| /* |
| * QEMU dump |
| * |
| * Copyright Fujitsu, Corp. 2011, 2012 |
| * |
| * Authors: |
| * Wen Congyang <wency@cn.fujitsu.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include "qemu-common.h" |
| #include "elf.h" |
| #include "cpu.h" |
| #include "exec/cpu-all.h" |
| #include "exec/hwaddr.h" |
| #include "monitor/monitor.h" |
| #include "sysemu/kvm.h" |
| #include "sysemu/dump.h" |
| #include "sysemu/sysemu.h" |
| #include "sysemu/memory_mapping.h" |
| #include "sysemu/cpus.h" |
| #include "qapi/error.h" |
| #include "qmp-commands.h" |
| |
| #include <zlib.h> |
| #ifdef CONFIG_LZO |
| #include <lzo/lzo1x.h> |
| #endif |
| #ifdef CONFIG_SNAPPY |
| #include <snappy-c.h> |
| #endif |
| #ifndef ELF_MACHINE_UNAME |
| #define ELF_MACHINE_UNAME "Unknown" |
| #endif |
| |
| static uint16_t cpu_convert_to_target16(uint16_t val, int endian) |
| { |
| if (endian == ELFDATA2LSB) { |
| val = cpu_to_le16(val); |
| } else { |
| val = cpu_to_be16(val); |
| } |
| |
| return val; |
| } |
| |
| static uint32_t cpu_convert_to_target32(uint32_t val, int endian) |
| { |
| if (endian == ELFDATA2LSB) { |
| val = cpu_to_le32(val); |
| } else { |
| val = cpu_to_be32(val); |
| } |
| |
| return val; |
| } |
| |
| static uint64_t cpu_convert_to_target64(uint64_t val, int endian) |
| { |
| if (endian == ELFDATA2LSB) { |
| val = cpu_to_le64(val); |
| } else { |
| val = cpu_to_be64(val); |
| } |
| |
| return val; |
| } |
| |
| typedef struct DumpState { |
| GuestPhysBlockList guest_phys_blocks; |
| ArchDumpInfo dump_info; |
| MemoryMappingList list; |
| uint16_t phdr_num; |
| uint32_t sh_info; |
| bool have_section; |
| bool resume; |
| ssize_t note_size; |
| hwaddr memory_offset; |
| int fd; |
| |
| GuestPhysBlock *next_block; |
| ram_addr_t start; |
| bool has_filter; |
| int64_t begin; |
| int64_t length; |
| |
| uint8_t *note_buf; /* buffer for notes */ |
| size_t note_buf_offset; /* the writing place in note_buf */ |
| uint32_t nr_cpus; /* number of guest's cpu */ |
| uint64_t max_mapnr; /* the biggest guest's phys-mem's number */ |
| size_t len_dump_bitmap; /* the size of the place used to store |
| dump_bitmap in vmcore */ |
| off_t offset_dump_bitmap; /* offset of dump_bitmap part in vmcore */ |
| off_t offset_page; /* offset of page part in vmcore */ |
| size_t num_dumpable; /* number of page that can be dumped */ |
| uint32_t flag_compress; /* indicate the compression format */ |
| } DumpState; |
| |
| static int dump_cleanup(DumpState *s) |
| { |
| int ret = 0; |
| |
| guest_phys_blocks_free(&s->guest_phys_blocks); |
| memory_mapping_list_free(&s->list); |
| if (s->fd != -1) { |
| close(s->fd); |
| } |
| if (s->resume) { |
| vm_start(); |
| } |
| |
| return ret; |
| } |
| |
| static void dump_error(DumpState *s, const char *reason) |
| { |
| dump_cleanup(s); |
| } |
| |
| static int fd_write_vmcore(const void *buf, size_t size, void *opaque) |
| { |
| DumpState *s = opaque; |
| size_t written_size; |
| |
| written_size = qemu_write_full(s->fd, buf, size); |
| if (written_size != size) { |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int write_elf64_header(DumpState *s) |
| { |
| Elf64_Ehdr elf_header; |
| int ret; |
| int endian = s->dump_info.d_endian; |
| |
| memset(&elf_header, 0, sizeof(Elf64_Ehdr)); |
| memcpy(&elf_header, ELFMAG, SELFMAG); |
| elf_header.e_ident[EI_CLASS] = ELFCLASS64; |
| elf_header.e_ident[EI_DATA] = s->dump_info.d_endian; |
| elf_header.e_ident[EI_VERSION] = EV_CURRENT; |
| elf_header.e_type = cpu_convert_to_target16(ET_CORE, endian); |
| elf_header.e_machine = cpu_convert_to_target16(s->dump_info.d_machine, |
| endian); |
| elf_header.e_version = cpu_convert_to_target32(EV_CURRENT, endian); |
| elf_header.e_ehsize = cpu_convert_to_target16(sizeof(elf_header), endian); |
| elf_header.e_phoff = cpu_convert_to_target64(sizeof(Elf64_Ehdr), endian); |
| elf_header.e_phentsize = cpu_convert_to_target16(sizeof(Elf64_Phdr), |
| endian); |
| elf_header.e_phnum = cpu_convert_to_target16(s->phdr_num, endian); |
| if (s->have_section) { |
| uint64_t shoff = sizeof(Elf64_Ehdr) + sizeof(Elf64_Phdr) * s->sh_info; |
| |
| elf_header.e_shoff = cpu_convert_to_target64(shoff, endian); |
| elf_header.e_shentsize = cpu_convert_to_target16(sizeof(Elf64_Shdr), |
| endian); |
| elf_header.e_shnum = cpu_convert_to_target16(1, endian); |
| } |
| |
| ret = fd_write_vmcore(&elf_header, sizeof(elf_header), s); |
| if (ret < 0) { |
| dump_error(s, "dump: failed to write elf header.\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int write_elf32_header(DumpState *s) |
| { |
| Elf32_Ehdr elf_header; |
| int ret; |
| int endian = s->dump_info.d_endian; |
| |
| memset(&elf_header, 0, sizeof(Elf32_Ehdr)); |
| memcpy(&elf_header, ELFMAG, SELFMAG); |
| elf_header.e_ident[EI_CLASS] = ELFCLASS32; |
| elf_header.e_ident[EI_DATA] = endian; |
| elf_header.e_ident[EI_VERSION] = EV_CURRENT; |
| elf_header.e_type = cpu_convert_to_target16(ET_CORE, endian); |
| elf_header.e_machine = cpu_convert_to_target16(s->dump_info.d_machine, |
| endian); |
| elf_header.e_version = cpu_convert_to_target32(EV_CURRENT, endian); |
| elf_header.e_ehsize = cpu_convert_to_target16(sizeof(elf_header), endian); |
| elf_header.e_phoff = cpu_convert_to_target32(sizeof(Elf32_Ehdr), endian); |
| elf_header.e_phentsize = cpu_convert_to_target16(sizeof(Elf32_Phdr), |
| endian); |
| elf_header.e_phnum = cpu_convert_to_target16(s->phdr_num, endian); |
| if (s->have_section) { |
| uint32_t shoff = sizeof(Elf32_Ehdr) + sizeof(Elf32_Phdr) * s->sh_info; |
| |
| elf_header.e_shoff = cpu_convert_to_target32(shoff, endian); |
| elf_header.e_shentsize = cpu_convert_to_target16(sizeof(Elf32_Shdr), |
| endian); |
| elf_header.e_shnum = cpu_convert_to_target16(1, endian); |
| } |
| |
| ret = fd_write_vmcore(&elf_header, sizeof(elf_header), s); |
| if (ret < 0) { |
| dump_error(s, "dump: failed to write elf header.\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int write_elf64_load(DumpState *s, MemoryMapping *memory_mapping, |
| int phdr_index, hwaddr offset, |
| hwaddr filesz) |
| { |
| Elf64_Phdr phdr; |
| int ret; |
| int endian = s->dump_info.d_endian; |
| |
| memset(&phdr, 0, sizeof(Elf64_Phdr)); |
