blob: eb553a174e95ca0d2609459554149cb5b4a4bdb0 [file] [log] [blame]
/*
* QEMU models for LatticeMico32 uclinux and evr32 boards.
*
* Copyright (c) 2010 Michael Walle <michael@walle.cc>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "hw/sysbus.h"
#include "hw/hw.h"
#include "hw/block/flash.h"
#include "hw/devices.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "sysemu/block-backend.h"
#include "elf.h"
#include "lm32_hwsetup.h"
#include "lm32.h"
#include "exec/address-spaces.h"
typedef struct {
LM32CPU *cpu;
hwaddr bootstrap_pc;
hwaddr flash_base;
hwaddr hwsetup_base;
hwaddr initrd_base;
size_t initrd_size;
hwaddr cmdline_base;
} ResetInfo;
static void cpu_irq_handler(void *opaque, int irq, int level)
{
LM32CPU *cpu = opaque;
CPUState *cs = CPU(cpu);
if (level) {
cpu_interrupt(cs, CPU_INTERRUPT_HARD);
} else {
cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
}
}
static void main_cpu_reset(void *opaque)
{
ResetInfo *reset_info = opaque;
CPULM32State *env = &reset_info->cpu->env;
cpu_reset(CPU(reset_info->cpu));
/* init defaults */
env->pc = (uint32_t)reset_info->bootstrap_pc;
env->regs[R_R1] = (uint32_t)reset_info->hwsetup_base;
env->regs[R_R2] = (uint32_t)reset_info->cmdline_base;
env->regs[R_R3] = (uint32_t)reset_info->initrd_base;
env->regs[R_R4] = (uint32_t)(reset_info->initrd_base +
reset_info->initrd_size);
env->eba = reset_info->flash_base;
env->deba = reset_info->flash_base;
}
static void lm32_evr_init(MachineState *machine)
{
const char *cpu_model = machine->cpu_model;
const char *kernel_filename = machine->kernel_filename;
LM32CPU *cpu;
CPULM32State *env;
DriveInfo *dinfo;
MemoryRegion *address_space_mem = get_system_memory();
MemoryRegion *phys_ram = g_new(MemoryRegion, 1);
qemu_irq irq[32];
ResetInfo *reset_info;
int i;
/* memory map */
hwaddr flash_base = 0x04000000;
size_t flash_sector_size = 256 * 1024;
size_t flash_size = 32 * 1024 * 1024;
hwaddr ram_base = 0x08000000;
size_t ram_size = 64 * 1024 * 1024;
hwaddr timer0_base = 0x80002000;
hwaddr uart0_base = 0x80006000;
hwaddr timer1_base = 0x8000a000;
int uart0_irq = 0;
int timer0_irq = 1;
int timer1_irq = 3;
reset_info = g_malloc0(sizeof(ResetInfo));
if (cpu_model == NULL) {
cpu_model = "lm32-full";
}
cpu = cpu_lm32_init(cpu_model);
if (cpu == NULL) {
fprintf(stderr, "qemu: unable to find CPU '%s'\n", cpu_model);
exit(1);
}
env = &cpu->env;
reset_info->cpu = cpu;
reset_info->flash_base = flash_base;
memory_region_allocate_system_memory(phys_ram, NULL, "lm32_evr.sdram",
ram_size);
memory_region_add_subregion(address_space_mem, ram_base, phys_ram);
dinfo = drive_get(IF_PFLASH, 0, 0);
/* Spansion S29NS128P */
pflash_cfi02_register(flash_base, NULL, "lm32_evr.flash", flash_size,
dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
flash_sector_size, flash_size / flash_sector_size,
1, 2, 0x01, 0x7e, 0x43, 0x00, 0x555, 0x2aa, 1);
/* create irq lines */
env->pic_state = lm32_pic_init(qemu_allocate_irq(cpu_irq_handler, cpu, 0));
for (i = 0; i < 32; i++) {
irq[i] = qdev_get_gpio_in(env->pic_state, i);
}
sysbus_create_simple("lm32-uart", uart0_base, irq[uart0_irq]);
sysbus_create_simple("lm32-timer", timer0_base, irq[timer0_irq]);
sysbus_create_simple("lm32-timer", timer1_base, irq[timer1_irq]);
/* make sure juart isn't the first chardev */
env->juart_state = lm32_juart_init();
reset_info->bootstrap_pc = flash_base;
if (kernel_filename) {
uint64_t entry;
int kernel_size;
kernel_size = load_elf(kernel_filename, NULL, NULL, &entry, NULL, NULL,
1, EM_LATTICEMICO32, 0);
reset_info->bootstrap_pc = entry;
if (kernel_size < 0) {
kernel_size = load_image_targphys(kernel_filename, ram_base,
ram_size);
reset_info->bootstrap_pc = ram_base;
}
if (kernel_size < 0) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
kernel_filename);
exit(1);
}
}
qemu_register_reset(main_cpu_reset, reset_info);
}
static void lm32_uclinux_init(MachineState *machine)
{
const char *cpu_model = machine->cpu_model;
const char *kernel_filename = machine->kernel_filename;
const char *kernel_cmdline = machine->kernel_cmdline;
const char *initrd_filename = machine->initrd_filename;
LM32CPU *cpu;
CPULM32State *env;
DriveInfo *dinfo;
MemoryRegion *address_space_mem = get_system_memory();
