | 
|  | s->man_start_com_g = true; | 
|  | } | 
|  | s->regs[reg] = value & ~(R_GQSPI_CNFG_GEN_FIFO_START_MASK); | 
|  | break; | 
|  | case R_GQSPI_GEN_FIFO: | 
|  | if (!fifo32_is_full(&s->fifo_g)) { | 
|  | fifo32_push(&s->fifo_g, value); | 
|  | } | 
|  | break; | 
|  | case R_GQSPI_TXD: | 
|  | tx_data_bytes(&s->tx_fifo_g, (uint32_t)value, 4, | 
|  | ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, ENDIAN)); | 
|  | break; | 
|  | case R_GQSPI_FIFO_CTRL: | 
|  | if (FIELD_EX32(value, GQSPI_FIFO_CTRL, GENERIC_FIFO_RESET)) { | 
|  | fifo32_reset(&s->fifo_g); | 
|  | } | 
|  | if (FIELD_EX32(value, GQSPI_FIFO_CTRL, TX_FIFO_RESET)) { | 
|  | fifo8_reset(&s->tx_fifo_g); | 
|  | } | 
|  | if (FIELD_EX32(value, GQSPI_FIFO_CTRL, RX_FIFO_RESET)) { | 
|  | fifo8_reset(&s->rx_fifo_g); | 
|  | } | 
|  | break; | 
|  | case R_GQSPI_IDR: | 
|  | s->regs[R_GQSPI_IMR] |= value; | 
|  | break; | 
|  | case R_GQSPI_IER: | 
|  | s->regs[R_GQSPI_IMR] &= ~value; | 
|  | break; | 
|  | case R_GQSPI_ISR: | 
|  | s->regs[R_GQSPI_ISR] &= ~value; | 
|  | break; | 
|  | case R_GQSPI_IMR: | 
|  | case R_GQSPI_RXD: | 
|  | case R_GQSPI_GF_SNAPSHOT: | 
|  | case R_GQSPI_MOD_ID: | 
|  | break; | 
|  | default: | 
|  | s->regs[reg] = value; | 
|  | break; | 
|  | } | 
|  | xlnx_zynqmp_qspips_update_cs_lines(s); | 
|  | xlnx_zynqmp_qspips_check_flush(s); | 
|  | xlnx_zynqmp_qspips_update_cs_lines(s); | 
|  | xlnx_zynqmp_qspips_update_ixr(s); | 
|  | } | 
|  | xlnx_zynqmp_qspips_notify(s); | 
|  | } | 
|  |  | 
|  | static const MemoryRegionOps qspips_ops = { | 
|  | .read = xilinx_spips_read, | 
|  | .write = xilinx_qspips_write, | 
|  | .endianness = DEVICE_LITTLE_ENDIAN, | 
|  | }; | 
|  |  | 
|  | static const MemoryRegionOps xlnx_zynqmp_qspips_ops = { | 
|  | .read = xlnx_zynqmp_qspips_read, | 
|  | .write = xlnx_zynqmp_qspips_write, | 
|  | .endianness = DEVICE_LITTLE_ENDIAN, | 
|  | }; | 
|  |  | 
|  | #define LQSPI_CACHE_SIZE 1024 | 
|  |  | 
|  | static void lqspi_load_cache(void *opaque, hwaddr addr) | 
|  | { | 
|  | XilinxQSPIPS *q = opaque; | 
|  | XilinxSPIPS *s = opaque; | 
|  | int i; | 
|  | int flash_addr = ((addr & ~(LQSPI_CACHE_SIZE - 1)) | 
|  | / num_effective_busses(s)); | 
|  | int peripheral = flash_addr >> LQSPI_ADDRESS_BITS; | 
|  | int cache_entry = 0; | 
|  | uint32_t u_page_save = s->regs[R_LQSPI_STS] & ~LQSPI_CFG_U_PAGE; | 
|  |  | 
|  | if (addr < q->lqspi_cached_addr || | 
|  | addr > q->lqspi_cached_addr + LQSPI_CACHE_SIZE - 4) { | 
