|  | /* | 
|  | * QEMU Crypto block device encryption LUKS format | 
|  | * | 
|  | * Copyright (c) 2015-2016 Red Hat, Inc. | 
|  | * | 
|  | * This library is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU Lesser General Public | 
|  | * License as published by the Free Software Foundation; either | 
|  | * version 2.1 of the License, or (at your option) any later version. | 
|  | * | 
|  | * This library is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * Lesser General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU Lesser General Public | 
|  | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include "qemu/osdep.h" | 
|  | #include "qapi/error.h" | 
|  | #include "qemu/bswap.h" | 
|  |  | 
|  | #include "block-luks.h" | 
|  | #include "block-luks-priv.h" | 
|  |  | 
|  | #include "crypto/hash.h" | 
|  | #include "crypto/afsplit.h" | 
|  | #include "crypto/pbkdf.h" | 
|  | #include "crypto/secret.h" | 
|  | #include "crypto/random.h" | 
|  | #include "qemu/uuid.h" | 
|  |  | 
|  | #include "qemu/bitmap.h" | 
|  | #include "qemu/range.h" | 
|  |  | 
|  | /* | 
|  | * Reference for the LUKS format implemented here is | 
|  | * | 
|  | *   docs/on-disk-format.pdf | 
|  | * | 
|  | * in 'cryptsetup' package source code | 
|  | * | 
|  | * This file implements the 1.2.1 specification, dated | 
|  | * Oct 16, 2011. | 
|  | */ | 
|  |  | 
|  | typedef struct QCryptoBlockLUKS QCryptoBlockLUKS; | 
|  |  | 
|  | typedef struct QCryptoBlockLUKSNameMap QCryptoBlockLUKSNameMap; | 
|  | struct QCryptoBlockLUKSNameMap { | 
|  | const char *name; | 
|  | int id; | 
|  | }; | 
|  |  | 
|  | typedef struct QCryptoBlockLUKSCipherSizeMap QCryptoBlockLUKSCipherSizeMap; | 
|  | struct QCryptoBlockLUKSCipherSizeMap { | 
|  | uint32_t key_bytes; | 
|  | int id; | 
|  | }; | 
|  | typedef struct QCryptoBlockLUKSCipherNameMap QCryptoBlockLUKSCipherNameMap; | 
|  | struct QCryptoBlockLUKSCipherNameMap { | 
|  | const char *name; | 
|  | const QCryptoBlockLUKSCipherSizeMap *sizes; | 
|  | }; | 
|  |  | 
|  |  | 
|  | static const QCryptoBlockLUKSCipherSizeMap | 
|  | qcrypto_block_luks_cipher_size_map_aes[] = { | 
|  | { 16, QCRYPTO_CIPHER_ALGO_AES_128 }, | 
|  | { 24, QCRYPTO_CIPHER_ALGO_AES_192 }, | 
|  | { 32, QCRYPTO_CIPHER_ALGO_AES_256 }, | 
|  | { 0, 0 }, | 
|  | }; | 
|  |  | 
|  | static const QCryptoBlockLUKSCipherSizeMap | 
|  | qcrypto_block_luks_cipher_size_map_cast5[] = { | 
|  | { 16, QCRYPTO_CIPHER_ALGO_CAST5_128 }, | 
|  | { 0, 0 }, | 
|  | }; | 
|  |  | 
|  | static const QCryptoBlockLUKSCipherSizeMap | 
|  | qcrypto_block_luks_cipher_size_map_serpent[] = { | 
|  | { 16, QCRYPTO_CIPHER_ALGO_SERPENT_128 }, | 
|  | { 24, QCRYPTO_CIPHER_ALGO_SERPENT_192 }, | 
|  | { 32, QCRYPTO_CIPHER_ALGO_SERPENT_256 }, | 
|  | { 0, 0 }, | 
|  | }; | 
|  |  | 
|  | static const QCryptoBlockLUKSCipherSizeMap | 
|  | qcrypto_block_luks_cipher_size_map_twofish[] = { | 
|  | { 16, QCRYPTO_CIPHER_ALGO_TWOFISH_128 }, | 
|  | { 24, QCRYPTO_CIPHER_ALGO_TWOFISH_192 }, | 
|  | { 32, QCRYPTO_CIPHER_ALGO_TWOFISH_256 }, | 
|  | { 0, 0 }, | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_CRYPTO_SM4 | 
|  | static const QCryptoBlockLUKSCipherSizeMap | 
|  | qcrypto_block_luks_cipher_size_map_sm4[] = { | 
|  | { 16, QCRYPTO_CIPHER_ALGO_SM4}, | 
|  | { 0, 0 }, | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | static const QCryptoBlockLUKSCipherNameMap | 
|  | qcrypto_block_luks_cipher_name_map[] = { | 
|  | { "aes", qcrypto_block_luks_cipher_size_map_aes }, | 
|  | { "cast5", qcrypto_block_luks_cipher_size_map_cast5 }, | 
|  | { "serpent", qcrypto_block_luks_cipher_size_map_serpent }, | 
|  | { "twofish", qcrypto_block_luks_cipher_size_map_twofish }, | 
|  | #ifdef CONFIG_CRYPTO_SM4 | 
|  | { "sm4", qcrypto_block_luks_cipher_size_map_sm4}, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | QEMU_BUILD_BUG_ON(sizeof(struct QCryptoBlockLUKSKeySlot) != 48); | 
|  | QEMU_BUILD_BUG_ON(sizeof(struct QCryptoBlockLUKSHeader) != 592); | 
|  |  | 
|  |  | 
|  | struct QCryptoBlockLUKS { | 
|  | QCryptoBlockLUKSHeader header; | 
|  |  | 
|  | /* Main encryption algorithm used for encryption*/ | 
|  | QCryptoCipherAlgo cipher_alg; | 
|  |  | 
|  | /* Mode of encryption for the selected encryption algorithm */ | 
|  | QCryptoCipherMode cipher_mode; | 
|  |  | 
|  | /* Initialization vector generation algorithm */ | 
|  | QCryptoIVGenAlgo ivgen_alg; | 
|  |  | 
|  | /* Hash algorithm used for IV generation*/ | 
|  | QCryptoHashAlgo ivgen_hash_alg; | 
|  |  | 
|  | /* | 
|  | * Encryption algorithm used for IV generation. | 
|  | * Usually the same as main encryption algorithm | 
|  | */ | 
|  | QCryptoCipherAlgo ivgen_cipher_alg; | 
|  |  | 
|  | /* Hash algorithm used in pbkdf2 function */ | 
|  | QCryptoHashAlgo hash_alg; | 
|  |  | 
|  | /* Name of the secret that was used to open the image */ | 
|  | char *secret; | 
|  | }; | 
|  |  | 
|  |  | 
|  | static int qcrypto_block_luks_cipher_name_lookup(const char *name, | 
|  | QCryptoCipherMode mode, | 
|  | uint32_t key_bytes, | 
|  | Error **errp) | 
|  | { | 
|  | const QCryptoBlockLUKSCipherNameMap *map = | 
|  | qcrypto_block_luks_cipher_name_map; | 
|  | size_t maplen = G_N_ELEMENTS(qcrypto_block_luks_cipher_name_map); | 
|  | size_t i, j; | 
|  |  | 
|  | if (mode == QCRYPTO_CIPHER_MODE_XTS) { | 
|  | key_bytes /= 2; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < maplen; i++) { | 
|  | if (!g_str_equal(map[i].name, name)) { | 
|  | continue; | 
|  | } | 
|  | for (j = 0; j < map[i].sizes[j].key_bytes; j++) { | 
|  | if (map[i].sizes[j].key_bytes == key_bytes) { | 
|  | return map[i].sizes[j].id; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | error_setg(errp, "Algorithm '%s' with key size %d bytes not supported", | 
|  | name, key_bytes); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const char * | 
|  | qcrypto_block_luks_cipher_alg_lookup(QCryptoCipherAlgo alg, | 
|  | Error **errp) | 
|  | { | 
|  | const QCryptoBlockLUKSCipherNameMap *map = | 
|  | qcrypto_block_luks_cipher_name_map; | 
|  | size_t maplen = G_N_ELEMENTS(qcrypto_block_luks_cipher_name_map); | 
|  | size_t i, j; | 
|  | for (i = 0; i < maplen; i++) { | 
|  | for (j = 0; j < map[i].sizes[j].key_bytes; j++) { | 
|  | if (map[i].sizes[j].id == alg) { | 
|  | return map[i].name; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | error_setg(errp, "Algorithm '%s' not supported", | 
|  | QCryptoCipherAlgo_str(alg)); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* XXX replace with qapi_enum_parse() in future, when we can | 
|  | * make that function emit a more friendly error message */ | 
|  | static int qcrypto_block_luks_name_lookup(const char *name, | 
|  | const QEnumLookup *map, | 
|  | const char *type, | 
|  | Error **errp) | 
|  | { | 
|  | int ret = qapi_enum_parse(map, name, -1, NULL); | 
|  |  | 
|  | if (ret < 0) { | 
|  | error_setg(errp, "%s '%s' not supported", type, name); | 
|  | return 0; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define qcrypto_block_luks_cipher_mode_lookup(name, errp)               \ | 
|  | qcrypto_block_luks_name_lookup(name,                                \ | 
|  | &QCryptoCipherMode_lookup,           \ | 
|  | "Cipher mode",                       \ | 
|  | errp) | 
|  |  | 
|  | #define qcrypto_block_luks_hash_name_lookup(name, errp)                 \ | 
|  | qcrypto_block_luks_name_lookup(name,                                \ | 
|  | &QCryptoHashAlgo_lookup,        \ | 
|  | "Hash algorithm",                    \ | 
|  | errp) | 
|  |  | 
|  | #define qcrypto_block_luks_ivgen_name_lookup(name, errp)                \ | 
|  | qcrypto_block_luks_name_lookup(name,                                \ | 
|  | &QCryptoIVGenAlgo_lookup,       \ | 
|  | "IV generator",                      \ | 
|  | errp) | 
|  |  | 
|  |  | 
|  | static bool | 
|  | qcrypto_block_luks_has_format(const uint8_t *buf, | 
|  | size_t buf_size) | 
|  | { | 
|  | const QCryptoBlockLUKSHeader *luks_header = (const void *)buf; | 