| phdr.p_type = cpu_convert_to_target32(PT_LOAD, endian); |
| phdr.p_offset = cpu_convert_to_target64(offset, endian); |
| phdr.p_paddr = cpu_convert_to_target64(memory_mapping->phys_addr, endian); |
| phdr.p_filesz = cpu_convert_to_target64(filesz, endian); |
| phdr.p_memsz = cpu_convert_to_target64(memory_mapping->length, endian); |
| phdr.p_vaddr = cpu_convert_to_target64(memory_mapping->virt_addr, endian); |
| |
| assert(memory_mapping->length >= filesz); |
| |
| ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s); |
| if (ret < 0) { |
| dump_error(s, "dump: failed to write program header table.\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int write_elf32_load(DumpState *s, MemoryMapping *memory_mapping, |
| int phdr_index, hwaddr offset, |
| hwaddr filesz) |
| { |
| Elf32_Phdr phdr; |
| int ret; |
| int endian = s->dump_info.d_endian; |
| |
| memset(&phdr, 0, sizeof(Elf32_Phdr)); |
| phdr.p_type = cpu_convert_to_target32(PT_LOAD, endian); |
| phdr.p_offset = cpu_convert_to_target32(offset, endian); |
| phdr.p_paddr = cpu_convert_to_target32(memory_mapping->phys_addr, endian); |
| phdr.p_filesz = cpu_convert_to_target32(filesz, endian); |
| phdr.p_memsz = cpu_convert_to_target32(memory_mapping->length, endian); |
| phdr.p_vaddr = cpu_convert_to_target32(memory_mapping->virt_addr, endian); |
| |
| assert(memory_mapping->length >= filesz); |
| |
| ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s); |
| if (ret < 0) { |
| dump_error(s, "dump: failed to write program header table.\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int write_elf64_note(DumpState *s) |
| { |
| Elf64_Phdr phdr; |
| int endian = s->dump_info.d_endian; |
| hwaddr begin = s->memory_offset - s->note_size; |
| int ret; |
| |
| memset(&phdr, 0, sizeof(Elf64_Phdr)); |
| phdr.p_type = cpu_convert_to_target32(PT_NOTE, endian); |
| phdr.p_offset = cpu_convert_to_target64(begin, endian); |
| phdr.p_paddr = 0; |
| phdr.p_filesz = cpu_convert_to_target64(s->note_size, endian); |
| phdr.p_memsz = cpu_convert_to_target64(s->note_size, endian); |
| phdr.p_vaddr = 0; |
| |
| ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s); |
| if (ret < 0) { |
| dump_error(s, "dump: failed to write program header table.\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static inline int cpu_index(CPUState *cpu) |
| { |
| return cpu->cpu_index + 1; |
| } |
| |
| static int write_elf64_notes(WriteCoreDumpFunction f, DumpState *s) |
| { |
| CPUState *cpu; |
| int ret; |
| int id; |
| |
| CPU_FOREACH(cpu) { |
| id = cpu_index(cpu); |
| ret = cpu_write_elf64_note(f, cpu, id, s); |
| if (ret < 0) { |
| dump_error(s, "dump: failed to write elf notes.\n"); |
| return -1; |
| } |
| } |
| |
| CPU_FOREACH(cpu) { |
| ret = cpu_write_elf64_qemunote(f, cpu, s); |
| if (ret < 0) { |
| dump_error(s, "dump: failed to write CPU status.\n"); |
| return -1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int write_elf32_note(DumpState *s) |
| { |
| hwaddr begin = s->memory_offset - s->note_size; |
| Elf32_Phdr phdr; |
| int endian = s->dump_info.d_endian; |
| int ret; |
| |
| memset(&phdr, 0, sizeof(Elf32_Phdr)); |
| phdr.p_type = cpu_convert_to_target32(PT_NOTE, endian); |
| phdr.p_offset = cpu_convert_to_target32(begin, endian); |
| phdr.p_paddr = 0; |
| phdr.p_filesz = cpu_convert_to_target32(s->note_size, endian); |
| phdr.p_memsz = cpu_convert_to_target32(s->note_size, endian); |
| phdr.p_vaddr = 0; |
| |
| ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s); |
| if (ret < 0) { |
| dump_error(s, "dump: failed to write program header table.\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int write_elf32_notes(WriteCoreDumpFunction f, DumpState *s) |
| { |
| CPUState *cpu; |
| int ret; |
| int id; |
| |
| CPU_FOREACH(cpu) { |
| id = cpu_index(cpu); |
| ret = cpu_write_elf32_note(f, cpu, id, s); |
| if (ret < 0) { |
| dump_error(s, "dump: failed to write elf notes.\n"); |
| return -1; |
| } |
| } |
| |
| CPU_FOREACH(cpu) { |
| ret = cpu_write_elf32_qemunote(f, cpu, s); |
| if (ret < 0) { |
| dump_error(s, "dump: failed to write CPU status.\n"); |
| return -1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int write_elf_section(DumpState *s, int type) |
| { |
| Elf32_Shdr shdr32; |
| Elf64_Shdr shdr64; |
| int endian = s->dump_info.d_endian; |
| int shdr_size; |
| void *shdr; |
| int ret; |
| |
| if (type == 0) { |
| shdr_size = sizeof(Elf32_Shdr); |
| memset(&shdr32, 0, shdr_size); |
| shdr32.sh_info = cpu_convert_to_target32(s->sh_info, endian); |
| shdr = &shdr32; |
| } else { |
| shdr_size = sizeof(Elf64_Shdr); |
| memset(&shdr64, 0, shdr_size); |
| shdr64.sh_info = cpu_convert_to_target32(s->sh_info, endian); |
| shdr = &shdr64; |
| } |
| |
| ret = fd_write_vmcore(&shdr, shdr_size, s); |
| if (ret < 0) { |
| dump_error(s, "dump: failed to write section header table.\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int write_data(DumpState *s, void *buf, int length) |
| { |
| int ret; |
| |
| ret = fd_write_vmcore(buf, length, s); |
| if (ret < 0) { |
| dump_error(s, "dump: failed to save memory.\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| /* write the memroy to vmcore. 1 page per I/O. */ |
| static int write_memory(DumpState *s, GuestPhysBlock *block, ram_addr_t start, |
| int64_t size) |
| { |
| int64_t i; |
| int ret; |
| |
| for (i = 0; i < size / TARGET_PAGE_SIZE; i++) { |
| ret = write_data(s, block->host_addr + start + i * TARGET_PAGE_SIZE, |
| TARGET_PAGE_SIZE); |
| if (ret < 0) { |
| return ret; |
| } |
| } |
| |
| if ((size % TARGET_PAGE_SIZE) != 0) { |
| ret = write_data(s, block->host_addr + start + i * TARGET_PAGE_SIZE, |
| size % TARGET_PAGE_SIZE); |
| if (ret < 0) { |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* get the memory's offset and size in the vmcore */ |
| static void get_offset_range(hwaddr phys_addr, |
| ram_addr_t mapping_length, |
| DumpState *s, |
| hwaddr *p_offset, |
| hwaddr *p_filesz) |
| { |
| GuestPhysBlock *block; |
| hwaddr offset = s->memory_offset; |
| int64_t size_in_block, start; |
| |
| /* When the memory is not stored into vmcore, offset will be -1 */ |
| *p_offset = -1; |
| *p_filesz = 0; |
| |