|  | xilinx_qspips_invalidate_mmio_ptr(q); | 
|  | s->regs[R_LQSPI_STS] &= ~LQSPI_CFG_U_PAGE; | 
|  | s->regs[R_LQSPI_STS] |= peripheral ? LQSPI_CFG_U_PAGE : 0; | 
|  |  | 
|  | DB_PRINT_L(0, "config reg status: %08x\n", s->regs[R_LQSPI_CFG]); | 
|  |  | 
|  | fifo8_reset(&s->tx_fifo); | 
|  | fifo8_reset(&s->rx_fifo); | 
|  |  | 
|  | /* instruction */ | 
|  | DB_PRINT_L(0, "pushing read instruction: %02x\n", | 
|  | (unsigned)(uint8_t)(s->regs[R_LQSPI_CFG] & | 
|  | LQSPI_CFG_INST_CODE)); | 
|  | fifo8_push(&s->tx_fifo, s->regs[R_LQSPI_CFG] & LQSPI_CFG_INST_CODE); | 
|  | /* read address */ | 
|  | DB_PRINT_L(0, "pushing read address %06x\n", flash_addr); | 
|  | if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_ADDR4) { | 
|  | fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 24)); | 
|  | } | 
|  | fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 16)); | 
|  | fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 8)); | 
|  | fifo8_push(&s->tx_fifo, (uint8_t)flash_addr); | 
|  | /* mode bits */ | 
|  | if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_MODE_EN) { | 
|  | fifo8_push(&s->tx_fifo, extract32(s->regs[R_LQSPI_CFG], | 
|  | LQSPI_CFG_MODE_SHIFT, | 
|  | LQSPI_CFG_MODE_WIDTH)); | 
|  | } | 
|  | /* dummy bytes */ | 
|  | for (i = 0; i < (extract32(s->regs[R_LQSPI_CFG], LQSPI_CFG_DUMMY_SHIFT, | 
|  | LQSPI_CFG_DUMMY_WIDTH)); ++i) { | 
|  | DB_PRINT_L(0, "pushing dummy byte\n"); | 
|  | fifo8_push(&s->tx_fifo, 0); | 
|  | } | 
|  | xilinx_spips_update_cs_lines(s); | 
|  | xilinx_spips_flush_txfifo(s); | 
|  | fifo8_reset(&s->rx_fifo); | 
|  |  | 
|  | DB_PRINT_L(0, "starting QSPI data read\n"); | 
|  |  | 
|  | while (cache_entry < LQSPI_CACHE_SIZE) { | 
|  | for (i = 0; i < 64; ++i) { | 
|  | tx_data_bytes(&s->tx_fifo, 0, 1, false); | 
|  | } | 
|  | xilinx_spips_flush_txfifo(s); | 
|  | for (i = 0; i < 64; ++i) { | 
|  | rx_data_bytes(&s->rx_fifo, &q->lqspi_buf[cache_entry++], 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | s->regs[R_LQSPI_STS] &= ~LQSPI_CFG_U_PAGE; | 
|  | s->regs[R_LQSPI_STS] |= u_page_save; | 
|  | xilinx_spips_update_cs_lines(s); | 
|  |  | 
|  | q->lqspi_cached_addr = flash_addr * num_effective_busses(s); | 
|  | } | 
|  | } | 
|  |  | 
|  | static MemTxResult lqspi_read(void *opaque, hwaddr addr, uint64_t *value, | 
|  | unsigned size, MemTxAttrs attrs) | 
|  | { | 
|  | XilinxQSPIPS *q = XILINX_QSPIPS(opaque); | 
|  |  | 
|  | if (addr >= q->lqspi_cached_addr && | 
|  | addr <= q->lqspi_cached_addr + LQSPI_CACHE_SIZE - 4) { | 