|  |  | 
|  | if (buf_size >= offsetof(QCryptoBlockLUKSHeader, cipher_name) && | 
|  | memcmp(luks_header->magic, qcrypto_block_luks_magic, | 
|  | QCRYPTO_BLOCK_LUKS_MAGIC_LEN) == 0 && | 
|  | be16_to_cpu(luks_header->version) == QCRYPTO_BLOCK_LUKS_VERSION) { | 
|  | return true; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Deal with a quirk of dm-crypt usage of ESSIV. | 
|  | * | 
|  | * When calculating ESSIV IVs, the cipher length used by ESSIV | 
|  | * may be different from the cipher length used for the block | 
|  | * encryption, because dm-crypt uses the hash digest length | 
|  | * as the key size. ie, if you have AES 128 as the block cipher | 
|  | * and SHA 256 as ESSIV hash, then ESSIV will use AES 256 as | 
|  | * the cipher since that gets a key length matching the digest | 
|  | * size, not AES 128 with truncated digest as might be imagined | 
|  | */ | 
|  | static QCryptoCipherAlgo | 
|  | qcrypto_block_luks_essiv_cipher(QCryptoCipherAlgo cipher, | 
|  | QCryptoHashAlgo hash, | 
|  | Error **errp) | 
|  | { | 
|  | size_t digestlen = qcrypto_hash_digest_len(hash); | 
|  | size_t keylen = qcrypto_cipher_get_key_len(cipher); | 
|  | if (digestlen == keylen) { | 
|  | return cipher; | 
|  | } | 
|  |  | 
|  | switch (cipher) { | 
|  | case QCRYPTO_CIPHER_ALGO_AES_128: | 
|  | case QCRYPTO_CIPHER_ALGO_AES_192: | 
|  | case QCRYPTO_CIPHER_ALGO_AES_256: | 
|  | if (digestlen == qcrypto_cipher_get_key_len( | 
|  | QCRYPTO_CIPHER_ALGO_AES_128)) { | 
|  | return QCRYPTO_CIPHER_ALGO_AES_128; | 
|  | } else if (digestlen == qcrypto_cipher_get_key_len( | 
|  | QCRYPTO_CIPHER_ALGO_AES_192)) { | 
|  | return QCRYPTO_CIPHER_ALGO_AES_192; | 
|  | } else if (digestlen == qcrypto_cipher_get_key_len( | 
|  | QCRYPTO_CIPHER_ALGO_AES_256)) { | 
|  | return QCRYPTO_CIPHER_ALGO_AES_256; | 
|  | } else { | 
|  | error_setg(errp, "No AES cipher with key size %zu available", | 
|  | digestlen); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case QCRYPTO_CIPHER_ALGO_SERPENT_128: | 
|  | case QCRYPTO_CIPHER_ALGO_SERPENT_192: | 
|  | case QCRYPTO_CIPHER_ALGO_SERPENT_256: | 
|  | if (digestlen == qcrypto_cipher_get_key_len( | 
|  | QCRYPTO_CIPHER_ALGO_SERPENT_128)) { | 
|  | return QCRYPTO_CIPHER_ALGO_SERPENT_128; | 
|  | } else if (digestlen == qcrypto_cipher_get_key_len( | 
|  | QCRYPTO_CIPHER_ALGO_SERPENT_192)) { | 
|  | return QCRYPTO_CIPHER_ALGO_SERPENT_192; | 
|  | } else if (digestlen == qcrypto_cipher_get_key_len( | 
|  | QCRYPTO_CIPHER_ALGO_SERPENT_256)) { | 
|  | return QCRYPTO_CIPHER_ALGO_SERPENT_256; | 
|  | } else { | 
|  | error_setg(errp, "No Serpent cipher with key size %zu available", | 
|  | digestlen); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case QCRYPTO_CIPHER_ALGO_TWOFISH_128: | 
|  | case QCRYPTO_CIPHER_ALGO_TWOFISH_192: | 
|  | case QCRYPTO_CIPHER_ALGO_TWOFISH_256: | 
|  | if (digestlen == qcrypto_cipher_get_key_len( | 
|  | QCRYPTO_CIPHER_ALGO_TWOFISH_128)) { | 
|  | return QCRYPTO_CIPHER_ALGO_TWOFISH_128; | 
|  | } else if (digestlen == qcrypto_cipher_get_key_len( | 
|  | QCRYPTO_CIPHER_ALGO_TWOFISH_192)) { | 
|  | return QCRYPTO_CIPHER_ALGO_TWOFISH_192; | 
|  | } else if (digestlen == qcrypto_cipher_get_key_len( | 
|  | QCRYPTO_CIPHER_ALGO_TWOFISH_256)) { | 
|  | return QCRYPTO_CIPHER_ALGO_TWOFISH_256; | 
|  | } else { | 
|  | error_setg(errp, "No Twofish cipher with key size %zu available", | 
|  | digestlen); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | error_setg(errp, "Cipher %s not supported with essiv", | 
|  | QCryptoCipherAlgo_str(cipher)); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns number of sectors needed to store the key material | 
|  | * given number of anti forensic stripes | 
|  | */ | 
|  | static int | 
|  | qcrypto_block_luks_splitkeylen_sectors(const QCryptoBlockLUKS *luks, | 
|  | unsigned int header_sectors, | 
|  | unsigned int stripes) | 
|  | { | 
|  | /* | 
|  | * This calculation doesn't match that shown in the spec, | 
|  | * but instead follows the cryptsetup implementation. | 
|  | */ | 
|  |  | 
|  | size_t splitkeylen = luks->header.master_key_len * stripes; | 
|  |  | 
|  | /* First align the key material size to block size*/ | 
|  | size_t splitkeylen_sectors = | 
|  | DIV_ROUND_UP(splitkeylen, QCRYPTO_BLOCK_LUKS_SECTOR_SIZE); | 
|  |  | 
|  | /* Then also align the key material size to the size of the header */ | 
|  | return ROUND_UP(splitkeylen_sectors, header_sectors); | 
|  | } | 
|  |  | 
|  |  | 
|  | void | 
|  | qcrypto_block_luks_to_disk_endian(QCryptoBlockLUKSHeader *hdr) | 
|  | { | 
|  | size_t i; | 
|  |  | 
|  | /* | 
|  | * Everything on disk uses Big Endian (tm), so flip header fields | 
|  | * before writing them | 
|  | */ | 
|  | cpu_to_be16s(&hdr->version); | 
|  | cpu_to_be32s(&hdr->payload_offset_sector); | 
|  | cpu_to_be32s(&hdr->master_key_len); | 
|  | cpu_to_be32s(&hdr->master_key_iterations); | 
|  |  | 
|  | for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) { | 
|  | cpu_to_be32s(&hdr->key_slots[i].active); | 
|  | cpu_to_be32s(&hdr->key_slots[i].iterations); | 
|  | cpu_to_be32s(&hdr->key_slots[i].key_offset_sector); | 
|  | cpu_to_be32s(&hdr->key_slots[i].stripes); | 
|  | } | 
|  | } | 
|  |  | 
|  | void | 
|  | qcrypto_block_luks_from_disk_endian(QCryptoBlockLUKSHeader *hdr) | 
|  | { | 
|  | size_t i; | 
|  |  | 
|  | /* | 
|  | * The header is always stored in big-endian format, so | 
|  | * convert everything to native | 
|  | */ | 
|  | be16_to_cpus(&hdr->version); | 
|  | be32_to_cpus(&hdr->payload_offset_sector); | 
|  | be32_to_cpus(&hdr->master_key_len); | 
|  | be32_to_cpus(&hdr->master_key_iterations); | 
|  |  | 
|  | for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) { | 
|  | be32_to_cpus(&hdr->key_slots[i].active); | 
|  | be32_to_cpus(&hdr->key_slots[i].iterations); | 
|  | be32_to_cpus(&hdr->key_slots[i].key_offset_sector); | 
|  | be32_to_cpus(&hdr->key_slots[i].stripes); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Stores the main LUKS header, taking care of endianness | 
|  | */ | 
|  | static int | 
|  | qcrypto_block_luks_store_header(QCryptoBlock *block, | 
|  | QCryptoBlockWriteFunc writefunc, | 
|  | void *opaque, | 
|  | Error **errp) | 
|  | { | 
|  | const QCryptoBlockLUKS *luks = block->opaque; | 
|  | Error *local_err = NULL; | 
|  | g_autofree QCryptoBlockLUKSHeader *hdr_copy = NULL; | 
|  |  | 
|  | /* Create a copy of the header */ | 
|  | hdr_copy = g_new0(QCryptoBlockLUKSHeader, 1); | 
|  | memcpy(hdr_copy, &luks->header, sizeof(QCryptoBlockLUKSHeader)); | 
|  |  | 
|  | qcrypto_block_luks_to_disk_endian(hdr_copy); | 
|  |  | 
|  | /* Write out the partition header and key slot headers */ | 
|  | writefunc(block, 0, (const uint8_t *)hdr_copy, sizeof(*hdr_copy), | 
|  | opaque, &local_err); | 
|  |  | 
|  | if (local_err) { | 
|  | error_propagate(errp, local_err); | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Loads the main LUKS header, and byteswaps it to native endianness | 
|  | * And run basic sanity checks on it | 
|  | */ | 
|  | static int | 
|  | qcrypto_block_luks_load_header(QCryptoBlock *block, | 
|  | QCryptoBlockReadFunc readfunc, | 
|  | void *opaque, | 
|  | Error **errp) | 
|  | { | 
|  | int rv; | 
|  | QCryptoBlockLUKS *luks = block->opaque; | 
|  |  | 
|  | /* | 
|  | * Read the entire LUKS header, minus the key material from | 
|  | * the underlying device | 
|  | */ | 
|  | rv = readfunc(block, 0, | 
|  | (uint8_t *)&luks->header, | 
|  | sizeof(luks->header), | 
|  | opaque, | 
|  | errp); | 
|  | if (rv < 0) { | 
|  | return rv; | 
|  | } | 
|  |  | 
|  | qcrypto_block_luks_from_disk_endian(&luks->header); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Does basic sanity checks on the LUKS header | 
|  | */ | 
|  | static int | 
|  | qcrypto_block_luks_check_header(const QCryptoBlockLUKS *luks, | 
|  | unsigned int flags, | 
|  | Error **errp) | 
|  | { | 
|  | size_t i, j; | 
|  |  | 
|  | unsigned int header_sectors = QCRYPTO_BLOCK_LUKS_KEY_SLOT_OFFSET / | 