| if (s->has_filter) { |
| if (phys_addr < s->begin || phys_addr >= s->begin + s->length) { |
| return; |
| } |
| } |
| |
| QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) { |
| if (s->has_filter) { |
| if (block->target_start >= s->begin + s->length || |
| block->target_end <= s->begin) { |
| /* This block is out of the range */ |
| continue; |
| } |
| |
| if (s->begin <= block->target_start) { |
| start = block->target_start; |
| } else { |
| start = s->begin; |
| } |
| |
| size_in_block = block->target_end - start; |
| if (s->begin + s->length < block->target_end) { |
| size_in_block -= block->target_end - (s->begin + s->length); |
| } |
| } else { |
| start = block->target_start; |
| size_in_block = block->target_end - block->target_start; |
| } |
| |
| if (phys_addr >= start && phys_addr < start + size_in_block) { |
| *p_offset = phys_addr - start + offset; |
| |
| /* The offset range mapped from the vmcore file must not spill over |
| * the GuestPhysBlock, clamp it. The rest of the mapping will be |
| * zero-filled in memory at load time; see |
| * <http://refspecs.linuxbase.org/elf/gabi4+/ch5.pheader.html>. |
| */ |
| *p_filesz = phys_addr + mapping_length <= start + size_in_block ? |
| mapping_length : |
| size_in_block - (phys_addr - start); |
| return; |
| } |
| |
| offset += size_in_block; |
| } |
| } |
| |
| static int write_elf_loads(DumpState *s) |
| { |
| hwaddr offset, filesz; |
| MemoryMapping *memory_mapping; |
| uint32_t phdr_index = 1; |
| int ret; |
| uint32_t max_index; |
| |
| if (s->have_section) { |
| max_index = s->sh_info; |
| } else { |
| max_index = s->phdr_num; |
| } |
| |
| QTAILQ_FOREACH(memory_mapping, &s->list.head, next) { |
| get_offset_range(memory_mapping->phys_addr, |
| memory_mapping->length, |
| s, &offset, &filesz); |
| if (s->dump_info.d_class == ELFCLASS64) { |
| ret = write_elf64_load(s, memory_mapping, phdr_index++, offset, |
| filesz); |
| } else { |
| ret = write_elf32_load(s, memory_mapping, phdr_index++, offset, |
| filesz); |
| } |
| |
| if (ret < 0) { |
| return -1; |
| } |
| |
| if (phdr_index >= max_index) { |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* write elf header, PT_NOTE and elf note to vmcore. */ |
| static int dump_begin(DumpState *s) |
| { |
| int ret; |
| |
| /* |
| * the vmcore's format is: |
| * -------------- |
| * | elf header | |
| * -------------- |
| * | PT_NOTE | |
| * -------------- |
| * | PT_LOAD | |
| * -------------- |
| * | ...... | |
| * -------------- |
| * | PT_LOAD | |
| * -------------- |
| * | sec_hdr | |
| * -------------- |
| * | elf note | |
| * -------------- |
| * | memory | |
| * -------------- |
| * |
| * we only know where the memory is saved after we write elf note into |
| * vmcore. |
| */ |
| |
| /* write elf header to vmcore */ |
| if (s->dump_info.d_class == ELFCLASS64) { |
| ret = write_elf64_header(s); |
| } else { |
| ret = write_elf32_header(s); |
| } |
| if (ret < 0) { |
| return -1; |
| } |
| |
| if (s->dump_info.d_class == ELFCLASS64) { |
| /* write PT_NOTE to vmcore */ |
| if (write_elf64_note(s) < 0) { |
| return -1; |
| } |
| |
| /* write all PT_LOAD to vmcore */ |
| if (write_elf_loads(s) < 0) { |
| return -1; |
| } |
| |
| /* write section to vmcore */ |
| if (s->have_section) { |
| if (write_elf_section(s, 1) < 0) { |
| return -1; |
| } |
| } |
| |
| /* write notes to vmcore */ |
| if (write_elf64_notes(fd_write_vmcore, s) < 0) { |
| return -1; |
| } |
| |
| } else { |
| /* write PT_NOTE to vmcore */ |
| if (write_elf32_note(s) < 0) { |
| return -1; |
| } |
| |
| /* write all PT_LOAD to vmcore */ |
| if (write_elf_loads(s) < 0) { |
| return -1; |
| } |
| |
| /* write section to vmcore */ |
| if (s->have_section) { |
| if (write_elf_section(s, 0) < 0) { |
| return -1; |
| } |
| } |
| |
| /* write notes to vmcore */ |
| if (write_elf32_notes(fd_write_vmcore, s) < 0) { |
| return -1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* write PT_LOAD to vmcore */ |
| static int dump_completed(DumpState *s) |
| { |
| dump_cleanup(s); |
| return 0; |
| } |
| |
| static int get_next_block(DumpState *s, GuestPhysBlock *block) |
| { |
| while (1) { |
| block = QTAILQ_NEXT(block, next); |
| if (!block) { |
| /* no more block */ |
| return 1; |
| } |
| |
| s->start = 0; |
| s->next_block = block; |
| if (s->has_filter) { |
| if (block->target_start >= s->begin + s->length || |
| block->target_end <= s->begin) { |
| /* This block is out of the range */ |
| continue; |
| } |
| |
| if (s->begin > block->target_start) { |
| s->start = s->begin - block->target_start; |
| } |
| } |
| |
| return 0; |
| } |
| } |
| |
| /* write all memory to vmcore */ |
| static int dump_iterate(DumpState *s) |
| { |
| GuestPhysBlock *block; |
| int64_t size; |
| int ret; |
| |
| while (1) { |
| block = s->next_block; |
| |
| size = block->target_end - block->target_start; |
| if (s->has_filter) { |
| size -= s->start; |
| if (s->begin + s->length < block->target_end) { |
| size -= block->target_end - (s->begin + s->length); |
| } |
| } |
| ret = write_memory(s, block, s->start, size); |
| if (ret == -1) { |
| return ret; |
| } |
| |
| ret = get_next_block(s, block); |
| if (ret == 1) { |
| dump_completed(s); |
| return 0; |
| } |
| } |
| } |
| |
| static int create_vmcore(DumpState *s) |
| { |
| int ret; |
| |
| ret = dump_begin(s); |
| if (ret < 0) { |
| return -1; |
| } |
| |
| ret = dump_iterate(s); |
| if (ret < 0) { |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int write_start_flat_header(int fd) |
| { |
| MakedumpfileHeader *mh; |
| int ret = 0; |
| |
| QEMU_BUILD_BUG_ON(sizeof *mh > MAX_SIZE_MDF_HEADER); |
| mh = g_malloc0(MAX_SIZE_MDF_HEADER); |
| |
| memcpy(mh->signature, MAKEDUMPFILE_SIGNATURE, |
| MIN(sizeof mh->signature, sizeof MAKEDUMPFILE_SIGNATURE)); |
| |
| mh->type = cpu_to_be64(TYPE_FLAT_HEADER); |
| mh->version = cpu_to_be64(VERSION_FLAT_HEADER); |
| |
| size_t written_size; |
| written_size = qemu_write_full(fd, mh, MAX_SIZE_MDF_HEADER); |
| if (written_size != MAX_SIZE_MDF_HEADER) { |
| ret = -1; |
| } |
| |
| g_free(mh); |
| return ret; |
| } |
| |
| static int write_end_flat_header(int fd) |
| { |
| MakedumpfileDataHeader mdh; |
| |
