| /* |
| * ARM virtual CPU header |
| * |
| * Copyright (c) 2003 Fabrice Bellard |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #ifndef ARM_CPU_H |
| #define ARM_CPU_H |
| |
| #include "kvm-consts.h" |
| #include "qemu/cpu-float.h" |
| #include "hw/registerfields.h" |
| #include "cpu-qom.h" |
| #include "exec/cpu-defs.h" |
| #include "exec/gdbstub.h" |
| #include "qapi/qapi-types-common.h" |
| #include "target/arm/multiprocessing.h" |
| #include "target/arm/gtimer.h" |
| |
| /* ARM processors have a weak memory model */ |
| #define TCG_GUEST_DEFAULT_MO (0) |
| |
| #ifdef TARGET_AARCH64 |
| #define KVM_HAVE_MCE_INJECTION 1 |
| #endif |
| |
| #define EXCP_UDEF 1 /* undefined instruction */ |
| #define EXCP_SWI 2 /* software interrupt */ |
| #define EXCP_PREFETCH_ABORT 3 |
| #define EXCP_DATA_ABORT 4 |
| #define EXCP_IRQ 5 |
| #define EXCP_FIQ 6 |
| #define EXCP_BKPT 7 |
| #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */ |
| #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */ |
| #define EXCP_HVC 11 /* HyperVisor Call */ |
| #define EXCP_HYP_TRAP 12 |
| #define EXCP_SMC 13 /* Secure Monitor Call */ |
| #define EXCP_VIRQ 14 |
| #define EXCP_VFIQ 15 |
| #define EXCP_SEMIHOST 16 /* semihosting call */ |
| #define EXCP_NOCP 17 /* v7M NOCP UsageFault */ |
| #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */ |
| #define EXCP_STKOF 19 /* v8M STKOF UsageFault */ |
| #define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */ |
| #define EXCP_LSERR 21 /* v8M LSERR SecureFault */ |
| #define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */ |
| #define EXCP_DIVBYZERO 23 /* v7M DIVBYZERO UsageFault */ |
| #define EXCP_VSERR 24 |
| #define EXCP_GPC 25 /* v9 Granule Protection Check Fault */ |
| /* NB: add new EXCP_ defines to the array in arm_log_exception() too */ |
| |
| #define ARMV7M_EXCP_RESET 1 |
| #define ARMV7M_EXCP_NMI 2 |
| #define ARMV7M_EXCP_HARD 3 |
| #define ARMV7M_EXCP_MEM 4 |
| #define ARMV7M_EXCP_BUS 5 |
| #define ARMV7M_EXCP_USAGE 6 |
| #define ARMV7M_EXCP_SECURE 7 |
| #define ARMV7M_EXCP_SVC 11 |
| #define ARMV7M_EXCP_DEBUG 12 |
| #define ARMV7M_EXCP_PENDSV 14 |
| #define ARMV7M_EXCP_SYSTICK 15 |
| |
| /* ARM-specific interrupt pending bits. */ |
| #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1 |
| #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2 |
| #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3 |
| #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0 |
| |
| /* The usual mapping for an AArch64 system register to its AArch32 |
| * counterpart is for the 32 bit world to have access to the lower |
| * half only (with writes leaving the upper half untouched). It's |
| * therefore useful to be able to pass TCG the offset of the least |
| * significant half of a uint64_t struct member. |
| */ |
| #if HOST_BIG_ENDIAN |
| #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t)) |
| #define offsetofhigh32(S, M) offsetof(S, M) |
| #else |
| #define offsetoflow32(S, M) offsetof(S, M) |
| #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t)) |
| #endif |
| |
| /* ARM-specific extra insn start words: |
| * 1: Conditional execution bits |
| * 2: Partial exception syndrome for data aborts |
| */ |
| #define TARGET_INSN_START_EXTRA_WORDS 2 |
| |
| /* The 2nd extra word holding syndrome info for data aborts does not use |
| * the upper 6 bits nor the lower 13 bits. We mask and shift it down to |
| * help the sleb128 encoder do a better job. |
| * When restoring the CPU state, we shift it back up. |
| */ |
| #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1) |
| #define ARM_INSN_START_WORD2_SHIFT 13 |
| |
| /* We currently assume float and double are IEEE single and double |
| precision respectively. |
| Doing runtime conversions is tricky because VFP registers may contain |
| integer values (eg. as the result of a FTOSI instruction). |
| s<2n> maps to the least significant half of d<n> |
| s<2n+1> maps to the most significant half of d<n> |
| */ |
| |
| /** |
| * DynamicGDBFeatureInfo: |
| * @desc: Contains the feature descriptions. |
| * @data: A union with data specific to the set of registers |
| * @cpregs_keys: Array that contains the corresponding Key of |
| * a given cpreg with the same order of the cpreg |
| * in the XML description. |
| */ |
| typedef struct DynamicGDBFeatureInfo { |
| GDBFeature desc; |
| union { |
| struct { |
| uint32_t *keys; |
| } cpregs; |
| } data; |
| } DynamicGDBFeatureInfo; |
| |
| /* CPU state for each instance of a generic timer (in cp15 c14) */ |
| typedef struct ARMGenericTimer { |
| uint64_t cval; /* Timer CompareValue register */ |
| uint64_t ctl; /* Timer Control register */ |
| } ARMGenericTimer; |
| |
| #define VTCR_NSW (1u << 29) |
| #define VTCR_NSA (1u << 30) |
| #define VSTCR_SW VTCR_NSW |
| #define VSTCR_SA VTCR_NSA |
| |
| /* Define a maximum sized vector register. |
| * For 32-bit, this is a 128-bit NEON/AdvSIMD register. |
| * For 64-bit, this is a 2048-bit SVE register. |
| * |
| * Note that the mapping between S, D, and Q views of the register bank |
| * differs between AArch64 and AArch32. |
| * In AArch32: |
| * Qn = regs[n].d[1]:regs[n].d[0] |
| * Dn = regs[n / 2].d[n & 1] |
| * Sn = regs[n / 4].d[n % 4 / 2], |
| * bits 31..0 for even n, and bits 63..32 for odd n |
| * (and regs[16] to regs[31] are inaccessible) |
| * In AArch64: |
| * Zn = regs[n].d[*] |
| * Qn = regs[n].d[1]:regs[n].d[0] |
| * Dn = regs[n].d[0] |
| * Sn = regs[n].d[0] bits 31..0 |
| * Hn = regs[n].d[0] bits 15..0 |
| * |
| * This corresponds to the architecturally defined mapping between |
| * the two execution states, and means we do not need to explicitly |
| * map these registers when changing states. |
| * |
| * Align the data for use with TCG host vector operations. |
| */ |
| |
| #ifdef TARGET_AARCH64 |
| # define ARM_MAX_VQ 16 |
| #else |
| # define ARM_MAX_VQ 1 |
| #endif |
| |
| typedef struct ARMVectorReg { |
| uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16); |
| } ARMVectorReg; |
| |
| #ifdef TARGET_AARCH64 |
| /* In AArch32 mode, predicate registers do not exist at all. */ |
| typedef struct ARMPredicateReg { |
| uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16); |
| } ARMPredicateReg; |
| |
| /* In AArch32 mode, PAC keys do not exist at all. */ |
| typedef struct ARMPACKey { |
| uint64_t lo, hi; |
| } ARMPACKey; |
| #endif |
| |
| /* See the commentary above the TBFLAG field definitions. */ |
| typedef struct CPUARMTBFlags { |
| uint32_t flags; |
| target_ulong flags2; |
| } CPUARMTBFlags; |
| |
| typedef struct ARMMMUFaultInfo ARMMMUFaultInfo; |
| |
| typedef struct NVICState NVICState; |
| |
| typedef struct CPUArchState { |
| /* Regs for current mode. */ |
| uint32_t regs[16]; |
| |
| /* 32/64 switch only happens when taking and returning from |
| * exceptions so the overlap semantics are taken care of then |
| * instead of having a complicated union. |
| */ |
| /* Regs for A64 mode. */ |
| uint64_t xregs[32]; |
| uint64_t pc; |
| /* PSTATE isn't an architectural register for ARMv8. However, it is |
| * convenient for us to assemble the underlying state into a 32 bit format |
| * identical to the architectural format used for the SPSR. (This is also |
| * what the Linux kernel's 'pstate' field in signal handlers and KVM's |
| * 'pstate' register are.) Of the PSTATE bits: |
| * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same |
| * semantics as for AArch32, as described in the comments on each field) |
| * nRW (also known as M[4]) is kept, inverted, in env->aarch64 |
| * DAIF (exception masks) are kept in env->daif |
| * BTYPE is kept in env->btype |
| * SM and ZA are kept in env->svcr |
| * all other bits are stored in their correct places in env->pstate |
| */ |
| uint32_t pstate; |
| bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */ |
| bool thumb; /* True if CPU is in thumb mode; cpsr[5] */ |
| |
| /* Cached TBFLAGS state. See below for which bits are included. */ |
| CPUARMTBFlags hflags; |
| |
| /* Frequently accessed CPSR bits are stored separately for efficiency. |
| This contains all the other bits. Use cpsr_{read,write} to access |
| the whole CPSR. */ |
| uint32_t uncached_cpsr; |
| uint32_t spsr; |
| |
| /* Banked registers. */ |
| uint64_t banked_spsr[8]; |
| uint32_t banked_r13[8]; |
| uint32_t banked_r14[8]; |
| |
| /* These hold r8-r12. */ |
| uint32_t usr_regs[5]; |
| uint32_t fiq_regs[5]; |
| |
| /* cpsr flag cache for faster execution */ |
| uint32_t CF; /* 0 or 1 */ |
| uint32_t VF; /* V is the bit 31. All other bits are undefined */ |
| uint32_t NF; /* N is bit 31. All other bits are undefined. */ |
| uint32_t ZF; /* Z set if zero. */ |
| uint32_t QF; /* 0 or 1 */ |
| uint32_t GE; /* cpsr[19:16] */ |
| uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */ |
| uint32_t btype; /* BTI branch type. spsr[11:10]. */ |
| uint64_t daif; /* exception masks, in the bits they are in PSTATE */ |
| uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */ |
| |
| uint64_t elr_el[4]; /* AArch64 exception link regs */ |
| uint64_t sp_el[4]; /* AArch64 banked stack pointers */ |
| |
| /* System control coprocessor (cp15) */ |
| struct { |
| uint32_t c0_cpuid; |
| union { /* Cache size selection */ |
| struct { |
| uint64_t _unused_csselr0; |
| uint64_t csselr_ns; |
| uint64_t _unused_csselr1; |
| uint64_t csselr_s; |
| }; |
| uint64_t csselr_el[4]; |
| }; |
| union { /* System control register. */ |
| struct { |
| uint64_t _unused_sctlr; |
| uint64_t sctlr_ns; |
| uint64_t hsctlr; |
| uint64_t sctlr_s; |
| }; |
| uint64_t sctlr_el[4]; |
| }; |
| uint64_t vsctlr; /* Virtualization System control register. */ |
| uint64_t cpacr_el1; /* Architectural feature access control register */ |
| uint64_t cptr_el[4]; /* ARMv8 feature trap registers */ |
| uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */ |
| uint64_t sder; /* Secure debug enable register. */ |
| uint32_t nsacr; /* Non-secure access control register. */ |
| union { /* MMU translation table base 0. */ |
| struct { |
| uint64_t _unused_ttbr0_0; |
| uint64_t ttbr0_ns; |
| uint64_t _unused_ttbr0_1; |
| uint64_t ttbr0_s; |
| }; |
| uint64_t ttbr0_el[4]; |
| }; |
| union { /* MMU translation table base 1. */ |
| struct { |
| uint64_t _unused_ttbr1_0; |
| uint64_t ttbr1_ns; |
| uint64_t _unused_ttbr1_1; |
| uint64_t ttbr1_s; |
| }; |
| uint64_t ttbr1_el[4]; |
| }; |
| uint64_t vttbr_el2; /* Virtualization Translation Table Base. */ |
| uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */ |
| /* MMU translation table base control. */ |
| uint64_t tcr_el[4]; |
| uint64_t vtcr_el2; /* Virtualization Translation Control. */ |
| uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */ |
| uint32_t c2_data; /* MPU data cacheable bits. */ |
| uint32_t c2_insn; /* MPU instruction cacheable bits. */ |
| union { /* MMU domain access control register |
| * MPU write buffer control. |
| */ |
| struct { |
| uint64_t dacr_ns; |
| uint64_t dacr_s; |
| }; |
| struct { |
| uint64_t dacr32_el2; |
| }; |
| }; |
| uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */ |
| uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */ |
| uint64_t hcr_el2; /* Hypervisor configuration register */ |
| uint64_t hcrx_el2; /* Extended Hypervisor configuration register */ |
| uint64_t scr_el3; /* Secure configuration register. */ |
| union { /* Fault status registers. */ |
| struct { |
| uint64_t ifsr_ns; |
| uint64_t ifsr_s; |
| }; |
| struct { |
| uint64_t ifsr32_el2; |
| }; |
| }; |
| union { |
| struct { |
| uint64_t _unused_dfsr; |
| uint64_t dfsr_ns; |
| uint64_t hsr; |
| uint64_t dfsr_s; |
| }; |
| uint64_t esr_el[4]; |
| }; |
| uint32_t c6_region[8]; /* MPU base/size registers. */ |
| union { /* Fault address registers. */ |
| struct { |
| uint64_t _unused_far0; |
| #if HOST_BIG_ENDIAN |
| uint32_t ifar_ns; |
| uint32_t dfar_ns; |
| uint32_t ifar_s; |
| uint32_t dfar_s; |
| #else |
| uint32_t dfar_ns; |
| uint32_t ifar_ns; |
| uint32_t dfar_s; |
| uint32_t ifar_s; |
| #endif |
| uint64_t _unused_far3; |
| }; |
| uint64_t far_el[4]; |
| }; |
| uint64_t hpfar_el2; |
| uint64_t hstr_el2; |
| union { /* Translation result. */ |
| struct { |
| uint64_t _unused_par_0; |
| uint64_t par_ns; |
| uint64_t _unused_par_1; |
| uint64_t par_s; |
| }; |
| uint64_t par_el[4]; |
| }; |
| |
| uint32_t c9_insn; /* Cache lockdown registers. */ |
| uint32_t c9_data; |
| uint64_t c9_pmcr; /* performance monitor control register */ |
| uint64_t c9_pmcnten; /* perf monitor counter enables */ |
| uint64_t c9_pmovsr; /* perf monitor overflow status */ |
| uint64_t c9_pmuserenr; /* perf monitor user enable */ |
| uint64_t c9_pmselr; /* perf monitor counter selection register */ |
| uint64_t c9_pminten; /* perf monitor interrupt enables */ |
| union { /* Memory attribute redirection */ |
| struct { |
| #if HOST_BIG_ENDIAN |
| uint64_t _unused_mair_0; |
| uint32_t mair1_ns; |
| uint32_t mair0_ns; |
| uint64_t _unused_mair_1; |
| uint32_t mair1_s; |
| uint32_t mair0_s; |
| #else |
| uint64_t _unused_mair_0; |
| uint32_t mair0_ns; |
| uint32_t mair1_ns; |
| uint64_t _unused_mair_1; |
| uint32_t mair0_s; |
| uint32_t mair1_s; |
| #endif |
| }; |
| uint64_t mair_el[4]; |
| }; |
| union { /* vector base address register */ |
| struct { |
| uint64_t _unused_vbar; |
| uint64_t vbar_ns; |
| uint64_t hvbar; |
| uint64_t vbar_s; |
| }; |
| uint64_t vbar_el[4]; |
| }; |
| uint32_t mvbar; /* (monitor) vector base address register */ |
| uint64_t rvbar; /* rvbar sampled from rvbar property at reset */ |
| struct { /* FCSE PID. */ |
| uint32_t fcseidr_ns; |
| uint32_t fcseidr_s; |
| }; |
| union { /* Context ID. */ |
| struct { |
| uint64_t _unused_contextidr_0; |
| uint64_t contextidr_ns; |
| uint64_t _unused_contextidr_1; |
| uint64_t contextidr_s; |
| }; |
| uint64_t contextidr_el[4]; |
| }; |
| union { /* User RW Thread register. */ |
| struct { |
| uint64_t tpidrurw_ns; |
| uint64_t tpidrprw_ns; |
| uint64_t htpidr; |
| uint64_t _tpidr_el3; |
| }; |
| uint64_t tpidr_el[4]; |
| }; |
| uint64_t tpidr2_el0; |
| /* The secure banks of these registers don't map anywhere */ |
| uint64_t tpidrurw_s; |
| uint64_t tpidrprw_s; |
| uint64_t tpidruro_s; |
| |
| union { /* User RO Thread register. */ |
| uint64_t tpidruro_ns; |
| uint64_t tpidrro_el[1]; |
| }; |
| uint64_t c14_cntfrq; /* Counter Frequency register */ |
| uint64_t c14_cntkctl; /* Timer Control register */ |
| uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */ |
| uint64_t cntvoff_el2; /* Counter Virtual Offset register */ |
| ARMGenericTimer c14_timer[NUM_GTIMERS]; |
| uint32_t c15_cpar; /* XScale Coprocessor Access Register */ |
| uint32_t c15_ticonfig; /* TI925T configuration byte. */ |
| uint32_t c15_i_max; /* Maximum D-cache dirty line index. */ |
| uint32_t c15_i_min; /* Minimum D-cache dirty line index. */ |
