| /* |
| * Simple C functions to supplement the C library |
| * |
| * Copyright (c) 2006 Fabrice Bellard |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/host-utils.h" |
| #include <math.h> |
| |
| #ifdef __FreeBSD__ |
| #include <sys/sysctl.h> |
| #include <sys/user.h> |
| #endif |
| |
| #ifdef __NetBSD__ |
| #include <sys/sysctl.h> |
| #endif |
| |
| #ifdef __HAIKU__ |
| #include <kernel/image.h> |
| #endif |
| |
| #ifdef __APPLE__ |
| #include <mach-o/dyld.h> |
| #endif |
| |
| #ifdef G_OS_WIN32 |
| #include <pathcch.h> |
| #include <wchar.h> |
| #endif |
| |
| #include "qemu/ctype.h" |
| #include "qemu/cutils.h" |
| #include "qemu/error-report.h" |
| |
| void strpadcpy(char *buf, int buf_size, const char *str, char pad) |
| { |
| int len = qemu_strnlen(str, buf_size); |
| memcpy(buf, str, len); |
| memset(buf + len, pad, buf_size - len); |
| } |
| |
| void pstrcpy(char *buf, int buf_size, const char *str) |
| { |
| int c; |
| char *q = buf; |
| |
| if (buf_size <= 0) |
| return; |
| |
| for(;;) { |
| c = *str++; |
| if (c == 0 || q >= buf + buf_size - 1) |
| break; |
| *q++ = c; |
| } |
| *q = '\0'; |
| } |
| |
| /* strcat and truncate. */ |
| char *pstrcat(char *buf, int buf_size, const char *s) |
| { |
| int len; |
| len = strlen(buf); |
| if (len < buf_size) |
| pstrcpy(buf + len, buf_size - len, s); |
| return buf; |
| } |
| |
| int strstart(const char *str, const char *val, const char **ptr) |
| { |
| const char *p, *q; |
| p = str; |
| q = val; |
| while (*q != '\0') { |
| if (*p != *q) |
| return 0; |
| p++; |
| q++; |
| } |
| if (ptr) |
| *ptr = p; |
| return 1; |
| } |
| |
| int stristart(const char *str, const char *val, const char **ptr) |
| { |
| const char *p, *q; |
| p = str; |
| q = val; |
| while (*q != '\0') { |
| if (qemu_toupper(*p) != qemu_toupper(*q)) |
| return 0; |
| p++; |
| q++; |
| } |
| if (ptr) |
| *ptr = p; |
| return 1; |
| } |
| |
| /* XXX: use host strnlen if available ? */ |
| int qemu_strnlen(const char *s, int max_len) |
| { |
| int i; |
| |
| for(i = 0; i < max_len; i++) { |
| if (s[i] == '\0') { |
| break; |
| } |
| } |
| return i; |
| } |
| |
| char *qemu_strsep(char **input, const char *delim) |
| { |
| char *result = *input; |
| if (result != NULL) { |
| char *p; |
| |
| for (p = result; *p != '\0'; p++) { |
| if (strchr(delim, *p)) { |
| break; |
| } |
| } |
| if (*p == '\0') { |
| *input = NULL; |
| } else { |
| *p = '\0'; |
| *input = p + 1; |
| } |
| } |
| return result; |
| } |
| |
| time_t mktimegm(struct tm *tm) |
| { |
| time_t t; |
| int y = tm->tm_year + 1900, m = tm->tm_mon + 1, d = tm->tm_mday; |
| if (m < 3) { |
| m += 12; |
| y--; |
| } |
| t = 86400ULL * (d + (153 * m - 457) / 5 + 365 * y + y / 4 - y / 100 + |
| y / 400 - 719469); |
| t += 3600 * tm->tm_hour + 60 * tm->tm_min + tm->tm_sec; |
| return t; |
| } |
| |
| static int64_t suffix_mul(char suffix, int64_t unit) |
| { |
| switch (qemu_toupper(suffix)) { |
| case 'B': |
| return 1; |
| case 'K': |
| return unit; |
| case 'M': |
| return unit * unit; |
| case 'G': |
| return unit * unit * unit; |
| case 'T': |
| return unit * unit * unit * unit; |
| case 'P': |
| return unit * unit * unit * unit * unit; |
| case 'E': |
| return unit * unit * unit * unit * unit * unit; |
| } |
| return -1; |
| } |
| |
| /* |
| * Convert size string to bytes. |
| * |
| * The size parsing supports the following syntaxes |
| * - 12345 - decimal, scale determined by @default_suffix and @unit |
| * - 12345{bBkKmMgGtTpPeE} - decimal, scale determined by suffix and @unit |
| * - 12345.678{kKmMgGtTpPeE} - decimal, scale determined by suffix, and |
| * fractional portion is truncated to byte, either side of . may be empty |
| * - 0x7fEE - hexadecimal, unit determined by @default_suffix |
| * |
| * The following are intentionally not supported |
| * - hex with scaling suffix, such as 0x20M or 0x1p3 (both fail with |
| * -EINVAL), while 0x1b is 27 (not 1 with byte scale) |