| mdh.offset = END_FLAG_FLAT_HEADER; |
| mdh.buf_size = END_FLAG_FLAT_HEADER; |
| |
| size_t written_size; |
| written_size = qemu_write_full(fd, &mdh, sizeof(mdh)); |
| if (written_size != sizeof(mdh)) { |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int write_buffer(int fd, off_t offset, const void *buf, size_t size) |
| { |
| size_t written_size; |
| MakedumpfileDataHeader mdh; |
| |
| mdh.offset = cpu_to_be64(offset); |
| mdh.buf_size = cpu_to_be64(size); |
| |
| written_size = qemu_write_full(fd, &mdh, sizeof(mdh)); |
| if (written_size != sizeof(mdh)) { |
| return -1; |
| } |
| |
| written_size = qemu_write_full(fd, buf, size); |
| if (written_size != size) { |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int buf_write_note(const void *buf, size_t size, void *opaque) |
| { |
| DumpState *s = opaque; |
| |
| /* note_buf is not enough */ |
| if (s->note_buf_offset + size > s->note_size) { |
| return -1; |
| } |
| |
| memcpy(s->note_buf + s->note_buf_offset, buf, size); |
| |
| s->note_buf_offset += size; |
| |
| return 0; |
| } |
| |
| /* write common header, sub header and elf note to vmcore */ |
| static int create_header32(DumpState *s) |
| { |
| int ret = 0; |
| DiskDumpHeader32 *dh = NULL; |
| KdumpSubHeader32 *kh = NULL; |
| size_t size; |
| int endian = s->dump_info.d_endian; |
| uint32_t block_size; |
| uint32_t sub_hdr_size; |
| uint32_t bitmap_blocks; |
| uint32_t status = 0; |
| uint64_t offset_note; |
| |
| /* write common header, the version of kdump-compressed format is 6th */ |
| size = sizeof(DiskDumpHeader32); |
| dh = g_malloc0(size); |
| |
| strncpy(dh->signature, KDUMP_SIGNATURE, strlen(KDUMP_SIGNATURE)); |
| dh->header_version = cpu_convert_to_target32(6, endian); |
| block_size = TARGET_PAGE_SIZE; |
| dh->block_size = cpu_convert_to_target32(block_size, endian); |
| sub_hdr_size = sizeof(struct KdumpSubHeader32) + s->note_size; |
| sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size); |
| dh->sub_hdr_size = cpu_convert_to_target32(sub_hdr_size, endian); |
| /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */ |
| dh->max_mapnr = cpu_convert_to_target32(MIN(s->max_mapnr, UINT_MAX), |
| endian); |
| dh->nr_cpus = cpu_convert_to_target32(s->nr_cpus, endian); |
| bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2; |
| dh->bitmap_blocks = cpu_convert_to_target32(bitmap_blocks, endian); |
| strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine)); |
| |
| if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) { |
| status |= DUMP_DH_COMPRESSED_ZLIB; |
| } |
| #ifdef CONFIG_LZO |
| if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) { |
| status |= DUMP_DH_COMPRESSED_LZO; |
| } |
| #endif |
| #ifdef CONFIG_SNAPPY |
| if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) { |
| status |= DUMP_DH_COMPRESSED_SNAPPY; |
| } |
| #endif |
| dh->status = cpu_convert_to_target32(status, endian); |
| |
| if (write_buffer(s->fd, 0, dh, size) < 0) { |
| dump_error(s, "dump: failed to write disk dump header.\n"); |
| ret = -1; |
| goto out; |
| } |
| |
| /* write sub header */ |
| size = sizeof(KdumpSubHeader32); |
| kh = g_malloc0(size); |
| |
| /* 64bit max_mapnr_64 */ |
| kh->max_mapnr_64 = cpu_convert_to_target64(s->max_mapnr, endian); |
| kh->phys_base = cpu_convert_to_target32(PHYS_BASE, endian); |
| kh->dump_level = cpu_convert_to_target32(DUMP_LEVEL, endian); |
| |
| offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size; |
| kh->offset_note = cpu_convert_to_target64(offset_note, endian); |
| kh->note_size = cpu_convert_to_target32(s->note_size, endian); |
| |
| if (write_buffer(s->fd, DISKDUMP_HEADER_BLOCKS * |
| block_size, kh, size) < 0) { |
| dump_error(s, "dump: failed to write kdump sub header.\n"); |
| ret = -1; |
| goto out; |
| } |
| |
| /* write note */ |
| s->note_buf = g_malloc0(s->note_size); |
| s->note_buf_offset = 0; |
| |
| /* use s->note_buf to store notes temporarily */ |
| if (write_elf32_notes(buf_write_note, s) < 0) { |
| ret = -1; |
| goto out; |
| } |
| |
| if (write_buffer(s->fd, offset_note, s->note_buf, |
| s->note_size) < 0) { |
| dump_error(s, "dump: failed to write notes"); |
| ret = -1; |
| goto out; |
| } |
| |
| /* get offset of dump_bitmap */ |
| s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) * |
| block_size; |
| |
| /* get offset of page */ |
| s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) * |
| block_size; |
| |
| out: |
| g_free(dh); |
| g_free(kh); |
| g_free(s->note_buf); |
| |
| return ret; |
| } |
| |
| /* write common header, sub header and elf note to vmcore */ |
| static int create_header64(DumpState *s) |
| { |
| int ret = 0; |
| DiskDumpHeader64 *dh = NULL; |
| KdumpSubHeader64 *kh = NULL; |
| size_t size; |
| int endian = s->dump_info.d_endian; |
| uint32_t block_size; |
| uint32_t sub_hdr_size; |
| uint32_t bitmap_blocks; |
| uint32_t status = 0; |
| uint64_t offset_note; |
| |
| /* write common header, the version of kdump-compressed format is 6th */ |
| size = sizeof(DiskDumpHeader64); |
| dh = g_malloc0(size); |
| |
| strncpy(dh->signature, KDUMP_SIGNATURE, strlen(KDUMP_SIGNATURE)); |
| dh->header_version = cpu_convert_to_target32(6, endian); |
| block_size = TARGET_PAGE_SIZE; |
| dh->block_size = cpu_convert_to_target32(block_size, endian); |
| sub_hdr_size = sizeof(struct KdumpSubHeader64) + s->note_size; |
| sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size); |
| dh->sub_hdr_size = cpu_convert_to_target32(sub_hdr_size, endian); |
| /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */ |
| dh->max_mapnr = cpu_convert_to_target32(MIN(s->max_mapnr, UINT_MAX), |
| endian); |
| dh->nr_cpus = cpu_convert_to_target32(s->nr_cpus, endian); |
| bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2; |
| dh->bitmap_blocks = cpu_convert_to_target32(bitmap_blocks, endian); |
| strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine)); |
| |
| if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) { |
| status |= DUMP_DH_COMPRESSED_ZLIB; |
| } |
| #ifdef CONFIG_LZO |
| if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) { |
| status |= DUMP_DH_COMPRESSED_LZO; |
| } |
| #endif |
| #ifdef CONFIG_SNAPPY |