| uint32_t c15_threadid; /* TI debugger thread-ID. */ |
| uint32_t c15_config_base_address; /* SCU base address. */ |
| uint32_t c15_diagnostic; /* diagnostic register */ |
| uint32_t c15_power_diagnostic; |
| uint32_t c15_power_control; /* power control */ |
| uint64_t dbgbvr[16]; /* breakpoint value registers */ |
| uint64_t dbgbcr[16]; /* breakpoint control registers */ |
| uint64_t dbgwvr[16]; /* watchpoint value registers */ |
| uint64_t dbgwcr[16]; /* watchpoint control registers */ |
| uint64_t dbgclaim; /* DBGCLAIM bits */ |
| uint64_t mdscr_el1; |
| uint64_t oslsr_el1; /* OS Lock Status */ |
| uint64_t osdlr_el1; /* OS DoubleLock status */ |
| uint64_t mdcr_el2; |
| uint64_t mdcr_el3; |
| /* Stores the architectural value of the counter *the last time it was |
| * updated* by pmccntr_op_start. Accesses should always be surrounded |
| * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest |
| * architecturally-correct value is being read/set. |
| */ |
| uint64_t c15_ccnt; |
| /* Stores the delta between the architectural value and the underlying |
| * cycle count during normal operation. It is used to update c15_ccnt |
| * to be the correct architectural value before accesses. During |
| * accesses, c15_ccnt_delta contains the underlying count being used |
| * for the access, after which it reverts to the delta value in |
| * pmccntr_op_finish. |
| */ |
| uint64_t c15_ccnt_delta; |
| uint64_t c14_pmevcntr[31]; |
| uint64_t c14_pmevcntr_delta[31]; |
| uint64_t c14_pmevtyper[31]; |
| uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */ |
| uint64_t vpidr_el2; /* Virtualization Processor ID Register */ |
| uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */ |
| uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */ |
| uint64_t gcr_el1; |
| uint64_t rgsr_el1; |
| |
| /* Minimal RAS registers */ |
| uint64_t disr_el1; |
| uint64_t vdisr_el2; |
| uint64_t vsesr_el2; |
| |
| /* |
| * Fine-Grained Trap registers. We store these as arrays so the |
| * access checking code doesn't have to manually select |
| * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test. |
| * FEAT_FGT2 will add more elements to these arrays. |
| */ |
| uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */ |
| uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */ |
| uint64_t fgt_exec[1]; /* HFGITR */ |
| |
| /* RME registers */ |
| uint64_t gpccr_el3; |
| uint64_t gptbr_el3; |
| uint64_t mfar_el3; |
| |
| /* NV2 register */ |
| uint64_t vncr_el2; |
| } cp15; |
| |
| struct { |
| /* M profile has up to 4 stack pointers: |
| * a Main Stack Pointer and a Process Stack Pointer for each |
| * of the Secure and Non-Secure states. (If the CPU doesn't support |
| * the security extension then it has only two SPs.) |
| * In QEMU we always store the currently active SP in regs[13], |
| * and the non-active SP for the current security state in |
| * v7m.other_sp. The stack pointers for the inactive security state |
| * are stored in other_ss_msp and other_ss_psp. |
| * switch_v7m_security_state() is responsible for rearranging them |
| * when we change security state. |
| */ |
| uint32_t other_sp; |
| uint32_t other_ss_msp; |
| uint32_t other_ss_psp; |
| uint32_t vecbase[M_REG_NUM_BANKS]; |
| uint32_t basepri[M_REG_NUM_BANKS]; |
| uint32_t control[M_REG_NUM_BANKS]; |
| uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */ |
| uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */ |
| uint32_t hfsr; /* HardFault Status */ |
| uint32_t dfsr; /* Debug Fault Status Register */ |
| uint32_t sfsr; /* Secure Fault Status Register */ |
| uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */ |
| uint32_t bfar; /* BusFault Address */ |
| uint32_t sfar; /* Secure Fault Address Register */ |
| unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */ |
| int exception; |
| uint32_t primask[M_REG_NUM_BANKS]; |
| uint32_t faultmask[M_REG_NUM_BANKS]; |
| uint32_t aircr; /* only holds r/w state if security extn implemented */ |
| uint32_t secure; /* Is CPU in Secure state? (not guest visible) */ |
| uint32_t csselr[M_REG_NUM_BANKS]; |
| uint32_t scr[M_REG_NUM_BANKS]; |
| uint32_t msplim[M_REG_NUM_BANKS]; |
| uint32_t psplim[M_REG_NUM_BANKS]; |
| uint32_t fpcar[M_REG_NUM_BANKS]; |
| uint32_t fpccr[M_REG_NUM_BANKS]; |
| uint32_t fpdscr[M_REG_NUM_BANKS]; |
| uint32_t cpacr[M_REG_NUM_BANKS]; |
| uint32_t nsacr; |
| uint32_t ltpsize; |
| uint32_t vpr; |
| } v7m; |
| |
| /* Information associated with an exception about to be taken: |
| * code which raises an exception must set cs->exception_index and |
| * the relevant parts of this structure; the cpu_do_interrupt function |
| * will then set the guest-visible registers as part of the exception |
| * entry process. |
| */ |
| struct { |
| uint32_t syndrome; /* AArch64 format syndrome register */ |
| uint32_t fsr; /* AArch32 format fault status register info */ |
| uint64_t vaddress; /* virtual addr associated with exception, if any */ |
| uint32_t target_el; /* EL the exception should be targeted for */ |
| /* If we implement EL2 we will also need to store information |
| * about the intermediate physical address for stage 2 faults. |
| */ |
| } exception; |
| |
| /* Information associated with an SError */ |
| struct { |
| uint8_t pending; |
| uint8_t has_esr; |
| uint64_t esr; |
| } serror; |
| |
| uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */ |
| |
| /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */ |
| uint32_t irq_line_state; |
| |
| /* Thumb-2 EE state. */ |
| uint32_t teecr; |
| uint32_t teehbr; |
| |
| /* VFP coprocessor state. */ |
| struct { |
| ARMVectorReg zregs[32]; |
| |
| #ifdef TARGET_AARCH64 |
| /* Store FFR as pregs[16] to make it easier to treat as any other. */ |
| #define FFR_PRED_NUM 16 |
| ARMPredicateReg pregs[17]; |
| /* Scratch space for aa64 sve predicate temporary. */ |
| ARMPredicateReg preg_tmp; |
| #endif |
| |
| /* We store these fpcsr fields separately for convenience. */ |
| uint32_t qc[4] QEMU_ALIGNED(16); |
| int vec_len; |
| int vec_stride; |
| |
| uint32_t xregs[16]; |
| |
| /* Scratch space for aa32 neon expansion. */ |
| uint32_t scratch[8]; |
| |
| /* There are a number of distinct float control structures: |
| * |
| * fp_status: is the "normal" fp status. |
| * fp_status_fp16: used for half-precision calculations |
| * standard_fp_status : the ARM "Standard FPSCR Value" |
| * standard_fp_status_fp16 : used for half-precision |
| * calculations with the ARM "Standard FPSCR Value" |
| * |
| * Half-precision operations are governed by a separate |
| * flush-to-zero control bit in FPSCR:FZ16. We pass a separate |
| * status structure to control this. |
| * |
| * The "Standard FPSCR", ie default-NaN, flush-to-zero, |
| * round-to-nearest and is used by any operations (generally |
| * Neon) which the architecture defines as controlled by the |
| * standard FPSCR value rather than the FPSCR. |
| * |
| * The "standard FPSCR but for fp16 ops" is needed because |
| * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than |
| * using a fixed value for it. |
| * |
| * To avoid having to transfer exception bits around, we simply |
| * say that the FPSCR cumulative exception flags are the logical |
| * OR of the flags in the four fp statuses. This relies on the |
| * only thing which needs to read the exception flags being |
| * an explicit FPSCR read. |
| */ |
| float_status fp_status; |
| float_status fp_status_f16; |
| float_status standard_fp_status; |
| float_status standard_fp_status_f16; |
| |
| uint64_t zcr_el[4]; /* ZCR_EL[1-3] */ |
| uint64_t smcr_el[4]; /* SMCR_EL[1-3] */ |
| } vfp; |
| |
| uint64_t exclusive_addr; |
| uint64_t exclusive_val; |
| /* |
| * Contains the 'val' for the second 64-bit register of LDXP, which comes |
| * from the higher address, not the high part of a complete 128-bit value. |
| * In some ways it might be more convenient to record the exclusive value |
| * as the low and high halves of a 128 bit data value, but the current |
| * semantics of these fields are baked into the migration format. |
| */ |
| uint64_t exclusive_high; |
| |
| /* iwMMXt coprocessor state. */ |
| struct { |
| uint64_t regs[16]; |
| uint64_t val; |
| |
| uint32_t cregs[16]; |
| } iwmmxt; |
| |
| #ifdef TARGET_AARCH64 |
| struct { |
| ARMPACKey apia; |
| ARMPACKey apib; |
| ARMPACKey apda; |
| ARMPACKey apdb; |
| ARMPACKey apga; |
| } keys; |
| |
| uint64_t scxtnum_el[4]; |
| |
| /* |
| * SME ZA storage -- 256 x 256 byte array, with bytes in host word order, |
| * as we do with vfp.zregs[]. This corresponds to the architectural ZA |
| * array, where ZA[N] is in the least-significant bytes of env->zarray[N]. |
| * When SVL is less than the architectural maximum, the accessible |
| * storage is restricted, such that if the SVL is X bytes the guest can |
| * see only the bottom X elements of zarray[], and only the least |
| * significant X bytes of each element of the array. (In other words, |
| * the observable part is always square.) |
| * |
| * The ZA storage can also be considered as a set of square tiles of |
| * elements of different sizes. The mapping from tiles to the ZA array |
| * is architecturally defined, such that for tiles of elements of esz |
| * bytes, the Nth row (or "horizontal slice") of tile T is in |
| * ZA[T + N * esz]. Note that this means that each tile is not contiguous |
| * in the ZA storage, because its rows are striped through the ZA array. |
| * |
| * Because this is so large, keep this toward the end of the reset area, |
| * to keep the offsets into the rest of the structure smaller. |
| */ |
| ARMVectorReg zarray[ARM_MAX_VQ * 16]; |
| #endif |
| |
| struct CPUBreakpoint *cpu_breakpoint[16]; |
| struct CPUWatchpoint *cpu_watchpoint[16]; |
| |
| /* Optional fault info across tlb lookup. */ |
| ARMMMUFaultInfo *tlb_fi; |
| |
| /* Fields up to this point are cleared by a CPU reset */ |
| struct {} end_reset_fields; |
| |
| /* Fields after this point are preserved across CPU reset. */ |
| |
| /* Internal CPU feature flags. */ |
| uint64_t features; |
| |
| /* PMSAv7 MPU */ |
| struct { |
| uint32_t *drbar; |
| uint32_t *drsr; |
| uint32_t *dracr; |
| uint32_t rnr[M_REG_NUM_BANKS]; |
| } pmsav7; |
| |
| /* PMSAv8 MPU */ |
| struct { |
| /* The PMSAv8 implementation also shares some PMSAv7 config |
| * and state: |
| * pmsav7.rnr (region number register) |
| * pmsav7_dregion (number of configured regions) |
| */ |
| uint32_t *rbar[M_REG_NUM_BANKS]; |
| uint32_t *rlar[M_REG_NUM_BANKS]; |
| uint32_t *hprbar; |
| uint32_t *hprlar; |
| uint32_t mair0[M_REG_NUM_BANKS]; |
| uint32_t mair1[M_REG_NUM_BANKS]; |
| uint32_t hprselr; |
| } pmsav8; |
| |
| /* v8M SAU */ |
| struct { |
| uint32_t *rbar; |
| uint32_t *rlar; |
| uint32_t rnr; |
| uint32_t ctrl; |
| } sau; |
| |
| #if !defined(CONFIG_USER_ONLY) |
| NVICState *nvic; |
| const struct arm_boot_info *boot_info; |
| /* Store GICv3CPUState to access from this struct */ |
| void *gicv3state; |
| #else /* CONFIG_USER_ONLY */ |
| /* For usermode syscall translation. */ |
| bool eabi; |
| #endif /* CONFIG_USER_ONLY */ |
| |
| #ifdef TARGET_TAGGED_ADDRESSES |
| /* Linux syscall tagged address support */ |
| bool tagged_addr_enable; |
| #endif |
| } CPUARMState; |
| |
| static inline void set_feature(CPUARMState *env, int feature) |
| { |
| env->features |= 1ULL << feature; |
| } |
| |
| static inline void unset_feature(CPUARMState *env, int feature) |
| { |
| env->features &= ~(1ULL << feature); |
| } |
| |
| /** |
| * ARMELChangeHookFn: |
| * type of a function which can be registered via arm_register_el_change_hook() |
| * to get callbacks when the CPU changes its exception level or mode. |
| */ |
| typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque); |
| typedef struct ARMELChangeHook ARMELChangeHook; |
| struct ARMELChangeHook { |
| ARMELChangeHookFn *hook; |
| void *opaque; |
| QLIST_ENTRY(ARMELChangeHook) node; |
| }; |
| |
| /* These values map onto the return values for |
| * QEMU_PSCI_0_2_FN_AFFINITY_INFO */ |
| typedef enum ARMPSCIState { |
| PSCI_ON = 0, |
| PSCI_OFF = 1, |
| PSCI_ON_PENDING = 2 |
| } ARMPSCIState; |
| |
| typedef struct ARMISARegisters ARMISARegisters; |
| |
| /* |
| * In map, each set bit is a supported vector length of (bit-number + 1) * 16 |
| * bytes, i.e. each bit number + 1 is the vector length in quadwords. |
| * |
| * While processing properties during initialization, corresponding init bits |
| * are set for bits in sve_vq_map that have been set by properties. |
| * |
| * Bits set in supported represent valid vector lengths for the CPU type. |
| */ |
| typedef struct { |
| uint32_t map, init, supported; |
| } ARMVQMap; |
| |
| /** |
| * ARMCPU: |
| * @env: #CPUARMState |
| * |
| * An ARM CPU core. |
| */ |
| struct ArchCPU { |
| CPUState parent_obj; |
| |
| CPUARMState env; |
| |
| /* Coprocessor information */ |
| GHashTable *cp_regs; |
| /* For marshalling (mostly coprocessor) register state between the |
| * kernel and QEMU (for KVM) and between two QEMUs (for migration), |
| * we use these arrays. |
| */ |
| /* List of register indexes managed via these arrays; (full KVM style |
| * 64 bit indexes, not CPRegInfo 32 bit indexes) |
| */ |
| uint64_t *cpreg_indexes; |
| /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */ |
| uint64_t *cpreg_values; |
| /* Length of the indexes, values, reset_values arrays */ |
| int32_t cpreg_array_len; |
| /* These are used only for migration: incoming data arrives in |
| * these fields and is sanity checked in post_load before copying |
| * to the working data structures above. |
| */ |
| uint64_t *cpreg_vmstate_indexes; |
| uint64_t *cpreg_vmstate_values; |
| int32_t cpreg_vmstate_array_len; |
| |
| DynamicGDBFeatureInfo dyn_sysreg_feature; |
| DynamicGDBFeatureInfo dyn_svereg_feature; |
| DynamicGDBFeatureInfo dyn_m_systemreg_feature; |
| DynamicGDBFeatureInfo dyn_m_secextreg_feature; |
| |
| /* Timers used by the generic (architected) timer */ |
| QEMUTimer *gt_timer[NUM_GTIMERS]; |
| /* |
| * Timer used by the PMU. Its state is restored after migration by |
| * pmu_op_finish() - it does not need other handling during migration |
| */ |
| QEMUTimer *pmu_timer; |
| /* GPIO outputs for generic timer */ |
| qemu_irq gt_timer_outputs[NUM_GTIMERS]; |
| /* GPIO output for GICv3 maintenance interrupt signal */ |
| qemu_irq gicv3_maintenance_interrupt; |
| /* GPIO output for the PMU interrupt */ |
| qemu_irq pmu_interrupt; |
| |
| /* MemoryRegion to use for secure physical accesses */ |
| MemoryRegion *secure_memory; |
| |
| /* MemoryRegion to use for allocation tag accesses */ |
| MemoryRegion *tag_memory; |
| MemoryRegion *secure_tag_memory; |
| |
| /* For v8M, pointer to the IDAU interface provided by board/SoC */ |
| Object *idau; |
| |