| * - octal, such as 08 (parsed as decimal instead) |
| * - binary, such as 0b1000 (parsed as 0b with trailing garbage "1000") |
| * - fractional hex, such as 0x1.8 (parsed as 0 with trailing garbage "x1.8") |
| * - negative values, including -0 (fail with -ERANGE) |
| * - floating point exponents, such as 1e3 (parsed as 1e with trailing |
| * garbage "3") or 0x1p3 (rejected as hex with scaling suffix) |
| * - non-finite values, such as inf or NaN (fail with -EINVAL) |
| * |
| * The end pointer will be returned in *end, if not NULL. If there is |
| * no fraction, the input can be decimal or hexadecimal; if there is a |
| * non-zero fraction, then the input must be decimal and there must be |
| * a suffix (possibly by @default_suffix) larger than Byte, and the |
| * fractional portion may suffer from precision loss or rounding. The |
| * input must be positive. |
| * |
| * Return -ERANGE on overflow (with *@end advanced), and -EINVAL on |
| * other error (with *@end at @nptr). Unlike strtoull, *@result is |
| * set to 0 on all errors, as returning UINT64_MAX on overflow is less |
| * likely to be usable as a size. |
| */ |
| static int do_strtosz(const char *nptr, const char **end, |
| const char default_suffix, int64_t unit, |
| uint64_t *result) |
| { |
| int retval; |
| const char *endptr; |
| unsigned char c; |
| uint64_t val = 0, valf = 0; |
| int64_t mul; |
| |
| /* Parse integral portion as decimal. */ |
| retval = parse_uint(nptr, &endptr, 10, &val); |
| if (retval == -ERANGE || !nptr) { |
| goto out; |
| } |
| if (retval == 0 && val == 0 && (*endptr == 'x' || *endptr == 'X')) { |
| /* Input looks like hex; reparse, and insist on no fraction or suffix. */ |
| retval = qemu_strtou64(nptr, &endptr, 16, &val); |
| if (retval) { |
| goto out; |
| } |
| if (*endptr == '.' || suffix_mul(*endptr, unit) > 0) { |
| endptr = nptr; |
| retval = -EINVAL; |
| goto out; |
| } |
| } else if (*endptr == '.' || (endptr == nptr && strchr(nptr, '.'))) { |
| /* |
| * Input looks like a fraction. Make sure even 1.k works |
| * without fractional digits. strtod tries to treat 'e' as an |
| * exponent, but we want to treat it as a scaling suffix; |
| * doing this requires modifying a copy of the fraction. |
| */ |
| double fraction = 0.0; |
| |
| if (retval == 0 && *endptr == '.' && !isdigit(endptr[1])) { |
| /* If we got here, we parsed at least one digit already. */ |
| endptr++; |
| } else { |
| char *e; |
| const char *tail; |
| g_autofree char *copy = g_strdup(endptr); |
| |
| e = strchr(copy, 'e'); |
| if (e) { |
| *e = '\0'; |
| } |
| e = strchr(copy, 'E'); |
| if (e) { |
| *e = '\0'; |
| } |
| /* |
| * If this is a floating point, we are guaranteed that '.' |
| * appears before any possible digits in copy. If it is |
| * not a floating point, strtod will fail. Either way, |
| * there is now no exponent in copy, so if it parses, we |
| * know 0.0 <= abs(result) <= 1.0 (after rounding), and |
| * ERANGE is only possible on underflow which is okay. |
| */ |
| retval = qemu_strtod_finite(copy, &tail, &fraction); |
| endptr += tail - copy; |
| if (signbit(fraction)) { |
| retval = -ERANGE; |
| goto out; |
| } |
| } |
| |
| /* Extract into a 64-bit fixed-point fraction. */ |
| if (fraction == 1.0) { |
| if (val == UINT64_MAX) { |
| retval = -ERANGE; |
| goto out; |
| } |
| val++; |
| } else if (retval == -ERANGE) { |
| /* See comments above about underflow */ |
| valf = 1; |
| retval = 0; |
| } else { |
| /* We want non-zero valf for any non-zero fraction */ |
| valf = (uint64_t)(fraction * 0x1p64); |
| if (valf == 0 && fraction > 0.0) { |
| valf = 1; |
| } |
| } |
| } |
| if (retval) { |
| goto out; |
| } |
| c = *endptr; |
| mul = suffix_mul(c, unit); |
| if (mul > 0) { |
| endptr++; |
| } else { |
| mul = suffix_mul(default_suffix, unit); |
| assert(mul > 0); |
| } |
| if (mul == 1) { |
| /* When a fraction is present, a scale is required. */ |
| if (valf != 0) { |
| endptr = nptr; |