| if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) { |
| status |= DUMP_DH_COMPRESSED_SNAPPY; |
| } |
| #endif |
| dh->status = cpu_convert_to_target32(status, endian); |
| |
| if (write_buffer(s->fd, 0, dh, size) < 0) { |
| dump_error(s, "dump: failed to write disk dump header.\n"); |
| ret = -1; |
| goto out; |
| } |
| |
| /* write sub header */ |
| size = sizeof(KdumpSubHeader64); |
| kh = g_malloc0(size); |
| |
| /* 64bit max_mapnr_64 */ |
| kh->max_mapnr_64 = cpu_convert_to_target64(s->max_mapnr, endian); |
| kh->phys_base = cpu_convert_to_target64(PHYS_BASE, endian); |
| kh->dump_level = cpu_convert_to_target32(DUMP_LEVEL, endian); |
| |
| offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size; |
| kh->offset_note = cpu_convert_to_target64(offset_note, endian); |
| kh->note_size = cpu_convert_to_target64(s->note_size, endian); |
| |
| if (write_buffer(s->fd, DISKDUMP_HEADER_BLOCKS * |
| block_size, kh, size) < 0) { |
| dump_error(s, "dump: failed to write kdump sub header.\n"); |
| ret = -1; |
| goto out; |
| } |
| |
| /* write note */ |
| s->note_buf = g_malloc0(s->note_size); |
| s->note_buf_offset = 0; |
| |
| /* use s->note_buf to store notes temporarily */ |
| if (write_elf64_notes(buf_write_note, s) < 0) { |
| ret = -1; |
| goto out; |
| } |
| |
| if (write_buffer(s->fd, offset_note, s->note_buf, |
| s->note_size) < 0) { |
| dump_error(s, "dump: failed to write notes"); |
| ret = -1; |
| goto out; |
| } |
| |
| /* get offset of dump_bitmap */ |
| s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) * |
| block_size; |
| |
| /* get offset of page */ |
| s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) * |
| block_size; |
| |
| out: |
| g_free(dh); |
| g_free(kh); |
| g_free(s->note_buf); |
| |
| return ret; |
| } |
| |
| static int write_dump_header(DumpState *s) |
| { |
| if (s->dump_info.d_class == ELFCLASS32) { |
| return create_header32(s); |
| } else { |
| return create_header64(s); |
| } |
| } |
| |
| /* |
| * set dump_bitmap sequencely. the bit before last_pfn is not allowed to be |
| * rewritten, so if need to set the first bit, set last_pfn and pfn to 0. |
| * set_dump_bitmap will always leave the recently set bit un-sync. And setting |
| * (last bit + sizeof(buf) * 8) to 0 will do flushing the content in buf into |
| * vmcore, ie. synchronizing un-sync bit into vmcore. |
| */ |
| static int set_dump_bitmap(uint64_t last_pfn, uint64_t pfn, bool value, |
| uint8_t *buf, DumpState *s) |
| { |
| off_t old_offset, new_offset; |
| off_t offset_bitmap1, offset_bitmap2; |
| uint32_t byte, bit; |
| |
| /* should not set the previous place */ |
| assert(last_pfn <= pfn); |
| |
| /* |
| * if the bit needed to be set is not cached in buf, flush the data in buf |
| * to vmcore firstly. |
| * making new_offset be bigger than old_offset can also sync remained data |
| * into vmcore. |
| */ |
| old_offset = BUFSIZE_BITMAP * (last_pfn / PFN_BUFBITMAP); |
| new_offset = BUFSIZE_BITMAP * (pfn / PFN_BUFBITMAP); |
| |
| while (old_offset < new_offset) { |
| /* calculate the offset and write dump_bitmap */ |
| offset_bitmap1 = s->offset_dump_bitmap + old_offset; |
| if (write_buffer(s->fd, offset_bitmap1, buf, |
| BUFSIZE_BITMAP) < 0) { |
| return -1; |
| } |
| |
| /* dump level 1 is chosen, so 1st and 2nd bitmap are same */ |
| offset_bitmap2 = s->offset_dump_bitmap + s->len_dump_bitmap + |
| old_offset; |
| if (write_buffer(s->fd, offset_bitmap2, buf, |
| BUFSIZE_BITMAP) < 0) { |
| return -1; |
| } |
| |
| memset(buf, 0, BUFSIZE_BITMAP); |
| old_offset += BUFSIZE_BITMAP; |
| } |
| |
| /* get the exact place of the bit in the buf, and set it */ |
| byte = (pfn % PFN_BUFBITMAP) / CHAR_BIT; |
| bit = (pfn % PFN_BUFBITMAP) % CHAR_BIT; |
| if (value) { |
| buf[byte] |= 1u << bit; |
| } else { |
| buf[byte] &= ~(1u << bit); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * exam every page and return the page frame number and the address of the page. |
| * bufptr can be NULL. note: the blocks here is supposed to reflect guest-phys |
| * blocks, so block->target_start and block->target_end should be interal |
| * multiples of the target page size. |
| */ |
| static bool get_next_page(GuestPhysBlock **blockptr, uint64_t *pfnptr, |
| uint8_t **bufptr, DumpState *s) |
| { |
| GuestPhysBlock *block = *blockptr; |
| hwaddr addr; |
| uint8_t *buf; |
| |
| /* block == NULL means the start of the iteration */ |
| if (!block) { |
| block = QTAILQ_FIRST(&s->guest_phys_blocks.head); |
| *blockptr = block; |
| assert((block->target_start & ~TARGET_PAGE_MASK) == 0); |
| assert((block->target_end & ~TARGET_PAGE_MASK) == 0); |
| *pfnptr = paddr_to_pfn(block->target_start); |
| if (bufptr) { |
| *bufptr = block->host_addr; |
| } |
| return true; |
| } |
| |
| *pfnptr = *pfnptr + 1; |
| addr = pfn_to_paddr(*pfnptr); |
| |
| if ((addr >= block->target_start) && |
| (addr + TARGET_PAGE_SIZE <= block->target_end)) { |
| buf = block->host_addr + (addr - block->target_start); |
| } else { |
| /* the next page is in the next block */ |
| block = QTAILQ_NEXT(block, next); |
| *blockptr = block; |
| if (!block) { |
| return false; |
| } |
| assert((block->target_start & ~TARGET_PAGE_MASK) == 0); |
| assert((block->target_end & ~TARGET_PAGE_MASK) == 0); |
| *pfnptr = paddr_to_pfn(block->target_start); |
| buf = block->host_addr; |
| } |
| |
| if (bufptr) { |
| *bufptr = buf; |
| } |
| |
| return true; |
| } |
| |
| static int write_dump_bitmap(DumpState *s) |
| { |
| int ret = 0; |
| uint64_t last_pfn, pfn; |
| void *dump_bitmap_buf; |
| size_t num_dumpable; |
| GuestPhysBlock *block_iter = NULL; |
| |
| /* dump_bitmap_buf is used to store dump_bitmap temporarily */ |
| dump_bitmap_buf = g_malloc0(BUFSIZE_BITMAP); |
| |
| num_dumpable = 0; |
| last_pfn = 0; |
| |
| /* |
| * exam memory page by page, and set the bit in dump_bitmap corresponded |
| * to the existing page. |
| */ |
| while (get_next_page(&block_iter, &pfn, NULL, s)) { |
| ret = set_dump_bitmap(last_pfn, pfn, true, dump_bitmap_buf, s); |
| if (ret < 0) { |
| dump_error(s, "dump: failed to set dump_bitmap.\n"); |
| ret = -1; |
| goto out; |
| } |
| |
| last_pfn = pfn; |
| num_dumpable++; |
| } |
| |
| /* |