| /* 'compatible' string for this CPU for Linux device trees */ |
| const char *dtb_compatible; |
| |
| /* PSCI version for this CPU |
| * Bits[31:16] = Major Version |
| * Bits[15:0] = Minor Version |
| */ |
| uint32_t psci_version; |
| |
| /* Current power state, access guarded by BQL */ |
| ARMPSCIState power_state; |
| |
| /* CPU has virtualization extension */ |
| bool has_el2; |
| /* CPU has security extension */ |
| bool has_el3; |
| /* CPU has PMU (Performance Monitor Unit) */ |
| bool has_pmu; |
| /* CPU has VFP */ |
| bool has_vfp; |
| /* CPU has 32 VFP registers */ |
| bool has_vfp_d32; |
| /* CPU has Neon */ |
| bool has_neon; |
| /* CPU has M-profile DSP extension */ |
| bool has_dsp; |
| |
| /* CPU has memory protection unit */ |
| bool has_mpu; |
| /* PMSAv7 MPU number of supported regions */ |
| uint32_t pmsav7_dregion; |
| /* PMSAv8 MPU number of supported hyp regions */ |
| uint32_t pmsav8r_hdregion; |
| /* v8M SAU number of supported regions */ |
| uint32_t sau_sregion; |
| |
| /* PSCI conduit used to invoke PSCI methods |
| * 0 - disabled, 1 - smc, 2 - hvc |
| */ |
| uint32_t psci_conduit; |
| |
| /* For v8M, initial value of the Secure VTOR */ |
| uint32_t init_svtor; |
| /* For v8M, initial value of the Non-secure VTOR */ |
| uint32_t init_nsvtor; |
| |
| /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or |
| * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type. |
| */ |
| uint32_t kvm_target; |
| |
| #ifdef CONFIG_KVM |
| /* KVM init features for this CPU */ |
| uint32_t kvm_init_features[7]; |
| |
| /* KVM CPU state */ |
| |
| /* KVM virtual time adjustment */ |
| bool kvm_adjvtime; |
| bool kvm_vtime_dirty; |
| uint64_t kvm_vtime; |
| |
| /* KVM steal time */ |
| OnOffAuto kvm_steal_time; |
| #endif /* CONFIG_KVM */ |
| |
| /* Uniprocessor system with MP extensions */ |
| bool mp_is_up; |
| |
| /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init |
| * and the probe failed (so we need to report the error in realize) |
| */ |
| bool host_cpu_probe_failed; |
| |
| /* Specify the number of cores in this CPU cluster. Used for the L2CTLR |
| * register. |
| */ |
| int32_t core_count; |
| |
| /* The instance init functions for implementation-specific subclasses |
| * set these fields to specify the implementation-dependent values of |
| * various constant registers and reset values of non-constant |
| * registers. |
| * Some of these might become QOM properties eventually. |
| * Field names match the official register names as defined in the |
| * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix |
| * is used for reset values of non-constant registers; no reset_ |
| * prefix means a constant register. |
| * Some of these registers are split out into a substructure that |
| * is shared with the translators to control the ISA. |
| * |
| * Note that if you add an ID register to the ARMISARegisters struct |
| * you need to also update the 32-bit and 64-bit versions of the |
| * kvm_arm_get_host_cpu_features() function to correctly populate the |
| * field by reading the value from the KVM vCPU. |
| */ |
| struct ARMISARegisters { |
| uint32_t id_isar0; |
| uint32_t id_isar1; |
| uint32_t id_isar2; |
| uint32_t id_isar3; |
| uint32_t id_isar4; |
| uint32_t id_isar5; |
| uint32_t id_isar6; |
| uint32_t id_mmfr0; |
| uint32_t id_mmfr1; |
| uint32_t id_mmfr2; |
| uint32_t id_mmfr3; |
| uint32_t id_mmfr4; |
| uint32_t id_mmfr5; |
| uint32_t id_pfr0; |
| uint32_t id_pfr1; |
| uint32_t id_pfr2; |
| uint32_t mvfr0; |
| uint32_t mvfr1; |
| uint32_t mvfr2; |
| uint32_t id_dfr0; |
| uint32_t id_dfr1; |
| uint32_t dbgdidr; |
| uint32_t dbgdevid; |
| uint32_t dbgdevid1; |
| uint64_t id_aa64isar0; |
| uint64_t id_aa64isar1; |
| uint64_t id_aa64isar2; |
| uint64_t id_aa64pfr0; |
| uint64_t id_aa64pfr1; |
| uint64_t id_aa64mmfr0; |
| uint64_t id_aa64mmfr1; |
| uint64_t id_aa64mmfr2; |
| uint64_t id_aa64dfr0; |
| uint64_t id_aa64dfr1; |
| uint64_t id_aa64zfr0; |
| uint64_t id_aa64smfr0; |
| uint64_t reset_pmcr_el0; |
| } isar; |
| uint64_t midr; |
| uint32_t revidr; |
| uint32_t reset_fpsid; |
| uint64_t ctr; |
| uint32_t reset_sctlr; |
| uint64_t pmceid0; |
| uint64_t pmceid1; |
| uint32_t id_afr0; |
| uint64_t id_aa64afr0; |
| uint64_t id_aa64afr1; |
| uint64_t clidr; |
| uint64_t mp_affinity; /* MP ID without feature bits */ |
| /* The elements of this array are the CCSIDR values for each cache, |
| * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc. |
| */ |
| uint64_t ccsidr[16]; |
| uint64_t reset_cbar; |
| uint32_t reset_auxcr; |
| bool reset_hivecs; |
| uint8_t reset_l0gptsz; |
| |
| /* |
| * Intermediate values used during property parsing. |
| * Once finalized, the values should be read from ID_AA64*. |
| */ |
| bool prop_pauth; |
| bool prop_pauth_impdef; |
| bool prop_pauth_qarma3; |
| bool prop_lpa2; |
| |
| /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */ |
| uint8_t dcz_blocksize; |
| /* GM blocksize, in log_2(words), ie low 4 bits of GMID_EL0 */ |
| uint8_t gm_blocksize; |
| |
| uint64_t rvbar_prop; /* Property/input signals. */ |
| |
| /* Configurable aspects of GIC cpu interface (which is part of the CPU) */ |
| int gic_num_lrs; /* number of list registers */ |
| int gic_vpribits; /* number of virtual priority bits */ |
| int gic_vprebits; /* number of virtual preemption bits */ |
| int gic_pribits; /* number of physical priority bits */ |
| |
| /* Whether the cfgend input is high (i.e. this CPU should reset into |
| * big-endian mode). This setting isn't used directly: instead it modifies |
| * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the |
| * architecture version. |
| */ |
| bool cfgend; |
| |
| QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks; |
| QLIST_HEAD(, ARMELChangeHook) el_change_hooks; |
| |
| int32_t node_id; /* NUMA node this CPU belongs to */ |
| |
| /* Used to synchronize KVM and QEMU in-kernel device levels */ |
| uint8_t device_irq_level; |
| |
| /* Used to set the maximum vector length the cpu will support. */ |
| uint32_t sve_max_vq; |
| |
| #ifdef CONFIG_USER_ONLY |
| /* Used to set the default vector length at process start. */ |
| uint32_t sve_default_vq; |
| uint32_t sme_default_vq; |
| #endif |
| |
| ARMVQMap sve_vq; |
| ARMVQMap sme_vq; |
| |
| /* Generic timer counter frequency, in Hz */ |
| uint64_t gt_cntfrq_hz; |
| }; |
| |
| typedef struct ARMCPUInfo { |
| const char *name; |
| void (*initfn)(Object *obj); |
| void (*class_init)(ObjectClass *oc, void *data); |
| } ARMCPUInfo; |
| |
| /** |
| * ARMCPUClass: |
| * @parent_realize: The parent class' realize handler. |
| * @parent_phases: The parent class' reset phase handlers. |
| * |
| * An ARM CPU model. |
| */ |
| struct ARMCPUClass { |
| CPUClass parent_class; |
| |
| const ARMCPUInfo *info; |
| DeviceRealize parent_realize; |
| ResettablePhases parent_phases; |
| }; |
| |
| struct AArch64CPUClass { |
| ARMCPUClass parent_class; |
| }; |
| |
| /* Callback functions for the generic timer's timers. */ |
| void arm_gt_ptimer_cb(void *opaque); |
| void arm_gt_vtimer_cb(void *opaque); |
| void arm_gt_htimer_cb(void *opaque); |
| void arm_gt_stimer_cb(void *opaque); |
| void arm_gt_hvtimer_cb(void *opaque); |
| |
| unsigned int gt_cntfrq_period_ns(ARMCPU *cpu); |
| void gt_rme_post_el_change(ARMCPU *cpu, void *opaque); |
| |
| void arm_cpu_post_init(Object *obj); |
| |
| #define ARM_AFF0_SHIFT 0 |
| #define ARM_AFF0_MASK (0xFFULL << ARM_AFF0_SHIFT) |
| #define ARM_AFF1_SHIFT 8 |
| #define ARM_AFF1_MASK (0xFFULL << ARM_AFF1_SHIFT) |
| #define ARM_AFF2_SHIFT 16 |
| #define ARM_AFF2_MASK (0xFFULL << ARM_AFF2_SHIFT) |
| #define ARM_AFF3_SHIFT 32 |
| #define ARM_AFF3_MASK (0xFFULL << ARM_AFF3_SHIFT) |
| #define ARM_DEFAULT_CPUS_PER_CLUSTER 8 |
| |
| #define ARM32_AFFINITY_MASK (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK) |
| #define ARM64_AFFINITY_MASK \ |
| (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK | ARM_AFF3_MASK) |
| #define ARM64_AFFINITY_INVALID (~ARM64_AFFINITY_MASK) |
| |
| uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz); |
| |
| #ifndef CONFIG_USER_ONLY |
| extern const VMStateDescription vmstate_arm_cpu; |
| |
| void arm_cpu_do_interrupt(CPUState *cpu); |
| void arm_v7m_cpu_do_interrupt(CPUState *cpu); |
| |
| hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, |
| MemTxAttrs *attrs); |
| #endif /* !CONFIG_USER_ONLY */ |
| |
| int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); |
| int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); |
| |
| /* Returns the dynamically generated XML for the gdb stub. |
| * Returns a pointer to the XML contents for the specified XML file or NULL |
| * if the XML name doesn't match the predefined one. |
| */ |
| const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname); |
| |
| int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs, |
| int cpuid, DumpState *s); |
| int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs, |
| int cpuid, DumpState *s); |
| |
| /** |
| * arm_emulate_firmware_reset: Emulate firmware CPU reset handling |
| * @cpu: CPU (which must have been freshly reset) |
| * @target_el: exception level to put the CPU into |
| * @secure: whether to put the CPU in secure state |
| * |
| * When QEMU is directly running a guest kernel at a lower level than |
| * EL3 it implicitly emulates some aspects of the guest firmware. |
| * This includes that on reset we need to configure the parts of the |
| * CPU corresponding to EL3 so that the real guest code can run at its |
| * lower exception level. This function does that post-reset CPU setup, |
| * for when we do direct boot of a guest kernel, and for when we |
| * emulate PSCI and similar firmware interfaces starting a CPU at a |
| * lower exception level. |
| * |
| * @target_el must be an EL implemented by the CPU between 1 and 3. |
| * We do not support dropping into a Secure EL other than 3. |
| * |
| * It is the responsibility of the caller to call arm_rebuild_hflags(). |
| */ |
| void arm_emulate_firmware_reset(CPUState *cpustate, int target_el); |
| |
| #ifdef TARGET_AARCH64 |
| int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); |
| int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); |
| void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq); |
| void aarch64_sve_change_el(CPUARMState *env, int old_el, |
| int new_el, bool el0_a64); |
| void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask); |
| |
| /* |
| * SVE registers are encoded in KVM's memory in an endianness-invariant format. |
| * The byte at offset i from the start of the in-memory representation contains |
| * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the |
| * lowest offsets are stored in the lowest memory addresses, then that nearly |
| * matches QEMU's representation, which is to use an array of host-endian |
| * uint64_t's, where the lower offsets are at the lower indices. To complete |
| * the translation we just need to byte swap the uint64_t's on big-endian hosts. |
| */ |
| static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr) |
| { |
| #if HOST_BIG_ENDIAN |
| int i; |
| |
| for (i = 0; i < nr; ++i) { |
| dst[i] = bswap64(src[i]); |
| } |
| |
| return dst; |
| #else |
| return src; |
| #endif |
| } |
| |
| #else |
| static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { } |
| static inline void aarch64_sve_change_el(CPUARMState *env, int o, |
| int n, bool a) |
| { } |
| #endif |
| |
| void aarch64_sync_32_to_64(CPUARMState *env); |
| void aarch64_sync_64_to_32(CPUARMState *env); |
| |
| int fp_exception_el(CPUARMState *env, int cur_el); |
| int sve_exception_el(CPUARMState *env, int cur_el); |
| int sme_exception_el(CPUARMState *env, int cur_el); |
| |
| /** |
| * sve_vqm1_for_el_sm: |
| * @env: CPUARMState |
| * @el: exception level |
| * @sm: streaming mode |
| * |
| * Compute the current vector length for @el & @sm, in units of |
| * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN. |
| * If @sm, compute for SVL, otherwise NVL. |
| */ |
| uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm); |
| |
| /* Likewise, but using @sm = PSTATE.SM. */ |
| uint32_t sve_vqm1_for_el(CPUARMState *env, int el); |
| |
| static inline bool is_a64(CPUARMState *env) |
| { |
| return env->aarch64; |
| } |
| |
| /** |
| * pmu_op_start/finish |
| * @env: CPUARMState |
| * |
| * Convert all PMU counters between their delta form (the typical mode when |
| * they are enabled) and the guest-visible values. These two calls must |
| * surround any action which might affect the counters. |
| */ |
| void pmu_op_start(CPUARMState *env); |
| void pmu_op_finish(CPUARMState *env); |
| |
| /* |
| * Called when a PMU counter is due to overflow |
| */ |
| void arm_pmu_timer_cb(void *opaque); |
| |
| /** |
| * Functions to register as EL change hooks for PMU mode filtering |
| */ |
| void pmu_pre_el_change(ARMCPU *cpu, void *ignored); |
| void pmu_post_el_change(ARMCPU *cpu, void *ignored); |
| |
| /* |
| * pmu_init |
| * @cpu: ARMCPU |
| * |
| * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state |
| * for the current configuration |
| */ |
| void pmu_init(ARMCPU *cpu); |
| |
| /* SCTLR bit meanings. Several bits have been reused in newer |
| * versions of the architecture; in that case we define constants |
| * for both old and new bit meanings. Code which tests against those |
| * bits should probably check or otherwise arrange that the CPU |
| * is the architectural version it expects. |
| */ |
| #define SCTLR_M (1U << 0) |
| #define SCTLR_A (1U << 1) |
| #define SCTLR_C (1U << 2) |
| #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */ |
| #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */ |
| #define SCTLR_SA (1U << 3) /* AArch64 only */ |
| #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */ |
| #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */ |
| #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */ |
| #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */ |
| #define SCTLR_CP15BEN (1U << 5) /* v7 onward */ |
| #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */ |
| #define SCTLR_nAA (1U << 6) /* when FEAT_LSE2 is implemented */ |
| #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */ |
| #define SCTLR_ITD (1U << 7) /* v8 onward */ |
| #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */ |
| #define SCTLR_SED (1U << 8) /* v8 onward */ |
| #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */ |
| #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */ |
| #define SCTLR_F (1U << 10) /* up to v6 */ |
| #define SCTLR_SW (1U << 10) /* v7 */ |
| #define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */ |
| #define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */ |
| #define SCTLR_EOS (1U << 11) /* v8.5-ExS */ |
| #define SCTLR_I (1U << 12) |