|  | uint8_t *retp = &q->lqspi_buf[addr - q->lqspi_cached_addr]; | 
|  | *value = cpu_to_le32(*(uint32_t *)retp); | 
|  | DB_PRINT_L(1, "addr: %08" HWADDR_PRIx ", data: %08" PRIx64 "\n", | 
|  | addr, *value); | 
|  | return MEMTX_OK; | 
|  | } | 
|  |  | 
|  | lqspi_load_cache(opaque, addr); | 
|  | return lqspi_read(opaque, addr, value, size, attrs); | 
|  | } | 
|  |  | 
|  | static MemTxResult lqspi_write(void *opaque, hwaddr offset, uint64_t value, | 
|  | unsigned size, MemTxAttrs attrs) | 
|  | { | 
|  | /* | 
|  | * From UG1085, Chapter 24 (Quad-SPI controllers): | 
|  | * - Writes are ignored | 
|  | * - AXI writes generate an external AXI slave error (SLVERR) | 
|  | */ | 
|  | qemu_log_mask(LOG_GUEST_ERROR, "%s Unexpected %u-bit access to 0x%" PRIx64 | 
|  | " (value: 0x%" PRIx64 "\n", | 
|  | __func__, size << 3, offset, value); | 
|  |  | 
|  | return MEMTX_ERROR; | 
|  | } | 
|  |  | 
|  | static const MemoryRegionOps lqspi_ops = { | 
|  | .read_with_attrs = lqspi_read, | 
|  | .write_with_attrs = lqspi_write, | 
|  | .endianness = DEVICE_NATIVE_ENDIAN, | 
|  | .impl = { | 
|  | .min_access_size = 4, | 
|  | .max_access_size = 4, | 
|  | }, | 
|  | .valid = { | 
|  | .min_access_size = 1, | 
|  | .max_access_size = 4 | 
|  | } | 
|  | }; | 
|  |  | 
|  | static void xilinx_spips_realize(DeviceState *dev, Error **errp) | 
|  | { | 
|  | XilinxSPIPS *s = XILINX_SPIPS(dev); | 
|  | SysBusDevice *sbd = SYS_BUS_DEVICE(dev); | 
|  | XilinxSPIPSClass *xsc = XILINX_SPIPS_GET_CLASS(s); | 
|  | int i; | 
|  |  | 
|  | DB_PRINT_L(0, "realized spips\n"); | 
|  |  | 
|  | if (s->num_busses > MAX_NUM_BUSSES) { | 
|  | error_setg(errp, | 
|  | "requested number of SPI busses %u exceeds maximum %d", | 
|  | s->num_busses, MAX_NUM_BUSSES); | 
|  | return; | 
|  | } | 
|  | if (s->num_busses < MIN_NUM_BUSSES) { | 
|  | error_setg(errp, | 
|  | "requested number of SPI busses %u is below minimum %d", | 
|  | s->num_busses, MIN_NUM_BUSSES); | 
|  | return; | 
|  | } | 
|  |  | 
|  | s->spi = g_new(SSIBus *, s->num_busses); | 
|  | for (i = 0; i < s->num_busses; ++i) { | 
|  | char bus_name[16]; | 
|  | snprintf(bus_name, 16, "spi%d", i); | 
|  | s->spi[i] = ssi_create_bus(dev, bus_name); | 
|  | } | 
|  |  | 
|  | s->cs_lines = g_new0(qemu_irq, s->num_cs * s->num_busses); | 
|  | s->cs_lines_state = g_new0(bool, s->num_cs * s->num_busses); | 
|  |  | 
|  | sysbus_init_irq(sbd, &s->irq); | 
|  | for (i = 0; i < s->num_cs * s->num_busses; ++i) { | 