| retval = -EINVAL; |
| goto out; |
| } |
| } else { |
| uint64_t valh, tmp; |
| |
| /* Compute exact result: 64.64 x 64.0 -> 128.64 fixed point */ |
| mulu64(&val, &valh, val, mul); |
| mulu64(&valf, &tmp, valf, mul); |
| val += tmp; |
| valh += val < tmp; |
| |
| /* Round 0.5 upward. */ |
| tmp = valf >> 63; |
| val += tmp; |
| valh += val < tmp; |
| |
| /* Report overflow. */ |
| if (valh != 0) { |
| retval = -ERANGE; |
| goto out; |
| } |
| } |
| |
| retval = 0; |
| |
| out: |
| if (end) { |
| *end = endptr; |
| } else if (nptr && *endptr) { |
| retval = -EINVAL; |
| } |
| if (retval == 0) { |
| *result = val; |
| } else { |
| *result = 0; |
| if (end && retval == -EINVAL) { |
| *end = nptr; |
| } |
| } |
| |
| return retval; |
| } |
| |
| int qemu_strtosz(const char *nptr, const char **end, uint64_t *result) |
| { |
| return do_strtosz(nptr, end, 'B', 1024, result); |
| } |
| |
| int qemu_strtosz_MiB(const char *nptr, const char **end, uint64_t *result) |
| { |
| return do_strtosz(nptr, end, 'M', 1024, result); |
| } |
| |
| int qemu_strtosz_metric(const char *nptr, const char **end, uint64_t *result) |
| { |
| return do_strtosz(nptr, end, 'B', 1000, result); |
| } |
| |
| /** |
| * Helper function for error checking after strtol() and the like |
| */ |
| static int check_strtox_error(const char *nptr, char *ep, |
| const char **endptr, bool check_zero, |
| int libc_errno) |
| { |
| assert(ep >= nptr); |
| |
| /* Windows has a bug in that it fails to parse 0 from "0x" in base 16 */ |
| if (check_zero && ep == nptr && libc_errno == 0) { |
| char *tmp; |
| |
| errno = 0; |
| if (strtol(nptr, &tmp, 10) == 0 && errno == 0 && |
| (*tmp == 'x' || *tmp == 'X')) { |
| ep = tmp; |
| } |
| } |
| |
| if (endptr) { |
| *endptr = ep; |
| } |
| |
| /* Turn "no conversion" into an error */ |
| if (libc_errno == 0 && ep == nptr) { |
| return -EINVAL; |
| } |
| |
| /* Fail when we're expected to consume the string, but didn't */ |
| if (!endptr && *ep) { |
| return -EINVAL; |
| } |
| |
| return -libc_errno; |
| } |
| |
| /** |
| * Convert string @nptr to an integer, and store it in @result. |
| * |
| * This is a wrapper around strtol() that is harder to misuse. |
| * Semantics of @nptr, @endptr, @base match strtol() with differences |
| * noted below. |
| * |
| * @nptr may be null, and no conversion is performed then. |
| * |
| * If no conversion is performed, store @nptr in *@endptr, 0 in |
| * @result, and return -EINVAL. |
| * |
| * If @endptr is null, and the string isn't fully converted, return |
| * -EINVAL with @result set to the parsed value. This is the case |
| * when the pointer that would be stored in a non-null @endptr points |
| * to a character other than '\0'. |
| * |
| * If the conversion overflows @result, store INT_MAX in @result, |
| * and return -ERANGE. |
| * |
| * If the conversion underflows @result, store INT_MIN in @result, |
| * and return -ERANGE. |
| * |
| * Else store the converted value in @result, and return zero. |
| * |
| * This matches the behavior of strtol() on 32-bit platforms, even on |
| * platforms where long is 64-bits. |
| */ |
| int qemu_strtoi(const char *nptr, const char **endptr, int base, |
| int *result) |
| { |
| char *ep; |
| long long lresult; |
| |
| assert((unsigned) base <= 36 && base != 1); |
| if (!nptr) { |
| *result = 0; |
| if (endptr) { |
| *endptr = nptr; |
| } |
| return -EINVAL; |
| } |
| |
| errno = 0; |
| lresult = strtoll(nptr, &ep, base); |
| if (lresult < INT_MIN) { |
| *result = INT_MIN; |
| errno = ERANGE; |
| } else if (lresult > INT_MAX) { |
| *result = INT_MAX; |
| errno = ERANGE; |
| } else { |
| *result = lresult; |
| } |
| return check_strtox_error(nptr, ep, endptr, lresult == 0, errno); |
| } |
| |
| /** |
| * Convert string @nptr to an unsigned integer, and store it in @result. |
| * |
| * This is a wrapper around strtoul() that is harder to misuse. |
| * Semantics of @nptr, @endptr, @base match strtoul() with differences |