| #define SCTLR_V (1U << 13) /* AArch32 only */ |
| #define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */ |
| #define SCTLR_RR (1U << 14) /* up to v7 */ |
| #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */ |
| #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */ |
| #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */ |
| #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */ |
| #define SCTLR_nTWI (1U << 16) /* v8 onward */ |
| #define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */ |
| #define SCTLR_BR (1U << 17) /* PMSA only */ |
| #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */ |
| #define SCTLR_nTWE (1U << 18) /* v8 onward */ |
| #define SCTLR_WXN (1U << 19) |
| #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */ |
| #define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */ |
| #define SCTLR_TSCXT (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */ |
| #define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */ |
| #define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */ |
| #define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */ |
| #define SCTLR_EIS (1U << 22) /* v8.5-ExS */ |
| #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */ |
| #define SCTLR_SPAN (1U << 23) /* v8.1-PAN */ |
| #define SCTLR_VE (1U << 24) /* up to v7 */ |
| #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */ |
| #define SCTLR_EE (1U << 25) |
| #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */ |
| #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */ |
| #define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */ |
| #define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */ |
| #define SCTLR_TRE (1U << 28) /* AArch32 only */ |
| #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */ |
| #define SCTLR_AFE (1U << 29) /* AArch32 only */ |
| #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */ |
| #define SCTLR_TE (1U << 30) /* AArch32 only */ |
| #define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */ |
| #define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */ |
| #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */ |
| #define SCTLR_MSCEN (1ULL << 33) /* FEAT_MOPS */ |
| #define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */ |
| #define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */ |
| #define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */ |
| #define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */ |
| #define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */ |
| #define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */ |
| #define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */ |
| #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */ |
| #define SCTLR_TWEDEn (1ULL << 45) /* FEAT_TWED */ |
| #define SCTLR_TWEDEL MAKE_64_MASK(46, 4) /* FEAT_TWED */ |
| #define SCTLR_TMT0 (1ULL << 50) /* FEAT_TME */ |
| #define SCTLR_TMT (1ULL << 51) /* FEAT_TME */ |
| #define SCTLR_TME0 (1ULL << 52) /* FEAT_TME */ |
| #define SCTLR_TME (1ULL << 53) /* FEAT_TME */ |
| #define SCTLR_EnASR (1ULL << 54) /* FEAT_LS64_V */ |
| #define SCTLR_EnAS0 (1ULL << 55) /* FEAT_LS64_ACCDATA */ |
| #define SCTLR_EnALS (1ULL << 56) /* FEAT_LS64 */ |
| #define SCTLR_EPAN (1ULL << 57) /* FEAT_PAN3 */ |
| #define SCTLR_EnTP2 (1ULL << 60) /* FEAT_SME */ |
| #define SCTLR_NMI (1ULL << 61) /* FEAT_NMI */ |
| #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */ |
| #define SCTLR_TIDCP (1ULL << 63) /* FEAT_TIDCP1 */ |
| |
| /* Bit definitions for CPACR (AArch32 only) */ |
| FIELD(CPACR, CP10, 20, 2) |
| FIELD(CPACR, CP11, 22, 2) |
| FIELD(CPACR, TRCDIS, 28, 1) /* matches CPACR_EL1.TTA */ |
| FIELD(CPACR, D32DIS, 30, 1) /* up to v7; RAZ in v8 */ |
| FIELD(CPACR, ASEDIS, 31, 1) |
| |
| /* Bit definitions for CPACR_EL1 (AArch64 only) */ |
| FIELD(CPACR_EL1, ZEN, 16, 2) |
| FIELD(CPACR_EL1, FPEN, 20, 2) |
| FIELD(CPACR_EL1, SMEN, 24, 2) |
| FIELD(CPACR_EL1, TTA, 28, 1) /* matches CPACR.TRCDIS */ |
| |
| /* Bit definitions for HCPTR (AArch32 only) */ |
| FIELD(HCPTR, TCP10, 10, 1) |
| FIELD(HCPTR, TCP11, 11, 1) |
| FIELD(HCPTR, TASE, 15, 1) |
| FIELD(HCPTR, TTA, 20, 1) |
| FIELD(HCPTR, TAM, 30, 1) /* matches CPTR_EL2.TAM */ |
| FIELD(HCPTR, TCPAC, 31, 1) /* matches CPTR_EL2.TCPAC */ |
| |
| /* Bit definitions for CPTR_EL2 (AArch64 only) */ |
| FIELD(CPTR_EL2, TZ, 8, 1) /* !E2H */ |
| FIELD(CPTR_EL2, TFP, 10, 1) /* !E2H, matches HCPTR.TCP10 */ |
| FIELD(CPTR_EL2, TSM, 12, 1) /* !E2H */ |
| FIELD(CPTR_EL2, ZEN, 16, 2) /* E2H */ |
| FIELD(CPTR_EL2, FPEN, 20, 2) /* E2H */ |
| FIELD(CPTR_EL2, SMEN, 24, 2) /* E2H */ |
| FIELD(CPTR_EL2, TTA, 28, 1) |
| FIELD(CPTR_EL2, TAM, 30, 1) /* matches HCPTR.TAM */ |
| FIELD(CPTR_EL2, TCPAC, 31, 1) /* matches HCPTR.TCPAC */ |
| |
| /* Bit definitions for CPTR_EL3 (AArch64 only) */ |
| FIELD(CPTR_EL3, EZ, 8, 1) |
| FIELD(CPTR_EL3, TFP, 10, 1) |
| FIELD(CPTR_EL3, ESM, 12, 1) |
| FIELD(CPTR_EL3, TTA, 20, 1) |
| FIELD(CPTR_EL3, TAM, 30, 1) |
| FIELD(CPTR_EL3, TCPAC, 31, 1) |
| |
| #define MDCR_MTPME (1U << 28) |
| #define MDCR_TDCC (1U << 27) |
| #define MDCR_HLP (1U << 26) /* MDCR_EL2 */ |
| #define MDCR_SCCD (1U << 23) /* MDCR_EL3 */ |
| #define MDCR_HCCD (1U << 23) /* MDCR_EL2 */ |
| #define MDCR_EPMAD (1U << 21) |
| #define MDCR_EDAD (1U << 20) |
| #define MDCR_TTRF (1U << 19) |
| #define MDCR_STE (1U << 18) /* MDCR_EL3 */ |
| #define MDCR_SPME (1U << 17) /* MDCR_EL3 */ |
| #define MDCR_HPMD (1U << 17) /* MDCR_EL2 */ |
| #define MDCR_SDD (1U << 16) |
| #define MDCR_SPD (3U << 14) |
| #define MDCR_TDRA (1U << 11) |
| #define MDCR_TDOSA (1U << 10) |
| #define MDCR_TDA (1U << 9) |
| #define MDCR_TDE (1U << 8) |
| #define MDCR_HPME (1U << 7) |
| #define MDCR_TPM (1U << 6) |
| #define MDCR_TPMCR (1U << 5) |
| #define MDCR_HPMN (0x1fU) |
| |
| /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */ |
| #define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \ |
| MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \ |
| MDCR_STE | MDCR_SPME | MDCR_SPD) |
| |
| #define CPSR_M (0x1fU) |
| #define CPSR_T (1U << 5) |
| #define CPSR_F (1U << 6) |
| #define CPSR_I (1U << 7) |
| #define CPSR_A (1U << 8) |
| #define CPSR_E (1U << 9) |
| #define CPSR_IT_2_7 (0xfc00U) |
| #define CPSR_GE (0xfU << 16) |
| #define CPSR_IL (1U << 20) |
| #define CPSR_DIT (1U << 21) |
| #define CPSR_PAN (1U << 22) |
| #define CPSR_SSBS (1U << 23) |
| #define CPSR_J (1U << 24) |
| #define CPSR_IT_0_1 (3U << 25) |
| #define CPSR_Q (1U << 27) |
| #define CPSR_V (1U << 28) |
| #define CPSR_C (1U << 29) |
| #define CPSR_Z (1U << 30) |
| #define CPSR_N (1U << 31) |
| #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V) |
| #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F) |
| |
| #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7) |
| #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \ |
| | CPSR_NZCV) |
| /* Bits writable in user mode. */ |
| #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E) |
| /* Execution state bits. MRS read as zero, MSR writes ignored. */ |
| #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL) |
| |
| /* Bit definitions for M profile XPSR. Most are the same as CPSR. */ |
| #define XPSR_EXCP 0x1ffU |
| #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */ |
| #define XPSR_IT_2_7 CPSR_IT_2_7 |
| #define XPSR_GE CPSR_GE |
| #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */ |
| #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */ |
| #define XPSR_IT_0_1 CPSR_IT_0_1 |
| #define XPSR_Q CPSR_Q |
| #define XPSR_V CPSR_V |
| #define XPSR_C CPSR_C |
| #define XPSR_Z CPSR_Z |
| #define XPSR_N CPSR_N |
| #define XPSR_NZCV CPSR_NZCV |
| #define XPSR_IT CPSR_IT |
| |
| #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */ |
| #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */ |
| #define TTBCR_PD0 (1U << 4) |
| #define TTBCR_PD1 (1U << 5) |
| #define TTBCR_EPD0 (1U << 7) |
| #define TTBCR_IRGN0 (3U << 8) |
| #define TTBCR_ORGN0 (3U << 10) |
| #define TTBCR_SH0 (3U << 12) |
| #define TTBCR_T1SZ (3U << 16) |
| #define TTBCR_A1 (1U << 22) |
| #define TTBCR_EPD1 (1U << 23) |
| #define TTBCR_IRGN1 (3U << 24) |
| #define TTBCR_ORGN1 (3U << 26) |
| #define TTBCR_SH1 (1U << 28) |
| #define TTBCR_EAE (1U << 31) |
| |
| FIELD(VTCR, T0SZ, 0, 6) |
| FIELD(VTCR, SL0, 6, 2) |
| FIELD(VTCR, IRGN0, 8, 2) |
| FIELD(VTCR, ORGN0, 10, 2) |
| FIELD(VTCR, SH0, 12, 2) |
| FIELD(VTCR, TG0, 14, 2) |
| FIELD(VTCR, PS, 16, 3) |
| FIELD(VTCR, VS, 19, 1) |
| FIELD(VTCR, HA, 21, 1) |
| FIELD(VTCR, HD, 22, 1) |
| FIELD(VTCR, HWU59, 25, 1) |
| FIELD(VTCR, HWU60, 26, 1) |
| FIELD(VTCR, HWU61, 27, 1) |
| FIELD(VTCR, HWU62, 28, 1) |
| FIELD(VTCR, NSW, 29, 1) |
| FIELD(VTCR, NSA, 30, 1) |
| FIELD(VTCR, DS, 32, 1) |
| FIELD(VTCR, SL2, 33, 1) |
| |
| /* Bit definitions for ARMv8 SPSR (PSTATE) format. |
| * Only these are valid when in AArch64 mode; in |
| * AArch32 mode SPSRs are basically CPSR-format. |
| */ |
| #define PSTATE_SP (1U) |
| #define PSTATE_M (0xFU) |
| #define PSTATE_nRW (1U << 4) |
| #define PSTATE_F (1U << 6) |
| #define PSTATE_I (1U << 7) |
| #define PSTATE_A (1U << 8) |
| #define PSTATE_D (1U << 9) |
| #define PSTATE_BTYPE (3U << 10) |
| #define PSTATE_SSBS (1U << 12) |
| #define PSTATE_IL (1U << 20) |
| #define PSTATE_SS (1U << 21) |
| #define PSTATE_PAN (1U << 22) |
| #define PSTATE_UAO (1U << 23) |
| #define PSTATE_DIT (1U << 24) |
| #define PSTATE_TCO (1U << 25) |
| #define PSTATE_V (1U << 28) |
| #define PSTATE_C (1U << 29) |
| #define PSTATE_Z (1U << 30) |
| #define PSTATE_N (1U << 31) |
| #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V) |
| #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F) |
| #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE) |
| /* Mode values for AArch64 */ |
| #define PSTATE_MODE_EL3h 13 |
| #define PSTATE_MODE_EL3t 12 |
| #define PSTATE_MODE_EL2h 9 |
| #define PSTATE_MODE_EL2t 8 |
| #define PSTATE_MODE_EL1h 5 |
| #define PSTATE_MODE_EL1t 4 |
| #define PSTATE_MODE_EL0t 0 |
| |
| /* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */ |
| FIELD(SVCR, SM, 0, 1) |
| FIELD(SVCR, ZA, 1, 1) |
| |
| /* Fields for SMCR_ELx. */ |
| FIELD(SMCR, LEN, 0, 4) |
| FIELD(SMCR, FA64, 31, 1) |
| |
| /* Write a new value to v7m.exception, thus transitioning into or out |
| * of Handler mode; this may result in a change of active stack pointer. |
| */ |
| void write_v7m_exception(CPUARMState *env, uint32_t new_exc); |
| |
| /* Map EL and handler into a PSTATE_MODE. */ |
| static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler) |
| { |
| return (el << 2) | handler; |
| } |
| |
| /* Return the current PSTATE value. For the moment we don't support 32<->64 bit |
| * interprocessing, so we don't attempt to sync with the cpsr state used by |
| * the 32 bit decoder. |
| */ |
| static inline uint32_t pstate_read(CPUARMState *env) |
| { |
| int ZF; |
| |
| ZF = (env->ZF == 0); |
| return (env->NF & 0x80000000) | (ZF << 30) |
| | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) |
| | env->pstate | env->daif | (env->btype << 10); |
| } |
| |
| static inline void pstate_write(CPUARMState *env, uint32_t val) |
| { |
| env->ZF = (~val) & PSTATE_Z; |
| env->NF = val; |
| env->CF = (val >> 29) & 1; |
| env->VF = (val << 3) & 0x80000000; |
| env->daif = val & PSTATE_DAIF; |
| env->btype = (val >> 10) & 3; |
| env->pstate = val & ~CACHED_PSTATE_BITS; |
| } |
| |
| /* Return the current CPSR value. */ |
| uint32_t cpsr_read(CPUARMState *env); |
| |
| typedef enum CPSRWriteType { |
| CPSRWriteByInstr = 0, /* from guest MSR or CPS */ |
| CPSRWriteExceptionReturn = 1, /* from guest exception return insn */ |
| CPSRWriteRaw = 2, |
| /* trust values, no reg bank switch, no hflags rebuild */ |
| CPSRWriteByGDBStub = 3, /* from the GDB stub */ |
| } CPSRWriteType; |
| |
| /* |
| * Set the CPSR. Note that some bits of mask must be all-set or all-clear. |
| * This will do an arm_rebuild_hflags() if any of the bits in @mask |
| * correspond to TB flags bits cached in the hflags, unless @write_type |
| * is CPSRWriteRaw. |
| */ |
| void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, |
| CPSRWriteType write_type); |
| |
| /* Return the current xPSR value. */ |
| static inline uint32_t xpsr_read(CPUARMState *env) |
| { |
| int ZF; |
| ZF = (env->ZF == 0); |
| return (env->NF & 0x80000000) | (ZF << 30) |
| | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) |
| | (env->thumb << 24) | ((env->condexec_bits & 3) << 25) |
| | ((env->condexec_bits & 0xfc) << 8) |
| | (env->GE << 16) |
| | env->v7m.exception; |
| } |
| |
| /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */ |
| static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) |
| { |
| if (mask & XPSR_NZCV) { |
| env->ZF = (~val) & XPSR_Z; |
| env->NF = val; |
| env->CF = (val >> 29) & 1; |
| env->VF = (val << 3) & 0x80000000; |
| } |
| if (mask & XPSR_Q) { |
| env->QF = ((val & XPSR_Q) != 0); |
| } |
| if (mask & XPSR_GE) { |
| env->GE = (val & XPSR_GE) >> 16; |
| } |
| #ifndef CONFIG_USER_ONLY |
| if (mask & XPSR_T) { |
| env->thumb = ((val & XPSR_T) != 0); |
| } |
| if (mask & XPSR_IT_0_1) { |
| env->condexec_bits &= ~3; |
| env->condexec_bits |= (val >> 25) & 3; |
| } |
| if (mask & XPSR_IT_2_7) { |
| env->condexec_bits &= 3; |
| env->condexec_bits |= (val >> 8) & 0xfc; |
| } |
| if (mask & XPSR_EXCP) { |
| /* Note that this only happens on exception exit */ |
| write_v7m_exception(env, val & XPSR_EXCP); |
| } |
| #endif |
| } |
| |
| #define HCR_VM (1ULL << 0) |
| #define HCR_SWIO (1ULL << 1) |
| #define HCR_PTW (1ULL << 2) |
| #define HCR_FMO (1ULL << 3) |
| #define HCR_IMO (1ULL << 4) |
| #define HCR_AMO (1ULL << 5) |
| #define HCR_VF (1ULL << 6) |
| #define HCR_VI (1ULL << 7) |
| #define HCR_VSE (1ULL << 8) |
| #define HCR_FB (1ULL << 9) |
| #define HCR_BSU_MASK (3ULL << 10) |
| #define HCR_DC (1ULL << 12) |
| #define HCR_TWI (1ULL << 13) |
| #define HCR_TWE (1ULL << 14) |
| #define HCR_TID0 (1ULL << 15) |
| #define HCR_TID1 (1ULL << 16) |
| #define HCR_TID2 (1ULL << 17) |
| #define HCR_TID3 (1ULL << 18) |
| #define HCR_TSC (1ULL << 19) |
| #define HCR_TIDCP (1ULL << 20) |
| #define HCR_TACR (1ULL << 21) |
| #define HCR_TSW (1ULL << 22) |
| #define HCR_TPCP (1ULL << 23) |
| #define HCR_TPU (1ULL << 24) |
| #define HCR_TTLB (1ULL << 25) |
| #define HCR_TVM (1ULL << 26) |
| #define HCR_TGE (1ULL << 27) |
| #define HCR_TDZ (1ULL << 28) |
| #define HCR_HCD (1ULL << 29) |
| #define HCR_TRVM (1ULL << 30) |
| #define HCR_RW (1ULL << 31) |
| #define HCR_CD (1ULL << 32) |
| #define HCR_ID (1ULL << 33) |
| #define HCR_E2H (1ULL << 34) |
| #define HCR_TLOR (1ULL << 35) |
| #define HCR_TERR (1ULL << 36) |
| #define HCR_TEA (1ULL << 37) |
| #define HCR_MIOCNCE (1ULL << 38) |
| #define HCR_TME (1ULL << 39) |
| #define HCR_APK (1ULL << 40) |