|  | sysbus_init_irq(sbd, &s->cs_lines[i]); | 
|  | } | 
|  |  | 
|  | memory_region_init_io(&s->iomem, OBJECT(s), xsc->reg_ops, s, | 
|  | "spi", xsc->reg_size); | 
|  | sysbus_init_mmio(sbd, &s->iomem); | 
|  |  | 
|  | s->irqline = -1; | 
|  |  | 
|  | fifo8_create(&s->rx_fifo, xsc->rx_fifo_size); | 
|  | fifo8_create(&s->tx_fifo, xsc->tx_fifo_size); | 
|  | } | 
|  |  | 
|  | static void xilinx_qspips_realize(DeviceState *dev, Error **errp) | 
|  | { | 
|  | XilinxSPIPS *s = XILINX_SPIPS(dev); | 
|  | XilinxQSPIPS *q = XILINX_QSPIPS(dev); | 
|  | SysBusDevice *sbd = SYS_BUS_DEVICE(dev); | 
|  |  | 
|  | DB_PRINT_L(0, "realized qspips\n"); | 
|  |  | 
|  | s->num_busses = 2; | 
|  | s->num_cs = 2; | 
|  | s->num_txrx_bytes = 4; | 
|  |  | 
|  | xilinx_spips_realize(dev, errp); | 
|  | memory_region_init_io(&s->mmlqspi, OBJECT(s), &lqspi_ops, s, "lqspi", | 
|  | (1 << LQSPI_ADDRESS_BITS) * 2); | 
|  | sysbus_init_mmio(sbd, &s->mmlqspi); | 
|  |  | 
|  | q->lqspi_cached_addr = ~0ULL; | 
|  | } | 
|  |  | 
|  | static void xlnx_zynqmp_qspips_realize(DeviceState *dev, Error **errp) | 
|  | { | 
|  | XlnxZynqMPQSPIPS *s = XLNX_ZYNQMP_QSPIPS(dev); | 
|  | XilinxSPIPSClass *xsc = XILINX_SPIPS_GET_CLASS(s); | 
|  |  | 
|  | if (s->dma_burst_size > QSPI_DMA_MAX_BURST_SIZE) { | 
|  | error_setg(errp, | 
|  | "qspi dma burst size %u exceeds maximum limit %d", | 
|  | s->dma_burst_size, QSPI_DMA_MAX_BURST_SIZE); | 
|  | return; | 
|  | } | 
|  | xilinx_qspips_realize(dev, errp); | 
|  | fifo8_create(&s->rx_fifo_g, xsc->rx_fifo_size); | 
|  | fifo8_create(&s->tx_fifo_g, xsc->tx_fifo_size); | 
|  | fifo32_create(&s->fifo_g, 32); | 
|  | } | 
|  |  | 
|  | static void xlnx_zynqmp_qspips_init(Object *obj) | 
|  | { | 
|  | XlnxZynqMPQSPIPS *rq = XLNX_ZYNQMP_QSPIPS(obj); | 
|  |  | 
|  | object_property_add_link(obj, "stream-connected-dma", TYPE_STREAM_SINK, | 
|  | (Object **)&rq->dma, | 
|  | object_property_allow_set_link, | 
|  | OBJ_PROP_LINK_STRONG); | 
|  | } | 
|  |  | 
|  | static int xilinx_spips_post_load(void *opaque, int version_id) | 
|  | { | 
|  | xilinx_spips_update_ixr((XilinxSPIPS *)opaque); | 
|  | xilinx_spips_update_cs_lines((XilinxSPIPS *)opaque); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const VMStateDescription vmstate_xilinx_spips = { | 
|  | .name = "xilinx_spips", | 
|  | .version_id = 2, | 
|  | .minimum_version_id = 2, | 
|  | .post_load = xilinx_spips_post_load, | 
|  | .fields = (const VMStateField[]) { | 
|  | VMSTATE_FIFO8(tx_fifo, XilinxSPIPS), | 