| * noted below. |
| * |
| * @nptr may be null, and no conversion is performed then. |
| * |
| * If no conversion is performed, store @nptr in *@endptr, 0 in |
| * @result, and return -EINVAL. |
| * |
| * If @endptr is null, and the string isn't fully converted, return |
| * -EINVAL with @result set to the parsed value. This is the case |
| * when the pointer that would be stored in a non-null @endptr points |
| * to a character other than '\0'. |
| * |
| * If the conversion overflows @result, store UINT_MAX in @result, |
| * and return -ERANGE. |
| * |
| * Else store the converted value in @result, and return zero. |
| * |
| * Note that a number with a leading minus sign gets converted without |
| * the minus sign, checked for overflow (see above), then negated (in |
| * @result's type). This matches the behavior of strtoul() on 32-bit |
| * platforms, even on platforms where long is 64-bits. |
| */ |
| int qemu_strtoui(const char *nptr, const char **endptr, int base, |
| unsigned int *result) |
| { |
| char *ep; |
| unsigned long long lresult; |
| bool neg; |
| |
| assert((unsigned) base <= 36 && base != 1); |
| if (!nptr) { |
| *result = 0; |
| if (endptr) { |
| *endptr = nptr; |
| } |
| return -EINVAL; |
| } |
| |
| errno = 0; |
| lresult = strtoull(nptr, &ep, base); |
| |
| /* Windows returns 1 for negative out-of-range values. */ |
| if (errno == ERANGE) { |
| *result = -1; |
| } else { |
| /* |
| * Note that platforms with 32-bit strtoul only accept input |
| * in the range [-4294967295, 4294967295]; but we used 64-bit |
| * strtoull which wraps -18446744073709551615 to 1 instead of |
| * declaring overflow. So we must check if '-' was parsed, |
| * and if so, undo the negation before doing our bounds check. |
| */ |
| neg = memchr(nptr, '-', ep - nptr) != NULL; |
| if (neg) { |
| lresult = -lresult; |
| } |
| if (lresult > UINT_MAX) { |
| *result = UINT_MAX; |
| errno = ERANGE; |
| } else { |
| *result = neg ? -lresult : lresult; |
| } |
| } |
| return check_strtox_error(nptr, ep, endptr, lresult == 0, errno); |
| } |
| |
| /** |
| * Convert string @nptr to a long integer, and store it in @result. |
| * |
| * This is a wrapper around strtol() that is harder to misuse. |
| * Semantics of @nptr, @endptr, @base match strtol() with differences |
| * noted below. |
| * |
| * @nptr may be null, and no conversion is performed then. |
| * |
| * If no conversion is performed, store @nptr in *@endptr, 0 in |
| * @result, and return -EINVAL. |
| * |
| * If @endptr is null, and the string isn't fully converted, return |
| * -EINVAL with @result set to the parsed value. This is the case |
| * when the pointer that would be stored in a non-null @endptr points |
| * to a character other than '\0'. |
| * |
| * If the conversion overflows @result, store LONG_MAX in @result, |
| * and return -ERANGE. |
| * |
| * If the conversion underflows @result, store LONG_MIN in @result, |
| * and return -ERANGE. |
| * |
| * Else store the converted value in @result, and return zero. |
| */ |
| int qemu_strtol(const char *nptr, const char **endptr, int base, |
| long *result) |
| { |
| char *ep; |
| |
| assert((unsigned) base <= 36 && base != 1); |
| if (!nptr) { |
| *result = 0; |
| if (endptr) { |
| *endptr = nptr; |
| } |
| return -EINVAL; |
| } |
| |
| errno = 0; |
| *result = strtol(nptr, &ep, base); |
| return check_strtox_error(nptr, ep, endptr, *result == 0, errno); |
| } |
| |
| /** |
| * Convert string @nptr to an unsigned long, and store it in @result. |
| * |
| * This is a wrapper around strtoul() that is harder to misuse. |
| * Semantics of @nptr, @endptr, @base match strtoul() with differences |
| * noted below. |
| * |
| * @nptr may be null, and no conversion is performed then. |
| * |
| * If no conversion is performed, store @nptr in *@endptr, 0 in |
| * @result, and return -EINVAL. |
| * |
| * If @endptr is null, and the string isn't fully converted, return |