MemoryRegion *phys_ram = g_new(MemoryRegion, 1);
qemu_irq irq[32];
HWSetup *hw;
ResetInfo *reset_info;
int i;
/* memory map */
hwaddr flash_base = 0x04000000;
size_t flash_sector_size = 256 * 1024;
size_t flash_size = 32 * 1024 * 1024;
hwaddr ram_base = 0x08000000;
size_t ram_size = 64 * 1024 * 1024;
hwaddr uart0_base = 0x80000000;
hwaddr timer0_base = 0x80002000;
hwaddr timer1_base = 0x80010000;
hwaddr timer2_base = 0x80012000;
int uart0_irq = 0;
int timer0_irq = 1;
int timer1_irq = 20;
int timer2_irq = 21;
hwaddr hwsetup_base = 0x0bffe000;
hwaddr cmdline_base = 0x0bfff000;
hwaddr initrd_base = 0x08400000;
size_t initrd_max = 0x01000000;
reset_info = g_malloc0(sizeof(ResetInfo));
if (cpu_model == NULL) {
cpu_model = "lm32-full";
}
cpu = cpu_lm32_init(cpu_model);
if (cpu == NULL) {
fprintf(stderr, "qemu: unable to find CPU '%s'\n", cpu_model);
exit(1);
}
env = &cpu->env;
reset_info->cpu = cpu;
reset_info->flash_base = flash_base;
memory_region_allocate_system_memory(phys_ram, NULL,
"lm32_uclinux.sdram", ram_size);
memory_region_add_subregion(address_space_mem, ram_base, phys_ram);
dinfo = drive_get(IF_PFLASH, 0, 0);
/* Spansion S29NS128P */
pflash_cfi02_register(flash_base, NULL, "lm32_uclinux.flash", flash_size,
dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
flash_sector_size, flash_size / flash_sector_size,
1, 2, 0x01, 0x7e, 0x43, 0x00, 0x555, 0x2aa, 1);
/* create irq lines */
env->pic_state = lm32_pic_init(qemu_allocate_irq(cpu_irq_handler, env, 0));
for (i = 0; i < 32; i++) {
irq[i] = qdev_get_gpio_in(env->pic_state, i);
}
sysbus_create_simple("lm32-uart", uart0_base, irq[uart0_irq]);
sysbus_create_simple("lm32-timer", timer0_base, irq[timer0_irq]);
sysbus_create_simple("lm32-timer", timer1_base, irq[timer1_irq]);
sysbus_create_simple("lm32-timer", timer2_base, irq[timer2_irq]);
/* make sure juart isn't the first chardev */
env->juart_state = lm32_juart_init();
reset_info->bootstrap_pc = flash_base;
if (kernel_filename) {
uint64_t entry;
int kernel_size;
kernel_size = load_elf(kernel_filename, NULL, NULL, &entry, NULL, NULL,
1, EM_LATTICEMICO32, 0);
reset_info->bootstrap_pc = entry;
if (kernel_size < 0) {
kernel_size = load_image_targphys(kernel_filename, ram_base,
ram_size);
reset_info->bootstrap_pc = ram_base;
}
if (kernel_size < 0) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
kernel_filename);
exit(1);
}
}
/* generate a rom with the hardware description */
hw = hwsetup_init();
hwsetup_add_cpu(hw, "LM32", 75000000);
hwsetup_add_flash(hw, "flash", flash_base, flash_size);
hwsetup_add_ddr_sdram(hw, "ddr_sdram", ram_base, ram_size);
hwsetup_add_timer(hw, "timer0", timer0_base, timer0_irq);
hwsetup_add_timer(hw, "timer1_dev_only", timer1_base, timer1_irq);
hwsetup_add_timer(hw, "timer2_dev_only", timer2_base, timer2_irq);
hwsetup_add_uart(hw, "uart", uart0_base, uart0_irq);
hwsetup_add_trailer(hw);
hwsetup_create_rom(hw, hwsetup_base);
hwsetup_free(hw);
reset_info->hwsetup_base = hwsetup_base;
if (kernel_cmdline && strlen(kernel_cmdline)) {
pstrcpy_targphys("cmdline", cmdline_base, TARGET_PAGE_SIZE,
kernel_cmdline);
reset_info->cmdline_base = cmdline_base;
}
if (initrd_filename) {
size_t initrd_size;
initrd_size = load_image_targphys(initrd_filename, initrd_base,
initrd_max);
reset_info->initrd_base = initrd_base;
reset_info->initrd_size = initrd_size;
}
qemu_register_reset(main_cpu_reset, reset_info);
}
static void lm32_evr_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "LatticeMico32 EVR32 eval system";
mc->init = lm32_evr_init;
mc->is_default = 1;
}
static const TypeInfo lm32_evr_type = {
.name = MACHINE_TYPE_NAME("lm32-evr"),
.parent = TYPE_MACHINE,
.class_init = lm32_evr_class_init,
};
static void lm32_uclinux_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "lm32 platform for uClinux and u-boot by Theobroma Systems";
mc->init = lm32_uclinux_init;
mc->is_default = 0;
}
static const TypeInfo lm32_uclinux_type = {
.name = MACHINE_TYPE_NAME("lm32-uclinux"),
.parent = TYPE_MACHINE,
.class_init = lm32_uclinux_class_init,
};
static void lm32_machine_init(void)
{
type_register_static(&lm32_evr_type);
type_register_static(&lm32_uclinux_type);
}
machine_init(lm32_machine_init)