| * set_dump_bitmap will always leave the recently set bit un-sync. Here we |
| * set last_pfn + PFN_BUFBITMAP to 0 and those set but un-sync bit will be |
| * synchronized into vmcore. |
| */ |
| if (num_dumpable > 0) { |
| ret = set_dump_bitmap(last_pfn, last_pfn + PFN_BUFBITMAP, false, |
| dump_bitmap_buf, s); |
| if (ret < 0) { |
| dump_error(s, "dump: failed to sync dump_bitmap.\n"); |
| ret = -1; |
| goto out; |
| } |
| } |
| |
| /* number of dumpable pages that will be dumped later */ |
| s->num_dumpable = num_dumpable; |
| |
| out: |
| g_free(dump_bitmap_buf); |
| |
| return ret; |
| } |
| |
| static void prepare_data_cache(DataCache *data_cache, DumpState *s, |
| off_t offset) |
| { |
| data_cache->fd = s->fd; |
| data_cache->data_size = 0; |
| data_cache->buf_size = BUFSIZE_DATA_CACHE; |
| data_cache->buf = g_malloc0(BUFSIZE_DATA_CACHE); |
| data_cache->offset = offset; |
| } |
| |
| static int write_cache(DataCache *dc, const void *buf, size_t size, |
| bool flag_sync) |
| { |
| /* |
| * dc->buf_size should not be less than size, otherwise dc will never be |
| * enough |
| */ |
| assert(size <= dc->buf_size); |
| |
| /* |
| * if flag_sync is set, synchronize data in dc->buf into vmcore. |
| * otherwise check if the space is enough for caching data in buf, if not, |
| * write the data in dc->buf to dc->fd and reset dc->buf |
| */ |
| if ((!flag_sync && dc->data_size + size > dc->buf_size) || |
| (flag_sync && dc->data_size > 0)) { |
| if (write_buffer(dc->fd, dc->offset, dc->buf, dc->data_size) < 0) { |
| return -1; |
| } |
| |
| dc->offset += dc->data_size; |
| dc->data_size = 0; |
| } |
| |
| if (!flag_sync) { |
| memcpy(dc->buf + dc->data_size, buf, size); |
| dc->data_size += size; |
| } |
| |
| return 0; |
| } |
| |
| static void free_data_cache(DataCache *data_cache) |
| { |
| g_free(data_cache->buf); |
| } |
| |
| static size_t get_len_buf_out(size_t page_size, uint32_t flag_compress) |
| { |
| size_t len_buf_out_zlib, len_buf_out_lzo, len_buf_out_snappy; |
| size_t len_buf_out; |
| |
| /* init buf_out */ |
| len_buf_out_zlib = len_buf_out_lzo = len_buf_out_snappy = 0; |
| |
| /* buf size for zlib */ |
| len_buf_out_zlib = compressBound(page_size); |
| |
| /* buf size for lzo */ |
| #ifdef CONFIG_LZO |
| /* |
| * LZO will expand incompressible data by a little amount. please check the |
| * following URL to see the expansion calculation: |
| * http://www.oberhumer.com/opensource/lzo/lzofaq.php |
| */ |
| len_buf_out_lzo = page_size + page_size / 16 + 64 + 3; |
| #endif |
| |
| #ifdef CONFIG_SNAPPY |
| /* buf size for snappy */ |
| len_buf_out_snappy = snappy_max_compressed_length(page_size); |
| #endif |
| |
| /* get the biggest that can store all kinds of compressed page */ |
| len_buf_out = MAX(len_buf_out_zlib, |
| MAX(len_buf_out_lzo, len_buf_out_snappy)); |
| |
| return len_buf_out; |
| } |
| |
| /* |
| * check if the page is all 0 |
| */ |
| static inline bool is_zero_page(const uint8_t *buf, size_t page_size) |
| { |
| return buffer_is_zero(buf, page_size); |
| } |
| |
| static int write_dump_pages(DumpState *s) |
| { |
| int ret = 0; |
| DataCache page_desc, page_data; |
| size_t len_buf_out, size_out; |
| #ifdef CONFIG_LZO |
| lzo_bytep wrkmem = NULL; |
| #endif |
| uint8_t *buf_out = NULL; |
| off_t offset_desc, offset_data; |
| PageDescriptor pd, pd_zero; |
| uint8_t *buf; |
| int endian = s->dump_info.d_endian; |
| GuestPhysBlock *block_iter = NULL; |
| uint64_t pfn_iter; |
| |
| /* get offset of page_desc and page_data in dump file */ |
| offset_desc = s->offset_page; |
| offset_data = offset_desc + sizeof(PageDescriptor) * s->num_dumpable; |
| |
| prepare_data_cache(&page_desc, s, offset_desc); |
| prepare_data_cache(&page_data, s, offset_data); |
| |
| /* prepare buffer to store compressed data */ |
| len_buf_out = get_len_buf_out(TARGET_PAGE_SIZE, s->flag_compress); |
| if (len_buf_out == 0) { |
| dump_error(s, "dump: failed to get length of output buffer.\n"); |
| goto out; |
| } |
| |
| #ifdef CONFIG_LZO |
| wrkmem = g_malloc(LZO1X_1_MEM_COMPRESS); |
| #endif |
| |
| buf_out = g_malloc(len_buf_out); |
| |
| /* |
| * init zero page's page_desc and page_data, because every zero page |
| * uses the same page_data |
| */ |
| pd_zero.size = cpu_convert_to_target32(TARGET_PAGE_SIZE, endian); |
| pd_zero.flags = cpu_convert_to_target32(0, endian); |
| pd_zero.offset = cpu_convert_to_target64(offset_data, endian); |
| pd_zero.page_flags = cpu_convert_to_target64(0, endian); |
| buf = g_malloc0(TARGET_PAGE_SIZE); |
| ret = write_cache(&page_data, buf, TARGET_PAGE_SIZE, false); |
| g_free(buf); |
| if (ret < 0) { |
| dump_error(s, "dump: failed to write page data(zero page).\n"); |
| goto out; |
| } |
| |
| offset_data += TARGET_PAGE_SIZE; |
| |
| /* |
| * dump memory to vmcore page by page. zero page will all be resided in the |
| * first page of page section |
| */ |
| while (get_next_page(&block_iter, &pfn_iter, &buf, s)) { |
| /* check zero page */ |
| if (is_zero_page(buf, TARGET_PAGE_SIZE)) { |
| ret = write_cache(&page_desc, &pd_zero, sizeof(PageDescriptor), |
| false); |
| if (ret < 0) { |
| dump_error(s, "dump: failed to write page desc.\n"); |
| goto out; |
| } |
| } else { |
| /* |
| * not zero page, then: |
| * 1. compress the page |
| * 2. write the compressed page into the cache of page_data |
| * 3. get page desc of the compressed page and write it into the |
| * cache of page_desc |
| * |
| * only one compression format will be used here, for |
| * s->flag_compress is set. But when compression fails to work, |
| * we fall back to save in plaintext. |
| */ |
| size_out = len_buf_out; |
| if ((s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) && |
| (compress2(buf_out, (uLongf *)&size_out, buf, |
| TARGET_PAGE_SIZE, Z_BEST_SPEED) == Z_OK) && |
| (size_out < TARGET_PAGE_SIZE)) { |
| pd.flags = cpu_convert_to_target32(DUMP_DH_COMPRESSED_ZLIB, |
| endian); |
| pd.size = cpu_convert_to_target32(size_out, endian); |
| |
| ret = write_cache(&page_data, buf_out, size_out, false); |
| if (ret < 0) { |
| dump_error(s, "dump: failed to write page data.\n"); |
| goto out; |
| } |
| #ifdef CONFIG_LZO |