|  | QCRYPTO_BLOCK_LUKS_SECTOR_SIZE; | 
|  | bool detached = flags & QCRYPTO_BLOCK_OPEN_DETACHED; | 
|  |  | 
|  | if (memcmp(luks->header.magic, qcrypto_block_luks_magic, | 
|  | QCRYPTO_BLOCK_LUKS_MAGIC_LEN) != 0) { | 
|  | error_setg(errp, "Volume is not in LUKS format"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (luks->header.version != QCRYPTO_BLOCK_LUKS_VERSION) { | 
|  | error_setg(errp, "LUKS version %" PRIu32 " is not supported", | 
|  | luks->header.version); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (!memchr(luks->header.cipher_name, '\0', | 
|  | sizeof(luks->header.cipher_name))) { | 
|  | error_setg(errp, "LUKS header cipher name is not NUL terminated"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (!memchr(luks->header.cipher_mode, '\0', | 
|  | sizeof(luks->header.cipher_mode))) { | 
|  | error_setg(errp, "LUKS header cipher mode is not NUL terminated"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (!memchr(luks->header.hash_spec, '\0', | 
|  | sizeof(luks->header.hash_spec))) { | 
|  | error_setg(errp, "LUKS header hash spec is not NUL terminated"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (!detached && luks->header.payload_offset_sector < | 
|  | DIV_ROUND_UP(QCRYPTO_BLOCK_LUKS_KEY_SLOT_OFFSET, | 
|  | QCRYPTO_BLOCK_LUKS_SECTOR_SIZE)) { | 
|  | error_setg(errp, "LUKS payload is overlapping with the header"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (luks->header.master_key_iterations == 0) { | 
|  | error_setg(errp, "LUKS key iteration count is zero"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Check all keyslots for corruption  */ | 
|  | for (i = 0 ; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS ; i++) { | 
|  |  | 
|  | const QCryptoBlockLUKSKeySlot *slot1 = &luks->header.key_slots[i]; | 
|  | unsigned int start1 = slot1->key_offset_sector; | 
|  | unsigned int len1 = | 
|  | qcrypto_block_luks_splitkeylen_sectors(luks, | 
|  | header_sectors, | 
|  | slot1->stripes); | 
|  |  | 
|  | if (slot1->stripes != QCRYPTO_BLOCK_LUKS_STRIPES) { | 
|  | error_setg(errp, "Keyslot %zu is corrupted (stripes %d != %d)", | 
|  | i, slot1->stripes, QCRYPTO_BLOCK_LUKS_STRIPES); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (slot1->active != QCRYPTO_BLOCK_LUKS_KEY_SLOT_DISABLED && | 
|  | slot1->active != QCRYPTO_BLOCK_LUKS_KEY_SLOT_ENABLED) { | 
|  | error_setg(errp, | 
|  | "Keyslot %zu state (active/disable) is corrupted", i); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (slot1->active == QCRYPTO_BLOCK_LUKS_KEY_SLOT_ENABLED && | 
|  | slot1->iterations == 0) { | 
|  | error_setg(errp, "Keyslot %zu iteration count is zero", i); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (start1 < DIV_ROUND_UP(QCRYPTO_BLOCK_LUKS_KEY_SLOT_OFFSET, | 
|  | QCRYPTO_BLOCK_LUKS_SECTOR_SIZE)) { | 
|  | error_setg(errp, | 
|  | "Keyslot %zu is overlapping with the LUKS header", | 
|  | i); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (!detached && start1 + len1 > luks->header.payload_offset_sector) { | 
|  | error_setg(errp, | 
|  | "Keyslot %zu is overlapping with the encrypted payload", | 
|  | i); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | for (j = i + 1 ; j < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS ; j++) { | 
|  | const QCryptoBlockLUKSKeySlot *slot2 = &luks->header.key_slots[j]; | 
|  | unsigned int start2 = slot2->key_offset_sector; | 
|  | unsigned int len2 = | 
|  | qcrypto_block_luks_splitkeylen_sectors(luks, | 
|  | header_sectors, | 
|  | slot2->stripes); | 
|  |  | 
|  | if (ranges_overlap(start1, len1, start2, len2)) { | 
|  | error_setg(errp, | 
|  | "Keyslots %zu and %zu are overlapping in the header", | 
|  | i, j); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Parses the crypto parameters that are stored in the LUKS header | 
|  | */ | 
|  |  | 
|  | static int | 
|  | qcrypto_block_luks_parse_header(QCryptoBlockLUKS *luks, Error **errp) | 
|  | { | 
|  | g_autofree char *cipher_mode = g_strdup(luks->header.cipher_mode); | 
|  | char *ivgen_name, *ivhash_name; | 
|  | Error *local_err = NULL; | 
|  |  | 
|  | /* | 
|  | * The cipher_mode header contains a string that we have | 
|  | * to further parse, of the format | 
|  | * | 
|  | *    <cipher-mode>-<iv-generator>[:<iv-hash>] | 
|  | * | 
|  | * eg  cbc-essiv:sha256, cbc-plain64 | 
|  | */ | 
|  | ivgen_name = strchr(cipher_mode, '-'); | 
|  | if (!ivgen_name) { | 
|  | error_setg(errp, "Unexpected cipher mode string format '%s'", | 
|  | luks->header.cipher_mode); | 
|  | return -1; | 
|  | } | 
|  | *ivgen_name = '\0'; | 
|  | ivgen_name++; | 
|  |  | 
|  | ivhash_name = strchr(ivgen_name, ':'); | 
|  | if (!ivhash_name) { | 
|  | luks->ivgen_hash_alg = 0; | 
|  | } else { | 
|  | *ivhash_name = '\0'; | 
|  | ivhash_name++; | 
|  |  | 
|  | luks->ivgen_hash_alg = qcrypto_block_luks_hash_name_lookup(ivhash_name, | 
|  | &local_err); | 
|  | if (local_err) { | 
|  | error_propagate(errp, local_err); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | luks->cipher_mode = qcrypto_block_luks_cipher_mode_lookup(cipher_mode, | 
|  | &local_err); | 
|  | if (local_err) { | 
|  | error_propagate(errp, local_err); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | luks->cipher_alg = | 
|  | qcrypto_block_luks_cipher_name_lookup(luks->header.cipher_name, | 
|  | luks->cipher_mode, | 
|  | luks->header.master_key_len, | 
|  | &local_err); | 
|  | if (local_err) { | 
|  | error_propagate(errp, local_err); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | luks->hash_alg = | 
|  | qcrypto_block_luks_hash_name_lookup(luks->header.hash_spec, | 
|  | &local_err); | 
|  | if (local_err) { | 
|  | error_propagate(errp, local_err); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | luks->ivgen_alg = qcrypto_block_luks_ivgen_name_lookup(ivgen_name, | 
|  | &local_err); | 
|  | if (local_err) { | 
|  | error_propagate(errp, local_err); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (luks->ivgen_alg == QCRYPTO_IV_GEN_ALGO_ESSIV) { | 
|  | if (!ivhash_name) { | 
|  | error_setg(errp, "Missing IV generator hash specification"); | 
|  | return -1; | 
|  | } | 
|  | luks->ivgen_cipher_alg = | 
|  | qcrypto_block_luks_essiv_cipher(luks->cipher_alg, | 
|  | luks->ivgen_hash_alg, | 
|  | &local_err); | 
|  | if (local_err) { | 
|  | error_propagate(errp, local_err); | 
|  | return -1; | 
|  | } | 
|  | } else { | 
|  |  | 
|  | /* | 
|  | * Note we parsed the ivhash_name earlier in the cipher_mode | 
|  | * spec string even with plain/plain64 ivgens, but we | 
|  | * will ignore it, since it is irrelevant for these ivgens. | 
|  | * This is for compat with dm-crypt which will silently | 
|  | * ignore hash names with these ivgens rather than report | 
|  | * an error about the invalid usage | 
|  | */ | 
|  | luks->ivgen_cipher_alg = luks->cipher_alg; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Given a key slot,  user password, and the master key, | 
|  | * will store the encrypted master key there, and update the | 
|  | * in-memory header. User must then write the in-memory header | 
|  | * | 
|  | * Returns: | 
|  | *    0 if the keyslot was written successfully | 
|  | *      with the provided password | 
|  | *   -1 if a fatal error occurred while storing the key | 
|  | */ | 
|  | static int | 
|  | qcrypto_block_luks_store_key(QCryptoBlock *block, | 
|  | unsigned int slot_idx, | 
|  | const char *password, | 
|  | uint8_t *masterkey, | 
|  | uint64_t iter_time, | 
|  | QCryptoBlockWriteFunc writefunc, | 
|  | void *opaque, | 
|  | Error **errp) | 
|  | { | 
|  | QCryptoBlockLUKS *luks = block->opaque; | 
|  | QCryptoBlockLUKSKeySlot *slot; | 
|  | g_autofree uint8_t *splitkey = NULL; | 
|  | size_t splitkeylen; | 
|  | g_autofree uint8_t *slotkey = NULL; | 
|  | g_autoptr(QCryptoCipher) cipher = NULL; | 
|  | g_autoptr(QCryptoIVGen) ivgen = NULL; | 
|  | Error *local_err = NULL; | 
|  | uint64_t iters; | 
|  | int ret = -1; | 
|  |  | 