| #define HCR_API (1ULL << 41) |
| #define HCR_NV (1ULL << 42) |
| #define HCR_NV1 (1ULL << 43) |
| #define HCR_AT (1ULL << 44) |
| #define HCR_NV2 (1ULL << 45) |
| #define HCR_FWB (1ULL << 46) |
| #define HCR_FIEN (1ULL << 47) |
| #define HCR_GPF (1ULL << 48) |
| #define HCR_TID4 (1ULL << 49) |
| #define HCR_TICAB (1ULL << 50) |
| #define HCR_AMVOFFEN (1ULL << 51) |
| #define HCR_TOCU (1ULL << 52) |
| #define HCR_ENSCXT (1ULL << 53) |
| #define HCR_TTLBIS (1ULL << 54) |
| #define HCR_TTLBOS (1ULL << 55) |
| #define HCR_ATA (1ULL << 56) |
| #define HCR_DCT (1ULL << 57) |
| #define HCR_TID5 (1ULL << 58) |
| #define HCR_TWEDEN (1ULL << 59) |
| #define HCR_TWEDEL MAKE_64BIT_MASK(60, 4) |
| |
| #define HCRX_ENAS0 (1ULL << 0) |
| #define HCRX_ENALS (1ULL << 1) |
| #define HCRX_ENASR (1ULL << 2) |
| #define HCRX_FNXS (1ULL << 3) |
| #define HCRX_FGTNXS (1ULL << 4) |
| #define HCRX_SMPME (1ULL << 5) |
| #define HCRX_TALLINT (1ULL << 6) |
| #define HCRX_VINMI (1ULL << 7) |
| #define HCRX_VFNMI (1ULL << 8) |
| #define HCRX_CMOW (1ULL << 9) |
| #define HCRX_MCE2 (1ULL << 10) |
| #define HCRX_MSCEN (1ULL << 11) |
| |
| #define HPFAR_NS (1ULL << 63) |
| |
| #define SCR_NS (1ULL << 0) |
| #define SCR_IRQ (1ULL << 1) |
| #define SCR_FIQ (1ULL << 2) |
| #define SCR_EA (1ULL << 3) |
| #define SCR_FW (1ULL << 4) |
| #define SCR_AW (1ULL << 5) |
| #define SCR_NET (1ULL << 6) |
| #define SCR_SMD (1ULL << 7) |
| #define SCR_HCE (1ULL << 8) |
| #define SCR_SIF (1ULL << 9) |
| #define SCR_RW (1ULL << 10) |
| #define SCR_ST (1ULL << 11) |
| #define SCR_TWI (1ULL << 12) |
| #define SCR_TWE (1ULL << 13) |
| #define SCR_TLOR (1ULL << 14) |
| #define SCR_TERR (1ULL << 15) |
| #define SCR_APK (1ULL << 16) |
| #define SCR_API (1ULL << 17) |
| #define SCR_EEL2 (1ULL << 18) |
| #define SCR_EASE (1ULL << 19) |
| #define SCR_NMEA (1ULL << 20) |
| #define SCR_FIEN (1ULL << 21) |
| #define SCR_ENSCXT (1ULL << 25) |
| #define SCR_ATA (1ULL << 26) |
| #define SCR_FGTEN (1ULL << 27) |
| #define SCR_ECVEN (1ULL << 28) |
| #define SCR_TWEDEN (1ULL << 29) |
| #define SCR_TWEDEL MAKE_64BIT_MASK(30, 4) |
| #define SCR_TME (1ULL << 34) |
| #define SCR_AMVOFFEN (1ULL << 35) |
| #define SCR_ENAS0 (1ULL << 36) |
| #define SCR_ADEN (1ULL << 37) |
| #define SCR_HXEN (1ULL << 38) |
| #define SCR_TRNDR (1ULL << 40) |
| #define SCR_ENTP2 (1ULL << 41) |
| #define SCR_GPF (1ULL << 48) |
| #define SCR_NSE (1ULL << 62) |
| |
| #define HSTR_TTEE (1 << 16) |
| #define HSTR_TJDBX (1 << 17) |
| |
| #define CNTHCTL_CNTVMASK (1 << 18) |
| #define CNTHCTL_CNTPMASK (1 << 19) |
| |
| /* Return the current FPSCR value. */ |
| uint32_t vfp_get_fpscr(CPUARMState *env); |
| void vfp_set_fpscr(CPUARMState *env, uint32_t val); |
| |
| /* FPCR, Floating Point Control Register |
| * FPSR, Floating Poiht Status Register |
| * |
| * For A64 the FPSCR is split into two logically distinct registers, |
| * FPCR and FPSR. However since they still use non-overlapping bits |
| * we store the underlying state in fpscr and just mask on read/write. |
| */ |
| #define FPSR_MASK 0xf800009f |
| #define FPCR_MASK 0x07ff9f00 |
| |
| #define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */ |
| #define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */ |
| #define FPCR_OFE (1 << 10) /* Overflow exception trap enable */ |
| #define FPCR_UFE (1 << 11) /* Underflow exception trap enable */ |
| #define FPCR_IXE (1 << 12) /* Inexact exception trap enable */ |
| #define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */ |
| #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */ |
| #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */ |
| #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */ |
| #define FPCR_DN (1 << 25) /* Default NaN enable bit */ |
| #define FPCR_AHP (1 << 26) /* Alternative half-precision */ |
| #define FPCR_QC (1 << 27) /* Cumulative saturation bit */ |
| #define FPCR_V (1 << 28) /* FP overflow flag */ |
| #define FPCR_C (1 << 29) /* FP carry flag */ |
| #define FPCR_Z (1 << 30) /* FP zero flag */ |
| #define FPCR_N (1 << 31) /* FP negative flag */ |
| |
| #define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */ |
| #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT) |
| #define FPCR_LTPSIZE_LENGTH 3 |
| |
| #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V) |
| #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC) |
| |
| static inline uint32_t vfp_get_fpsr(CPUARMState *env) |
| { |
| return vfp_get_fpscr(env) & FPSR_MASK; |
| } |
| |
| static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val) |
| { |
| uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK); |
| vfp_set_fpscr(env, new_fpscr); |
| } |
| |
| static inline uint32_t vfp_get_fpcr(CPUARMState *env) |
| { |
| return vfp_get_fpscr(env) & FPCR_MASK; |
| } |
| |
| static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val) |
| { |
| uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK); |
| vfp_set_fpscr(env, new_fpscr); |
| } |
| |
| enum arm_cpu_mode { |
| ARM_CPU_MODE_USR = 0x10, |
| ARM_CPU_MODE_FIQ = 0x11, |
| ARM_CPU_MODE_IRQ = 0x12, |
| ARM_CPU_MODE_SVC = 0x13, |
| ARM_CPU_MODE_MON = 0x16, |
| ARM_CPU_MODE_ABT = 0x17, |
| ARM_CPU_MODE_HYP = 0x1a, |
| ARM_CPU_MODE_UND = 0x1b, |
| ARM_CPU_MODE_SYS = 0x1f |
| }; |
| |
| /* VFP system registers. */ |
| #define ARM_VFP_FPSID 0 |
| #define ARM_VFP_FPSCR 1 |
| #define ARM_VFP_MVFR2 5 |
| #define ARM_VFP_MVFR1 6 |
| #define ARM_VFP_MVFR0 7 |
| #define ARM_VFP_FPEXC 8 |
| #define ARM_VFP_FPINST 9 |
| #define ARM_VFP_FPINST2 10 |
| /* These ones are M-profile only */ |
| #define ARM_VFP_FPSCR_NZCVQC 2 |
| #define ARM_VFP_VPR 12 |
| #define ARM_VFP_P0 13 |
| #define ARM_VFP_FPCXT_NS 14 |
| #define ARM_VFP_FPCXT_S 15 |
| |
| /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */ |
| #define QEMU_VFP_FPSCR_NZCV 0xffff |
| |
| /* iwMMXt coprocessor control registers. */ |
| #define ARM_IWMMXT_wCID 0 |
| #define ARM_IWMMXT_wCon 1 |
| #define ARM_IWMMXT_wCSSF 2 |
| #define ARM_IWMMXT_wCASF 3 |
| #define ARM_IWMMXT_wCGR0 8 |
| #define ARM_IWMMXT_wCGR1 9 |
| #define ARM_IWMMXT_wCGR2 10 |
| #define ARM_IWMMXT_wCGR3 11 |
| |
| /* V7M CCR bits */ |
| FIELD(V7M_CCR, NONBASETHRDENA, 0, 1) |
| FIELD(V7M_CCR, USERSETMPEND, 1, 1) |
| FIELD(V7M_CCR, UNALIGN_TRP, 3, 1) |
| FIELD(V7M_CCR, DIV_0_TRP, 4, 1) |
| FIELD(V7M_CCR, BFHFNMIGN, 8, 1) |
| FIELD(V7M_CCR, STKALIGN, 9, 1) |
| FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1) |
| FIELD(V7M_CCR, DC, 16, 1) |
| FIELD(V7M_CCR, IC, 17, 1) |
| FIELD(V7M_CCR, BP, 18, 1) |
| FIELD(V7M_CCR, LOB, 19, 1) |
| FIELD(V7M_CCR, TRD, 20, 1) |
| |
| /* V7M SCR bits */ |
| FIELD(V7M_SCR, SLEEPONEXIT, 1, 1) |
| FIELD(V7M_SCR, SLEEPDEEP, 2, 1) |
| FIELD(V7M_SCR, SLEEPDEEPS, 3, 1) |
| FIELD(V7M_SCR, SEVONPEND, 4, 1) |
| |
| /* V7M AIRCR bits */ |
| FIELD(V7M_AIRCR, VECTRESET, 0, 1) |
| FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1) |
| FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1) |
| FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1) |
| FIELD(V7M_AIRCR, PRIGROUP, 8, 3) |
| FIELD(V7M_AIRCR, BFHFNMINS, 13, 1) |
| FIELD(V7M_AIRCR, PRIS, 14, 1) |
| FIELD(V7M_AIRCR, ENDIANNESS, 15, 1) |
| FIELD(V7M_AIRCR, VECTKEY, 16, 16) |
| |
| /* V7M CFSR bits for MMFSR */ |
| FIELD(V7M_CFSR, IACCVIOL, 0, 1) |
| FIELD(V7M_CFSR, DACCVIOL, 1, 1) |
| FIELD(V7M_CFSR, MUNSTKERR, 3, 1) |
| FIELD(V7M_CFSR, MSTKERR, 4, 1) |
| FIELD(V7M_CFSR, MLSPERR, 5, 1) |
| FIELD(V7M_CFSR, MMARVALID, 7, 1) |
| |
| /* V7M CFSR bits for BFSR */ |
| FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1) |
| FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1) |
| FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1) |
| FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1) |
| FIELD(V7M_CFSR, STKERR, 8 + 4, 1) |
| FIELD(V7M_CFSR, LSPERR, 8 + 5, 1) |
| FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1) |
| |
| /* V7M CFSR bits for UFSR */ |
| FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1) |
| FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1) |
| FIELD(V7M_CFSR, INVPC, 16 + 2, 1) |
| FIELD(V7M_CFSR, NOCP, 16 + 3, 1) |
| FIELD(V7M_CFSR, STKOF, 16 + 4, 1) |
| FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1) |
| FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1) |
| |
| /* V7M CFSR bit masks covering all of the subregister bits */ |
| FIELD(V7M_CFSR, MMFSR, 0, 8) |
| FIELD(V7M_CFSR, BFSR, 8, 8) |
| FIELD(V7M_CFSR, UFSR, 16, 16) |
| |
| /* V7M HFSR bits */ |
| FIELD(V7M_HFSR, VECTTBL, 1, 1) |
| FIELD(V7M_HFSR, FORCED, 30, 1) |
| FIELD(V7M_HFSR, DEBUGEVT, 31, 1) |
| |
| /* V7M DFSR bits */ |
| FIELD(V7M_DFSR, HALTED, 0, 1) |
| FIELD(V7M_DFSR, BKPT, 1, 1) |
| FIELD(V7M_DFSR, DWTTRAP, 2, 1) |
| FIELD(V7M_DFSR, VCATCH, 3, 1) |
| FIELD(V7M_DFSR, EXTERNAL, 4, 1) |
| |
| /* V7M SFSR bits */ |
| FIELD(V7M_SFSR, INVEP, 0, 1) |
| FIELD(V7M_SFSR, INVIS, 1, 1) |
| FIELD(V7M_SFSR, INVER, 2, 1) |
| FIELD(V7M_SFSR, AUVIOL, 3, 1) |
| FIELD(V7M_SFSR, INVTRAN, 4, 1) |
| FIELD(V7M_SFSR, LSPERR, 5, 1) |
| FIELD(V7M_SFSR, SFARVALID, 6, 1) |
| FIELD(V7M_SFSR, LSERR, 7, 1) |
| |
| /* v7M MPU_CTRL bits */ |
| FIELD(V7M_MPU_CTRL, ENABLE, 0, 1) |
| FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1) |
| FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1) |
| |
| /* v7M CLIDR bits */ |
| FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21) |
| FIELD(V7M_CLIDR, LOUIS, 21, 3) |
| FIELD(V7M_CLIDR, LOC, 24, 3) |
| FIELD(V7M_CLIDR, LOUU, 27, 3) |
| FIELD(V7M_CLIDR, ICB, 30, 2) |
| |
| FIELD(V7M_CSSELR, IND, 0, 1) |
| FIELD(V7M_CSSELR, LEVEL, 1, 3) |
| /* We use the combination of InD and Level to index into cpu->ccsidr[]; |
| * define a mask for this and check that it doesn't permit running off |
| * the end of the array. |
| */ |
| FIELD(V7M_CSSELR, INDEX, 0, 4) |
| |
| /* v7M FPCCR bits */ |
| FIELD(V7M_FPCCR, LSPACT, 0, 1) |
| FIELD(V7M_FPCCR, USER, 1, 1) |
| FIELD(V7M_FPCCR, S, 2, 1) |
| FIELD(V7M_FPCCR, THREAD, 3, 1) |
| FIELD(V7M_FPCCR, HFRDY, 4, 1) |
| FIELD(V7M_FPCCR, MMRDY, 5, 1) |
| FIELD(V7M_FPCCR, BFRDY, 6, 1) |
| FIELD(V7M_FPCCR, SFRDY, 7, 1) |
| FIELD(V7M_FPCCR, MONRDY, 8, 1) |
| FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1) |
| FIELD(V7M_FPCCR, UFRDY, 10, 1) |
| FIELD(V7M_FPCCR, RES0, 11, 15) |
| FIELD(V7M_FPCCR, TS, 26, 1) |
| FIELD(V7M_FPCCR, CLRONRETS, 27, 1) |
| FIELD(V7M_FPCCR, CLRONRET, 28, 1) |
| FIELD(V7M_FPCCR, LSPENS, 29, 1) |
| FIELD(V7M_FPCCR, LSPEN, 30, 1) |
| FIELD(V7M_FPCCR, ASPEN, 31, 1) |
| /* These bits are banked. Others are non-banked and live in the M_REG_S bank */ |
| #define R_V7M_FPCCR_BANKED_MASK \ |
| (R_V7M_FPCCR_LSPACT_MASK | \ |
| R_V7M_FPCCR_USER_MASK | \ |
| R_V7M_FPCCR_THREAD_MASK | \ |
| R_V7M_FPCCR_MMRDY_MASK | \ |
| R_V7M_FPCCR_SPLIMVIOL_MASK | \ |
| R_V7M_FPCCR_UFRDY_MASK | \ |
| R_V7M_FPCCR_ASPEN_MASK) |
| |
| /* v7M VPR bits */ |
| FIELD(V7M_VPR, P0, 0, 16) |
| FIELD(V7M_VPR, MASK01, 16, 4) |
| FIELD(V7M_VPR, MASK23, 20, 4) |
| |
| /* |
| * System register ID fields. |
| */ |
| FIELD(CLIDR_EL1, CTYPE1, 0, 3) |
| FIELD(CLIDR_EL1, CTYPE2, 3, 3) |
| FIELD(CLIDR_EL1, CTYPE3, 6, 3) |
| FIELD(CLIDR_EL1, CTYPE4, 9, 3) |
| FIELD(CLIDR_EL1, CTYPE5, 12, 3) |
| FIELD(CLIDR_EL1, CTYPE6, 15, 3) |
| FIELD(CLIDR_EL1, CTYPE7, 18, 3) |
| FIELD(CLIDR_EL1, LOUIS, 21, 3) |
| FIELD(CLIDR_EL1, LOC, 24, 3) |
| FIELD(CLIDR_EL1, LOUU, 27, 3) |
| FIELD(CLIDR_EL1, ICB, 30, 3) |
| |
| /* When FEAT_CCIDX is implemented */ |
| FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3) |
| FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21) |
| FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24) |
| |
| /* When FEAT_CCIDX is not implemented */ |
| FIELD(CCSIDR_EL1, LINESIZE, 0, 3) |
| FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10) |
| FIELD(CCSIDR_EL1, NUMSETS, 13, 15) |
| |
| FIELD(CTR_EL0, IMINLINE, 0, 4) |
| FIELD(CTR_EL0, L1IP, 14, 2) |
| FIELD(CTR_EL0, DMINLINE, 16, 4) |
| FIELD(CTR_EL0, ERG, 20, 4) |
| FIELD(CTR_EL0, CWG, 24, 4) |
| FIELD(CTR_EL0, IDC, 28, 1) |
| FIELD(CTR_EL0, DIC, 29, 1) |
| FIELD(CTR_EL0, TMINLINE, 32, 6) |
| |
| FIELD(MIDR_EL1, REVISION, 0, 4) |
| FIELD(MIDR_EL1, PARTNUM, 4, 12) |
| FIELD(MIDR_EL1, ARCHITECTURE, 16, 4) |
| FIELD(MIDR_EL1, VARIANT, 20, 4) |
| FIELD(MIDR_EL1, IMPLEMENTER, 24, 8) |
| |
| FIELD(ID_ISAR0, SWAP, 0, 4) |
| FIELD(ID_ISAR0, BITCOUNT, 4, 4) |
| FIELD(ID_ISAR0, BITFIELD, 8, 4) |
| FIELD(ID_ISAR0, CMPBRANCH, 12, 4) |
| FIELD(ID_ISAR0, COPROC, 16, 4) |
| FIELD(ID_ISAR0, DEBUG, 20, 4) |
| FIELD(ID_ISAR0, DIVIDE, 24, 4) |
| |
| FIELD(ID_ISAR1, ENDIAN, 0, 4) |
| FIELD(ID_ISAR1, EXCEPT, 4, 4) |
| FIELD(ID_ISAR1, EXCEPT_AR, 8, 4) |
| FIELD(ID_ISAR1, EXTEND, 12, 4) |
| FIELD(ID_ISAR1, IFTHEN, 16, 4) |
| FIELD(ID_ISAR1, IMMEDIATE, 20, 4) |
| FIELD(ID_ISAR1, INTERWORK, 24, 4) |
| FIELD(ID_ISAR1, JAZELLE, 28, 4) |
| |
| FIELD(ID_ISAR2, LOADSTORE, 0, 4) |
| FIELD(ID_ISAR2, MEMHINT, 4, 4) |
| FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4) |
| FIELD(ID_ISAR2, MULT, 12, 4) |
| FIELD(ID_ISAR2, MULTS, 16, 4) |
| FIELD(ID_ISAR2, MULTU, 20, 4) |
| FIELD(ID_ISAR2, PSR_AR, 24, 4) |
| FIELD(ID_ISAR2, REVERSAL, 28, 4) |
| |
| FIELD(ID_ISAR3, SATURATE, 0, 4) |
| FIELD(ID_ISAR3, SIMD, 4, 4) |
| FIELD(ID_ISAR3, SVC, 8, 4) |
| FIELD(ID_ISAR3, SYNCHPRIM, 12, 4) |
| FIELD(ID_ISAR3, TABBRANCH, 16, 4) |
| FIELD(ID_ISAR3, T32COPY, 20, 4) |
| FIELD(ID_ISAR3, TRUENOP, 24, 4) |
| FIELD(ID_ISAR3, T32EE, 28, 4) |
| |
| FIELD(ID_ISAR4, UNPRIV, 0, 4) |
| FIELD(ID_ISAR4, WITHSHIFTS, 4, 4) |
| FIELD(ID_ISAR4, WRITEBACK, 8, 4) |
| FIELD(ID_ISAR4, SMC, 12, 4) |
| FIELD(ID_ISAR4, BARRIER, 16, 4) |
| FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4) |
| FIELD(ID_ISAR4, PSR_M, 24, 4) |
| FIELD(ID_ISAR4, SWP_FRAC, 28, 4) |
| |
| FIELD(ID_ISAR5, SEVL, 0, 4) |
| FIELD(ID_ISAR5, AES, 4, 4) |
| FIELD(ID_ISAR5, SHA1, 8, 4) |
| FIELD(ID_ISAR5, SHA2, 12, 4) |
| FIELD(ID_ISAR5, CRC32, 16, 4) |
| FIELD(ID_ISAR5, RDM, 24, 4) |
| FIELD(ID_ISAR5, VCMA, 28, 4) |
| |
| FIELD(ID_ISAR6, JSCVT, 0, 4) |
| FIELD(ID_ISAR6, DP, 4, 4) |
| FIELD(ID_ISAR6, FHM, 8, 4) |
| FIELD(ID_ISAR6, SB, 12, 4) |
| FIELD(ID_ISAR6, SPECRES, 16, 4) |
| FIELD(ID_ISAR6, BF16, 20, 4) |
| FIELD(ID_ISAR6, I8MM, 24, 4) |
| |
| FIELD(ID_MMFR0, VMSA, 0, 4) |
| FIELD(ID_MMFR0, PMSA, 4, 4) |
| FIELD(ID_MMFR0, OUTERSHR, 8, 4) |
| FIELD(ID_MMFR0, SHARELVL, 12, 4) |
| FIELD(ID_MMFR0, TCM, 16, 4) |
| FIELD(ID_MMFR0, AUXREG, 20, 4) |
| FIELD(ID_MMFR0, FCSE, 24, 4) |
| FIELD(ID_MMFR0, INNERSHR, 28, 4) |
| |
| FIELD(ID_MMFR1, L1HVDVA, 0, 4) |
| FIELD(ID_MMFR1, L1UNIVA, 4, 4) |
| FIELD(ID_MMFR1, L1HVDSW, 8, 4) |
| FIELD(ID_MMFR1, L1UNISW, 12, 4) |
| FIELD(ID_MMFR1, L1HVD, 16, 4) |
| FIELD(ID_MMFR1, L1UNI, 20, 4) |
| FIELD(ID_MMFR1, L1TSTCLN, 24, 4) |
| FIELD(ID_MMFR1, BPRED, 28, 4) |
| |
| FIELD(ID_MMFR2, L1HVDFG, 0, 4) |
| FIELD(ID_MMFR2, L1HVDBG, 4, 4) |