|  | VMSTATE_FIFO8(rx_fifo, XilinxSPIPS), | 
|  | VMSTATE_UINT32_ARRAY(regs, XilinxSPIPS, XLNX_SPIPS_R_MAX), | 
|  | VMSTATE_UINT8(snoop_state, XilinxSPIPS), | 
|  | VMSTATE_END_OF_LIST() | 
|  | } | 
|  | }; | 
|  |  | 
|  | static int xlnx_zynqmp_qspips_post_load(void *opaque, int version_id) | 
|  | { | 
|  | XlnxZynqMPQSPIPS *s = (XlnxZynqMPQSPIPS *)opaque; | 
|  | XilinxSPIPS *qs = XILINX_SPIPS(s); | 
|  |  | 
|  | if (ARRAY_FIELD_EX32(s->regs, GQSPI_SELECT, GENERIC_QSPI_EN) && | 
|  | fifo8_is_empty(&qs->rx_fifo) && fifo8_is_empty(&qs->tx_fifo)) { | 
|  | xlnx_zynqmp_qspips_update_ixr(s); | 
|  | xlnx_zynqmp_qspips_update_cs_lines(s); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const VMStateDescription vmstate_xilinx_qspips = { | 
|  | .name = "xilinx_qspips", | 
|  | .version_id = 1, | 
|  | .minimum_version_id = 1, | 
|  | .fields = (const VMStateField[]) { | 
|  | VMSTATE_STRUCT(parent_obj, XilinxQSPIPS, 0, | 
|  | vmstate_xilinx_spips, XilinxSPIPS), | 
|  | VMSTATE_END_OF_LIST() | 
|  | } | 
|  | }; | 
|  |  | 
|  | static const VMStateDescription vmstate_xlnx_zynqmp_qspips = { | 
|  | .name = "xlnx_zynqmp_qspips", | 
|  | .version_id = 1, | 
|  | .minimum_version_id = 1, | 
|  | .post_load = xlnx_zynqmp_qspips_post_load, | 
|  | .fields = (const VMStateField[]) { | 
|  | VMSTATE_STRUCT(parent_obj, XlnxZynqMPQSPIPS, 0, | 
|  | vmstate_xilinx_qspips, XilinxQSPIPS), | 
|  | VMSTATE_FIFO8(tx_fifo_g, XlnxZynqMPQSPIPS), | 
|  | VMSTATE_FIFO8(rx_fifo_g, XlnxZynqMPQSPIPS), | 
|  | VMSTATE_FIFO32(fifo_g, XlnxZynqMPQSPIPS), | 
|  | VMSTATE_UINT32_ARRAY(regs, XlnxZynqMPQSPIPS, XLNX_ZYNQMP_SPIPS_R_MAX), | 
|  | VMSTATE_END_OF_LIST() | 
|  | } | 
|  | }; | 
|  |  | 
|  | static Property xilinx_zynqmp_qspips_properties[] = { | 
|  | DEFINE_PROP_UINT32("dma-burst-size", XlnxZynqMPQSPIPS, dma_burst_size, 64), | 
|  | DEFINE_PROP_END_OF_LIST(), | 
|  | }; | 
|  |  | 
|  | static Property xilinx_spips_properties[] = { | 
|  | DEFINE_PROP_UINT8("num-busses", XilinxSPIPS, num_busses, 1), | 
|  | DEFINE_PROP_UINT8("num-ss-bits", XilinxSPIPS, num_cs, 4), | 
|  | DEFINE_PROP_UINT8("num-txrx-bytes", XilinxSPIPS, num_txrx_bytes, 1), | 
|  | DEFINE_PROP_END_OF_LIST(), | 
|  | }; | 
|  |  | 
|  | static void xilinx_qspips_class_init(ObjectClass *klass, void * data) | 
|  | { | 
|  | DeviceClass *dc = DEVICE_CLASS(klass); | 
|  | XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass); | 
|  |  | 
|  | dc->realize = xilinx_qspips_realize; | 