|  | assert(slot_idx < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS); | 
|  | slot = &luks->header.key_slots[slot_idx]; | 
|  | splitkeylen = luks->header.master_key_len * slot->stripes; | 
|  |  | 
|  | if (qcrypto_random_bytes(slot->salt, | 
|  | QCRYPTO_BLOCK_LUKS_SALT_LEN, | 
|  | errp) < 0) { | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine how many iterations are required to | 
|  | * hash the user password while consuming 1 second of compute | 
|  | * time | 
|  | */ | 
|  | iters = qcrypto_pbkdf2_count_iters(luks->hash_alg, | 
|  | (uint8_t *)password, strlen(password), | 
|  | slot->salt, | 
|  | QCRYPTO_BLOCK_LUKS_SALT_LEN, | 
|  | luks->header.master_key_len, | 
|  | &local_err); | 
|  | if (local_err) { | 
|  | error_propagate(errp, local_err); | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | if (iters > (ULLONG_MAX / iter_time)) { | 
|  | error_setg_errno(errp, ERANGE, | 
|  | "PBKDF iterations %llu too large to scale", | 
|  | (unsigned long long)iters); | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | /* iter_time was in millis, but count_iters reported for secs */ | 
|  | iters = iters * iter_time / 1000; | 
|  |  | 
|  | if (iters > UINT32_MAX) { | 
|  | error_setg_errno(errp, ERANGE, | 
|  | "PBKDF iterations %llu larger than %u", | 
|  | (unsigned long long)iters, UINT32_MAX); | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | slot->iterations = | 
|  | MAX(iters, QCRYPTO_BLOCK_LUKS_MIN_SLOT_KEY_ITERS); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Generate a key that we'll use to encrypt the master | 
|  | * key, from the user's password | 
|  | */ | 
|  | slotkey = g_new0(uint8_t, luks->header.master_key_len); | 
|  | if (qcrypto_pbkdf2(luks->hash_alg, | 
|  | (uint8_t *)password, strlen(password), | 
|  | slot->salt, | 
|  | QCRYPTO_BLOCK_LUKS_SALT_LEN, | 
|  | slot->iterations, | 
|  | slotkey, luks->header.master_key_len, | 
|  | errp) < 0) { | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Setup the encryption objects needed to encrypt the | 
|  | * master key material | 
|  | */ | 
|  | cipher = qcrypto_cipher_new(luks->cipher_alg, | 
|  | luks->cipher_mode, | 
|  | slotkey, luks->header.master_key_len, | 
|  | errp); | 
|  | if (!cipher) { | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | ivgen = qcrypto_ivgen_new(luks->ivgen_alg, | 
|  | luks->ivgen_cipher_alg, | 
|  | luks->ivgen_hash_alg, | 
|  | slotkey, luks->header.master_key_len, | 
|  | errp); | 
|  | if (!ivgen) { | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Before storing the master key, we need to vastly | 
|  | * increase its size, as protection against forensic | 
|  | * disk data recovery | 
|  | */ | 
|  | splitkey = g_new0(uint8_t, splitkeylen); | 
|  |  | 
|  | if (qcrypto_afsplit_encode(luks->hash_alg, | 
|  | luks->header.master_key_len, | 
|  | slot->stripes, | 
|  | masterkey, | 
|  | splitkey, | 
|  | errp) < 0) { | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now we encrypt the split master key with the key generated | 
|  | * from the user's password, before storing it | 
|  | */ | 
|  | if (qcrypto_block_cipher_encrypt_helper(cipher, block->niv, ivgen, | 
|  | QCRYPTO_BLOCK_LUKS_SECTOR_SIZE, | 
|  | 0, | 
|  | splitkey, | 
|  | splitkeylen, | 
|  | errp) < 0) { | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | /* Write out the slot's master key material. */ | 
|  | if (writefunc(block, | 
|  | slot->key_offset_sector * | 
|  | QCRYPTO_BLOCK_LUKS_SECTOR_SIZE, | 
|  | splitkey, splitkeylen, | 
|  | opaque, | 
|  | errp) < 0) { | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | slot->active = QCRYPTO_BLOCK_LUKS_KEY_SLOT_ENABLED; | 
|  |  | 
|  | if (qcrypto_block_luks_store_header(block,  writefunc, opaque, errp) < 0) { | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  |  | 
|  | cleanup: | 
|  | if (slotkey) { | 
|  | memset(slotkey, 0, luks->header.master_key_len); | 
|  | } | 
|  | if (splitkey) { | 
|  | memset(splitkey, 0, splitkeylen); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Given a key slot, and user password, this will attempt to unlock | 
|  | * the master encryption key from the key slot. | 
|  | * | 
|  | * Returns: | 
|  | *    0 if the key slot is disabled, or key could not be decrypted | 
|  | *      with the provided password | 
|  | *    1 if the key slot is enabled, and key decrypted successfully | 
|  | *      with the provided password | 
|  | *   -1 if a fatal error occurred loading the key | 
|  | */ | 
|  | static int | 
|  | qcrypto_block_luks_load_key(QCryptoBlock *block, | 
|  | size_t slot_idx, | 
|  | const char *password, | 
|  | uint8_t *masterkey, | 
|  | QCryptoBlockReadFunc readfunc, | 
|  | void *opaque, | 
|  | Error **errp) | 
|  | { | 
|  | QCryptoBlockLUKS *luks = block->opaque; | 
|  | const QCryptoBlockLUKSKeySlot *slot; | 
|  | g_autofree uint8_t *splitkey = NULL; | 
|  | size_t splitkeylen; | 
|  | g_autofree uint8_t *possiblekey = NULL; | 
|  | int rv; | 
|  | g_autoptr(QCryptoCipher) cipher = NULL; | 
|  | uint8_t keydigest[QCRYPTO_BLOCK_LUKS_DIGEST_LEN]; | 
|  | g_autoptr(QCryptoIVGen) ivgen = NULL; | 
|  | size_t niv; | 
|  |  | 
|  | assert(slot_idx < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS); | 
|  | slot = &luks->header.key_slots[slot_idx]; | 
|  | if (slot->active != QCRYPTO_BLOCK_LUKS_KEY_SLOT_ENABLED) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | splitkeylen = luks->header.master_key_len * slot->stripes; | 
|  | splitkey = g_new0(uint8_t, splitkeylen); | 
|  | possiblekey = g_new0(uint8_t, luks->header.master_key_len); | 
|  |  | 
|  | /* | 
|  | * The user password is used to generate a (possible) | 
|  | * decryption key. This may or may not successfully | 
|  | * decrypt the master key - we just blindly assume | 
|  | * the key is correct and validate the results of | 
|  | * decryption later. | 
|  | */ | 
|  | if (qcrypto_pbkdf2(luks->hash_alg, | 
|  | (const uint8_t *)password, strlen(password), | 
|  | slot->salt, QCRYPTO_BLOCK_LUKS_SALT_LEN, | 
|  | slot->iterations, | 
|  | possiblekey, luks->header.master_key_len, | 
|  | errp) < 0) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to read the master key material from the | 
|  | * LUKS key material header. What we're reading is | 
|  | * not the raw master key, but rather the data after | 
|  | * it has been passed through AFSplit and the result | 
|  | * then encrypted. | 
|  | */ | 
|  | rv = readfunc(block, | 
|  | slot->key_offset_sector * QCRYPTO_BLOCK_LUKS_SECTOR_SIZE, | 
|  | splitkey, splitkeylen, | 
|  | opaque, | 
|  | errp); | 
|  | if (rv < 0) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Setup the cipher/ivgen that we'll use to try to decrypt | 
|  | * the split master key material */ | 
|  | cipher = qcrypto_cipher_new(luks->cipher_alg, | 
|  | luks->cipher_mode, | 
|  | possiblekey, | 
|  | luks->header.master_key_len, | 
|  | errp); | 
|  | if (!cipher) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | niv = qcrypto_cipher_get_iv_len(luks->cipher_alg, | 
|  | luks->cipher_mode); | 
|  |  | 
|  | ivgen = qcrypto_ivgen_new(luks->ivgen_alg, | 
|  | luks->ivgen_cipher_alg, | 
|  | luks->ivgen_hash_alg, | 
|  | possiblekey, | 
|  | luks->header.master_key_len, | 
|  | errp); | 
|  | if (!ivgen) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * The master key needs to be decrypted in the same | 
|  | * way that the block device payload will be decrypted | 
|  | * later. In particular we'll be using the IV generator | 
|  | * to reset the encryption cipher every time the master | 
|  | * key crosses a sector boundary. | 
|  | */ | 
|  | if (qcrypto_block_cipher_decrypt_helper(cipher, | 
|  | niv, | 
|  | ivgen, | 
|  | QCRYPTO_BLOCK_LUKS_SECTOR_SIZE, | 
|  | 0, | 
|  | splitkey, | 
|  | splitkeylen, | 
|  | errp) < 0) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now we've decrypted the split master key, join | 
|  | * it back together to get the actual master key. | 
|  | */ | 
|  | if (qcrypto_afsplit_decode(luks->hash_alg, | 