| } else if ((s->flag_compress & DUMP_DH_COMPRESSED_LZO) && |
| (lzo1x_1_compress(buf, TARGET_PAGE_SIZE, buf_out, |
| (lzo_uint *)&size_out, wrkmem) == LZO_E_OK) && |
| (size_out < TARGET_PAGE_SIZE)) { |
| pd.flags = cpu_convert_to_target32(DUMP_DH_COMPRESSED_LZO, |
| endian); |
| pd.size = cpu_convert_to_target32(size_out, endian); |
| |
| ret = write_cache(&page_data, buf_out, size_out, false); |
| if (ret < 0) { |
| dump_error(s, "dump: failed to write page data.\n"); |
| goto out; |
| } |
| #endif |
| #ifdef CONFIG_SNAPPY |
| } else if ((s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) && |
| (snappy_compress((char *)buf, TARGET_PAGE_SIZE, |
| (char *)buf_out, &size_out) == SNAPPY_OK) && |
| (size_out < TARGET_PAGE_SIZE)) { |
| pd.flags = cpu_convert_to_target32( |
| DUMP_DH_COMPRESSED_SNAPPY, endian); |
| pd.size = cpu_convert_to_target32(size_out, endian); |
| |
| ret = write_cache(&page_data, buf_out, size_out, false); |
| if (ret < 0) { |
| dump_error(s, "dump: failed to write page data.\n"); |
| goto out; |
| } |
| #endif |
| } else { |
| /* |
| * fall back to save in plaintext, size_out should be |
| * assigned TARGET_PAGE_SIZE |
| */ |
| pd.flags = cpu_convert_to_target32(0, endian); |
| size_out = TARGET_PAGE_SIZE; |
| pd.size = cpu_convert_to_target32(size_out, endian); |
| |
| ret = write_cache(&page_data, buf, TARGET_PAGE_SIZE, false); |
| if (ret < 0) { |
| dump_error(s, "dump: failed to write page data.\n"); |
| goto out; |
| } |
| } |
| |
| /* get and write page desc here */ |
| pd.page_flags = cpu_convert_to_target64(0, endian); |
| pd.offset = cpu_convert_to_target64(offset_data, endian); |
| offset_data += size_out; |
| |
| ret = write_cache(&page_desc, &pd, sizeof(PageDescriptor), false); |
| if (ret < 0) { |
| dump_error(s, "dump: failed to write page desc.\n"); |
| goto out; |
| } |
| } |
| } |
| |
| ret = write_cache(&page_desc, NULL, 0, true); |
| if (ret < 0) { |
| dump_error(s, "dump: failed to sync cache for page_desc.\n"); |
| goto out; |
| } |
| ret = write_cache(&page_data, NULL, 0, true); |
| if (ret < 0) { |
| dump_error(s, "dump: failed to sync cache for page_data.\n"); |
| goto out; |
| } |
| |
| out: |
| free_data_cache(&page_desc); |
| free_data_cache(&page_data); |
| |
| #ifdef CONFIG_LZO |
| g_free(wrkmem); |
| #endif |
| |
| g_free(buf_out); |
| |
| return ret; |
| } |
| |
| static int create_kdump_vmcore(DumpState *s) |
| { |
| int ret; |
| |
| /* |
| * the kdump-compressed format is: |
| * File offset |
| * +------------------------------------------+ 0x0 |
| * | main header (struct disk_dump_header) | |
| * |------------------------------------------+ block 1 |
| * | sub header (struct kdump_sub_header) | |
| * |------------------------------------------+ block 2 |
| * | 1st-dump_bitmap | |
| * |------------------------------------------+ block 2 + X blocks |
| * | 2nd-dump_bitmap | (aligned by block) |
| * |------------------------------------------+ block 2 + 2 * X blocks |
| * | page desc for pfn 0 (struct page_desc) | (aligned by block) |
| * | page desc for pfn 1 (struct page_desc) | |
| * | : | |
| * |------------------------------------------| (not aligned by block) |
| * | page data (pfn 0) | |
| * | page data (pfn 1) | |
| * | : | |
| * +------------------------------------------+ |
| */ |
| |
| ret = write_start_flat_header(s->fd); |
| if (ret < 0) { |
| dump_error(s, "dump: failed to write start flat header.\n"); |
| return -1; |
| } |
| |
| ret = write_dump_header(s); |
| if (ret < 0) { |
| return -1; |
| } |
| |
| ret = write_dump_bitmap(s); |
| if (ret < 0) { |
| return -1; |
| } |
| |
| ret = write_dump_pages(s); |
| if (ret < 0) { |
| return -1; |
| } |
| |
| ret = write_end_flat_header(s->fd); |
| if (ret < 0) { |
| dump_error(s, "dump: failed to write end flat header.\n"); |
| return -1; |
| } |
| |
| dump_completed(s); |
| |
| return 0; |
| } |
| |
| static ram_addr_t get_start_block(DumpState *s) |
| { |
| GuestPhysBlock *block; |
| |
| if (!s->has_filter) { |
| s->next_block = QTAILQ_FIRST(&s->guest_phys_blocks.head); |
| return 0; |
| } |
| |
| QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) { |
| if (block->target_start >= s->begin + s->length || |
| block->target_end <= s->begin) { |
| /* This block is out of the range */ |
| continue; |
| } |
| |
| s->next_block = block; |
| if (s->begin > block->target_start) { |
| s->start = s->begin - block->target_start; |
| } else { |
| s->start = 0; |
| } |
| return s->start; |
| } |
| |
| return -1; |
| } |
| |
| static void get_max_mapnr(DumpState *s) |
| { |
| GuestPhysBlock *last_block; |
| |
| last_block = QTAILQ_LAST(&s->guest_phys_blocks.head, GuestPhysBlockHead); |
| s->max_mapnr = paddr_to_pfn(last_block->target_end); |
| } |
| |
| static int dump_init(DumpState *s, int fd, bool has_format, |
| DumpGuestMemoryFormat format, bool paging, bool has_filter, |
| int64_t begin, int64_t length, Error **errp) |
| { |
| CPUState *cpu; |
| int nr_cpus; |
| Error *err = NULL; |
| int ret; |
| |
| /* kdump-compressed is conflict with paging and filter */ |
| if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) { |
| assert(!paging && !has_filter); |
| } |
| |
| if (runstate_is_running()) { |
| vm_stop(RUN_STATE_SAVE_VM); |
| s->resume = true; |
| } else { |
| s->resume = false; |
| } |
| |
| /* If we use KVM, we should synchronize the registers before we get dump |
| * info or physmap info. |
| */ |
| cpu_synchronize_all_states(); |
| nr_cpus = 0; |
| CPU_FOREACH(cpu) { |
| nr_cpus++; |
| } |
| |
| s->fd = fd; |
| s->has_filter = has_filter; |
| s->begin = begin; |
| s->length = length; |
| |
| guest_phys_blocks_init(&s->guest_phys_blocks); |
| guest_phys_blocks_append(&s->guest_phys_blocks); |
| |
| s->start = get_start_block(s); |
| if (s->start == -1) { |
| error_set(errp, QERR_INVALID_PARAMETER, "begin"); |
| goto cleanup; |
| } |
| |
| /* get dump info: endian, class and architecture. |
| * If the target architecture is not supported, cpu_get_dump_info() will |
| * return -1. |
| */ |
| ret = cpu_get_dump_info(&s->dump_info, &s->guest_phys_blocks); |
| if (ret < 0) { |
| error_set(errp, QERR_UNSUPPORTED); |
| goto cleanup; |
| } |
| |