|  | xsc->reg_ops = &qspips_ops; | 
|  | xsc->reg_size = XLNX_SPIPS_R_MAX * 4; | 
|  | xsc->rx_fifo_size = RXFF_A_Q; | 
|  | xsc->tx_fifo_size = TXFF_A_Q; | 
|  | } | 
|  |  | 
|  | static void xilinx_spips_class_init(ObjectClass *klass, void *data) | 
|  | { | 
|  | DeviceClass *dc = DEVICE_CLASS(klass); | 
|  | XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass); | 
|  |  | 
|  | dc->realize = xilinx_spips_realize; | 
|  | dc->reset = xilinx_spips_reset; | 
|  | device_class_set_props(dc, xilinx_spips_properties); | 
|  | dc->vmsd = &vmstate_xilinx_spips; | 
|  |  | 
|  | xsc->reg_ops = &spips_ops; | 
|  | xsc->reg_size = XLNX_SPIPS_R_MAX * 4; | 
|  | xsc->rx_fifo_size = RXFF_A; | 
|  | xsc->tx_fifo_size = TXFF_A; | 
|  | } | 
|  |  | 
|  | static void xlnx_zynqmp_qspips_class_init(ObjectClass *klass, void * data) | 
|  | { | 
|  | DeviceClass *dc = DEVICE_CLASS(klass); | 
|  | XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass); | 
|  |  | 
|  | dc->realize = xlnx_zynqmp_qspips_realize; | 
|  | dc->reset = xlnx_zynqmp_qspips_reset; | 
|  | dc->vmsd = &vmstate_xlnx_zynqmp_qspips; | 
|  | device_class_set_props(dc, xilinx_zynqmp_qspips_properties); | 
|  | xsc->reg_ops = &xlnx_zynqmp_qspips_ops; | 
|  | xsc->reg_size = XLNX_ZYNQMP_SPIPS_R_MAX * 4; | 
|  | xsc->rx_fifo_size = RXFF_A_Q; | 
|  | xsc->tx_fifo_size = TXFF_A_Q; | 
|  | } | 
|  |  | 
|  | static const TypeInfo xilinx_spips_info = { | 
|  | .name  = TYPE_XILINX_SPIPS, | 
|  | .parent = TYPE_SYS_BUS_DEVICE, | 
|  | .instance_size  = sizeof(XilinxSPIPS), | 
|  | .class_init = xilinx_spips_class_init, | 
|  | .class_size = sizeof(XilinxSPIPSClass), | 
|  | }; | 
|  |  | 
|  | static const TypeInfo xilinx_qspips_info = { | 
|  | .name  = TYPE_XILINX_QSPIPS, | 
|  | .parent = TYPE_XILINX_SPIPS, | 
|  | .instance_size  = sizeof(XilinxQSPIPS), | 
|  | .class_init = xilinx_qspips_class_init, | 
|  | }; | 
|  |  | 
|  | static const TypeInfo xlnx_zynqmp_qspips_info = { | 
|  | .name  = TYPE_XLNX_ZYNQMP_QSPIPS, | 
|  | .parent = TYPE_XILINX_QSPIPS, | 
|  | .instance_size  = sizeof(XlnxZynqMPQSPIPS), | 
|  | .instance_init  = xlnx_zynqmp_qspips_init, | 
|  | .class_init = xlnx_zynqmp_qspips_class_init, | 
|  | }; | 
|  |  | 
|  | static void xilinx_spips_register_types(void) | 
|  | { | 
|  | type_register_static(&xilinx_spips_info); | 
|  | type_register_static(&xilinx_qspips_info); | 
|  | type_register_static(&xlnx_zynqmp_qspips_info); | 
|  | } | 
|  |  | 
|  | type_init(xilinx_spips_register_types) |