|  | luks->header.master_key_len, | 
|  | slot->stripes, | 
|  | splitkey, | 
|  | masterkey, | 
|  | errp) < 0) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * We still don't know that the masterkey we got is valid, | 
|  | * because we just blindly assumed the user's password | 
|  | * was correct. This is where we now verify it. We are | 
|  | * creating a hash of the master key using PBKDF and | 
|  | * then comparing that to the hash stored in the key slot | 
|  | * header | 
|  | */ | 
|  | if (qcrypto_pbkdf2(luks->hash_alg, | 
|  | masterkey, | 
|  | luks->header.master_key_len, | 
|  | luks->header.master_key_salt, | 
|  | QCRYPTO_BLOCK_LUKS_SALT_LEN, | 
|  | luks->header.master_key_iterations, | 
|  | keydigest, | 
|  | G_N_ELEMENTS(keydigest), | 
|  | errp) < 0) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (memcmp(keydigest, luks->header.master_key_digest, | 
|  | QCRYPTO_BLOCK_LUKS_DIGEST_LEN) == 0) { | 
|  | /* Success, we got the right master key */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Fail, user's password was not valid for this key slot, | 
|  | * tell caller to try another slot */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Given a user password, this will iterate over all key | 
|  | * slots and try to unlock each active key slot using the | 
|  | * password until it successfully obtains a master key. | 
|  | * | 
|  | * Returns 0 if a key was loaded, -1 if no keys could be loaded | 
|  | */ | 
|  | static int | 
|  | qcrypto_block_luks_find_key(QCryptoBlock *block, | 
|  | const char *password, | 
|  | uint8_t *masterkey, | 
|  | QCryptoBlockReadFunc readfunc, | 
|  | void *opaque, | 
|  | Error **errp) | 
|  | { | 
|  | size_t i; | 
|  | int rv; | 
|  |  | 
|  | for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) { | 
|  | rv = qcrypto_block_luks_load_key(block, | 
|  | i, | 
|  | password, | 
|  | masterkey, | 
|  | readfunc, | 
|  | opaque, | 
|  | errp); | 
|  | if (rv < 0) { | 
|  | goto error; | 
|  | } | 
|  | if (rv == 1) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | error_setg(errp, "Invalid password, cannot unlock any keyslot"); | 
|  | error: | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns true if a slot i is marked as active | 
|  | * (contains encrypted copy of the master key) | 
|  | */ | 
|  | static bool | 
|  | qcrypto_block_luks_slot_active(const QCryptoBlockLUKS *luks, | 
|  | unsigned int slot_idx) | 
|  | { | 
|  | uint32_t val; | 
|  |  | 
|  | assert(slot_idx < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS); | 
|  | val = luks->header.key_slots[slot_idx].active; | 
|  | return val == QCRYPTO_BLOCK_LUKS_KEY_SLOT_ENABLED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns the number of slots that are marked as active | 
|  | * (slots that contain encrypted copy of the master key) | 
|  | */ | 
|  | static unsigned int | 
|  | qcrypto_block_luks_count_active_slots(const QCryptoBlockLUKS *luks) | 
|  | { | 
|  | size_t i = 0; | 
|  | unsigned int ret = 0; | 
|  |  | 
|  | for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) { | 
|  | if (qcrypto_block_luks_slot_active(luks, i)) { | 
|  | ret++; | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Finds first key slot which is not active | 
|  | * Returns the key slot index, or -1 if it doesn't exist | 
|  | */ | 
|  | static int | 
|  | qcrypto_block_luks_find_free_keyslot(const QCryptoBlockLUKS *luks) | 
|  | { | 
|  | size_t i; | 
|  |  | 
|  | for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) { | 
|  | if (!qcrypto_block_luks_slot_active(luks, i)) { | 
|  | return i; | 
|  | } | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Erases an keyslot given its index | 
|  | * Returns: | 
|  | *    0 if the keyslot was erased successfully | 
|  | *   -1 if a error occurred while erasing the keyslot | 
|  | * | 
|  | */ | 
|  | static int | 
|  | qcrypto_block_luks_erase_key(QCryptoBlock *block, | 
|  | unsigned int slot_idx, | 
|  | QCryptoBlockWriteFunc writefunc, | 
|  | void *opaque, | 
|  | Error **errp) | 
|  | { | 
|  | QCryptoBlockLUKS *luks = block->opaque; | 
|  | QCryptoBlockLUKSKeySlot *slot; | 
|  | g_autofree uint8_t *garbagesplitkey = NULL; | 
|  | size_t splitkeylen; | 
|  | size_t i; | 
|  | Error *local_err = NULL; | 
|  | int ret; | 
|  |  | 
|  | assert(slot_idx < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS); | 
|  | slot = &luks->header.key_slots[slot_idx]; | 
|  |  | 
|  | splitkeylen = luks->header.master_key_len * slot->stripes; | 
|  | assert(splitkeylen > 0); | 
|  |  | 
|  | garbagesplitkey = g_new0(uint8_t, splitkeylen); | 
|  |  | 
|  | /* Reset the key slot header */ | 
|  | memset(slot->salt, 0, QCRYPTO_BLOCK_LUKS_SALT_LEN); | 
|  | slot->iterations = 0; | 
|  | slot->active = QCRYPTO_BLOCK_LUKS_KEY_SLOT_DISABLED; | 
|  |  | 
|  | ret = qcrypto_block_luks_store_header(block, writefunc, | 
|  | opaque, &local_err); | 
|  |  | 
|  | if (ret < 0) { | 
|  | error_propagate(errp, local_err); | 
|  | } | 
|  | /* | 
|  | * Now try to erase the key material, even if the header | 
|  | * update failed | 
|  | */ | 
|  | for (i = 0; i < QCRYPTO_BLOCK_LUKS_ERASE_ITERATIONS; i++) { | 
|  | if (qcrypto_random_bytes(garbagesplitkey, | 
|  | splitkeylen, &local_err) < 0) { | 
|  | /* | 
|  | * If we failed to get the random data, still write | 
|  | * at least zeros to the key slot at least once | 
|  | */ | 
|  | error_propagate(errp, local_err); | 
|  |  | 
|  | if (i > 0) { | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | if (writefunc(block, | 
|  | slot->key_offset_sector * QCRYPTO_BLOCK_LUKS_SECTOR_SIZE, | 
|  | garbagesplitkey, | 
|  | splitkeylen, | 
|  | opaque, | 
|  | &local_err) < 0) { | 
|  | error_propagate(errp, local_err); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int | 
|  | qcrypto_block_luks_open(QCryptoBlock *block, | 
|  | QCryptoBlockOpenOptions *options, | 
|  | const char *optprefix, | 
|  | QCryptoBlockReadFunc readfunc, | 
|  | void *opaque, | 
|  | unsigned int flags, | 
|  | Error **errp) | 
|  | { | 
|  | QCryptoBlockLUKS *luks = NULL; | 
|  | g_autofree uint8_t *masterkey = NULL; | 
|  | g_autofree char *password = NULL; | 
|  |  | 
|  | if (!(flags & QCRYPTO_BLOCK_OPEN_NO_IO)) { | 
|  | if (!options->u.luks.key_secret) { | 
|  | error_setg(errp, "Parameter '%skey-secret' is required for cipher", | 
|  | optprefix ? optprefix : ""); | 
|  | return -1; | 
|  | } | 
|  | password = qcrypto_secret_lookup_as_utf8( | 
|  | options->u.luks.key_secret, errp); | 
|  | if (!password) { | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | luks = g_new0(QCryptoBlockLUKS, 1); | 
|  | block->opaque = luks; | 
|  | luks->secret = g_strdup(options->u.luks.key_secret); | 
|  |  | 
|  | if (qcrypto_block_luks_load_header(block, readfunc, opaque, errp) < 0) { | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | if (qcrypto_block_luks_check_header(luks, flags, errp) < 0) { | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | if (qcrypto_block_luks_parse_header(luks, errp) < 0) { | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | if (!(flags & QCRYPTO_BLOCK_OPEN_NO_IO)) { | 
|  | /* Try to find which key slot our password is valid for | 
|  | * and unlock the master key from that slot. | 
|  | */ | 
|  |  | 
|  | masterkey = g_new0(uint8_t, luks->header.master_key_len); | 
|  |  | 
|  | if (qcrypto_block_luks_find_key(block, | 
|  | password, | 
|  | masterkey, | 
|  | readfunc, opaque, | 
|  | errp) < 0) { | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* We have a valid master key now, so can setup the | 
|  | * block device payload decryption objects | 
|  | */ | 
|  | block->kdfhash = luks->hash_alg; | 
|  | block->niv = qcrypto_cipher_get_iv_len(luks->cipher_alg, | 
|  | luks->cipher_mode); | 
|  |  | 
|  | block->ivgen = qcrypto_ivgen_new(luks->ivgen_alg, | 
|  | luks->ivgen_cipher_alg, | 
|  | luks->ivgen_hash_alg, | 
|  | masterkey, | 
|  | luks->header.master_key_len, | 
|  | errp); | 