| s->note_size = cpu_get_note_size(s->dump_info.d_class, |
| s->dump_info.d_machine, nr_cpus); |
| if (s->note_size < 0) { |
| error_set(errp, QERR_UNSUPPORTED); |
| goto cleanup; |
| } |
| |
| /* get memory mapping */ |
| memory_mapping_list_init(&s->list); |
| if (paging) { |
| qemu_get_guest_memory_mapping(&s->list, &s->guest_phys_blocks, &err); |
| if (err != NULL) { |
| error_propagate(errp, err); |
| goto cleanup; |
| } |
| } else { |
| qemu_get_guest_simple_memory_mapping(&s->list, &s->guest_phys_blocks); |
| } |
| |
| s->nr_cpus = nr_cpus; |
| |
| get_max_mapnr(s); |
| |
| uint64_t tmp; |
| tmp = DIV_ROUND_UP(DIV_ROUND_UP(s->max_mapnr, CHAR_BIT), TARGET_PAGE_SIZE); |
| s->len_dump_bitmap = tmp * TARGET_PAGE_SIZE; |
| |
| /* init for kdump-compressed format */ |
| if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) { |
| switch (format) { |
| case DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB: |
| s->flag_compress = DUMP_DH_COMPRESSED_ZLIB; |
| break; |
| |
| case DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO: |
| #ifdef CONFIG_LZO |
| if (lzo_init() != LZO_E_OK) { |
| error_setg(errp, "failed to initialize the LZO library"); |
| goto cleanup; |
| } |
| #endif |
| s->flag_compress = DUMP_DH_COMPRESSED_LZO; |
| break; |
| |
| case DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY: |
| s->flag_compress = DUMP_DH_COMPRESSED_SNAPPY; |
| break; |
| |
| default: |
| s->flag_compress = 0; |
| } |
| |
| return 0; |
| } |
| |
| if (s->has_filter) { |
| memory_mapping_filter(&s->list, s->begin, s->length); |
| } |
| |
| /* |
| * calculate phdr_num |
| * |
| * the type of ehdr->e_phnum is uint16_t, so we should avoid overflow |
| */ |
| s->phdr_num = 1; /* PT_NOTE */ |
| if (s->list.num < UINT16_MAX - 2) { |
| s->phdr_num += s->list.num; |
| s->have_section = false; |
| } else { |
| s->have_section = true; |
| s->phdr_num = PN_XNUM; |
| s->sh_info = 1; /* PT_NOTE */ |
| |
| /* the type of shdr->sh_info is uint32_t, so we should avoid overflow */ |
| if (s->list.num <= UINT32_MAX - 1) { |
| s->sh_info += s->list.num; |
| } else { |
| s->sh_info = UINT32_MAX; |
| } |
| } |
| |
| if (s->dump_info.d_class == ELFCLASS64) { |
| if (s->have_section) { |
| s->memory_offset = sizeof(Elf64_Ehdr) + |
| sizeof(Elf64_Phdr) * s->sh_info + |
| sizeof(Elf64_Shdr) + s->note_size; |
| } else { |
| s->memory_offset = sizeof(Elf64_Ehdr) + |
| sizeof(Elf64_Phdr) * s->phdr_num + s->note_size; |
| } |
| } else { |
| if (s->have_section) { |
| s->memory_offset = sizeof(Elf32_Ehdr) + |
| sizeof(Elf32_Phdr) * s->sh_info + |
| sizeof(Elf32_Shdr) + s->note_size; |
| } else { |
| s->memory_offset = sizeof(Elf32_Ehdr) + |
| sizeof(Elf32_Phdr) * s->phdr_num + s->note_size; |
| } |
| } |
| |
| return 0; |
| |
| cleanup: |
| guest_phys_blocks_free(&s->guest_phys_blocks); |
| |
| if (s->resume) { |
| vm_start(); |
| } |
| |
| return -1; |
| } |
| |
| void qmp_dump_guest_memory(bool paging, const char *file, bool has_begin, |
| int64_t begin, bool has_length, |
| int64_t length, bool has_format, |
| DumpGuestMemoryFormat format, Error **errp) |
| { |
| const char *p; |
| int fd = -1; |
| DumpState *s; |
| int ret; |
| |
| /* |
| * kdump-compressed format need the whole memory dumped, so paging or |
| * filter is not supported here. |
| */ |
| if ((has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) && |
| (paging || has_begin || has_length)) { |
| error_setg(errp, "kdump-compressed format doesn't support paging or " |
| "filter"); |
| return; |
| } |
| if (has_begin && !has_length) { |
| error_set(errp, QERR_MISSING_PARAMETER, "length"); |
| return; |
| } |
| if (!has_begin && has_length) { |
| error_set(errp, QERR_MISSING_PARAMETER, "begin"); |
| return; |
| } |
| |
| /* check whether lzo/snappy is supported */ |
| #ifndef CONFIG_LZO |
| if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO) { |
| error_setg(errp, "kdump-lzo is not available now"); |
| return; |
| } |
| #endif |
| |
| #ifndef CONFIG_SNAPPY |
| if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY) { |
| error_setg(errp, "kdump-snappy is not available now"); |
| return; |
| } |
| #endif |
| |
| #if !defined(WIN32) |
| if (strstart(file, "fd:", &p)) { |
| fd = monitor_get_fd(cur_mon, p, errp); |
| if (fd == -1) { |
| return; |
| } |
| } |
| #endif |
| |
| if (strstart(file, "file:", &p)) { |
| fd = qemu_open(p, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, S_IRUSR); |
| if (fd < 0) { |
| error_setg_file_open(errp, errno, p); |
| return; |
| } |
| } |
| |
| if (fd == -1) { |
| error_set(errp, QERR_INVALID_PARAMETER, "protocol"); |
| return; |
| } |
| |
| s = g_malloc0(sizeof(DumpState)); |
| |
| ret = dump_init(s, fd, has_format, format, paging, has_begin, |
| begin, length, errp); |
| if (ret < 0) { |
| g_free(s); |
| return; |
| } |
| |
| if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) { |
| if (create_kdump_vmcore(s) < 0) { |
| error_set(errp, QERR_IO_ERROR); |
| } |
| } else { |
| if (create_vmcore(s) < 0) { |
| error_set(errp, QERR_IO_ERROR); |
| } |
| } |
| |
| g_free(s); |
| } |
| |
| DumpGuestMemoryCapability *qmp_query_dump_guest_memory_capability(Error **errp) |
| { |
| DumpGuestMemoryFormatList *item; |
| DumpGuestMemoryCapability *cap = |
| g_malloc0(sizeof(DumpGuestMemoryCapability)); |
| |
| /* elf is always available */ |
| item = g_malloc0(sizeof(DumpGuestMemoryFormatList)); |
| cap->formats = item; |
| item->value = DUMP_GUEST_MEMORY_FORMAT_ELF; |
| |
| /* kdump-zlib is always available */ |
| item->next = g_malloc0(sizeof(DumpGuestMemoryFormatList)); |
| item = item->next; |
| item->value = DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB; |
| |
| /* add new item if kdump-lzo is available */ |
| #ifdef CONFIG_LZO |
| item->next = g_malloc0(sizeof(DumpGuestMemoryFormatList)); |
| item = item->next; |
| item->value = DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO; |
| #endif |
| |
| /* add new item if kdump-snappy is available */ |
| #ifdef CONFIG_SNAPPY |
| item->next = g_malloc0(sizeof(DumpGuestMemoryFormatList)); |
| item = item->next; |
| item->value = DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY; |
| #endif |
| |
| return cap; |
| } |