| * -EINVAL with @result set to the parsed value. This is the case |
| * when the pointer that would be stored in a non-null @endptr points |
| * to a character other than '\0'. |
| * |
| * If the conversion overflows @result, store ULONG_MAX in @result, |
| * and return -ERANGE. |
| * |
| * Else store the converted value in @result, and return zero. |
| * |
| * Note that a number with a leading minus sign gets converted without |
| * the minus sign, checked for overflow (see above), then negated (in |
| * @result's type). This is exactly how strtoul() works. |
| */ |
| int qemu_strtoul(const char *nptr, const char **endptr, int base, |
| unsigned long *result) |
| { |
| char *ep; |
| |
| assert((unsigned) base <= 36 && base != 1); |
| if (!nptr) { |
| *result = 0; |
| if (endptr) { |
| *endptr = nptr; |
| } |
| return -EINVAL; |
| } |
| |
| errno = 0; |
| *result = strtoul(nptr, &ep, base); |
| /* Windows returns 1 for negative out-of-range values. */ |
| if (errno == ERANGE) { |
| *result = -1; |
| } |
| return check_strtox_error(nptr, ep, endptr, *result == 0, errno); |
| } |
| |
| /** |
| * Convert string @nptr to an int64_t. |
| * |
| * Works like qemu_strtol(), except it stores INT64_MAX on overflow, |
| * and INT64_MIN on underflow. |
| */ |
| int qemu_strtoi64(const char *nptr, const char **endptr, int base, |
| int64_t *result) |
| { |
| char *ep; |
| |
| assert((unsigned) base <= 36 && base != 1); |
| if (!nptr) { |
| *result = 0; |
| if (endptr) { |
| *endptr = nptr; |
| } |
| return -EINVAL; |
| } |
| |
| /* This assumes int64_t is long long TODO relax */ |
| QEMU_BUILD_BUG_ON(sizeof(int64_t) != sizeof(long long)); |
| errno = 0; |
| *result = strtoll(nptr, &ep, base); |
| return check_strtox_error(nptr, ep, endptr, *result == 0, errno); |
| } |
| |
| /** |
| * Convert string @nptr to an uint64_t. |
| * |
| * Works like qemu_strtoul(), except it stores UINT64_MAX on overflow. |
| * (If you want to prohibit negative numbers that wrap around to |
| * positive, use parse_uint()). |
| */ |
| int qemu_strtou64(const char *nptr, const char **endptr, int base, |
| uint64_t *result) |
| { |
| char *ep; |
| |
| assert((unsigned) base <= 36 && base != 1); |
| if (!nptr) { |
| *result = 0; |
| if (endptr) { |
| *endptr = nptr; |
| } |
| return -EINVAL; |
| } |
| |
| /* This assumes uint64_t is unsigned long long TODO relax */ |
| QEMU_BUILD_BUG_ON(sizeof(uint64_t) != sizeof(unsigned long long)); |
| errno = 0; |
| *result = strtoull(nptr, &ep, base); |
| /* Windows returns 1 for negative out-of-range values. */ |
| if (errno == ERANGE) { |
| *result = -1; |
| } |
| return check_strtox_error(nptr, ep, endptr, *result == 0, errno); |
| } |
| |
| /** |
| * Convert string @nptr to a double. |
| * |
| * This is a wrapper around strtod() that is harder to misuse. |
| * Semantics of @nptr and @endptr match strtod() with differences |
| * noted below. |
| * |
| * @nptr may be null, and no conversion is performed then. |
| * |
| * If no conversion is performed, store @nptr in *@endptr, +0.0 in |
| * @result, and return -EINVAL. |
| * |
| * If @endptr is null, and the string isn't fully converted, return |
| * -EINVAL with @result set to the parsed value. This is the case |
| * when the pointer that would be stored in a non-null @endptr points |
| * to a character other than '\0'. |
| * |
| * If the conversion overflows, store +/-HUGE_VAL in @result, depending |
| * on the sign, and return -ERANGE. |
| * |
| * If the conversion underflows, store +/-0.0 in @result, depending on the |
| * sign, and return -ERANGE. |
| * |
| * Else store the converted value in @result, and return zero. |
| */ |
| int qemu_strtod(const char *nptr, const char **endptr, double *result) |
| { |
| char *ep; |
| |
| if (!nptr) { |
| *result = 0.0; |
| if (endptr) { |
| *endptr = nptr; |
| } |
| return -EINVAL; |
| } |
| |
| errno = 0; |
| *result = strtod(nptr, &ep); |
| return check_strtox_error(nptr, ep, endptr, false, errno); |