|  | if (!block->ivgen) { | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | if (qcrypto_block_init_cipher(block, | 
|  | luks->cipher_alg, | 
|  | luks->cipher_mode, | 
|  | masterkey, | 
|  | luks->header.master_key_len, | 
|  | errp) < 0) { | 
|  | goto fail; | 
|  | } | 
|  | } | 
|  |  | 
|  | block->sector_size = QCRYPTO_BLOCK_LUKS_SECTOR_SIZE; | 
|  | block->payload_offset = luks->header.payload_offset_sector * | 
|  | block->sector_size; | 
|  | block->detached_header = (block->payload_offset == 0) ? true : false; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | qcrypto_block_free_cipher(block); | 
|  | qcrypto_ivgen_free(block->ivgen); | 
|  | g_free(luks->secret); | 
|  | g_free(luks); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void | 
|  | qcrypto_block_luks_uuid_gen(uint8_t *uuidstr) | 
|  | { | 
|  | QemuUUID uuid; | 
|  | qemu_uuid_generate(&uuid); | 
|  | qemu_uuid_unparse(&uuid, (char *)uuidstr); | 
|  | } | 
|  |  | 
|  | static int | 
|  | qcrypto_block_luks_create(QCryptoBlock *block, | 
|  | QCryptoBlockCreateOptions *options, | 
|  | const char *optprefix, | 
|  | QCryptoBlockInitFunc initfunc, | 
|  | QCryptoBlockWriteFunc writefunc, | 
|  | void *opaque, | 
|  | Error **errp) | 
|  | { | 
|  | QCryptoBlockLUKS *luks; | 
|  | QCryptoBlockCreateOptionsLUKS luks_opts; | 
|  | Error *local_err = NULL; | 
|  | g_autofree uint8_t *masterkey = NULL; | 
|  | size_t header_sectors; | 
|  | size_t split_key_sectors; | 
|  | size_t i; | 
|  | g_autofree char *password = NULL; | 
|  | const char *cipher_alg; | 
|  | const char *cipher_mode; | 
|  | const char *ivgen_alg; | 
|  | const char *ivgen_hash_alg = NULL; | 
|  | const char *hash_alg; | 
|  | g_autofree char *cipher_mode_spec = NULL; | 
|  | uint64_t iters; | 
|  | uint64_t detached_header_size; | 
|  |  | 
|  | memcpy(&luks_opts, &options->u.luks, sizeof(luks_opts)); | 
|  | if (!luks_opts.has_iter_time) { | 
|  | luks_opts.iter_time = QCRYPTO_BLOCK_LUKS_DEFAULT_ITER_TIME_MS; | 
|  | } | 
|  | if (!luks_opts.has_cipher_alg) { | 
|  | luks_opts.cipher_alg = QCRYPTO_CIPHER_ALGO_AES_256; | 
|  | } | 
|  | if (!luks_opts.has_cipher_mode) { | 
|  | luks_opts.cipher_mode = QCRYPTO_CIPHER_MODE_XTS; | 
|  | } | 
|  | if (!luks_opts.has_ivgen_alg) { | 
|  | luks_opts.ivgen_alg = QCRYPTO_IV_GEN_ALGO_PLAIN64; | 
|  | } | 
|  | if (!luks_opts.has_hash_alg) { | 
|  | luks_opts.hash_alg = QCRYPTO_HASH_ALGO_SHA256; | 
|  | } | 
|  | if (luks_opts.ivgen_alg == QCRYPTO_IV_GEN_ALGO_ESSIV) { | 
|  | if (!luks_opts.has_ivgen_hash_alg) { | 
|  | luks_opts.ivgen_hash_alg = QCRYPTO_HASH_ALGO_SHA256; | 
|  | luks_opts.has_ivgen_hash_alg = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | luks = g_new0(QCryptoBlockLUKS, 1); | 
|  | block->opaque = luks; | 
|  |  | 
|  | luks->cipher_alg = luks_opts.cipher_alg; | 
|  | luks->cipher_mode = luks_opts.cipher_mode; | 
|  | luks->ivgen_alg = luks_opts.ivgen_alg; | 
|  | luks->ivgen_hash_alg = luks_opts.ivgen_hash_alg; | 
|  | luks->hash_alg = luks_opts.hash_alg; | 
|  |  | 
|  |  | 
|  | /* Note we're allowing ivgen_hash_alg to be set even for | 
|  | * non-essiv iv generators that don't need a hash. It will | 
|  | * be silently ignored, for compatibility with dm-crypt */ | 
|  |  | 
|  | if (!options->u.luks.key_secret) { | 
|  | error_setg(errp, "Parameter '%skey-secret' is required for cipher", | 
|  | optprefix ? optprefix : ""); | 
|  | goto error; | 
|  | } | 
|  | luks->secret = g_strdup(options->u.luks.key_secret); | 
|  |  | 
|  | password = qcrypto_secret_lookup_as_utf8(luks_opts.key_secret, errp); | 
|  | if (!password) { | 
|  | goto error; | 
|  | } | 
|  |  | 
|  |  | 
|  | memcpy(luks->header.magic, qcrypto_block_luks_magic, | 
|  | QCRYPTO_BLOCK_LUKS_MAGIC_LEN); | 
|  |  | 
|  | /* We populate the header in native endianness initially and | 
|  | * then convert everything to big endian just before writing | 
|  | * it out to disk | 
|  | */ | 
|  | luks->header.version = QCRYPTO_BLOCK_LUKS_VERSION; | 
|  | qcrypto_block_luks_uuid_gen(luks->header.uuid); | 
|  |  | 
|  | cipher_alg = qcrypto_block_luks_cipher_alg_lookup(luks_opts.cipher_alg, | 
|  | errp); | 
|  | if (!cipher_alg) { | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | cipher_mode = QCryptoCipherMode_str(luks_opts.cipher_mode); | 
|  | ivgen_alg = QCryptoIVGenAlgo_str(luks_opts.ivgen_alg); | 
|  | if (luks_opts.has_ivgen_hash_alg) { | 
|  | ivgen_hash_alg = QCryptoHashAlgo_str(luks_opts.ivgen_hash_alg); | 
|  | cipher_mode_spec = g_strdup_printf("%s-%s:%s", cipher_mode, ivgen_alg, | 
|  | ivgen_hash_alg); | 
|  | } else { | 
|  | cipher_mode_spec = g_strdup_printf("%s-%s", cipher_mode, ivgen_alg); | 
|  | } | 
|  | hash_alg = QCryptoHashAlgo_str(luks_opts.hash_alg); | 
|  |  | 
|  |  | 
|  | if (strlen(cipher_alg) >= QCRYPTO_BLOCK_LUKS_CIPHER_NAME_LEN) { | 
|  | error_setg(errp, "Cipher name '%s' is too long for LUKS header", | 
|  | cipher_alg); | 
|  | goto error; | 
|  | } | 
|  | if (strlen(cipher_mode_spec) >= QCRYPTO_BLOCK_LUKS_CIPHER_MODE_LEN) { | 
|  | error_setg(errp, "Cipher mode '%s' is too long for LUKS header", | 
|  | cipher_mode_spec); | 
|  | goto error; | 
|  | } | 
|  | if (strlen(hash_alg) >= QCRYPTO_BLOCK_LUKS_HASH_SPEC_LEN) { | 
|  | error_setg(errp, "Hash name '%s' is too long for LUKS header", | 
|  | hash_alg); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | if (luks_opts.ivgen_alg == QCRYPTO_IV_GEN_ALGO_ESSIV) { | 
|  | luks->ivgen_cipher_alg = | 
|  | qcrypto_block_luks_essiv_cipher(luks_opts.cipher_alg, | 
|  | luks_opts.ivgen_hash_alg, | 
|  | &local_err); | 
|  | if (local_err) { | 
|  | error_propagate(errp, local_err); | 
|  | goto error; | 
|  | } | 
|  | } else { | 
|  | luks->ivgen_cipher_alg = luks_opts.cipher_alg; | 
|  | } | 
|  |  | 
|  | strcpy(luks->header.cipher_name, cipher_alg); | 
|  | strcpy(luks->header.cipher_mode, cipher_mode_spec); | 
|  | strcpy(luks->header.hash_spec, hash_alg); | 
|  |  | 
|  | luks->header.master_key_len = | 
|  | qcrypto_cipher_get_key_len(luks_opts.cipher_alg); | 
|  |  | 
|  | if (luks_opts.cipher_mode == QCRYPTO_CIPHER_MODE_XTS) { | 
|  | luks->header.master_key_len *= 2; | 
|  | } | 
|  |  | 
|  | /* Generate the salt used for hashing the master key | 
|  | * with PBKDF later | 
|  | */ | 
|  | if (qcrypto_random_bytes(luks->header.master_key_salt, | 
|  | QCRYPTO_BLOCK_LUKS_SALT_LEN, | 
|  | errp) < 0) { | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | /* Generate random master key */ | 
|  | masterkey = g_new0(uint8_t, luks->header.master_key_len); | 
|  | if (qcrypto_random_bytes(masterkey, | 
|  | luks->header.master_key_len, errp) < 0) { | 
|  | goto error; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Setup the block device payload encryption objects */ | 
|  | if (qcrypto_block_init_cipher(block, luks_opts.cipher_alg, | 
|  | luks_opts.cipher_mode, masterkey, | 
|  | luks->header.master_key_len, errp) < 0) { | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | block->kdfhash = luks_opts.hash_alg; | 
|  | block->niv = qcrypto_cipher_get_iv_len(luks_opts.cipher_alg, | 
|  | luks_opts.cipher_mode); | 
|  | block->ivgen = qcrypto_ivgen_new(luks_opts.ivgen_alg, | 
|  | luks->ivgen_cipher_alg, | 
|  | luks_opts.ivgen_hash_alg, | 
|  | masterkey, luks->header.master_key_len, | 
|  | errp); | 
|  |  | 
|  | if (!block->ivgen) { | 
|  | goto error; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Determine how many iterations we need to hash the master | 
|  | * key, in order to have 1 second of compute time used | 
|  | */ | 
|  | iters = qcrypto_pbkdf2_count_iters(luks_opts.hash_alg, | 
|  | masterkey, luks->header.master_key_len, | 
|  | luks->header.master_key_salt, | 
|  | QCRYPTO_BLOCK_LUKS_SALT_LEN, | 
|  | QCRYPTO_BLOCK_LUKS_DIGEST_LEN, | 
|  | &local_err); | 
|  | if (local_err) { | 
|  | error_propagate(errp, local_err); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | if (iters > (ULLONG_MAX / luks_opts.iter_time)) { | 
|  | error_setg_errno(errp, ERANGE, | 
|  | "PBKDF iterations %llu too large to scale", | 