| FIELD(ID_MMFR2, L1HVDRNG, 8, 4) |
| FIELD(ID_MMFR2, HVDTLB, 12, 4) |
| FIELD(ID_MMFR2, UNITLB, 16, 4) |
| FIELD(ID_MMFR2, MEMBARR, 20, 4) |
| FIELD(ID_MMFR2, WFISTALL, 24, 4) |
| FIELD(ID_MMFR2, HWACCFLG, 28, 4) |
| |
| FIELD(ID_MMFR3, CMAINTVA, 0, 4) |
| FIELD(ID_MMFR3, CMAINTSW, 4, 4) |
| FIELD(ID_MMFR3, BPMAINT, 8, 4) |
| FIELD(ID_MMFR3, MAINTBCST, 12, 4) |
| FIELD(ID_MMFR3, PAN, 16, 4) |
| FIELD(ID_MMFR3, COHWALK, 20, 4) |
| FIELD(ID_MMFR3, CMEMSZ, 24, 4) |
| FIELD(ID_MMFR3, SUPERSEC, 28, 4) |
| |
| FIELD(ID_MMFR4, SPECSEI, 0, 4) |
| FIELD(ID_MMFR4, AC2, 4, 4) |
| FIELD(ID_MMFR4, XNX, 8, 4) |
| FIELD(ID_MMFR4, CNP, 12, 4) |
| FIELD(ID_MMFR4, HPDS, 16, 4) |
| FIELD(ID_MMFR4, LSM, 20, 4) |
| FIELD(ID_MMFR4, CCIDX, 24, 4) |
| FIELD(ID_MMFR4, EVT, 28, 4) |
| |
| FIELD(ID_MMFR5, ETS, 0, 4) |
| FIELD(ID_MMFR5, NTLBPA, 4, 4) |
| |
| FIELD(ID_PFR0, STATE0, 0, 4) |
| FIELD(ID_PFR0, STATE1, 4, 4) |
| FIELD(ID_PFR0, STATE2, 8, 4) |
| FIELD(ID_PFR0, STATE3, 12, 4) |
| FIELD(ID_PFR0, CSV2, 16, 4) |
| FIELD(ID_PFR0, AMU, 20, 4) |
| FIELD(ID_PFR0, DIT, 24, 4) |
| FIELD(ID_PFR0, RAS, 28, 4) |
| |
| FIELD(ID_PFR1, PROGMOD, 0, 4) |
| FIELD(ID_PFR1, SECURITY, 4, 4) |
| FIELD(ID_PFR1, MPROGMOD, 8, 4) |
| FIELD(ID_PFR1, VIRTUALIZATION, 12, 4) |
| FIELD(ID_PFR1, GENTIMER, 16, 4) |
| FIELD(ID_PFR1, SEC_FRAC, 20, 4) |
| FIELD(ID_PFR1, VIRT_FRAC, 24, 4) |
| FIELD(ID_PFR1, GIC, 28, 4) |
| |
| FIELD(ID_PFR2, CSV3, 0, 4) |
| FIELD(ID_PFR2, SSBS, 4, 4) |
| FIELD(ID_PFR2, RAS_FRAC, 8, 4) |
| |
| FIELD(ID_AA64ISAR0, AES, 4, 4) |
| FIELD(ID_AA64ISAR0, SHA1, 8, 4) |
| FIELD(ID_AA64ISAR0, SHA2, 12, 4) |
| FIELD(ID_AA64ISAR0, CRC32, 16, 4) |
| FIELD(ID_AA64ISAR0, ATOMIC, 20, 4) |
| FIELD(ID_AA64ISAR0, TME, 24, 4) |
| FIELD(ID_AA64ISAR0, RDM, 28, 4) |
| FIELD(ID_AA64ISAR0, SHA3, 32, 4) |
| FIELD(ID_AA64ISAR0, SM3, 36, 4) |
| FIELD(ID_AA64ISAR0, SM4, 40, 4) |
| FIELD(ID_AA64ISAR0, DP, 44, 4) |
| FIELD(ID_AA64ISAR0, FHM, 48, 4) |
| FIELD(ID_AA64ISAR0, TS, 52, 4) |
| FIELD(ID_AA64ISAR0, TLB, 56, 4) |
| FIELD(ID_AA64ISAR0, RNDR, 60, 4) |
| |
| FIELD(ID_AA64ISAR1, DPB, 0, 4) |
| FIELD(ID_AA64ISAR1, APA, 4, 4) |
| FIELD(ID_AA64ISAR1, API, 8, 4) |
| FIELD(ID_AA64ISAR1, JSCVT, 12, 4) |
| FIELD(ID_AA64ISAR1, FCMA, 16, 4) |
| FIELD(ID_AA64ISAR1, LRCPC, 20, 4) |
| FIELD(ID_AA64ISAR1, GPA, 24, 4) |
| FIELD(ID_AA64ISAR1, GPI, 28, 4) |
| FIELD(ID_AA64ISAR1, FRINTTS, 32, 4) |
| FIELD(ID_AA64ISAR1, SB, 36, 4) |
| FIELD(ID_AA64ISAR1, SPECRES, 40, 4) |
| FIELD(ID_AA64ISAR1, BF16, 44, 4) |
| FIELD(ID_AA64ISAR1, DGH, 48, 4) |
| FIELD(ID_AA64ISAR1, I8MM, 52, 4) |
| FIELD(ID_AA64ISAR1, XS, 56, 4) |
| FIELD(ID_AA64ISAR1, LS64, 60, 4) |
| |
| FIELD(ID_AA64ISAR2, WFXT, 0, 4) |
| FIELD(ID_AA64ISAR2, RPRES, 4, 4) |
| FIELD(ID_AA64ISAR2, GPA3, 8, 4) |
| FIELD(ID_AA64ISAR2, APA3, 12, 4) |
| FIELD(ID_AA64ISAR2, MOPS, 16, 4) |
| FIELD(ID_AA64ISAR2, BC, 20, 4) |
| FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4) |
| FIELD(ID_AA64ISAR2, CLRBHB, 28, 4) |
| FIELD(ID_AA64ISAR2, SYSREG_128, 32, 4) |
| FIELD(ID_AA64ISAR2, SYSINSTR_128, 36, 4) |
| FIELD(ID_AA64ISAR2, PRFMSLC, 40, 4) |
| FIELD(ID_AA64ISAR2, RPRFM, 48, 4) |
| FIELD(ID_AA64ISAR2, CSSC, 52, 4) |
| FIELD(ID_AA64ISAR2, ATS1A, 60, 4) |
| |
| FIELD(ID_AA64PFR0, EL0, 0, 4) |
| FIELD(ID_AA64PFR0, EL1, 4, 4) |
| FIELD(ID_AA64PFR0, EL2, 8, 4) |
| FIELD(ID_AA64PFR0, EL3, 12, 4) |
| FIELD(ID_AA64PFR0, FP, 16, 4) |
| FIELD(ID_AA64PFR0, ADVSIMD, 20, 4) |
| FIELD(ID_AA64PFR0, GIC, 24, 4) |
| FIELD(ID_AA64PFR0, RAS, 28, 4) |
| FIELD(ID_AA64PFR0, SVE, 32, 4) |
| FIELD(ID_AA64PFR0, SEL2, 36, 4) |
| FIELD(ID_AA64PFR0, MPAM, 40, 4) |
| FIELD(ID_AA64PFR0, AMU, 44, 4) |
| FIELD(ID_AA64PFR0, DIT, 48, 4) |
| FIELD(ID_AA64PFR0, RME, 52, 4) |
| FIELD(ID_AA64PFR0, CSV2, 56, 4) |
| FIELD(ID_AA64PFR0, CSV3, 60, 4) |
| |
| FIELD(ID_AA64PFR1, BT, 0, 4) |
| FIELD(ID_AA64PFR1, SSBS, 4, 4) |
| FIELD(ID_AA64PFR1, MTE, 8, 4) |
| FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4) |
| FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4) |
| FIELD(ID_AA64PFR1, SME, 24, 4) |
| FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4) |
| FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4) |
| FIELD(ID_AA64PFR1, NMI, 36, 4) |
| FIELD(ID_AA64PFR1, MTE_FRAC, 40, 4) |
| FIELD(ID_AA64PFR1, GCS, 44, 4) |
| FIELD(ID_AA64PFR1, THE, 48, 4) |
| FIELD(ID_AA64PFR1, MTEX, 52, 4) |
| FIELD(ID_AA64PFR1, DF2, 56, 4) |
| FIELD(ID_AA64PFR1, PFAR, 60, 4) |
| |
| FIELD(ID_AA64MMFR0, PARANGE, 0, 4) |
| FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4) |
| FIELD(ID_AA64MMFR0, BIGEND, 8, 4) |
| FIELD(ID_AA64MMFR0, SNSMEM, 12, 4) |
| FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4) |
| FIELD(ID_AA64MMFR0, TGRAN16, 20, 4) |
| FIELD(ID_AA64MMFR0, TGRAN64, 24, 4) |
| FIELD(ID_AA64MMFR0, TGRAN4, 28, 4) |
| FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4) |
| FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4) |
| FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4) |
| FIELD(ID_AA64MMFR0, EXS, 44, 4) |
| FIELD(ID_AA64MMFR0, FGT, 56, 4) |
| FIELD(ID_AA64MMFR0, ECV, 60, 4) |
| |
| FIELD(ID_AA64MMFR1, HAFDBS, 0, 4) |
| FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4) |
| FIELD(ID_AA64MMFR1, VH, 8, 4) |
| FIELD(ID_AA64MMFR1, HPDS, 12, 4) |
| FIELD(ID_AA64MMFR1, LO, 16, 4) |
| FIELD(ID_AA64MMFR1, PAN, 20, 4) |
| FIELD(ID_AA64MMFR1, SPECSEI, 24, 4) |
| FIELD(ID_AA64MMFR1, XNX, 28, 4) |
| FIELD(ID_AA64MMFR1, TWED, 32, 4) |
| FIELD(ID_AA64MMFR1, ETS, 36, 4) |
| FIELD(ID_AA64MMFR1, HCX, 40, 4) |
| FIELD(ID_AA64MMFR1, AFP, 44, 4) |
| FIELD(ID_AA64MMFR1, NTLBPA, 48, 4) |
| FIELD(ID_AA64MMFR1, TIDCP1, 52, 4) |
| FIELD(ID_AA64MMFR1, CMOW, 56, 4) |
| FIELD(ID_AA64MMFR1, ECBHB, 60, 4) |
| |
| FIELD(ID_AA64MMFR2, CNP, 0, 4) |
| FIELD(ID_AA64MMFR2, UAO, 4, 4) |
| FIELD(ID_AA64MMFR2, LSM, 8, 4) |
| FIELD(ID_AA64MMFR2, IESB, 12, 4) |
| FIELD(ID_AA64MMFR2, VARANGE, 16, 4) |
| FIELD(ID_AA64MMFR2, CCIDX, 20, 4) |
| FIELD(ID_AA64MMFR2, NV, 24, 4) |
| FIELD(ID_AA64MMFR2, ST, 28, 4) |
| FIELD(ID_AA64MMFR2, AT, 32, 4) |
| FIELD(ID_AA64MMFR2, IDS, 36, 4) |
| FIELD(ID_AA64MMFR2, FWB, 40, 4) |
| FIELD(ID_AA64MMFR2, TTL, 48, 4) |
| FIELD(ID_AA64MMFR2, BBM, 52, 4) |
| FIELD(ID_AA64MMFR2, EVT, 56, 4) |
| FIELD(ID_AA64MMFR2, E0PD, 60, 4) |
| |
| FIELD(ID_AA64DFR0, DEBUGVER, 0, 4) |
| FIELD(ID_AA64DFR0, TRACEVER, 4, 4) |
| FIELD(ID_AA64DFR0, PMUVER, 8, 4) |
| FIELD(ID_AA64DFR0, BRPS, 12, 4) |
| FIELD(ID_AA64DFR0, PMSS, 16, 4) |
| FIELD(ID_AA64DFR0, WRPS, 20, 4) |
| FIELD(ID_AA64DFR0, SEBEP, 24, 4) |
| FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4) |
| FIELD(ID_AA64DFR0, PMSVER, 32, 4) |
| FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4) |
| FIELD(ID_AA64DFR0, TRACEFILT, 40, 4) |
| FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4) |
| FIELD(ID_AA64DFR0, MTPMU, 48, 4) |
| FIELD(ID_AA64DFR0, BRBE, 52, 4) |
| FIELD(ID_AA64DFR0, EXTTRCBUFF, 56, 4) |
| FIELD(ID_AA64DFR0, HPMN0, 60, 4) |
| |
| FIELD(ID_AA64ZFR0, SVEVER, 0, 4) |
| FIELD(ID_AA64ZFR0, AES, 4, 4) |
| FIELD(ID_AA64ZFR0, BITPERM, 16, 4) |
| FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4) |
| FIELD(ID_AA64ZFR0, B16B16, 24, 4) |
| FIELD(ID_AA64ZFR0, SHA3, 32, 4) |
| FIELD(ID_AA64ZFR0, SM4, 40, 4) |
| FIELD(ID_AA64ZFR0, I8MM, 44, 4) |
| FIELD(ID_AA64ZFR0, F32MM, 52, 4) |
| FIELD(ID_AA64ZFR0, F64MM, 56, 4) |
| |
| FIELD(ID_AA64SMFR0, F32F32, 32, 1) |
| FIELD(ID_AA64SMFR0, BI32I32, 33, 1) |
| FIELD(ID_AA64SMFR0, B16F32, 34, 1) |
| FIELD(ID_AA64SMFR0, F16F32, 35, 1) |
| FIELD(ID_AA64SMFR0, I8I32, 36, 4) |
| FIELD(ID_AA64SMFR0, F16F16, 42, 1) |
| FIELD(ID_AA64SMFR0, B16B16, 43, 1) |
| FIELD(ID_AA64SMFR0, I16I32, 44, 4) |
| FIELD(ID_AA64SMFR0, F64F64, 48, 1) |
| FIELD(ID_AA64SMFR0, I16I64, 52, 4) |
| FIELD(ID_AA64SMFR0, SMEVER, 56, 4) |
| FIELD(ID_AA64SMFR0, FA64, 63, 1) |
| |
| FIELD(ID_DFR0, COPDBG, 0, 4) |
| FIELD(ID_DFR0, COPSDBG, 4, 4) |
| FIELD(ID_DFR0, MMAPDBG, 8, 4) |
| FIELD(ID_DFR0, COPTRC, 12, 4) |
| FIELD(ID_DFR0, MMAPTRC, 16, 4) |
| FIELD(ID_DFR0, MPROFDBG, 20, 4) |
| FIELD(ID_DFR0, PERFMON, 24, 4) |
| FIELD(ID_DFR0, TRACEFILT, 28, 4) |
| |
| FIELD(ID_DFR1, MTPMU, 0, 4) |
| FIELD(ID_DFR1, HPMN0, 4, 4) |
| |
| FIELD(DBGDIDR, SE_IMP, 12, 1) |
| FIELD(DBGDIDR, NSUHD_IMP, 14, 1) |
| FIELD(DBGDIDR, VERSION, 16, 4) |
| FIELD(DBGDIDR, CTX_CMPS, 20, 4) |
| FIELD(DBGDIDR, BRPS, 24, 4) |
| FIELD(DBGDIDR, WRPS, 28, 4) |
| |
| FIELD(DBGDEVID, PCSAMPLE, 0, 4) |
| FIELD(DBGDEVID, WPADDRMASK, 4, 4) |
| FIELD(DBGDEVID, BPADDRMASK, 8, 4) |
| FIELD(DBGDEVID, VECTORCATCH, 12, 4) |
| FIELD(DBGDEVID, VIRTEXTNS, 16, 4) |
| FIELD(DBGDEVID, DOUBLELOCK, 20, 4) |
| FIELD(DBGDEVID, AUXREGS, 24, 4) |
| FIELD(DBGDEVID, CIDMASK, 28, 4) |
| |
| FIELD(MVFR0, SIMDREG, 0, 4) |
| FIELD(MVFR0, FPSP, 4, 4) |
| FIELD(MVFR0, FPDP, 8, 4) |
| FIELD(MVFR0, FPTRAP, 12, 4) |
| FIELD(MVFR0, FPDIVIDE, 16, 4) |
| FIELD(MVFR0, FPSQRT, 20, 4) |
| FIELD(MVFR0, FPSHVEC, 24, 4) |
| FIELD(MVFR0, FPROUND, 28, 4) |
| |
| FIELD(MVFR1, FPFTZ, 0, 4) |
| FIELD(MVFR1, FPDNAN, 4, 4) |
| FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */ |
| FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */ |
| FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */ |
| FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */ |
| FIELD(MVFR1, MVE, 8, 4) /* M-profile only */ |
| FIELD(MVFR1, FP16, 20, 4) /* M-profile only */ |
| FIELD(MVFR1, FPHP, 24, 4) |
| FIELD(MVFR1, SIMDFMAC, 28, 4) |
| |
| FIELD(MVFR2, SIMDMISC, 0, 4) |
| FIELD(MVFR2, FPMISC, 4, 4) |
| |
| FIELD(GPCCR, PPS, 0, 3) |
| FIELD(GPCCR, IRGN, 8, 2) |
| FIELD(GPCCR, ORGN, 10, 2) |
| FIELD(GPCCR, SH, 12, 2) |
| FIELD(GPCCR, PGS, 14, 2) |
| FIELD(GPCCR, GPC, 16, 1) |
| FIELD(GPCCR, GPCP, 17, 1) |
| FIELD(GPCCR, L0GPTSZ, 20, 4) |
| |
| FIELD(MFAR, FPA, 12, 40) |
| FIELD(MFAR, NSE, 62, 1) |
| FIELD(MFAR, NS, 63, 1) |
| |
| QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK); |
| |
| /* If adding a feature bit which corresponds to a Linux ELF |
| * HWCAP bit, remember to update the feature-bit-to-hwcap |
| * mapping in linux-user/elfload.c:get_elf_hwcap(). |
| */ |
| enum arm_features { |
| ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */ |
| ARM_FEATURE_XSCALE, /* Intel XScale extensions. */ |
| ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */ |
| ARM_FEATURE_V6, |
| ARM_FEATURE_V6K, |
| ARM_FEATURE_V7, |
| ARM_FEATURE_THUMB2, |
| ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */ |
| ARM_FEATURE_NEON, |
| ARM_FEATURE_M, /* Microcontroller profile. */ |
| ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */ |
| ARM_FEATURE_THUMB2EE, |
| ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */ |
| ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */ |
| ARM_FEATURE_V4T, |
| ARM_FEATURE_V5, |
| ARM_FEATURE_STRONGARM, |
| ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */ |
| ARM_FEATURE_GENERIC_TIMER, |
| ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */ |
| ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */ |
| ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */ |
| ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */ |
| ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */ |
| ARM_FEATURE_MPIDR, /* has cp15 MPIDR */ |
| ARM_FEATURE_LPAE, /* has Large Physical Address Extension */ |
| ARM_FEATURE_V8, |
| ARM_FEATURE_AARCH64, /* supports 64 bit mode */ |
| ARM_FEATURE_CBAR, /* has cp15 CBAR */ |
| ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */ |
| ARM_FEATURE_EL2, /* has EL2 Virtualization support */ |
| ARM_FEATURE_EL3, /* has EL3 Secure monitor support */ |
| ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */ |
| ARM_FEATURE_PMU, /* has PMU support */ |
| ARM_FEATURE_VBAR, /* has cp15 VBAR */ |
| ARM_FEATURE_M_SECURITY, /* M profile Security Extension */ |
| ARM_FEATURE_M_MAIN, /* M profile Main Extension */ |
| ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */ |
| }; |
| |
| static inline int arm_feature(CPUARMState *env, int feature) |
| { |
| return (env->features & (1ULL << feature)) != 0; |
| } |
| |
| void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp); |
| |
| /* |
| * ARM v9 security states. |
| * The ordering of the enumeration corresponds to the low 2 bits |
| * of the GPI value, and (except for Root) the concat of NSE:NS. |
| */ |
| |
| typedef enum ARMSecuritySpace { |
| ARMSS_Secure = 0, |
| ARMSS_NonSecure = 1, |
| ARMSS_Root = 2, |
| ARMSS_Realm = 3, |
| } ARMSecuritySpace; |
| |
| /* Return true if @space is secure, in the pre-v9 sense. */ |
| static inline bool arm_space_is_secure(ARMSecuritySpace space) |
| { |
| return space == ARMSS_Secure || space == ARMSS_Root; |
| } |
| |
| /* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */ |
| static inline ARMSecuritySpace arm_secure_to_space(bool secure) |
| { |
| return secure ? ARMSS_Secure : ARMSS_NonSecure; |
| } |
| |
| #if !defined(CONFIG_USER_ONLY) |
| /** |
| * arm_security_space_below_el3: |
| * @env: cpu context |
| * |
| * Return the security space of exception levels below EL3, following |
| * an exception return to those levels. Unlike arm_security_space, |
| * this doesn't care about the current EL. |
| */ |
| ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env); |
| |
| /** |
| * arm_is_secure_below_el3: |
| * @env: cpu context |
| * |
| * Return true if exception levels below EL3 are in secure state, |
| * or would be following an exception return to those levels. |
| */ |
| static inline bool arm_is_secure_below_el3(CPUARMState *env) |
| { |
| ARMSecuritySpace ss = arm_security_space_below_el3(env); |
| return ss == ARMSS_Secure; |
| } |
| |
| /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */ |
| static inline bool arm_is_el3_or_mon(CPUARMState *env) |
| { |
| assert(!arm_feature(env, ARM_FEATURE_M)); |
| if (arm_feature(env, ARM_FEATURE_EL3)) { |
| if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) { |
| /* CPU currently in AArch64 state and EL3 */ |
| return true; |
| } else if (!is_a64(env) && |
| (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { |
| /* CPU currently in AArch32 state and monitor mode */ |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /** |
| * arm_security_space: |
| * @env: cpu context |
| * |
| * Return the current security space of the cpu. |
| */ |
| ARMSecuritySpace arm_security_space(CPUARMState *env); |
| |
| /** |
| * arm_is_secure: |
| * @env: cpu context |
| * |
| * Return true if the processor is in secure state. |
| */ |
| static inline bool arm_is_secure(CPUARMState *env) |
| { |
| return arm_space_is_secure(arm_security_space(env)); |
| } |
| |
| /* |
| * Return true if the current security state has AArch64 EL2 or AArch32 Hyp. |
| * This corresponds to the pseudocode EL2Enabled(). |
| */ |
| static inline bool arm_is_el2_enabled_secstate(CPUARMState *env, |
| ARMSecuritySpace space) |
| { |
| assert(space != ARMSS_Root); |