| } |
| |
| /** |
| * Convert string @nptr to a finite double. |
| * |
| * Works like qemu_strtod(), except that "NaN", "inf", and strings |
| * that cause ERANGE overflow errors are rejected with -EINVAL as if |
| * no conversion is performed, storing 0.0 into @result regardless of |
| * any sign. -ERANGE failures for underflow still preserve the parsed |
| * sign. |
| */ |
| int qemu_strtod_finite(const char *nptr, const char **endptr, double *result) |
| { |
| const char *tmp; |
| int ret; |
| |
| ret = qemu_strtod(nptr, &tmp, result); |
| if (!isfinite(*result)) { |
| if (endptr) { |
| *endptr = nptr; |
| } |
| *result = 0.0; |
| ret = -EINVAL; |
| } else if (endptr) { |
| *endptr = tmp; |
| } else if (*tmp) { |
| ret = -EINVAL; |
| } |
| return ret; |
| } |
| |
| /** |
| * Searches for the first occurrence of 'c' in 's', and returns a pointer |
| * to the trailing null byte if none was found. |
| */ |
| #ifndef HAVE_STRCHRNUL |
| const char *qemu_strchrnul(const char *s, int c) |
| { |
| const char *e = strchr(s, c); |
| if (!e) { |
| e = s + strlen(s); |
| } |
| return e; |
| } |
| #endif |
| |
| /** |
| * parse_uint: |
| * |
| * @s: String to parse |
| * @endptr: Destination for pointer to first character not consumed |
| * @base: integer base, between 2 and 36 inclusive, or 0 |
| * @value: Destination for parsed integer value |
| * |
| * Parse unsigned integer |
| * |
| * Parsed syntax is like strtoull()'s: arbitrary whitespace, a single optional |
| * '+' or '-', an optional "0x" if @base is 0 or 16, one or more digits. |
| * |
| * If @s is null, or @s doesn't start with an integer in the syntax |
| * above, set *@value to 0, *@endptr to @s, and return -EINVAL. |
| * |
| * Set *@endptr to point right beyond the parsed integer (even if the integer |
| * overflows or is negative, all digits will be parsed and *@endptr will |
| * point right beyond them). If @endptr is %NULL, any trailing character |
| * instead causes a result of -EINVAL with *@value of 0. |
| * |
| * If the integer is negative, set *@value to 0, and return -ERANGE. |
| * (If you want to allow negative numbers that wrap around within |
| * bounds, use qemu_strtou64()). |
| * |
| * If the integer overflows unsigned long long, set *@value to |
| * ULLONG_MAX, and return -ERANGE. |
| * |
| * Else, set *@value to the parsed integer, and return 0. |
| */ |
| int parse_uint(const char *s, const char **endptr, int base, uint64_t *value) |
| { |
| int r = 0; |
| char *endp = (char *)s; |
| unsigned long long val = 0; |
| |
| assert((unsigned) base <= 36 && base != 1); |
| if (!s) { |
| r = -EINVAL; |
| goto out; |
| } |
| |
| errno = 0; |
| val = strtoull(s, &endp, base); |
| if (errno) { |
| r = -errno; |
| goto out; |
| } |
| |
| if (endp == s) { |
| r = -EINVAL; |
| goto out; |
| } |
| |
| /* make sure we reject negative numbers: */ |
| while (qemu_isspace(*s)) { |
| s++; |
| } |
| if (*s == '-') { |
| val = 0; |
| r = -ERANGE; |
| goto out; |
| } |
| |
| out: |
| *value = val; |
| if (endptr) { |
| *endptr = endp; |
| } else if (s && *endp) { |
| r = -EINVAL; |
| *value = 0; |
| } |
| return r; |
| } |
| |
| /** |
| * parse_uint_full: |
| * |
| * @s: String to parse |
| * @base: integer base, between 2 and 36 inclusive, or 0 |
| * @value: Destination for parsed integer value |
| * |
| * Parse unsigned integer from entire string, rejecting any trailing slop. |
| * |
| * Shorthand for parse_uint(s, NULL, base, value). |
| */ |
| int parse_uint_full(const char *s, int base, uint64_t *value) |
| { |
| return parse_uint(s, NULL, base, value); |
| } |
| |
| int qemu_parse_fd(const char *param) |
| { |
| long fd; |
| char *endptr; |
| |
| errno = 0; |
| fd = strtol(param, &endptr, 10); |
| if (param == endptr /* no conversion performed */ || |
| errno != 0 /* not representable as long; possibly others */ || |
| *endptr != '\0' /* final string not empty */ || |
| fd < 0 /* invalid as file descriptor */ || |