|  | (unsigned long long)iters); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | /* iter_time was in millis, but count_iters reported for secs */ | 
|  | iters = iters * luks_opts.iter_time / 1000; | 
|  |  | 
|  | /* Why /= 8 ?  That matches cryptsetup, but there's no | 
|  | * explanation why they chose /= 8... Probably so that | 
|  | * if all 8 keyslots are active we only spend 1 second | 
|  | * in total time to check all keys */ | 
|  | iters /= 8; | 
|  | if (iters > UINT32_MAX) { | 
|  | error_setg_errno(errp, ERANGE, | 
|  | "PBKDF iterations %llu larger than %u", | 
|  | (unsigned long long)iters, UINT32_MAX); | 
|  | goto error; | 
|  | } | 
|  | iters = MAX(iters, QCRYPTO_BLOCK_LUKS_MIN_MASTER_KEY_ITERS); | 
|  | luks->header.master_key_iterations = iters; | 
|  |  | 
|  | /* Hash the master key, saving the result in the LUKS | 
|  | * header. This hash is used when opening the encrypted | 
|  | * device to verify that the user password unlocked a | 
|  | * valid master key | 
|  | */ | 
|  | if (qcrypto_pbkdf2(luks_opts.hash_alg, | 
|  | masterkey, luks->header.master_key_len, | 
|  | luks->header.master_key_salt, | 
|  | QCRYPTO_BLOCK_LUKS_SALT_LEN, | 
|  | luks->header.master_key_iterations, | 
|  | luks->header.master_key_digest, | 
|  | QCRYPTO_BLOCK_LUKS_DIGEST_LEN, | 
|  | errp) < 0) { | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | /* start with the sector that follows the header*/ | 
|  | header_sectors = QCRYPTO_BLOCK_LUKS_KEY_SLOT_OFFSET / | 
|  | QCRYPTO_BLOCK_LUKS_SECTOR_SIZE; | 
|  |  | 
|  | split_key_sectors = | 
|  | qcrypto_block_luks_splitkeylen_sectors(luks, | 
|  | header_sectors, | 
|  | QCRYPTO_BLOCK_LUKS_STRIPES); | 
|  |  | 
|  | for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) { | 
|  | QCryptoBlockLUKSKeySlot *slot = &luks->header.key_slots[i]; | 
|  | slot->active = QCRYPTO_BLOCK_LUKS_KEY_SLOT_DISABLED; | 
|  |  | 
|  | slot->key_offset_sector = header_sectors + i * split_key_sectors; | 
|  | slot->stripes = QCRYPTO_BLOCK_LUKS_STRIPES; | 
|  | } | 
|  |  | 
|  | if (block->detached_header) { | 
|  | /* | 
|  | * For a detached LUKS header image, set the payload_offset_sector | 
|  | * to 0 to specify the starting point for read/write | 
|  | */ | 
|  | luks->header.payload_offset_sector = 0; | 
|  | } else { | 
|  | /* | 
|  | * The total size of the LUKS headers is the partition header + key | 
|  | * slot headers, rounded up to the nearest sector, combined with | 
|  | * the size of each master key material region, also rounded up | 
|  | * to the nearest sector | 
|  | */ | 
|  | luks->header.payload_offset_sector = header_sectors + | 
|  | QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS * split_key_sectors; | 
|  | } | 
|  |  | 
|  | block->sector_size = QCRYPTO_BLOCK_LUKS_SECTOR_SIZE; | 
|  | block->payload_offset = luks->header.payload_offset_sector * | 
|  | block->sector_size; | 
|  | detached_header_size = | 
|  | (header_sectors + QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS * | 
|  | split_key_sectors) * block->sector_size; | 
|  |  | 
|  | /* Reserve header space to match payload offset */ | 
|  | initfunc(block, detached_header_size, opaque, &local_err); | 
|  | if (local_err) { | 
|  | error_propagate(errp, local_err); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* populate the slot 0 with the password encrypted master key*/ | 
|  | /* This will also store the header */ | 
|  | if (qcrypto_block_luks_store_key(block, | 
|  | 0, | 
|  | password, | 
|  | masterkey, | 
|  | luks_opts.iter_time, | 
|  | writefunc, | 
|  | opaque, | 
|  | errp) < 0) { | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | memset(masterkey, 0, luks->header.master_key_len); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | error: | 
|  | if (masterkey) { | 
|  | memset(masterkey, 0, luks->header.master_key_len); | 
|  | } | 
|  |  | 
|  | qcrypto_block_free_cipher(block); | 
|  | qcrypto_ivgen_free(block->ivgen); | 
|  |  | 
|  | g_free(luks->secret); | 
|  | g_free(luks); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static int | 
|  | qcrypto_block_luks_amend_add_keyslot(QCryptoBlock *block, | 
|  | QCryptoBlockReadFunc readfunc, | 
|  | QCryptoBlockWriteFunc writefunc, | 
|  | void *opaque, | 
|  | QCryptoBlockAmendOptionsLUKS *opts_luks, | 
|  | bool force, | 
|  | Error **errp) | 
|  | { | 
|  | QCryptoBlockLUKS *luks = block->opaque; | 
|  | uint64_t iter_time = opts_luks->has_iter_time ? | 
|  | opts_luks->iter_time : | 
|  | QCRYPTO_BLOCK_LUKS_DEFAULT_ITER_TIME_MS; | 
|  | int keyslot; | 
|  | g_autofree char *old_password = NULL; | 
|  | g_autofree char *new_password = NULL; | 
|  | g_autofree uint8_t *master_key = NULL; | 
|  |  | 
|  | char *secret = opts_luks->secret ?: luks->secret; | 
|  |  | 
|  | if (!opts_luks->new_secret) { | 
|  | error_setg(errp, "'new-secret' is required to activate a keyslot"); | 
|  | return -1; | 
|  | } | 
|  | if (opts_luks->old_secret) { | 
|  | error_setg(errp, | 
|  | "'old-secret' must not be given when activating keyslots"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (opts_luks->has_keyslot) { | 
|  | keyslot = opts_luks->keyslot; | 
|  | if (keyslot < 0 || keyslot >= QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS) { | 
|  | error_setg(errp, | 
|  | "Invalid keyslot %u specified, must be between 0 and %u", | 
|  | keyslot, QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS - 1); | 
|  | return -1; | 
|  | } | 
|  | } else { | 
|  | keyslot = qcrypto_block_luks_find_free_keyslot(luks); | 
|  | if (keyslot == -1) { | 
|  | error_setg(errp, | 
|  | "Can't add a keyslot - all keyslots are in use"); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!force && qcrypto_block_luks_slot_active(luks, keyslot)) { | 
|  | error_setg(errp, | 
|  | "Refusing to overwrite active keyslot %i - " | 
|  | "please erase it first", | 
|  | keyslot); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Locate the password that will be used to retrieve the master key */ | 
|  | old_password = qcrypto_secret_lookup_as_utf8(secret, errp); | 
|  | if (!old_password) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Retrieve the master key */ | 
|  | master_key = g_new0(uint8_t, luks->header.master_key_len); | 
|  |  | 
|  | if (qcrypto_block_luks_find_key(block, old_password, master_key, | 
|  | readfunc, opaque, errp) < 0) { | 
|  | error_append_hint(errp, "Failed to retrieve the master key"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Locate the new password*/ | 
|  | new_password = qcrypto_secret_lookup_as_utf8(opts_luks->new_secret, errp); | 
|  | if (!new_password) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Now set the new keyslots */ | 
|  | if (qcrypto_block_luks_store_key(block, keyslot, new_password, master_key, | 
|  | iter_time, writefunc, opaque, errp)) { | 
|  | error_append_hint(errp, "Failed to write to keyslot %i", keyslot); | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | qcrypto_block_luks_amend_erase_keyslots(QCryptoBlock *block, | 
|  | QCryptoBlockReadFunc readfunc, | 
|  | QCryptoBlockWriteFunc writefunc, | 
|  | void *opaque, | 
|  | QCryptoBlockAmendOptionsLUKS *opts_luks, | 
|  | bool force, | 
|  | Error **errp) | 
|  | { | 
|  | QCryptoBlockLUKS *luks = block->opaque; | 
|  | g_autofree uint8_t *tmpkey = NULL; | 
|  | g_autofree char *old_password = NULL; | 
|  |  | 
|  | if (opts_luks->new_secret) { | 
|  | error_setg(errp, | 
|  | "'new-secret' must not be given when erasing keyslots"); | 
|  | return -1; | 
|  | } | 
|  | if (opts_luks->has_iter_time) { | 
|  | error_setg(errp, | 
|  | "'iter-time' must not be given when erasing keyslots"); | 
|  | return -1; | 
|  | } | 
|  | if (opts_luks->secret) { | 
|  | error_setg(errp, | 
|  | "'secret' must not be given when erasing keyslots"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Load the old password if given */ | 
|  | if (opts_luks->old_secret) { | 
|  | old_password = qcrypto_secret_lookup_as_utf8(opts_luks->old_secret, | 