| return arm_feature(env, ARM_FEATURE_EL2) |
| && (space != ARMSS_Secure || (env->cp15.scr_el3 & SCR_EEL2)); |
| } |
| |
| static inline bool arm_is_el2_enabled(CPUARMState *env) |
| { |
| return arm_is_el2_enabled_secstate(env, arm_security_space_below_el3(env)); |
| } |
| |
| #else |
| static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env) |
| { |
| return ARMSS_NonSecure; |
| } |
| |
| static inline bool arm_is_secure_below_el3(CPUARMState *env) |
| { |
| return false; |
| } |
| |
| static inline ARMSecuritySpace arm_security_space(CPUARMState *env) |
| { |
| return ARMSS_NonSecure; |
| } |
| |
| static inline bool arm_is_secure(CPUARMState *env) |
| { |
| return false; |
| } |
| |
| static inline bool arm_is_el2_enabled_secstate(CPUARMState *env, |
| ARMSecuritySpace space) |
| { |
| return false; |
| } |
| |
| static inline bool arm_is_el2_enabled(CPUARMState *env) |
| { |
| return false; |
| } |
| #endif |
| |
| /** |
| * arm_hcr_el2_eff(): Return the effective value of HCR_EL2. |
| * E.g. when in secure state, fields in HCR_EL2 are suppressed, |
| * "for all purposes other than a direct read or write access of HCR_EL2." |
| * Not included here is HCR_RW. |
| */ |
| uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space); |
| uint64_t arm_hcr_el2_eff(CPUARMState *env); |
| uint64_t arm_hcrx_el2_eff(CPUARMState *env); |
| |
| /* Return true if the specified exception level is running in AArch64 state. */ |
| static inline bool arm_el_is_aa64(CPUARMState *env, int el) |
| { |
| /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want, |
| * and if we're not in EL0 then the state of EL0 isn't well defined.) |
| */ |
| assert(el >= 1 && el <= 3); |
| bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64); |
| |
| /* The highest exception level is always at the maximum supported |
| * register width, and then lower levels have a register width controlled |
| * by bits in the SCR or HCR registers. |
| */ |
| if (el == 3) { |
| return aa64; |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_EL3) && |
| ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) { |
| aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW); |
| } |
| |
| if (el == 2) { |
| return aa64; |
| } |
| |
| if (arm_is_el2_enabled(env)) { |
| aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW); |
| } |
| |
| return aa64; |
| } |
| |
| /* Function for determining whether guest cp register reads and writes should |
| * access the secure or non-secure bank of a cp register. When EL3 is |
| * operating in AArch32 state, the NS-bit determines whether the secure |
| * instance of a cp register should be used. When EL3 is AArch64 (or if |
| * it doesn't exist at all) then there is no register banking, and all |
| * accesses are to the non-secure version. |
| */ |
| static inline bool access_secure_reg(CPUARMState *env) |
| { |
| bool ret = (arm_feature(env, ARM_FEATURE_EL3) && |
| !arm_el_is_aa64(env, 3) && |
| !(env->cp15.scr_el3 & SCR_NS)); |
| |
| return ret; |
| } |
| |
| /* Macros for accessing a specified CP register bank */ |
| #define A32_BANKED_REG_GET(_env, _regname, _secure) \ |
| ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns) |
| |
| #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \ |
| do { \ |
| if (_secure) { \ |
| (_env)->cp15._regname##_s = (_val); \ |
| } else { \ |
| (_env)->cp15._regname##_ns = (_val); \ |
| } \ |
| } while (0) |
| |
| /* Macros for automatically accessing a specific CP register bank depending on |
| * the current secure state of the system. These macros are not intended for |
| * supporting instruction translation reads/writes as these are dependent |
| * solely on the SCR.NS bit and not the mode. |
| */ |
| #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \ |
| A32_BANKED_REG_GET((_env), _regname, \ |
| (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3))) |
| |
| #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \ |
| A32_BANKED_REG_SET((_env), _regname, \ |
| (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \ |
| (_val)) |
| |
| uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, |
| uint32_t cur_el, bool secure); |
| |
| /* Return the highest implemented Exception Level */ |
| static inline int arm_highest_el(CPUARMState *env) |
| { |
| if (arm_feature(env, ARM_FEATURE_EL3)) { |
| return 3; |
| } |
| if (arm_feature(env, ARM_FEATURE_EL2)) { |
| return 2; |
| } |
| return 1; |
| } |
| |
| /* Return true if a v7M CPU is in Handler mode */ |
| static inline bool arm_v7m_is_handler_mode(CPUARMState *env) |
| { |
| return env->v7m.exception != 0; |
| } |
| |
| /* Return the current Exception Level (as per ARMv8; note that this differs |
| * from the ARMv7 Privilege Level). |
| */ |
| static inline int arm_current_el(CPUARMState *env) |
| { |
| if (arm_feature(env, ARM_FEATURE_M)) { |
| return arm_v7m_is_handler_mode(env) || |
| !(env->v7m.control[env->v7m.secure] & 1); |
| } |
| |
| if (is_a64(env)) { |
| return extract32(env->pstate, 2, 2); |
| } |
| |
| switch (env->uncached_cpsr & 0x1f) { |
| case ARM_CPU_MODE_USR: |
| return 0; |
| case ARM_CPU_MODE_HYP: |
| return 2; |
| case ARM_CPU_MODE_MON: |
| return 3; |
| default: |
| if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { |
| /* If EL3 is 32-bit then all secure privileged modes run in |
| * EL3 |
| */ |
| return 3; |
| } |
| |
| return 1; |
| } |
| } |
| |
| /** |
| * write_list_to_cpustate |
| * @cpu: ARMCPU |
| * |
| * For each register listed in the ARMCPU cpreg_indexes list, write |
| * its value from the cpreg_values list into the ARMCPUState structure. |
| * This updates TCG's working data structures from KVM data or |
| * from incoming migration state. |
| * |
| * Returns: true if all register values were updated correctly, |
| * false if some register was unknown or could not be written. |
| * Note that we do not stop early on failure -- we will attempt |
| * writing all registers in the list. |
| */ |
| bool write_list_to_cpustate(ARMCPU *cpu); |
| |
| /** |
| * write_cpustate_to_list: |
| * @cpu: ARMCPU |
| * @kvm_sync: true if this is for syncing back to KVM |
| * |
| * For each register listed in the ARMCPU cpreg_indexes list, write |
| * its value from the ARMCPUState structure into the cpreg_values list. |
| * This is used to copy info from TCG's working data structures into |
| * KVM or for outbound migration. |
| * |
| * @kvm_sync is true if we are doing this in order to sync the |
| * register state back to KVM. In this case we will only update |
| * values in the list if the previous list->cpustate sync actually |
| * successfully wrote the CPU state. Otherwise we will keep the value |
| * that is in the list. |
| * |
| * Returns: true if all register values were read correctly, |
| * false if some register was unknown or could not be read. |
| * Note that we do not stop early on failure -- we will attempt |
| * reading all registers in the list. |
| */ |
| bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync); |
| |
| #define ARM_CPUID_TI915T 0x54029152 |
| #define ARM_CPUID_TI925T 0x54029252 |
| |
| #define CPU_RESOLVING_TYPE TYPE_ARM_CPU |
| |
| #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU |
| |
| /* ARM has the following "translation regimes" (as the ARM ARM calls them): |
| * |
| * If EL3 is 64-bit: |
| * + NonSecure EL1 & 0 stage 1 |
| * + NonSecure EL1 & 0 stage 2 |
| * + NonSecure EL2 |
| * + NonSecure EL2 & 0 (ARMv8.1-VHE) |
| * + Secure EL1 & 0 |
| * + Secure EL3 |
| * If EL3 is 32-bit: |
| * + NonSecure PL1 & 0 stage 1 |
| * + NonSecure PL1 & 0 stage 2 |
| * + NonSecure PL2 |
| * + Secure PL0 |
| * + Secure PL1 |
| * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.) |
| * |
| * For QEMU, an mmu_idx is not quite the same as a translation regime because: |
| * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes, |
| * because they may differ in access permissions even if the VA->PA map is |
| * the same |
| * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2 |
| * translation, which means that we have one mmu_idx that deals with two |
| * concatenated translation regimes [this sort of combined s1+2 TLB is |
| * architecturally permitted] |
| * 3. we don't need to allocate an mmu_idx to translations that we won't be |
| * handling via the TLB. The only way to do a stage 1 translation without |
| * the immediate stage 2 translation is via the ATS or AT system insns, |
| * which can be slow-pathed and always do a page table walk. |
| * The only use of stage 2 translations is either as part of an s1+2 |
| * lookup or when loading the descriptors during a stage 1 page table walk, |
| * and in both those cases we don't use the TLB. |
| * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3" |
| * translation regimes, because they map reasonably well to each other |
| * and they can't both be active at the same time. |
| * 5. we want to be able to use the TLB for accesses done as part of a |
| * stage1 page table walk, rather than having to walk the stage2 page |
| * table over and over. |
| * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access |
| * Never (PAN) bit within PSTATE. |
| * 7. we fold together the secure and non-secure regimes for A-profile, |
| * because there are no banked system registers for aarch64, so the |
| * process of switching between secure and non-secure is |
| * already heavyweight. |
| * |
| * This gives us the following list of cases: |
| * |
| * EL0 EL1&0 stage 1+2 (aka NS PL0) |
| * EL1 EL1&0 stage 1+2 (aka NS PL1) |
| * EL1 EL1&0 stage 1+2 +PAN |
| * EL0 EL2&0 |
| * EL2 EL2&0 |
| * EL2 EL2&0 +PAN |
| * EL2 (aka NS PL2) |
| * EL3 (aka S PL1) |
| * Physical (NS & S) |
| * Stage2 (NS & S) |
| * |
| * for a total of 12 different mmu_idx. |
| * |
| * R profile CPUs have an MPU, but can use the same set of MMU indexes |
| * as A profile. They only need to distinguish EL0 and EL1 (and |
| * EL2 if we ever model a Cortex-R52). |
| * |
| * M profile CPUs are rather different as they do not have a true MMU. |
| * They have the following different MMU indexes: |
| * User |
| * Privileged |
| * User, execution priority negative (ie the MPU HFNMIENA bit may apply) |
| * Privileged, execution priority negative (ditto) |
| * If the CPU supports the v8M Security Extension then there are also: |
| * Secure User |
| * Secure Privileged |
| * Secure User, execution priority negative |
| * Secure Privileged, execution priority negative |
| * |
| * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code |
| * are not quite the same -- different CPU types (most notably M profile |
| * vs A/R profile) would like to use MMU indexes with different semantics, |
| * but since we don't ever need to use all of those in a single CPU we |
| * can avoid having to set NB_MMU_MODES to "total number of A profile MMU |
| * modes + total number of M profile MMU modes". The lower bits of |
| * ARMMMUIdx are the core TLB mmu index, and the higher bits are always |
| * the same for any particular CPU. |
| * Variables of type ARMMUIdx are always full values, and the core |
| * index values are in variables of type 'int'. |
| * |
| * Our enumeration includes at the end some entries which are not "true" |
| * mmu_idx values in that they don't have corresponding TLBs and are only |
| * valid for doing slow path page table walks. |
| * |
| * The constant names here are patterned after the general style of the names |
| * of the AT/ATS operations. |
| * The values used are carefully arranged to make mmu_idx => EL lookup easy. |
| * For M profile we arrange them to have a bit for priv, a bit for negpri |
| * and a bit for secure. |
| */ |
| #define ARM_MMU_IDX_A 0x10 /* A profile */ |
| #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */ |
| #define ARM_MMU_IDX_M 0x40 /* M profile */ |
| |
| /* Meanings of the bits for M profile mmu idx values */ |
| #define ARM_MMU_IDX_M_PRIV 0x1 |
| #define ARM_MMU_IDX_M_NEGPRI 0x2 |
| #define ARM_MMU_IDX_M_S 0x4 /* Secure */ |
| |
| #define ARM_MMU_IDX_TYPE_MASK \ |
| (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB) |
| #define ARM_MMU_IDX_COREIDX_MASK 0xf |
| |
| typedef enum ARMMMUIdx { |
| /* |
| * A-profile. |
| */ |
| ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A, |
| ARMMMUIdx_E20_0 = 1 | ARM_MMU_IDX_A, |
| ARMMMUIdx_E10_1 = 2 | ARM_MMU_IDX_A, |
| ARMMMUIdx_E20_2 = 3 | ARM_MMU_IDX_A, |
| ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A, |
| ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A, |
| ARMMMUIdx_E2 = 6 | ARM_MMU_IDX_A, |
| ARMMMUIdx_E3 = 7 | ARM_MMU_IDX_A, |
| |
| /* |
| * Used for second stage of an S12 page table walk, or for descriptor |
| * loads during first stage of an S1 page table walk. Note that both |
| * are in use simultaneously for SecureEL2: the security state for |
| * the S2 ptw is selected by the NS bit from the S1 ptw. |
| */ |
| ARMMMUIdx_Stage2_S = 8 | ARM_MMU_IDX_A, |
| ARMMMUIdx_Stage2 = 9 | ARM_MMU_IDX_A, |
| |
| /* TLBs with 1-1 mapping to the physical address spaces. */ |
| ARMMMUIdx_Phys_S = 10 | ARM_MMU_IDX_A, |
| ARMMMUIdx_Phys_NS = 11 | ARM_MMU_IDX_A, |
| ARMMMUIdx_Phys_Root = 12 | ARM_MMU_IDX_A, |
| ARMMMUIdx_Phys_Realm = 13 | ARM_MMU_IDX_A, |
| |
| /* |
| * These are not allocated TLBs and are used only for AT system |
| * instructions or for the first stage of an S12 page table walk. |
| */ |
| ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB, |
| ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB, |
| ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB, |
| |
| /* |
| * M-profile. |
| */ |
| ARMMMUIdx_MUser = ARM_MMU_IDX_M, |
| ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV, |
| ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI, |
| ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI, |
| ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S, |
| ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S, |
| ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S, |
| ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S, |
| } ARMMMUIdx; |
| |
| /* |
| * Bit macros for the core-mmu-index values for each index, |
| * for use when calling tlb_flush_by_mmuidx() and friends. |
| */ |
| #define TO_CORE_BIT(NAME) \ |
| ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK) |
| |
| typedef enum ARMMMUIdxBit { |
| TO_CORE_BIT(E10_0), |
| TO_CORE_BIT(E20_0), |
| TO_CORE_BIT(E10_1), |
| TO_CORE_BIT(E10_1_PAN), |
| TO_CORE_BIT(E2), |
| TO_CORE_BIT(E20_2), |
| TO_CORE_BIT(E20_2_PAN), |
| TO_CORE_BIT(E3), |
| TO_CORE_BIT(Stage2), |
| TO_CORE_BIT(Stage2_S), |
| |
| TO_CORE_BIT(MUser), |
| TO_CORE_BIT(MPriv), |
| TO_CORE_BIT(MUserNegPri), |
| TO_CORE_BIT(MPrivNegPri), |
| TO_CORE_BIT(MSUser), |
| TO_CORE_BIT(MSPriv), |
| TO_CORE_BIT(MSUserNegPri), |
| TO_CORE_BIT(MSPrivNegPri), |
| } ARMMMUIdxBit; |