| fd > INT_MAX /* not representable as int */) { |
| return -1; |
| } |
| return fd; |
| } |
| |
| /* |
| * Implementation of ULEB128 (http://en.wikipedia.org/wiki/LEB128) |
| * Input is limited to 14-bit numbers |
| */ |
| int uleb128_encode_small(uint8_t *out, uint32_t n) |
| { |
| g_assert(n <= 0x3fff); |
| if (n < 0x80) { |
| *out = n; |
| return 1; |
| } else { |
| *out++ = (n & 0x7f) | 0x80; |
| *out = n >> 7; |
| return 2; |
| } |
| } |
| |
| int uleb128_decode_small(const uint8_t *in, uint32_t *n) |
| { |
| if (!(*in & 0x80)) { |
| *n = *in; |
| return 1; |
| } else { |
| *n = *in++ & 0x7f; |
| /* we exceed 14 bit number */ |
| if (*in & 0x80) { |
| return -1; |
| } |
| *n |= *in << 7; |
| return 2; |
| } |
| } |
| |
| /* |
| * helper to parse debug environment variables |
| */ |
| int parse_debug_env(const char *name, int max, int initial) |
| { |
| char *debug_env = getenv(name); |
| char *inv = NULL; |
| long debug; |
| |
| if (!debug_env) { |
| return initial; |
| } |
| errno = 0; |
| debug = strtol(debug_env, &inv, 10); |
| if (inv == debug_env) { |
| return initial; |
| } |
| if (debug < 0 || debug > max || errno != 0) { |
| warn_report("%s not in [0, %d]", name, max); |
| return initial; |
| } |
| return debug; |
| } |
| |
| const char *si_prefix(unsigned int exp10) |
| { |
| static const char *prefixes[] = { |
| "a", "f", "p", "n", "u", "m", "", "K", "M", "G", "T", "P", "E" |
| }; |
| |
| exp10 += 18; |
| assert(exp10 % 3 == 0 && exp10 / 3 < ARRAY_SIZE(prefixes)); |
| return prefixes[exp10 / 3]; |
| } |
| |
| const char *iec_binary_prefix(unsigned int exp2) |
| { |
| static const char *prefixes[] = { "", "Ki", "Mi", "Gi", "Ti", "Pi", "Ei" }; |
| |
| assert(exp2 % 10 == 0 && exp2 / 10 < ARRAY_SIZE(prefixes)); |
| return prefixes[exp2 / 10]; |
| } |
| |
| /* |
| * Return human readable string for size @val. |
| * @val can be anything that uint64_t allows (no more than "16 EiB"). |
| * Use IEC binary units like KiB, MiB, and so forth. |
| * Caller is responsible for passing it to g_free(). |
| */ |
| char *size_to_str(uint64_t val) |
| { |
| uint64_t div; |
| int i; |
| |
| /* |
| * The exponent (returned in i) minus one gives us |
| * floor(log2(val * 1024 / 1000). The correction makes us |
| * switch to the higher power when the integer part is >= 1000. |
| * (see e41b509d68afb1f for more info) |
| */ |
| frexp(val / (1000.0 / 1024.0), &i); |
| i = (i - 1) / 10 * 10; |
| div = 1ULL << i; |
| |
| return g_strdup_printf("%0.3g %sB", (double)val / div, iec_binary_prefix(i)); |
| } |
| |
| char *freq_to_str(uint64_t freq_hz) |
| { |
| double freq = freq_hz; |
| size_t exp10 = 0; |
| |
| while (freq >= 1000.0) { |
| freq /= 1000.0; |
| exp10 += 3; |
| } |
| |
| return g_strdup_printf("%0.3g %sHz", freq, si_prefix(exp10)); |
| } |
| |
| int qemu_pstrcmp0(const char **str1, const char **str2) |
| { |
| return g_strcmp0(*str1, *str2); |
| } |
| |
| static inline bool starts_with_prefix(const char *dir) |
| { |
| size_t prefix_len = strlen(CONFIG_PREFIX); |
| /* |
| * dir[prefix_len] is only accessed if the length of dir is |
| * >= prefix_len, so no out of bounds access is possible. |
| */ |
| #pragma GCC diagnostic push |
| #if !defined(__clang__) || __has_warning("-Warray-bounds=") |
| #pragma GCC diagnostic ignored "-Warray-bounds=" |
| #endif |
| return !memcmp(dir, CONFIG_PREFIX, prefix_len) && |
| (!dir[prefix_len] || G_IS_DIR_SEPARATOR(dir[prefix_len])); |
| #pragma GCC diagnostic pop |
| } |
| |
| /* Return the next path component in dir, and store its length in *p_len. */ |
| static inline const char *next_component(const char *dir, int *p_len) |
| { |
| int len; |
| while ((*dir && G_IS_DIR_SEPARATOR(*dir)) || |
| (*dir == '.' && (G_IS_DIR_SEPARATOR(dir[1]) || dir[1] == '\0'))) { |
| dir++; |
| } |
| len = 0; |
| while (dir[len] && !G_IS_DIR_SEPARATOR(dir[len])) { |
| len++; |
| } |
| *p_len = len; |
| return dir; |
| } |
| |
| static const char *exec_dir; |