|  | errp); | 
|  | if (!old_password) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate a temporary key buffer that we will need when | 
|  | * checking if slot matches the given old password | 
|  | */ | 
|  | tmpkey = g_new0(uint8_t, luks->header.master_key_len); | 
|  | } | 
|  |  | 
|  | /* Erase an explicitly given keyslot */ | 
|  | if (opts_luks->has_keyslot) { | 
|  | int keyslot = opts_luks->keyslot; | 
|  |  | 
|  | if (keyslot < 0 || keyslot >= QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS) { | 
|  | error_setg(errp, | 
|  | "Invalid keyslot %i specified, must be between 0 and %i", | 
|  | keyslot, QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS - 1); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (opts_luks->old_secret) { | 
|  | int rv = qcrypto_block_luks_load_key(block, | 
|  | keyslot, | 
|  | old_password, | 
|  | tmpkey, | 
|  | readfunc, | 
|  | opaque, | 
|  | errp); | 
|  | if (rv == -1) { | 
|  | return -1; | 
|  | } else if (rv == 0) { | 
|  | error_setg(errp, | 
|  | "Given keyslot %i doesn't contain the given " | 
|  | "old password for erase operation", | 
|  | keyslot); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!force && !qcrypto_block_luks_slot_active(luks, keyslot)) { | 
|  | error_setg(errp, | 
|  | "Given keyslot %i is already erased (inactive) ", | 
|  | keyslot); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (!force && qcrypto_block_luks_count_active_slots(luks) == 1) { | 
|  | error_setg(errp, | 
|  | "Attempt to erase the only active keyslot %i " | 
|  | "which will erase all the data in the image " | 
|  | "irreversibly - refusing operation", | 
|  | keyslot); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (qcrypto_block_luks_erase_key(block, keyslot, | 
|  | writefunc, opaque, errp)) { | 
|  | error_append_hint(errp, "Failed to erase keyslot %i", keyslot); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Erase all keyslots that match the given old password */ | 
|  | } else if (opts_luks->old_secret) { | 
|  |  | 
|  | unsigned long slots_to_erase_bitmap = 0; | 
|  | size_t i; | 
|  | int slot_count; | 
|  |  | 
|  | assert(QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS <= | 
|  | sizeof(slots_to_erase_bitmap) * 8); | 
|  |  | 
|  | for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) { | 
|  | int rv = qcrypto_block_luks_load_key(block, | 
|  | i, | 
|  | old_password, | 
|  | tmpkey, | 
|  | readfunc, | 
|  | opaque, | 
|  | errp); | 
|  | if (rv == -1) { | 
|  | return -1; | 
|  | } else if (rv == 1) { | 
|  | bitmap_set(&slots_to_erase_bitmap, i, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | slot_count = bitmap_count_one(&slots_to_erase_bitmap, | 
|  | QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS); | 
|  | if (slot_count == 0) { | 
|  | error_setg(errp, | 
|  | "No keyslots match given (old) password for erase operation"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (!force && | 
|  | slot_count == qcrypto_block_luks_count_active_slots(luks)) { | 
|  | error_setg(errp, | 
|  | "All the active keyslots match the (old) password that " | 
|  | "was given and erasing them will erase all the data in " | 
|  | "the image irreversibly - refusing operation"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Now apply the update */ | 
|  | for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) { | 
|  | if (!test_bit(i, &slots_to_erase_bitmap)) { | 
|  | continue; | 
|  | } | 
|  | if (qcrypto_block_luks_erase_key(block, i, writefunc, | 
|  | opaque, errp)) { | 
|  | error_append_hint(errp, "Failed to erase keyslot %zu", i); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | error_setg(errp, | 
|  | "To erase keyslot(s), either explicit keyslot index " | 
|  | "or the password currently contained in them must be given"); | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | qcrypto_block_luks_amend_options(QCryptoBlock *block, | 
|  | QCryptoBlockReadFunc readfunc, | 
|  | QCryptoBlockWriteFunc writefunc, | 
|  | void *opaque, | 
|  | QCryptoBlockAmendOptions *options, | 
|  | bool force, | 
|  | Error **errp) | 
|  | { | 
|  | QCryptoBlockAmendOptionsLUKS *opts_luks = &options->u.luks; | 
|  |  | 
|  | switch (opts_luks->state) { | 
|  | case QCRYPTO_BLOCK_LUKS_KEYSLOT_STATE_ACTIVE: | 
|  | return qcrypto_block_luks_amend_add_keyslot(block, readfunc, | 
|  | writefunc, opaque, | 
|  | opts_luks, force, errp); | 
|  | case QCRYPTO_BLOCK_LUKS_KEYSLOT_STATE_INACTIVE: | 
|  | return qcrypto_block_luks_amend_erase_keyslots(block, readfunc, | 
|  | writefunc, opaque, | 
|  | opts_luks, force, errp); | 
|  | default: | 
|  | g_assert_not_reached(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int qcrypto_block_luks_get_info(QCryptoBlock *block, | 
|  | QCryptoBlockInfo *info, | 
|  | Error **errp) | 
|  | { | 
|  | QCryptoBlockLUKS *luks = block->opaque; | 
|  | QCryptoBlockInfoLUKSSlot *slot; | 
|  | QCryptoBlockInfoLUKSSlotList **tail = &info->u.luks.slots; | 
|  | size_t i; | 
|  |  | 
|  | info->u.luks.cipher_alg = luks->cipher_alg; | 
|  | info->u.luks.cipher_mode = luks->cipher_mode; | 
|  | info->u.luks.ivgen_alg = luks->ivgen_alg; | 
|  | if (info->u.luks.ivgen_alg == QCRYPTO_IV_GEN_ALGO_ESSIV) { | 
|  | info->u.luks.has_ivgen_hash_alg = true; | 
|  | info->u.luks.ivgen_hash_alg = luks->ivgen_hash_alg; | 
|  | } | 
|  | info->u.luks.hash_alg = luks->hash_alg; | 
|  | info->u.luks.payload_offset = block->payload_offset; | 
|  | info->u.luks.master_key_iters = luks->header.master_key_iterations; | 
|  | info->u.luks.uuid = g_strndup((const char *)luks->header.uuid, | 
|  | sizeof(luks->header.uuid)); | 
|  | info->u.luks.detached_header = block->detached_header; | 
|  |  | 
|  | for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) { | 
|  | slot = g_new0(QCryptoBlockInfoLUKSSlot, 1); | 
|  | slot->active = luks->header.key_slots[i].active == | 
|  | QCRYPTO_BLOCK_LUKS_KEY_SLOT_ENABLED; | 
|  | slot->key_offset = luks->header.key_slots[i].key_offset_sector | 
|  | * QCRYPTO_BLOCK_LUKS_SECTOR_SIZE; | 
|  | if (slot->active) { | 
|  | slot->has_iters = true; | 
|  | slot->iters = luks->header.key_slots[i].iterations; | 
|  | slot->has_stripes = true; | 
|  | slot->stripes = luks->header.key_slots[i].stripes; | 
|  | } | 
|  |  | 
|  | QAPI_LIST_APPEND(tail, slot); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void qcrypto_block_luks_cleanup(QCryptoBlock *block) | 
|  | { | 
|  | QCryptoBlockLUKS *luks = block->opaque; | 
|  | if (luks) { | 
|  | g_free(luks->secret); | 
|  | g_free(luks); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static int | 
|  | qcrypto_block_luks_decrypt(QCryptoBlock *block, | 
|  | uint64_t offset, | 
|  | uint8_t *buf, | 
|  | size_t len, | 
|  | Error **errp) | 
|  | { | 
|  | assert(QEMU_IS_ALIGNED(offset, QCRYPTO_BLOCK_LUKS_SECTOR_SIZE)); | 
|  | assert(QEMU_IS_ALIGNED(len, QCRYPTO_BLOCK_LUKS_SECTOR_SIZE)); | 
|  | return qcrypto_block_decrypt_helper(block, | 
|  | QCRYPTO_BLOCK_LUKS_SECTOR_SIZE, | 
|  | offset, buf, len, errp); | 
|  | } | 
|  |  | 
|  |  | 
|  | static int | 
|  | qcrypto_block_luks_encrypt(QCryptoBlock *block, | 
|  | uint64_t offset, | 
|  | uint8_t *buf, | 
|  | size_t len, | 
|  | Error **errp) | 
|  | { | 
|  | assert(QEMU_IS_ALIGNED(offset, QCRYPTO_BLOCK_LUKS_SECTOR_SIZE)); | 
|  | assert(QEMU_IS_ALIGNED(len, QCRYPTO_BLOCK_LUKS_SECTOR_SIZE)); | 
|  | return qcrypto_block_encrypt_helper(block, | 
|  | QCRYPTO_BLOCK_LUKS_SECTOR_SIZE, | 
|  | offset, buf, len, errp); | 
|  | } | 
|  |  | 
|  |  | 
|  | const QCryptoBlockDriver qcrypto_block_driver_luks = { | 
|  | .open = qcrypto_block_luks_open, | 
|  | .create = qcrypto_block_luks_create, | 
|  | .amend = qcrypto_block_luks_amend_options, | 
|  | .get_info = qcrypto_block_luks_get_info, | 
|  | .cleanup = qcrypto_block_luks_cleanup, | 
|  | .decrypt = qcrypto_block_luks_decrypt, | 
|  | .encrypt = qcrypto_block_luks_encrypt, | 
|  | .has_format = qcrypto_block_luks_has_format, | 
|  | }; |