| |
| #undef TO_CORE_BIT |
| |
| #define MMU_USER_IDX 0 |
| |
| /* Indexes used when registering address spaces with cpu_address_space_init */ |
| typedef enum ARMASIdx { |
| ARMASIdx_NS = 0, |
| ARMASIdx_S = 1, |
| ARMASIdx_TagNS = 2, |
| ARMASIdx_TagS = 3, |
| } ARMASIdx; |
| |
| static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space) |
| { |
| /* Assert the relative order of the physical mmu indexes. */ |
| QEMU_BUILD_BUG_ON(ARMSS_Secure != 0); |
| QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure); |
| QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root); |
| QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm); |
| |
| return ARMMMUIdx_Phys_S + space; |
| } |
| |
| static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx) |
| { |
| assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm); |
| return idx - ARMMMUIdx_Phys_S; |
| } |
| |
| static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu) |
| { |
| /* If all the CLIDR.Ctypem bits are 0 there are no caches, and |
| * CSSELR is RAZ/WI. |
| */ |
| return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0; |
| } |
| |
| static inline bool arm_sctlr_b(CPUARMState *env) |
| { |
| return |
| /* We need not implement SCTLR.ITD in user-mode emulation, so |
| * let linux-user ignore the fact that it conflicts with SCTLR_B. |
| * This lets people run BE32 binaries with "-cpu any". |
| */ |
| #ifndef CONFIG_USER_ONLY |
| !arm_feature(env, ARM_FEATURE_V7) && |
| #endif |
| (env->cp15.sctlr_el[1] & SCTLR_B) != 0; |
| } |
| |
| uint64_t arm_sctlr(CPUARMState *env, int el); |
| |
| static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env, |
| bool sctlr_b) |
| { |
| #ifdef CONFIG_USER_ONLY |
| /* |
| * In system mode, BE32 is modelled in line with the |
| * architecture (as word-invariant big-endianness), where loads |
| * and stores are done little endian but from addresses which |
| * are adjusted by XORing with the appropriate constant. So the |
| * endianness to use for the raw data access is not affected by |
| * SCTLR.B. |
| * In user mode, however, we model BE32 as byte-invariant |
| * big-endianness (because user-only code cannot tell the |
| * difference), and so we need to use a data access endianness |
| * that depends on SCTLR.B. |
| */ |
| if (sctlr_b) { |
| return true; |
| } |
| #endif |
| /* In 32bit endianness is determined by looking at CPSR's E bit */ |
| return env->uncached_cpsr & CPSR_E; |
| } |
| |
| static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr) |
| { |
| return sctlr & (el ? SCTLR_EE : SCTLR_E0E); |
| } |
| |
| /* Return true if the processor is in big-endian mode. */ |
| static inline bool arm_cpu_data_is_big_endian(CPUARMState *env) |
| { |
| if (!is_a64(env)) { |
| return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env)); |
| } else { |
| int cur_el = arm_current_el(env); |
| uint64_t sctlr = arm_sctlr(env, cur_el); |
| return arm_cpu_data_is_big_endian_a64(cur_el, sctlr); |
| } |
| } |
| |
| #include "exec/cpu-all.h" |
| |
| /* |
| * We have more than 32-bits worth of state per TB, so we split the data |
| * between tb->flags and tb->cs_base, which is otherwise unused for ARM. |
| * We collect these two parts in CPUARMTBFlags where they are named |
| * flags and flags2 respectively. |
| * |
| * The flags that are shared between all execution modes, TBFLAG_ANY, |
| * are stored in flags. The flags that are specific to a given mode |
| * are stores in flags2. Since cs_base is sized on the configured |
| * address size, flags2 always has 64-bits for A64, and a minimum of |
| * 32-bits for A32 and M32. |
| * |
| * The bits for 32-bit A-profile and M-profile partially overlap: |
| * |
| * 31 23 11 10 0 |
| * +-------------+----------+----------------+ |
| * | | | TBFLAG_A32 | |
| * | TBFLAG_AM32 | +-----+----------+ |
| * | | |TBFLAG_M32| |
| * +-------------+----------------+----------+ |
| * 31 23 6 5 0 |
| * |
| * Unless otherwise noted, these bits are cached in env->hflags. |
| */ |
| FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1) |
| FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1) |
| FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1) /* Not cached. */ |
| FIELD(TBFLAG_ANY, BE_DATA, 3, 1) |
| FIELD(TBFLAG_ANY, MMUIDX, 4, 4) |
| /* Target EL if we take a floating-point-disabled exception */ |
| FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2) |
| /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */ |
| FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1) |
| FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1) |
| FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1) |
| FIELD(TBFLAG_ANY, FGT_SVC, 13, 1) |
| |
| /* |
| * Bit usage when in AArch32 state, both A- and M-profile. |
| */ |
| FIELD(TBFLAG_AM32, CONDEXEC, 24, 8) /* Not cached. */ |
| FIELD(TBFLAG_AM32, THUMB, 23, 1) /* Not cached. */ |
| |
| /* |
| * Bit usage when in AArch32 state, for A-profile only. |
| */ |
| FIELD(TBFLAG_A32, VECLEN, 0, 3) /* Not cached. */ |
| FIELD(TBFLAG_A32, VECSTRIDE, 3, 2) /* Not cached. */ |
| /* |
| * We store the bottom two bits of the CPAR as TB flags and handle |
| * checks on the other bits at runtime. This shares the same bits as |
| * VECSTRIDE, which is OK as no XScale CPU has VFP. |
| * Not cached, because VECLEN+VECSTRIDE are not cached. |
| */ |
| FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2) |
| FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */ |
| FIELD(TBFLAG_A32, SCTLR__B, 8, 1) /* Cannot overlap with SCTLR_B */ |
| FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1) |
| /* |
| * Indicates whether cp register reads and writes by guest code should access |
| * the secure or nonsecure bank of banked registers; note that this is not |
| * the same thing as the current security state of the processor! |
| */ |
| FIELD(TBFLAG_A32, NS, 10, 1) |
| /* |
| * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. |
| * This requires an SME trap from AArch32 mode when using NEON. |
| */ |
| FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1) |
| |
| /* |
| * Bit usage when in AArch32 state, for M-profile only. |
| */ |
| /* Handler (ie not Thread) mode */ |
| FIELD(TBFLAG_M32, HANDLER, 0, 1) |
| /* Whether we should generate stack-limit checks */ |
| FIELD(TBFLAG_M32, STACKCHECK, 1, 1) |
| /* Set if FPCCR.LSPACT is set */ |
| FIELD(TBFLAG_M32, LSPACT, 2, 1) /* Not cached. */ |
| /* Set if we must create a new FP context */ |
| FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1) /* Not cached. */ |
| /* Set if FPCCR.S does not match current security state */ |
| FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1) /* Not cached. */ |
| /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */ |
| FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1) /* Not cached. */ |
| /* Set if in secure mode */ |
| FIELD(TBFLAG_M32, SECURE, 6, 1) |
| |
| /* |
| * Bit usage when in AArch64 state |
| */ |
| FIELD(TBFLAG_A64, TBII, 0, 2) |
| FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2) |
| /* The current vector length, either NVL or SVL. */ |
| FIELD(TBFLAG_A64, VL, 4, 4) |
| FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1) |
| FIELD(TBFLAG_A64, BT, 9, 1) |
| FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */ |
| FIELD(TBFLAG_A64, TBID, 12, 2) |
| FIELD(TBFLAG_A64, UNPRIV, 14, 1) |
| FIELD(TBFLAG_A64, ATA, 15, 1) |
| FIELD(TBFLAG_A64, TCMA, 16, 2) |
| FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1) |
| FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1) |
| FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2) |
| FIELD(TBFLAG_A64, PSTATE_SM, 22, 1) |
| FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1) |
| FIELD(TBFLAG_A64, SVL, 24, 4) |
| /* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */ |
| FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1) |
| FIELD(TBFLAG_A64, TRAP_ERET, 29, 1) |
| FIELD(TBFLAG_A64, NAA, 30, 1) |
| FIELD(TBFLAG_A64, ATA0, 31, 1) |
| FIELD(TBFLAG_A64, NV, 32, 1) |
| FIELD(TBFLAG_A64, NV1, 33, 1) |
| FIELD(TBFLAG_A64, NV2, 34, 1) |
| /* Set if FEAT_NV2 RAM accesses use the EL2&0 translation regime */ |
| FIELD(TBFLAG_A64, NV2_MEM_E20, 35, 1) |
| /* Set if FEAT_NV2 RAM accesses are big-endian */ |
| FIELD(TBFLAG_A64, NV2_MEM_BE, 36, 1) |
| |
| /* |
| * Helpers for using the above. Note that only the A64 accessors use |
| * FIELD_DP64() and FIELD_EX64(), because in the other cases the flags |
| * word either is or might be 32 bits only. |
| */ |
| #define DP_TBFLAG_ANY(DST, WHICH, VAL) \ |
| (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL)) |
| #define DP_TBFLAG_A64(DST, WHICH, VAL) \ |
| (DST.flags2 = FIELD_DP64(DST.flags2, TBFLAG_A64, WHICH, VAL)) |
| #define DP_TBFLAG_A32(DST, WHICH, VAL) \ |
| (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL)) |
| #define DP_TBFLAG_M32(DST, WHICH, VAL) \ |
| (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL)) |
| #define DP_TBFLAG_AM32(DST, WHICH, VAL) \ |
| (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL)) |
| |
| #define EX_TBFLAG_ANY(IN, WHICH) FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH) |
| #define EX_TBFLAG_A64(IN, WHICH) FIELD_EX64(IN.flags2, TBFLAG_A64, WHICH) |
| #define EX_TBFLAG_A32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH) |
| #define EX_TBFLAG_M32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH) |
| #define EX_TBFLAG_AM32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH) |
| |
| /** |
| * sve_vq |
| * @env: the cpu context |
| * |
| * Return the VL cached within env->hflags, in units of quadwords. |
| */ |
| static inline int sve_vq(CPUARMState *env) |
| { |
| return EX_TBFLAG_A64(env->hflags, VL) + 1; |
| } |
| |
| /** |
| * sme_vq |
| * @env: the cpu context |
| * |
| * Return the SVL cached within env->hflags, in units of quadwords. |
| */ |
| static inline int sme_vq(CPUARMState *env) |
| { |
| return EX_TBFLAG_A64(env->hflags, SVL) + 1; |
| } |
| |
| static inline bool bswap_code(bool sctlr_b) |
| { |
| #ifdef CONFIG_USER_ONLY |
| /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian. |
| * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0 |
| * would also end up as a mixed-endian mode with BE code, LE data. |
| */ |
| return TARGET_BIG_ENDIAN ^ sctlr_b; |
| #else |
| /* All code access in ARM is little endian, and there are no loaders |
| * doing swaps that need to be reversed |
| */ |
| return 0; |
| #endif |
| } |
| |
| #ifdef CONFIG_USER_ONLY |
| static inline bool arm_cpu_bswap_data(CPUARMState *env) |
| { |
| return TARGET_BIG_ENDIAN ^ arm_cpu_data_is_big_endian(env); |
| } |
| #endif |
| |
| void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc, |
| uint64_t *cs_base, uint32_t *flags); |
| |
| enum { |
| QEMU_PSCI_CONDUIT_DISABLED = 0, |
| QEMU_PSCI_CONDUIT_SMC = 1, |
| QEMU_PSCI_CONDUIT_HVC = 2, |
| }; |
| |
| #ifndef CONFIG_USER_ONLY |
| /* Return the address space index to use for a memory access */ |
| static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs) |
| { |
| return attrs.secure ? ARMASIdx_S : ARMASIdx_NS; |
| } |
| |
| /* Return the AddressSpace to use for a memory access |
| * (which depends on whether the access is S or NS, and whether |
| * the board gave us a separate AddressSpace for S accesses). |
| */ |
| static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs) |
| { |
| return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs)); |
| } |
| #endif |
| |
| /** |
| * arm_register_pre_el_change_hook: |
| * Register a hook function which will be called immediately before this |
| * CPU changes exception level or mode. The hook function will be |
| * passed a pointer to the ARMCPU and the opaque data pointer passed |
| * to this function when the hook was registered. |
| * |
| * Note that if a pre-change hook is called, any registered post-change hooks |
| * are guaranteed to subsequently be called. |
| */ |
| void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, |
| void *opaque); |
| /** |
| * arm_register_el_change_hook: |
| * Register a hook function which will be called immediately after this |
| * CPU changes exception level or mode. The hook function will be |
| * passed a pointer to the ARMCPU and the opaque data pointer passed |
| * to this function when the hook was registered. |
| * |
| * Note that any registered hooks registered here are guaranteed to be called |
| * if pre-change hooks have been. |
| */ |
| void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void |
| *opaque); |
| |
| /** |
| * arm_rebuild_hflags: |
| * Rebuild the cached TBFLAGS for arbitrary changed processor state. |
| */ |
| void arm_rebuild_hflags(CPUARMState *env); |
| |
| /** |
| * aa32_vfp_dreg: |
| * Return a pointer to the Dn register within env in 32-bit mode. |
| */ |
| static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno) |
| { |
| return &env->vfp.zregs[regno >> 1].d[regno & 1]; |
| } |
| |
| /** |
| * aa32_vfp_qreg: |
| * Return a pointer to the Qn register within env in 32-bit mode. |
| */ |
| static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno) |
| { |
| return &env->vfp.zregs[regno].d[0]; |
| } |
| |
| /** |
| * aa64_vfp_qreg: |
| * Return a pointer to the Qn register within env in 64-bit mode. |
| */ |
| static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno) |
| { |
| return &env->vfp.zregs[regno].d[0]; |
| } |
| |
| /* Shared between translate-sve.c and sve_helper.c. */ |
| extern const uint64_t pred_esz_masks[5]; |
| |
| /* |
| * AArch64 usage of the PAGE_TARGET_* bits for linux-user. |
| * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect |
| * mprotect but PROT_BTI may be cleared. C.f. the kernel's VM_ARCH_CLEAR. |
| */ |
| #define PAGE_BTI PAGE_TARGET_1 |
| #define PAGE_MTE PAGE_TARGET_2 |
| #define PAGE_TARGET_STICKY PAGE_MTE |
| |
| /* We associate one allocation tag per 16 bytes, the minimum. */ |
| #define LOG2_TAG_GRANULE 4 |
| #define TAG_GRANULE (1 << LOG2_TAG_GRANULE) |
| |
| #ifdef CONFIG_USER_ONLY |
| #define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1)) |
| #endif |
| |
| #ifdef TARGET_TAGGED_ADDRESSES |
| /** |
| * cpu_untagged_addr: |
| * @cs: CPU context |
| * @x: tagged address |
| * |
| * Remove any address tag from @x. This is explicitly related to the |
| * linux syscall TIF_TAGGED_ADDR setting, not TBI in general. |
| * |
| * There should be a better place to put this, but we need this in |
| * include/exec/cpu_ldst.h, and not some place linux-user specific. |
| */ |
| static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| if (cpu->env.tagged_addr_enable) { |
| /* |
| * TBI is enabled for userspace but not kernelspace addresses. |
| * Only clear the tag if bit 55 is clear. |
| */ |
| x &= sextract64(x, 0, 56); |
| } |
| return x; |
| } |
| #endif |
| |
| #endif |