| |
| void qemu_init_exec_dir(const char *argv0) |
| { |
| #ifdef G_OS_WIN32 |
| char *p; |
| char buf[MAX_PATH]; |
| DWORD len; |
| |
| if (exec_dir) { |
| return; |
| } |
| |
| len = GetModuleFileName(NULL, buf, sizeof(buf) - 1); |
| if (len == 0) { |
| return; |
| } |
| |
| buf[len] = 0; |
| p = buf + len - 1; |
| while (p != buf && *p != '\\') { |
| p--; |
| } |
| *p = 0; |
| if (access(buf, R_OK) == 0) { |
| exec_dir = g_strdup(buf); |
| } else { |
| exec_dir = CONFIG_BINDIR; |
| } |
| #else |
| char *p = NULL; |
| char buf[PATH_MAX]; |
| |
| if (exec_dir) { |
| return; |
| } |
| |
| #if defined(__linux__) |
| { |
| int len; |
| len = readlink("/proc/self/exe", buf, sizeof(buf) - 1); |
| if (len > 0) { |
| buf[len] = 0; |
| p = buf; |
| } |
| } |
| #elif defined(__FreeBSD__) \ |
| || (defined(__NetBSD__) && defined(KERN_PROC_PATHNAME)) |
| { |
| #if defined(__FreeBSD__) |
| static int mib[4] = {CTL_KERN, KERN_PROC, KERN_PROC_PATHNAME, -1}; |
| #else |
| static int mib[4] = {CTL_KERN, KERN_PROC_ARGS, -1, KERN_PROC_PATHNAME}; |
| #endif |
| size_t len = sizeof(buf) - 1; |
| |
| *buf = '\0'; |
| if (!sysctl(mib, ARRAY_SIZE(mib), buf, &len, NULL, 0) && |
| *buf) { |
| buf[sizeof(buf) - 1] = '\0'; |
| p = buf; |
| } |
| } |
| #elif defined(__APPLE__) |
| { |
| char fpath[PATH_MAX]; |
| uint32_t len = sizeof(fpath); |
| if (_NSGetExecutablePath(fpath, &len) == 0) { |
| p = realpath(fpath, buf); |
| if (!p) { |
| return; |
| } |
| } |
| } |
| #elif defined(__HAIKU__) |
| { |
| image_info ii; |
| int32_t c = 0; |
| |
| *buf = '\0'; |
| while (get_next_image_info(0, &c, &ii) == B_OK) { |
| if (ii.type == B_APP_IMAGE) { |
| strncpy(buf, ii.name, sizeof(buf)); |
| buf[sizeof(buf) - 1] = 0; |
| p = buf; |
| break; |
| } |
| } |
| } |
| #endif |
| /* If we don't have any way of figuring out the actual executable |
| location then try argv[0]. */ |
| if (!p && argv0) { |
| p = realpath(argv0, buf); |
| } |
| if (p) { |
| exec_dir = g_path_get_dirname(p); |
| } else { |
| exec_dir = CONFIG_BINDIR; |
| } |
| #endif |
| } |
| |
| const char *qemu_get_exec_dir(void) |
| { |
| return exec_dir; |
| } |
| |
| char *get_relocated_path(const char *dir) |
| { |
| size_t prefix_len = strlen(CONFIG_PREFIX); |
| const char *bindir = CONFIG_BINDIR; |
| GString *result; |
| int len_dir, len_bindir; |
| |
| /* Fail if qemu_init_exec_dir was not called. */ |
| assert(exec_dir[0]); |
| |
| result = g_string_new(exec_dir); |
| g_string_append(result, "/qemu-bundle"); |
| if (access(result->str, R_OK) == 0) { |
| #ifdef G_OS_WIN32 |
| size_t size = mbsrtowcs(NULL, &dir, 0, &(mbstate_t){0}) + 1; |
| PWSTR wdir = g_new(WCHAR, size); |
| mbsrtowcs(wdir, &dir, size, &(mbstate_t){0}); |
| |
| PCWSTR wdir_skipped_root; |
| PathCchSkipRoot(wdir, &wdir_skipped_root); |
| |
| size = wcsrtombs(NULL, &wdir_skipped_root, 0, &(mbstate_t){0}); |
| char *cursor = result->str + result->len; |
| g_string_set_size(result, result->len + size); |
| wcsrtombs(cursor, &wdir_skipped_root, size + 1, &(mbstate_t){0}); |
| g_free(wdir); |
| #else |
| g_string_append(result, dir); |
| #endif |
| } else if (!starts_with_prefix(dir) || !starts_with_prefix(bindir)) { |
| g_string_assign(result, dir); |
| } else { |
| g_string_assign(result, exec_dir); |
| |
| /* Advance over common components. */ |
| len_dir = len_bindir = prefix_len; |
| do { |
| dir += len_dir; |
| bindir += len_bindir; |
| dir = next_component(dir, &len_dir); |
| bindir = next_component(bindir, &len_bindir); |
| } while (len_dir && len_dir == len_bindir && !memcmp(dir, bindir, len_dir)); |
| |
| /* Ascend from bindir to the common prefix with dir. */ |
| while (len_bindir) { |
| bindir += len_bindir; |
| g_string_append(result, "/.."); |
| bindir = next_component(bindir, &len_bindir); |
| } |
| |
| if (*dir) { |
| assert(G_IS_DIR_SEPARATOR(dir[-1])); |
| g_string_append(result, dir - 1); |
| } |
| } |
| |
| return g_string_free(result, false); |
| } |